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• Synchronization 

 

• Verification via formal methods 

 

• Fault spectrum and complexity 

 

• Where are we now and where are we going? 
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What Is Synchronization? 

• Local oscillators/hardware clocks operate at slightly different 

rates, thus, they drift apart over time. 

• Local logical clocks, i.e., timers/counters, may start at 

different initial values. 

• The synchronization problem is to adjust the values of the 

local logical clocks so that nodes achieve synchronization and 

remain synchronized despite the drift of their local oscillators. 

 

• Application – Wherever there is a distributed system 

• How can we synchronize a distributed system? 

• Under what conditions is it (im)possible? 
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A Brief History of Synchronization 

• Norbert Wiener, mathematician 

– Author of the 1950 book Cybernetics: The Control and Communication in the Animal 

and the Machine 

– Brain waves, alpha rhythm, 1954 

• Art Winfree, majored in engineering physics, wanted to be biologist 

– Modeled using runners on a track, synchronization in time and space, 1964 

– Topology was a ring 

• Yoshiki Kuramoto, physicist 

– Introduced order parameter, synchronization in time, 1975 

– Topology was a ring 

• Edsger W. Dijkstra, computer scientist 

– Presented (2 pg) the concept of self-stabilizing distributed computation, in 1973-1974. 

– Presented an algorithm for a ring 
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A Brief History of Synchronization 

• Charlie Peskin, applied mathematician 

– Proposed self-organization idea (278 pg), in 1973-1975, while working on 

cardiac pacemakers. 

– Conjectured that there is a solution 

– Started to prove N-body systems of oscillators for large N 

– Ended with proof for two pulse-coupled oscillators by restricting the problem to 

its bare bone 

• Steven Strogatz and Rennie Mirollo, mathematicians 

– Develop proof for N-pulse-coupled oscillators, 1989 

– Approach was simulation followed by mathematical proof for 

• Ideal case, 

• Ideal oscillators, and 

• Fully connected graph 

– Many publications, including a book entitled SYNC 
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It all started with SPIDER, 1999 
(Scalable Processor-Independent Design for Extended Reliability) 

• Safety critical systems must deal with the presence of 

various faults, including arbitrary (Byzantine) faults 

 

• Goals (in the presence and absence of faults): 

1. Initialization from arbitrary state 

2. Recovery from random, independent, transient failures 

3. Recovery from massive correlated failures 
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What is known? 

• Agreement can be guaranteed only if K  3F + 1, 
– K is the total number of nodes and F is the maximum number of Byzantine faulty nodes. 

– E.g. need at least 4 nodes just to tolerate 1 fault. 

• Periodic re-synchronization to prevent too much deviation in 

clocks/timers due to drift. 

• There are many partial solutions based on strong assumptions 

(e.g., initial synchrony, or existence of a common pulse). 

• There are clock synchronization algorithms that are based on 

randomization and are non-deterministic. 

• There are claims that cannot be substantiated. 

• There are no guidelines for how to solve this problem or 

documented pitfalls to avoid in the process. 

• Speculation on proof of impossibility. 

• There is no solution for the general case. 
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Why is this problem difficult? 

• Design of a fault-tolerant distributed real-time algorithm is 

extraordinarily hard and error-prone 

– Concurrent processes 

– Size and shape (topology) of the network 

– Interleaving concurrent events, timing, duration 

– Fault manifestation, timing, duration 

– Arbitrary state, initialization, system-wide upset 

 

 

• It is notoriously difficult to design a formally verifiable solution for 

self-stabilizing distributed synchronization problem. 

Mahyar Malekpour, PRDC 2011 8 



Langley Research Center 

The Idea 

• Keys:  It is a feedback control system. 

                It is a non-linear system. 

 

• Bring all good nodes from any state to a known state. 

– Convergence property 

• Maintain bounded synchrony. 

– Closure property 
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The interplay of Coarsely and  

Finely Synchronized protocols. 

