
Langley Research Center

A Byzantine-Fault Tolerant
Self-Stabilizing Protocol for Distributed

Clock Synchronization Systems

Mahyar R. Malekpour
NASA-Langley Research Center
m.r.malekpour@larc.nasa.gov

+1 757-864-1513
http://shemesh.larc.nasa.gov/people/mahyar.htm

Nov 17, 2006 Mahyar Malekpour, SSS 2006 2

Langley Research Center

Why Stabilization?

• Initialization

• Recovery from random, independent,
transient failures

• Recovery from massive correlated failures

Nov 17, 2006 Mahyar Malekpour, SSS 2006 3

Langley Research Center

What is the Stabilization of
 Clock Synchronization Problem?

• In electrical engineering terms, for digital logic and data transfer,
a synchronous object requires a clock signal.

• A distributed synchronous system requires a logical clock signal.
• Synchronization means coordination of simultaneous threads or

processes to complete a task in order to get correct runtime order
and avoid unexpected race conditions.

• Stabilization of clock synchronization is bringing the logical clocks
of a distributed system in sync with each other (hence, title of this
report).

Nov 17, 2006 Mahyar Malekpour, SSS 2006 4

Langley Research Center

How to Achieve Stabilization?
• External Control (centralized, master-target)

– Direct
• Power on/Cold Reset
• Hot Reset
• Master switch

– Indirect
• GPS, i.e. time (synchronous)
• Go/Start command (asynchronous)

• Problems
– GPS is not always reliable
– There is no GPS on Mars
– Central command is impractical over long distances

Great for close proximity

Nov 17, 2006 Mahyar Malekpour, SSS 2006 5

Langley Research Center

How to Achieve Stabilization?
• Internal Control (distributed)

– Local awareness about self and state
of the system (diagnosis)

– Coordination with others (synchrony)
– Cooperation with others (agreement)

• Problems
– Awareness
– Establish synchrony
– Establish agreement

• On critical states; schedule, membership

– Maintain synchrony
– Maintain agreement

Self-Stabilization

Convergence

Closure

Diagnosis

Nov 17, 2006 Mahyar Malekpour, SSS 2006 6

Langley Research Center

Byzantine General Problem
• Leslie Lamport, Marshall Pease and Robert Shostak

– Distributed computing and Chinese Generals Problem
• Two generals need to agree on attack or retreat
• Communicate via sending messengers who might never arrive

– The Byzantine Generals Problem, published in 1982
• Generalization of the Chinese General Problem

• Dismissed as a theoretical problem, based on low probability
• Kevin Driscoll, et al, 2003, “Byzantine Fault Tolerance, from

Theory to Reality”
– Probability of asymmetric faults is not as low as it is usually

assumed to be.
– A system with high reliability requirements has to be designed to

handle such faults.

Nov 17, 2006 Mahyar Malekpour, SSS 2006 7

Langley Research Center

What is known?
• Agreement can be guaranteed only if K ≥ 3F + 1,

– K is the total number of nodes and F is the maximum number of faulty nodes.
– E.g. need at least 4 nodes just to tolerate 1 fault.

• Re-synchronization cycle or period, P, to prevent too much
deviation in clocks/timers.

• There are many partial solutions based on strong assumptions
(initial synchrony, or existence of a common pulse).

• There are clock synchronization algorithms that are based on
randomization and are non-deterministic.

• There are claims that cannot be substantiated.
• There is no guideline for how to solve this problem or documented

pitfalls to avoid in the process.
• Speculation on proof of impossibility.
• There was no solution for the general case.

Nov 17, 2006 Mahyar Malekpour, SSS 2006 8

Langley Research Center

Why is this problem difficult to solve?

• This problem is hard to solve and just as hard to prove.

• Aspects of Complexity
– Design of a solution
– Composition of a paper-and-pencil proof of the solution
– Validation of the paper-and-pencil proof
– Mechanical proof of the solution

Nov 17, 2006 Mahyar Malekpour, SSS 2006 9

Langley Research Center

The Approach

• The approach is dynamic and gradual.
– It takes time; convergence is not spontaneous
– Requires continuous vigilance and participation
– Based on system awareness (feedback), i.e. local diagnosis
– Understanding the relationship between time and event

• It is a feedback control system.

