

# A Fault-Tolerant Clock Synchronization and Geometry Determination Protocol

# Mahyar Malekpour NASA Langley Research Center AIAA SciTech 2018, 11 January 2018 Kissimmee, Florida

# **Communication And Synchronization**



- Distributed systems are integral part of safety-critical computing applications, necessitating system designs that incorporate complex fault-tolerant resource management functions to provide globally coordinated operations with ultra-reliability
- Distributed systems are modeled as graphs, nodes and edges, with wired/wireless communication links
- Robust clock synchronization is a required fundamental service
- Faults add complexity, various types from benign to arbitrary (Byzantine)

# What Is Synchronization?



- Local oscillators/hardware clocks operate at slightly different rates, thus, they drift apart over time
- Local logical clocks, i.e., timers/counters, may start at different initial values
- The <u>synchronization problem</u> is to adjust the values of the local logical clocks so that nodes <u>achieve</u> synchrony and <u>remain</u> synchronized despite the drift of their local oscillators
- Application Wherever there is a distributed system

# Communication Parameters: D, $\gamma$





Wired/wireless communication links  $D = \text{Event-response Delay}, D = min(D_i)$   $D \ge 1 \text{ clock tick, i.e., bounded}$  $\gamma = \text{Communication Delay}, \gamma = max(\gamma_i)$ 



## **System Overview**

- Synchronous message passing
- Fully connected graph with K ≥ 3F+1 nodes
   (F = max number of simultaneous faults in the network)

# **Protocol Messages**

- $Init = \{1, 0\}$
- *Echo* = Vector of locally time-stamped *Init* messages
- Messages arrive within time interval [t+D,  $t+\gamma$ ]
- $D = min(D_i)$
- $\gamma = max(\gamma_i)$ , for all i = 1..K



# The Protocol

- Executes once every clock tick
- Based on initial coarse synchrony
- Triggered by another (primary) protocol E.g., Symmetric-fault-tolerant protocol, 2015 IEEE Aerospace Conference
- Integration of Primary and Secondary protocols is addressed in NASA/TM-2017-219638

# What this protocol does

- Achieves <u>fine-grained synchrony</u> with optimum timing precision of 1 clock tick Clock tick (no specific time units) → Scalability
- Determines <u>network geometry</u> without initial knowledge of nodes' locations or distances between nodes Accuracy is a function of clock precision



# **Applications**

- Distributed networks
- GPS-Independent environment
  - Complementary/alternative to satellite systems
  - Last resort when GPS unavailable
- Wired / wireless network
- Dynamic network shape and size
- Mobile network
- Local Positioning Systems (LPS)
- Localization high accuracy, high-dynamic applications
- UAS in the NAS
- UAS Positioning / Navigation
   Ex. Crop dusting, search and rescue



# **The Protocol**

if (LocalTimer =  $\psi$ ) Broadcast Init if (LocalTimer =  $\omega + \psi$ ) Broadcast Echo if (LocalTimer =  $2\omega + \psi$ ) Recover() Adjust()

# Recover()

- Recover Invalid Init
- Recover Invalid Echo

Adjust()

- $\omega = \pi_{init} + \gamma$
- $\psi = ResetLocalTimerAt$



M = matrix of received messages at any  $N_x$ row *i* = vector of locally time-stamped values received from  $N_i$ column *j* = vector of reportedly received values from  $N_j$ 

T = matrix of time-differences between nodes  $N_i$  and  $N_j$ 

T(i,j) = (M(i,j) - M(j,i)) / 2  $D_{ij} = C (M(i,j) + M(j,i)) / 2$   $D_{ij} \text{ will be actual distance between } N_i \text{ and } N_j \text{ upon synchrony}$  (1)





 $\begin{array}{l} D_{12} = M(1,2) + M(2,1) \, / \, 2 = 15 \, ^* \, C \\ D_{13} = M(1,3) + M(3,1) \, / \, 2 = 16 \, ^* \, C \\ D_{14} = M(1,4) + M(4,1) \, / \, 2 = 12 \, ^* \, C \\ D_{23} = M(2,3) + M(3,2) \, / \, 2 = 12 \, ^* \, C \\ D_{24} = M(2,4) + M(4,2) \, / \, 2 = 16 \, ^* \, C \\ D_{34} = M(3,4) + M(4,3) \, / \, 2 = 15 \, ^* \, C \end{array}$ 

#### Table 1. Matrix M

| 16 | 21 | 32 | 18 |
|----|----|----|----|
| 9  | 16 | 22 | 16 |
| 0  | 2  | 16 | 5  |
| 6  | 16 | 25 | 16 |

#### Table 2. Matrix T

| 0   | 6   | 16 |     |
|-----|-----|----|-----|
| -6  | 0   | 10 | 0   |
| -16 | -10 | 0  | -10 |
| -6  | 0   | 10 | 0   |



## **Recover Invalid** Init

- Link fault between  $N_i$  and  $N_j$  is recovered if there is valid data between  $N_i$  and  $N_j$  and  $N_x$
- $D_{if}$  is determined using trilateration and data in M

$$T(i,j) = T(i,x) - T(x,j)$$
(3)  

$$M(i,j) = T(i,j) + D_{ij}$$
(4)



$$V = \text{column } f \text{ in } M, \text{ i.e., } V = M(i, f) = valid$$

# **Recover Invalid Echo**

Repeat:

