

Langley Research Center



### Self-Stabilizing Synchronization Of Arbitrary Digraphs In Presence Of Faults

Mahyar R. Malekpour http://shemesh.larc.nasa.gov/people/mrm/

SSS 2012, October 1 – 4





### What Is Synchronization?

- Local oscillators/hardware clocks operate at slightly different rates, thus, they drift apart over time.
- Local logical clocks, i.e., timers/counters, may start at different initial values.
- The <u>synchronization problem</u> is to adjust the values of the local logical clocks so that nodes <u>achieve</u> synchronization and <u>remain</u> synchronized despite the drift of their local oscillators.
- Application Wherever there is a distributed system





# Why is this problem difficult?

- Design of a fault-tolerant distributed real-time algorithm is extraordinarily hard and error-prone
  - Concurrent processes
  - Size and shape (topology) of the network
  - Interleaving concurrent events, timing, duration
  - Fault manifestation, timing, duration
  - Arbitrary state, initialization, system-wide upset
- It is notoriously difficult to design a formally verifiable solution for self-stabilizing distributed synchronization problem.





## Characteristics Of A Desired Solution

- Self-stabilizes in the presence of various failure scenarios.
  - From any initial random state
  - Tolerates bursts of random, independent, transient failures
  - Recovers from massive correlated failures
- Convergence
  - Deterministic
  - Bounded
  - Fast
- Low overhead
- Scalable
- No central clock or externally generated pulse used
- Does not require global diagnosis
  - Relies on local independent diagnosis
- A solution for K = 3F+1, if possible, otherwise, K = 3F+1+X,  $(X = ?) \ge 0$



Langley Research Center



#### and,

#### must show the solution is correct.





### Formal Verification Methods

- Formal method techniques: model checking, theorem proving
- Use a model checker to verify a possible solution insuring that there are no false positives and false negatives.
  - It is deceptively simple and subject to abstractions and simplifications made in the verification process.
  - State space explosion problem
  - Tools require in-depth and inside knowledge, interfaces are not mature yet
  - Modeling a real-time system using a discrete event-based tool
- Use a theorem prover to prove that the protocol is correct.
  - It requires a paper-and-pencil proof, at least a sketch of it.





### Alternatively ...

- Find a simpler solution
- Reduce the problem complexity by reducing its scope or restricting the assumptions
- Wait for a more powerful model checker
  - 64-bit tool utilizing more memory
  - Faster and more efficient model checking algorithm





### The Big Picture

- Solve the problem in the absence of faults.
- Learn and revisit faulty scenarios later on.





#### Fault Spectrum

Simple fault classification:

- 1. None
- 2. Symmetric
- 3. Asymmetric (Byzantine)

# The OTH (Omissive Transmissive Hybrid) fault model classification based on *Node Type* and *Link Type* outputs:

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100028297\_2010031030.pdf

- 1. Correct (None)
- 2. Omissive Symmetric
- 3. Transmissive Symmetric (Symmetric)
- 4. Strictly Omissive Asymmetric
- 5. Single-Data Omissive Asymmetric
- 6. Transmissive Asymmetric (Byzantine)





### What About Topology?

- What should the graph look like?
  - Graphs of interest: single ring, double ring, grid, bi-partite, etc.
  - Possible options (Sloane numbers/sequence):

| K                            | 1 | 2 | 3 | 4 | 5  | 6   | 7   | 8     |
|------------------------------|---|---|---|---|----|-----|-----|-------|
| Number of 1-connected graphs | 1 | 1 | 2 | 6 | 21 | 112 | 853 | 11117 |

– Example, for 4 nodes there are 6 different graphs:

| • • • • | Å        | $\prec$ |      | N | X        |
|---------|----------|---------|------|---|----------|
| Linear  | Star/Hub | -       | Ring | - | Complete |





#### Where Are We Now?

- Have a family of solutions for detectably bad faults and  $K \ge 1$  that applies to realizable systems.
  - Network impression and oscillator drift
- Have model checked a set of digraphs, NASA/TM-2011-217152
  - As much as our resources allowed (mainly, memory constrained)
- Have a deductive proof, NASA/TM-2011-217184
  - Concise and elegant





