
Langley Research Center

Self-Stabilizing Synchronization

Of Arbitrary Digraphs In

Presence Of Faults

Mahyar R. Malekpour

http://shemesh.larc.nasa.gov/people/mrm/

SSS 2012, October 1 – 4

Langley Research Center

What Is Synchronization?

• Local oscillators/hardware clocks operate at slightly different

rates, thus, they drift apart over time.

• Local logical clocks, i.e., timers/counters, may start at different

initial values.

• The synchronization problem is to adjust the values of the local

logical clocks so that nodes achieve synchronization and remain

synchronized despite the drift of their local oscillators.

• Application – Wherever there is a distributed system

2 Mahyar Malekpour, SSS 2012

Langley Research Center

Why is this problem difficult?

• Design of a fault-tolerant distributed real-time algorithm is

extraordinarily hard and error-prone

– Concurrent processes

– Size and shape (topology) of the network

– Interleaving concurrent events, timing, duration

– Fault manifestation, timing, duration

– Arbitrary state, initialization, system-wide upset

• It is notoriously difficult to design a formally verifiable solution for

self-stabilizing distributed synchronization problem.

Mahyar Malekpour, SSS 2012 3

Langley Research Center

Characteristics Of A Desired Solution
• Self-stabilizes in the presence of various failure scenarios.

– From any initial random state

– Tolerates bursts of random, independent, transient failures

– Recovers from massive correlated failures

• Convergence

– Deterministic

– Bounded

– Fast

• Low overhead

• Scalable

• No central clock or externally generated pulse used

• Does not require global diagnosis

– Relies on local independent diagnosis

• A solution for K = 3F+1, if possible, otherwise, K = 3F+1+X, (X = ?)  0

4 Mahyar Malekpour, SSS 2012

Langley Research Center

and,

must show the solution is correct.

5 Mahyar Malekpour, SSS 2012

Langley Research Center

Formal Verification Methods

• Formal method techniques: model checking, theorem proving

• Use a model checker to verify a possible solution insuring that

there are no false positives and false negatives.

– It is deceptively simple and subject to abstractions and simplifications made

in the verification process.

– State space explosion problem

– Tools require in-depth and inside knowledge, interfaces are not mature yet

– Modeling a real-time system using a discrete event-based tool

• Use a theorem prover to prove that the protocol is correct.

– It requires a paper-and-pencil proof, at least a sketch of it.

6 Mahyar Malekpour, SSS 2012

Langley Research Center

Alternatively …

• Find a simpler solution

• Reduce the problem complexity by reducing its scope or

restricting the assumptions

• Wait for a more powerful model checker

– 64-bit tool utilizing more memory

– Faster and more efficient model checking algorithm

7 Mahyar Malekpour, SSS 2012

Langley Research Center

The Big Picture

• Solve the problem in the absence of faults.

• Learn and revisit faulty scenarios later on.

8 Mahyar Malekpour, SSS 2012

Langley Research Center

Fault Spectrum

9 Mahyar Malekpour, SSS 2012

Simple fault classification:
 1. None

 2. Symmetric

 3. Asymmetric (Byzantine)

The OTH (Omissive Transmissive Hybrid) fault model classification

based on Node Type and Link Type outputs:
(http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100028297_2010031030.pdf)

 1. Correct (None)

 2. Omissive Symmetric

 3. Transmissive Symmetric (Symmetric)

 4. Strictly Omissive Asymmetric

 5. Single-Data Omissive Asymmetric

 6. Transmissive Asymmetric (Byzantine)

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100028297_2010031030.pdf

Langley Research Center

• What should the graph look like?

– Graphs of interest: single ring, double ring, grid, bi-partite, etc.

– Possible options (Sloane numbers/sequence):

– Example, for 4 nodes there are 6 different graphs:

What About Topology?

K 1 2 3 4 5 6 7 8

Number of 1-connected graphs 1 1 2 6 21 112 853 11117

10 Mahyar Malekpour, SSS 2012

Linear Star/Hub - Ring - Complete

Langley Research Center

Where Are We Now?

• Have a family of solutions for detectably bad faults and K ≥ 1

that applies to realizable systems.