Any State

Coarse Synchronization

Fine Synchronization

Yes

No
Precision too large?
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Characteristics Of A Desired Solution 
• Self-stabilizes in the presence of various failure scenarios. 

– From any initial random state 

– Tolerates bursts of random, independent, transient failures 

– Recovers from massive correlated failures 

• Convergence 

– Deterministic 

– Bounded 

– Fast 

• Low overhead 

• Scalable 

• No central clock or externally generated pulse used 

• Does not require global diagnosis 

– Relies on local independent diagnosis 

• A solution for K = 3F+1, if possible, otherwise, K = 3F+1+X, (X = ?)  0 
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and, 

 

 

Must show the solution is correct. 
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Formal Verification Methods 

• Formal method techniques: model checking, theorem proving 

 

• Use a model checker to verify a possible solution insuring that 

there are no false positives and false negatives. 

– It is deceptively simple and subject to abstractions and simplifications made 

in the verification process. 

 

• Use a theorem prover to prove that the protocol is correct. 

– It requires a paper-and-pencil proof, at least a sketch of it. 
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Bridging Two Worlds 

• From simulation (VHDL) to model checking (SMV, SMART, 

UPPAL, NuSMV) 

 

• From an engineer to a formal methods practitioner 

– I became a believer and an advocate; a formal methodist 

 

• Found a partial solution in 2003, published in 2006 

• Found another partial solution in 2007, published in 2009 

• These solutions are for 4 nodes with one Byzantine fault and 

do not scale well to larger number of Byzantine faults 

• Model checking of the first protocol took two years 

• Model checking results are publically available 
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Model Checking 

• Model checking issues 

– State space explosion problem 

– Tools require in-depth and inside knowledge, interfaces are not mature yet 

– Modeling a real-time system using a discrete event-based tool 

• Intuitive solution is more memory and more computing power 

– PC with 4GB of memory running Linux, 32bit 

– There is a hardware limitation on the amount of memory that can be added to 

a given system 

– It may not eliminate/resolve state space problem 

• Find a simpler solution 

• Reduce the problem complexity by reducing its scope or 

restricting the assumptions 

• Wait for a more powerful model checker 

– 64-bit tool utilizing more memory 

– Faster and more efficient model checking algorithm 
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The Big Picture 
(Approach toward solving synchronization problem) 

• Thus far, we’ve considered only the Byzantine faults 

and produced partial solutions. 

 

• Change In Strategy 

– The shortest path between two points is not necessarily a 

straight line. 

– First, solve the problem in the absence of faults. 

– Learn and revisit faulty scenarios later on. 
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Fault Spectrum 
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Simple fault classification: 
     1.  None 

     2.  Symmetric 

     3.  Asymmetric (Byzantine) 

 

 

The OTH (Omisive Transmissive Hybrid) fault model classification 

based on Node Type and Link Type outputs:  
(http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100028297_2010031030.pdf) 

     1. Correct (None) 

     2. Omissive Symmetric 

     3. Transmissive Symmetric (Symmetric) 

     4. Strictly Omissive Asymmetric 

     5. Single-Data Omissive Asymmetric 

     6. Transmissive Asymmetric (Byzantine) 

 

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100028297_2010031030.pdf
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• In the absence of faults, our previous two protocols work for graphs 

of any size. 

– Model checked for K ≤ 15 

– As long as the graph is fully connected 

 

• What about other topologies?  What should the graph look like? 

– Other graphs of interest: single ring, double ring, grid, bi-partite, etc. 

– Possible options (Sloane numbers/sequence): 

 

 

– Example, for 4 nodes there are 6 different graphs: 

 

What about topology(T)? 