Nov 17, 2006 Mahyar Malekpour, SSS 2006 10

Langley Research Center

Topology

N2

N3N4

N1

• The source of a message is distinctly identifiable by the
receivers from other sources of messages.

• E.g. a fully connected graph.

Nov 17, 2006 Mahyar Malekpour, SSS 2006 11

Langley Research Center

Nodes and Monitors

State
Machine

From Nk

From Ni+1

From N1

To other nodes
Monitori+1

Monitork

From Ni-1 Monitori-1

Monitor1

Node i

N2

N3N4

N1
34

1

34

12 2

1

3 4

2

Nov 17, 2006 Mahyar Malekpour, SSS 2006 12

Langley Research Center

The Idea

• Bring all good nodes to the Restore state.
– Asynchronous process

• Transition all good nodes from Restore state to Maintain state.
– Synchronous process
– Within a guaranteed initial precision

• Maintain bounded synchrony by repeating this process periodically.

Any
State

Restore
State

Maintain
State

Nov 17, 2006 Mahyar Malekpour, SSS 2006 13

Langley Research Center

State Transitions

• Transition from Maintain state to Restore state:
– Retry() or TimeOutMaintain()

• At least one good node in Restore state or time to resync.

• Transition from Restore state to Maintain state:
– Based on the transitory conditions

• The node is in the Restore state,
• At least 2F Accept() in as many ∆AA intervals after the node

entered the Restore state,
• No valid Resync messages are received for the last Accept().

• Duration of the transitory delay (during the steady state) is
bounded by [2F, 3F].

Nov 17, 2006 Mahyar Malekpour, SSS 2006 14

Langley Research Center

Messages

• Protocol messages: Resync and Affirm

• Resync, R for short, is sent when Retry(),
TimeOutRestore(), or TimeOutMaintain().

• Affirm, A for short, is sent at ∆AA intervals when
TimeOutAcceptEvent().
– Sent periodically to reduce error detection time,

expedite convergence, and achieve tighter precision.

• A good node does not use its own message.

Nov 17, 2006 Mahyar Malekpour, SSS 2006 15

Langley Research Center

Timers

• A node keeps track of two logical timers:
– State_Timer, reflects the duration of the current state.

• Reset whenever entering a state (Restore or Maintain).

– Local_Timer, used in assessing the state of the system.
• Reset in the Maintain state when State_Timer = �∆Precision �.

• These timers are incremented once per ∆AA.
• Restore state, T for short, maximum duration is PT .
• Maintain state, M for short, maximum duration is PM ≥ PT .

Nov 17, 2006 Mahyar Malekpour, SSS 2006 16

Langley Research Center

Steady State System Behavior

time
Restore Maintain Restore Maintain Restore

time

Restore Maintain

RA AA

A A R A A A A A R A A

AR

PEffective

Restore

• Expected message sequence:
– RAAA … AAAR

Nov 17, 2006 Mahyar Malekpour, SSS 2006 17

Langley Research Center

Determining ∆’s

D d

t0+D t0+D+dt0

• Min event-response delay, D ≥ 1
• Network imprecision, d ≥ 0
• ∆AA ≥ (D + d)
• ∆RA = ∆AA

• 1 ≤ ∆AR ≤ ∆AA

• ∆Precision = (3F - 1) ∆AA - D + ∆Drift

• ∆Drift = ((1+ρ) - 1/(1+ρ)) PM ∆AA

AA

time
message out

message in
A A A

A A

Nov 17, 2006 Mahyar Malekpour, SSS 2006 18

Langley Research Center

The Protocol - Monitor

case (incoming message from the corresponding node)
{Resync:

if InvalidResync() then
Invalidate the message

else
Validate and store the message,
Set state status of the source.

