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What Is Synchronization? 

 

• Local oscillators/hardware clocks operate at slightly different 

rates, thus, they drift apart over time. 

• Local logical clocks, i.e., timers/counters, may start at different 

initial values. 

• The synchronization problem is to adjust the values of the local 

logical clocks so that nodes achieve synchronization and remain 

synchronized despite the drift of their local oscillators. 

 

• Application – Wherever there is a distributed system 
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Why is this problem difficult? 

• Design of a fault-tolerant distributed real-time algorithm is 

extraordinarily hard and error-prone 

– Concurrent processes 

– Size and shape (topology) of the network 

– Interleaving concurrent events, timing, duration 

– Fault manifestation, timing, duration 

– Arbitrary state, initialization, system-wide upset 

 

 

• It is notoriously difficult to design a formally verifiable solution for 

self-stabilizing distributed synchronization problem. 
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Characteristics Of A Desired Solution 
• Self-stabilizes in the presence of various failure scenarios. 

– From any initial random state 

– Tolerates bursts of random, independent, transient failures 

– Recovers from massive correlated failures 

• Convergence 

– Deterministic 

– Bounded 

– Fast 

• Low overhead 

• Scalable 

• No central clock or externally generated pulse used 

• Does not require global diagnosis 

– Relies on local independent diagnosis 

• A solution for K = 3F+1, if possible, otherwise, K = 3F+1+X, (X = ?)  0 
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and, 

 

 

must show the solution is correct. 
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Formal Verification Methods 

• Formal method techniques: model checking, theorem proving 

 

• Use a model checker to verify a possible solution insuring that 

there are no false positives and false negatives. 

– It is deceptively simple and subject to abstractions and simplifications made 

in the verification process. 

– State space explosion problem 

– Tools require in-depth and inside knowledge, interfaces are not mature yet 

– Modeling a real-time system using a discrete event-based tool 

 

• Use a theorem prover to prove that the protocol is correct. 

– It requires a paper-and-pencil proof, at least a sketch of it. 
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Alternatively … 

 

• Find a simpler solution 

 

• Reduce the problem complexity by reducing its scope or 

restricting the assumptions 

 

• Wait for a more powerful model checker 

– 64-bit tool utilizing more memory 

– Faster and more efficient model checking algorithm 
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The Big Picture 

 

 

• Solve the problem in the absence of faults. 

 

• Learn and revisit faulty scenarios later on. 
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Fault Spectrum 
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Simple fault classification: 
     1.  None 

     2.  Symmetric 

     3.  Asymmetric (Byzantine) 

 

 

The OTH (Omissive Transmissive Hybrid) fault model classification 

based on Node Type and Link Type outputs:  
(http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100028297_2010031030.pdf) 

     1. Correct (None) 

     2. Omissive Symmetric 

     3. Transmissive Symmetric (Symmetric) 

     4. Strictly Omissive Asymmetric 

     5. Single-Data Omissive Asymmetric 

     6. Transmissive Asymmetric (Byzantine) 

 

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20100028297_2010031030.pdf
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• What should the graph look like? 

– Graphs of interest: single ring, double ring, grid, bi-partite, etc. 

– Possible options (Sloane numbers/sequence): 

 

 

 

– Example, for 4 nodes there are 6 different graphs: 

 

What About Topology? 

K 1 2 3 4 5 6 7 8 

Number of 1-connected graphs 1 1 2 6 21 112 853 11117 
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Where Are We Now? 
 

• Have a family of solutions for detectably bad faults and K ≥ 1 

that applies to realizable systems. 

– Network impression and oscillator drift 

 

• Have model checked a set of digraphs, NASA/TM-2011-217152 

– As much as our resources allowed (mainly, memory constrained) 

 

• Have a deductive proof, NASA/TM-2011-217184 

– Concise and elegant 
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The Protocol 

Synchronizer: 

E0:  if (LocalTimer < 0) 

  LocalTimer := 0, 
 

E1:  elseif (ValidSync() and (LocalTimer < D)) 

  LocalTimer := γ, // interrupted 
 

E2:  elseif ((ValidSync() and (LocalTimer  TS)) 

  LocalTimer := γ, // interrupted 

  Transmit Sync, 
 

E3:  elseif (LocalTimer  P) // timed out 

  LocalTimer := 0, 

  Transmit Sync, 

E4:  else 

  LocalTimer := LocalTimer + 1. 
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Monitor: 

case (message from the corresponding node) 

{Sync: 

 ValidateMessage() 

Other: 

 Do nothing. 

} // case 
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How The Protocol Works 

 

1. If someone is out there – accept its Sync message and relay it to 

others, 

 

2. If no one is out there (or they are too slow) – take charge and 

generate a new Sync message, 

 

3. Ignore – reject all Sync messages while in the Ignore Window. 

– Rules 1 and 2 result in an endless cycle of transmitting messages back and forth 

– The Ignore Window properly stops this endless cycle 
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Key Results 

 

Global Lemmas And Theorems 

 

 How do we know when and if the system is stabilized? 
 

• Theorem Convergence – For all t ≥ C, the network converges to a state where the 

guaranteed network precision is π, i.e., ΔNet(t) ≤ π. 
 

• Theorem Closure – For all t ≥ C, a synchronized network where all nodes have 

converged to ΔNet(t) ≤ π, shall remain within the synchronization precision π. 
 

• Lemma ConvergenceTime – For ρ ≥ 0, the convergence time is C = CInit + ⎡ΔInit/γ⎤ P. 
 

• Theorem Liveness – For all t ≥ C, LocalTimer of every node sequentially takes on at 

least all integer values in [γ, P-π]. 
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Key Results 

 

Local Theorem 
 

 How does a node know when and if the system is stabilized? 
 

• Theorem Congruence – For all nodes Ni and for all t ≥ C, (Ni.LocalTimer(t) = γ) implies 

ΔNet(t) ≤ π. 

 

 

Key Aspects Of Our Deductive Proof 
 1.  Independent of topology 

 2.  Realizable systems, i.e., d ≥ 0 and 0 ≤ ρ << 1 

 3.  Continuous time 
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Model Checked Cases 
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K Topology 

(all links bidirectional) 

Topology 

(digraphs) 

2 1 of 1 1 of 1 

3 2 of 2 5 of 5 

4 6 of 6 83 of 83 

5 21 of 21 Single Directed Ring 

2 Variations of  

Doubly Connected  

Directed Ring 

6 112 of 112 - 

7 Linear* Linear* 

7 Star* Star* 

7 Fully Connected* Fully Connected* 

7 (3×4) Fully Connected Bipartite* Fully Connected Bipartite* 

7 Combo 4 of 4 

7 Grid - 

7 Full Grid - 

9 (3×3) Grid - 

15 Star* Star* 

20 Star* Star* 
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More Results 
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•   Our family of solutions handles more than the no-fault (correct) case. 

    It handles cases 1, 2, and 4 of the OTH fault classification.  I.e., it is a 

    fault-tolerant protocol as long as our assumptions are not violated 

    and the faulty behavior does not violate our definition of digraph. 

•   Our family of solutions is an emergent system. 

 

The OTH (Omissive Transmissive Hybrid) fault model classification 

based on Node Type and Link Type outputs:  
     1. Correct (None, No-fault) 

     2. Omissive Symmetric (Fail-detected, Fail-silent) 

     3. Transmissive Symmetric (Symmetric) 

     4. Strictly Omissive Asymmetric (1 or 2) 

     5. Single-Data Omissive Asymmetric 

     6. Transmissive Asymmetric (Byzantine) 
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Questions? 
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