K 1 2 3 4 5 6 7 8 

Number of 1-connected graphs 1 1 2 6 21 112 853 11117 
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Sloane A001349 
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n a(n) 

0 1 

1 1 

2 1 

3 2 

4 6 

5 21 

6 112 

7 853 

8 11117 

9 261080 

10 11716571 

11 1006700565 

12 164059830476 

13 50335907869219 

14 29003487462848061 

15 31397381142761241960 

16 63969560113225176176277 

17 245871831682084026519528568 

18 1787331725248899088890200576580 

19 24636021429399867655322650759681644 
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Synchronization 

• What are the parameters? 

– Maximum number of faults, F  0 

– Communication delay, D > 0 clock ticks 

– Network imprecision, d  0 clock ticks 
• So, communication delay is bounded by [D, D+d] 

– Oscillator drift, 0 ≤ ρ << 1, 

– Number of nodes, i.e., network size, K  1 

– Synchronization period, P 

– Topology, T 

 

• Synchronization, S = (F, D, d, ρ, K, P, T) 
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Where Are We Now? 

• Have a family of solutions for F = 0 and K ≥ 1 that apply to all of 

the following scenarios and encompass all of the above 

parameters. 

1. Ideal scenario where ρ = 0 and d = 0. 

2. Semi-ideal scenario where ρ = 0 and d  0. 

3. Non-ideal scenario, i.e., realizable systems, where ρ  0 and d  0. 

 

• Have model checked a set of digraphs, NASA/TM-2011-217152 

– As much as our resources allowed (mainly, memory constrained) 

• Have a deductive proof, NASA/TM-2011-217184 

– Concise and elegant 

• Other researchers currently model checking graphs with more 

nodes and fewer abstractions than our model checking effort. 
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The Protocol 

Synchronizer: 

E0:  if (LocalTimer < 0) 

  LocalTimer := 0, 
 

E1:  elseif (ValidSync() and (LocalTimer < D)) 

  LocalTimer := γ, // interrupted 
 

E2:  elseif ((ValidSync() and (LocalTimer  TS)) 

  LocalTimer := γ, // interrupted 

  Transmit Sync, 
 

E3:  elseif (LocalTimer  P) // timed out 

  LocalTimer := 0, 

  Transmit Sync, 

E4:  else 

  LocalTimer := LocalTimer + 1. 
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Monitor: 

case (message from the corresponding node) 

{Sync: 

 ValidateMessage() 

Other: 

 Do nothing. 

} // case 
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How Does It Work? 

 

1. If someone is out there – accept its Sync message and relay it to 

others, 

 

2. If no one is out there (or they are too slow) – take charge and 

generate a new Sync message, 

 

3. Ignore – reject all Sync messages while in the Ignore Window. 

– Rules 1 and 2 result in an endless cycle of transmitting messages back and forth 

– The Ignore Window properly stops this endless cycle 
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Key Results 

 

Global Lemmas And Theorems 

 

 How do we know when and if the system is stabilized? 
 

• Theorem Convergence – For all t ≥ C, the network converges to a state where the 

guaranteed network precision is π, i.e., ΔNet(t) ≤ π. 
 

• Theorem Closure – For all t ≥ C, a synchronized network where all nodes have 

converged to ΔNet(t) ≤ π, shall remain within the synchronization precision π. 
 

• Lemma ConvergenceTime – For ρ ≥ 0, the convergence time is C = CInit + ⎡ΔInit/γ⎤ P. 
 

• Theorem Liveness – For all t ≥ C, LocalTimer of every node sequentially takes on at 

least all integer values in [γ, P-π]. 
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Key Results 

 

Local Theorem 
 

 How does a node know when and if the system is stabilized? 
 

• Theorem Congruence – For all nodes Ni and for all t ≥ C, (Ni.LocalTimer(t) = γ) implies 

ΔNet(t) ≤ π. 