Affirm:
if InvalidAffirm() then

Invalidate the message
else

Validate and store the message.
Other:

Do nothing.
} // case

Nov 17, 2006 Mahyar Malekpour, SSS 2006 19

Langley Research Center

The Protocol - Nodecase (state of the node)
{Restore:

if TimeOutRestore() then
 Transmit Resync message,
 Reset State_Timer,
 Reset DeltaAA_Timer,
 Reset Accept_Event_Counter,
 Stay in Restore state,

elsif TimeOutAcceptEvent() then
 Transmit Affirm message,
 Reset DeltaAA_Timer,
 if Accept() then

Consume valid messages,
Clear state status of the sources,
Increment Accept_Event_Counter,
if TransitoryConditionsMet() then
 Reset State_Timer,
 Go to Maintain state,
else
 Stay in Restore state.

 else
 Stay in Restore state.,
else
 Stay in Restore state.

Maintain:
if TimeOutMaintain() or Retry() then
 Transmit Resync message,
 Reset State_Timer,
 Reset DeltaAA_Timer,
 Reset Accept_Event_Counter,
 Go to Restore state,

elsif TimeOutAcceptEvent() then
 if Accept() then

Consume valid messages.,
 if (State_Timer = �∆Precision�)

Reset Local_Timer.,
 Transmit Affirm message,
 Reset DeltaAA_Timer,
 Stay in Maintain state,

else
 Stay in Maintain state.

} // case

Nov 17, 2006 Mahyar Malekpour, SSS 2006 20

Langley Research Center

Paper-and-pencil proof

Nov 17, 2006 Mahyar Malekpour, SSS 2006 21

Langley Research Center

System Assumptions

• The cause of the transient faults (disturbance) has dissipated.
• All good nodes actively participate in the self-stabilization

process and execute the protocol.
• At most F of the nodes are faulty.
• The source of a message is distinctly identifiable by the

receivers from other sources of messages.
• A message sent by a good node will be received and processed

by all other good nodes within ∆AA, where ∆AA ≥ (D + d).
• The initial values of the state and all variables of a node can be

set to any arbitrary value within their corresponding range.

Nov 17, 2006 Mahyar Malekpour, SSS 2006 22

Langley Research Center

Properties of the Protocol

• Convergence - From any state, the system converges to a self-
stabilized state after a finite amount of time.
– ∀ Ni, Nj ∈ KG, ∆Local_Timer(C) ≤ ∆Precision.
– ∀ Ni, Nj ∈ KG, at C, Ni perceives Nj as being in the Maintain state.

• Closure - When all good nodes have converged to a given self-
stabilization precision, ∆Precision, at time C, the system shall remain
within the self-stabilization precision ∆Precision for t ≥ C, for real time t.
– ∀ Ni, Nj ∈ KG, t ≥ C, ∆Local_Timer(t) ≤ ∆Precision,

Nov 17, 2006 Mahyar Malekpour, SSS 2006 23

Langley Research Center

Proof - Approach

• All good nodes are in the Maintain state.
• Some of the good nodes are in the Maintain state.
• None of the good nodes are in the Maintain state.

All

Some

None

ClosureConvergence

∆∆∆∆PrecisionAny
State

2PT PM PEffective

Nov 17, 2006 Mahyar Malekpour, SSS 2006 24

Langley Research Center

Proof - Sketch
Theorem StabilizeFromAnyState – A system of K ≥ 3F + 1 nodes self-stabilizes
from any random state after a finite amount of time.
• Theorem ResyncWithinPT, Theorem RestoreToMaintain, and

Corollary RestoreToMaintainWithin2PT –
– 1- None of the good nodes are in the Maintain state
– 2- All good nodes are in the Maintain state
– 3- Some of the good nodes are in the Maintain state

• Convergence – None of the good nodes are in the Maintain state:
It follows from Theorems ConvergeNoneMaintain and ClosureAllMaintain that
such system always self-stabilizes.

• Convergence – All good nodes are in the Maintain state:
It follows from Theorems ConvergeNoneMaintain, ConvergeAllMaintain and
ClosureAllMaintain that such system always self-stabilizes.