– Network impression and oscillator drift

• Have model checked a set of digraphs, NASA/TM-2011-217152

– As much as our resources allowed (mainly, memory constrained)

• Have a deductive proof, NASA/TM-2011-217184

– Concise and elegant

11 Mahyar Malekpour, SSS 2012

Langley Research Center

The Protocol

Synchronizer:

E0: if (LocalTimer < 0)

 LocalTimer := 0,

E1: elseif (ValidSync() and (LocalTimer < D))

 LocalTimer := γ, // interrupted

E2: elseif ((ValidSync() and (LocalTimer  TS))

 LocalTimer := γ, // interrupted

 Transmit Sync,

E3: elseif (LocalTimer  P) // timed out

 LocalTimer := 0,

 Transmit Sync,

E4: else

 LocalTimer := LocalTimer + 1.

12 Mahyar Malekpour, SSS 2012

Monitor:

case (message from the corresponding node)

{Sync:

 ValidateMessage()

Other:

 Do nothing.

} // case

Langley Research Center

How The Protocol Works

1. If someone is out there – accept its Sync message and relay it to

others,

2. If no one is out there (or they are too slow) – take charge and

generate a new Sync message,

3. Ignore – reject all Sync messages while in the Ignore Window.

– Rules 1 and 2 result in an endless cycle of transmitting messages back and forth

– The Ignore Window properly stops this endless cycle

13 Mahyar Malekpour, SSS 2012

Langley Research Center

Key Results

Global Lemmas And Theorems

 How do we know when and if the system is stabilized?

• Theorem Convergence – For all t ≥ C, the network converges to a state where the

guaranteed network precision is π, i.e., ΔNet(t) ≤ π.

• Theorem Closure – For all t ≥ C, a synchronized network where all nodes have

converged to ΔNet(t) ≤ π, shall remain within the synchronization precision π.

• Lemma ConvergenceTime – For ρ ≥ 0, the convergence time is C = CInit + ⎡ΔInit/γ⎤ P.

• Theorem Liveness – For all t ≥ C, LocalTimer of every node sequentially takes on at

least all integer values in [γ, P-π].

14 Mahyar Malekpour, SSS 2012

Langley Research Center

Key Results

Local Theorem

 How does a node know when and if the system is stabilized?

• Theorem Congruence – For all nodes Ni and for all t ≥ C, (Ni.LocalTimer(t) = γ) implies

ΔNet(t) ≤ π.

Key Aspects Of Our Deductive Proof
 1. Independent of topology

 2. Realizable systems, i.e., d ≥ 0 and 0 ≤ ρ << 1

 3. Continuous time

15 Mahyar Malekpour, SSS 2012

Langley Research Center

Model Checked Cases

16 Mahyar Malekpour, SSS 2012

K Topology

(all links bidirectional)

Topology

(digraphs)

2 1 of 1 1 of 1

3 2 of 2 5 of 5

4 6 of 6 83 of 83

5 21 of 21 Single Directed Ring

2 Variations of

Doubly Connected

Directed Ring

6 112 of 112 -

7 Linear* Linear*

7 Star* Star*

7 Fully Connected* Fully Connected*

7 (3×4) Fully Connected Bipartite* Fully Connected Bipartite*

7 Combo 4 of 4

7 Grid -

7 Full Grid -

9 (3×3) Grid -

15 Star* Star*

20 Star* Star*

Langley Research Center

More Results

17 Mahyar Malekpour, SSS 2012

• Our family of solutions handles more than the no-fault (correct) case.

 It handles cases 1, 2, and 4 of the OTH fault classification. I.e., it is a

 fault-tolerant protocol as long as our assumptions are not violated

 and the faulty behavior does not violate our definition of digraph.

• Our family of solutions is an emergent system.

The OTH (Omissive Transmissive Hybrid) fault model classification

based on Node Type and Link Type outputs:
 1. Correct (None, No-fault)

 2. Omissive Symmetric (Fail-detected, Fail-silent)

 3. Transmissive Symmetric (Symmetric)

 4. Strictly Omissive Asymmetric (1 or 2)

 5. Single-Data Omissive Asymmetric

 6. Transmissive Asymmetric (Byzantine)

Langley Research Center

Questions?

18 Mahyar Malekpour, SSS 2012