 

 

Key Aspects Of Our Deductive Proof 
 1.  Independent of topology 

 2.  Realizable systems, i.e., d ≥ 0 and 0 ≤ ρ << 1 

 3.  Continuous time 
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Model Checked Cases 
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K Topology 

(all links bidirectional) 

Topology 

(digraphs) 

2 1 of 1 1 of 1 

3 2 of 2 5 of 5 

4 6 of 6 83 of 83 

5 21 of 21 Single Directed Ring 

2 Variations of  

Doubly Connected  

Directed Ring 

6 112 of 112 - 

7 Linear* Linear* 

7 Star* Star* 

7 Fully Connected* Fully Connected* 

7 (3×4) Fully Connected Bipartite* Fully Connected Bipartite* 

7 Combo 4 of 4 

7 Grid - 

7 Full Grid - 

9 (3×3) Grid - 

15 Star* Star* 

20 Star* Star* 



Langley Research Center 

Variations Of The Protocol 

• It is a family of solutions 

 

• Reset 

 in E1 and E2: 

  LocalTimer := γ,  // interrupted 

  LocalTimer := 0,  // interrupted 

 

• Reduced precision, ij = , InitGuaranteed = W  

• Ripple effect 

• Same usable range [, P - π] 
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Variations Of The Protocol 

• Jump Ahead 

 in E1 and E2: 

  LocalTimer := γ,   // interrupted 

  LocalTimer := LocalTimerIn + γ, // interrupted 

  if (LocalTimer  P) 

   LocalTimer := 0, 

 in E2 and E3: 

  Transmit Sync, 

  Transmit Sync and LocalTimer, 

 

• Increased overhead (message size) 

• More messages during convergence 

• Better precision, InitGuaranteed = (1+d)δ(P) 

• Less usable range [W, P - π] 
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Variations Of The Protocol 

• Recall, S = (F, D, d, , K, P, T) 

 

• The general form, dynamic digraph, S’ = (F, D, d, , K(t), P, T(t)) 

– K(t) represents the dynamic node count at time t  

– T(t) represents the dynamic topology for a given K(t) 

 

• Dynamic Node Count – the number of nodes comprising the 

network can change at any time. 

• Dynamic Topology – the number of links can change at any time. 

 

• Dynamic Digraph – once synchrony is achieved, the system 

maintains its synchrony provided that the new nodes enter the 

network from a reset state. 
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More Results, In Retrospect 
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•   Our family of solutions handles more than the no-fault (correct) case. 

    It handles cases 1, 2, and 4 of the OTH fault classification.  I.e., it is a 

    fault-tolerant protocol as long as our assumptions are not violated 

    and the faulty behavior does not violate our definition of digraph. 

•   In retrospect, “fault-tolerant” should be included in the paper’s title. 

•   Our family of solutions is an emergent system. 

 

The OTH (Omisive Transmissive Hybrid) fault model classification based 

on Node Type and Link Type outputs:  
     1. Correct (None, No-fault) 

     2. Omissive Symmetric (Fail-detected, Fail-silent) 

     3. Transmissive Symmetric (Symmetric) 

     4. Strictly Omissive Asymmetric (1 or 2) 

     5. Single-Data Omissive Asymmetric 

     6. Transmissive Asymmetric (Byzantine) 
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Status and Issues 

 

• Our deductive proof is documented and publically available. 

There is still a need for this solution to be analyzed in a more 

mathematically rigorous way. 

 

• Is there a better way to prove that the protocol is correct? 

• How to verify the proofs? 

• To model check or to theorem prove? 

– If neither, then what? 

– If model check, then how to model check all topologies? 

• Any volunteers? 
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Where are we going? 

• At the end, we are defining the path from one end of the 

fault spectrum to the other; from No Fault to Byzantine 

Faults and solving the synchronization problem for the 

general case, i.e., for all topologies and fault types. 

 

• We envision a final general/unifying solution 

encompassing all topologies and fault types. 

 

• Note that thus far the convergence time, C, seems 

consistent and, I believe, we are on the right track. 

  CByzantine = O(P) 

  CNo-fault  = O(P)  
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Questions? 
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