#### The Protocol

| Synchronizer:                                                                                                                                                                                                                                                       | Monitor:                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| E0: if ( <i>LocalTimer</i> < 0)                                                                                                                                                                                                                                     | case (message from the corresponding node)              |
| LocalTimer:= 0,                                                                                                                                                                                                                                                     | {Sync:                                                  |
| E1: elseif ( <i>ValidSync(</i> ) and ( <i>LocalTimer &lt; D</i> ))<br><i>LocalTimer</i> := $\gamma$ , // interrupted<br>E2: elseif (( <i>ValidSync(</i> ) and ( <i>LocalTimer</i> $\geq T_S$ ))<br><i>LocalTimer</i> := $\gamma$ , // interrupted<br>Transmit Sync, | ValidateMessage()<br>Other:<br>Do nothing.<br>} // case |
| E3: elseif (LocalTimer $\ge P$ ) // timed out<br>LocalTimer := 0,<br>Transmit Sync,<br>E4: else<br>LocalTimer := LocalTimer + 1.                                                                                                                                    |                                                         |





#### How The Protocol Works

- If someone is out there accept its Sync message and <u>relay</u> it to others,
- If no one is out there (or they are too slow) take charge and generate a new Sync message,
- 3. Ignore reject all *Sync* messages while in the *Ignore Window*.
  - Rules 1 and 2 result in an endless cycle of transmitting messages back and forth
  - The *Ignore Window* properly stops this endless cycle





#### **Key Results**

#### **Global Lemmas And Theorems**

How do we know when and if the system is stabilized?

- **Theorem Convergence** For all  $t \ge C$ , the network converges to a state where the guaranteed network precision is  $\pi$ , i.e.,  $\Delta Net(t) \le \pi$ .
- **Theorem Closure** For all  $t \ge C$ , a synchronized network where all nodes have converged to  $\Delta Net(t) \le \pi$ , shall remain within the synchronization precision  $\pi$ .
- Lemma ConvergenceTime For  $\rho \ge 0$ , the convergence time is  $C = C_{\text{Init}} + |\Delta_{\text{Init}}/\gamma|/P$ .
- Theorem Liveness For all t ≥ C, LocalTimer of every node sequentially takes on at least all integer values in [γ, P-π].





#### **Key Results**

#### Local Theorem

How does <u>a node</u> know when and if the system is stabilized?

• **Theorem Congruence** – For all nodes Ni and for all  $t \ge C$ , (Ni.LocalTimer(t) =  $\gamma$ ) implies  $\Delta Net(t) \le \pi$ .

#### Key Aspects Of Our Deductive Proof

- 1. Independent of topology
- 2. Realizable systems, i.e.,  $d \ge 0$  and  $0 \le \rho \ll 1$
- 3. Continuous time







#### Model Checked Cases

| K       | Topology                   | Topology                   |  |  |
|---------|----------------------------|----------------------------|--|--|
|         | (all links bidirectional)  | (digraphs)                 |  |  |
| 2       | 1 of 1                     | 1 of 1                     |  |  |
| 3       | 2 of 2                     | 5 of 5                     |  |  |
| 4       | 6 of 6                     | 83 of 83                   |  |  |
| 5       | 21 of 21                   | Single Directed Ring       |  |  |
|         |                            | 2 Variations of            |  |  |
|         |                            | Doubly Connected           |  |  |
|         |                            | Directed Ring              |  |  |
| 6       | 112 of 112                 | -                          |  |  |
| 7       | Linear*                    | Linear*                    |  |  |
| 7       | Star <sup>*</sup>          | Star <sup>*</sup>          |  |  |
| 7       | Fully Connected*           | Fully Connected*           |  |  |
| 7 (3×4) | Fully Connected Bipartite* | Fully Connected Bipartite* |  |  |
| 7       | Combo                      | 4 of 4                     |  |  |
| 7       | Grid                       | -                          |  |  |
| 7       | Full Grid                  | _                          |  |  |
| 9 (3×3) | Grid                       | -                          |  |  |
| 15      | Star*                      | Star <sup>*</sup>          |  |  |
| 20      | Star*                      | Star*                      |  |  |





#### More Results

- Our family of solutions handles more than the no-fault (correct) case. It handles cases 1, 2, and 4 of the OTH fault classification. I.e., <u>it is a fault-tolerant protocol</u> as long as our assumptions are not violated and the faulty behavior does not violate our definition of digraph.
- Our family of solutions is an <u>emergent system</u>.

The OTH (Omissive Transmissive Hybrid) fault model classification based on *Node Type* and *Link Type* outputs:

- 1. Correct (None, No-fault)
- 2. Omissive Symmetric (Fail-detected, Fail-silent)
- 3. Transmissive Symmetric (Symmetric)
- 4. Strictly Omissive Asymmetric (1 or 2)
- 5. Single-Data Omissive Asymmetric
- 6. Transmissive Asymmetric (Byzantine)



Langley Research Center



# Questions?