• Convergence – Some of the good nodes are in the Maintain state:
It follows from Theorems ConvergeNoneMaintain, ConvergeAllMaintain,
ConvergeSomeMaintain, and ClosureAllMaintain that such system always self-
stabilizes.

Nov 17, 2006 Mahyar Malekpour, SSS 2006 25

Langley Research Center

Proof - Sketch
• Mutually Stabilized – ∀ Ni, Nj ∈ KG, at C, Ni perceives Nj as being in the Maintain

state.
It follows from Corollary MutuallyStabilized that all good nodes mutually perceive
each other to be in the Maintain state.

• Closure: When all good nodes have converged such that ∆Local_Timer(C) ≤ ∆Precision,
at time C, the system shall remain within the self-stabilization precision ∆Precision for
t ≥ C, for real time t.
It follows from Theorems ClosureAllMaintain and LocalTimerWithinPrecision that
such system always remains stabilized and ∆Local_Timer(t) ≤ ∆Precision for t ≥ C. ♦

Nov 17, 2006 Mahyar Malekpour, SSS 2006 26

Langley Research Center

Proof via Model Checking
• Main problem, state space explosion
• Used SMV and successfully model checked the protocol

for the base case (deceptively simple):
– Fully connected graph
– 4-node system, 3 good nodes, 1 Byzantine faulty node
– D = 1, d = 0, ∆AA = 1, ρ = 0
– Initially 4.26x1046 states
– After abstraction and reduction techniques, 5.13x1024 states
– PC, running Linux, 4GB memory

• Model checking effort took over two years
– Report under review

Nov 17, 2006 Mahyar Malekpour, SSS 2006 27

Langley Research Center

Protocol Characteristics
• Self-stabilizes in the presence of permanent Byzantine failures.

– From any initial random state
– Tolerates bursts of random, independent, transient failures
– Recovers from massive correlated failures

• Convergence
– Deterministic
– Bounded
– Linear-time with respect to the self-stabilization period, PM.

• Rapid; converges within one self-stabilization period, PM.
• Low overhead, 1/w, w is the width of the data message.
• All timing measures of variables are based on the node’s local clock.
• Scalable with respect to the fundamental parameters K, D and d.
• No central clock or externally generated pulse is used.
• Does not require global diagnosis, but K ≥ 3F + 1.

Nov 17, 2006 Mahyar Malekpour, SSS 2006 28

Langley Research Center

Achieving Tighter Precision
• If ∆AA, and hence ∆Precision, is larger than the desired precision,

the system is said to be Coarsely Synchronized. Otherwise,
the system is said to be Finely Synchronized.

• The desired precision can be achieved in a two step process.
– First, the system has to be Coarsely Synchronized and guaranteed

that the system remains Coarsely Synchronized and operates
within a known precision, ∆Precision.

– Second, utilize a proven protocol that is based on the initial
synchrony assumptions to achieve optimum precision.

• E.g. Fault-Tolerant Mid-Point function (FTMP) or Fault-Tolerant
Averaging function (FTA), FTMP = floor ((TF+1 + TK-F) / 2).

• Topic of my next report.

Nov 17, 2006 Mahyar Malekpour, SSS 2006 29

Langley Research Center

The interplay of Coarsely and Finely
Synchronized protocols.

Any State

Coarse Synchronization

∆Precision too large?

Fine Synchronization

Yes

No

Nov 17, 2006 Mahyar Malekpour, SSS 2006 30

Langley Research Center

Future Plans
• Build it and show that it works in a harsh environment, e.g. High

Intensity Radiated Field (HIRF), neutron radiation.
– 4-node system (base case)
– Have capability for up to 14-node system

• Integration of this protocol with a Finely Synchronized protocol.
• Adapting to SPIDER topology
• Adapting to other topologies
• Hybrid fault models
• Dynamic node count
• Continue model checking of larger and more complex systems.

Nov 17, 2006 Mahyar Malekpour, SSS 2006 31

Langley Research Center

Questions?