- 1. Determine  $D_{ii}$  using (2)
- 2. Realign: V(i) = M(i, f) + T(j,i), for all *i*
- 3. Trilateration: Using V, determine when  $N_f$  had broadcast its message

• Adjust V, 
$$V(j) = V(j) - x$$
, for all j

Until (a or b)

- a = Trilateration results in closest intersecting point
  - Solution exists
- b = Trilateration does not converge in  $\pi_{init}/x$  iterations Solution does not exist



If a solution exists, intersecting point is the time when  $N_f$  had broadcast its *Echo* and *xw* is amount of time took to reach the convergence point

Reconstruct T(i,f)

- T(j,f) = xw, where  $N_j$  is reference node used in Step 2
- T(i,f) = T(j,f) T(j,i), for all *i* and  $i \neq j$
- T(f,i) = -T(i,f), to preserve symmetry in T Repair M using T and (1)
- M(f,i) = M(i,f) 2T(i,f), for all *i*

Find remaining distances  $D_{ij}$  between all nodes using (2)

## Network geometry is now known



# Adjust()

- Discard *F* values from both extremes and use midpoint
- $Adj = (RT + LT) / 2 = t_{MidPoint}$
- LocalTimer = LocalTimer Adj

## **Proof of the Protocol**

**Lemma Correctness** – *The protocol in slide 8 achieves optimum precision.* 





 $D_{12} = M(1,2) + M(2,1) / 2 = 15 * C$   $D_{13} = M(1,3) + M(3,1) / 2 = 16 * C$   $D_{14} = M(1,4) + M(4,1) / 2 = 12 * C$   $D_{23} = M(2,3) + M(3,2) / 2 = 12 * C$   $D_{24} = M(2,4) + M(4,2) / 2 = 16 * C$  $D_{34} = M(3,4) + M(4,3) / 2 = 15 * C$ 

#### Table 1. Matrix M

| 16 | 21 | 32 | 18 |
|----|----|----|----|
| 9  | 16 | 22 | 16 |
| 0  | 2  | 16 | 5  |
| 6  | 16 | 25 | 16 |

| Table 2. Ma | atrix T |
|-------------|---------|
|-------------|---------|

| 6   | 16 |     |
|-----|----|-----|
| 0   | 10 | 0   |
| -10 | 0  | -10 |
| 0   | 10 | 0   |

Timeline of activities at  $N_1$ : 0 --- 6,6 ----- 16 Ignoring extremes, 0, 16, adjustment Amount = (6 + 6) / 2 = 6





 $\begin{array}{l} D_{12} = M(1,2) + M(2,1) \, / \, 2 = 7 \, ^* \, C \\ D_{13} = M(1,3) + M(3,1) \, / \, 2 = 8 \, ^* \, C \\ D_{14} = M(1,4) + M(4,1) \, / \, 2 = 4 \, ^* \, C \\ D_{23} = M(2,3) + M(3,2) \, / \, 2 = 4 \, ^* \, C \\ D_{24} = M(2,4) + M(4,2) \, / \, 2 = 8 \, ^* \, C \\ D_{34} = M(3,4) + M(4,3) \, / \, 2 = 7 \, ^* \, C \end{array}$ 

#### Network geometry is known

#### Table 3.Matrix M



#### Table 4.Matrix T

| 0  | 0  | 0  | 0  |
|----|----|----|----|
| -0 | 0  | 0  | 0  |
| -0 | -0 | 0  | -0 |
| -0 | -0 | -0 | 0  |



#### Recover Invalid Init

#### Table 5.Matrix M

| 16 | -  | 32 | 18 |
|----|----|----|----|
| 9  | 16 | -  | 16 |
| 0  | 2  | 16 | -  |
| 6  | 16 | 25 | 16 |

Table 6. Matrix T

| 0   |   | 16 | 6 |
|-----|---|----|---|
| -   | 0 | -  | 0 |
| -16 | - | 0  | - |
| -6  | 0 | -  | 0 |

T(1,2) = T(1,4) - T(2,4) = 6 - 0 = 6, T(2,1) = -T(1,2) = -6 T(2,3) = T(1,3) - T(1,2) = 16 - 6 = 10, T(3,2) = -T(2,3) = -10T(3,4) = T(1,4) - T(1,3) = 6 - 16 = -10, T(4,3) = -T(3,4) = 10

*M* is restored using (1) Network geometry is determined

For K = 4, K-1 = 3, simultaneous link faults are tolerated (recovered)



#### Recover Invalid Echo

#### Table 7.Matrix M

| 16 | 21 | 32 | 18 |
|----|----|----|----|
| 9  | 16 | -  | 16 |
|    | 2  | 16 | 5  |
| -  | -  | -  | -  |

# Table 8. Matrix T

| 0   | 6 | 16 | - |
|-----|---|----|---|
| -6  | 0 | -  | - |
| -16 | - | 0  | - |
| -   | - | -  | - |

T(2,3) = T(1,3) - T(1,2) = 16 - 6 = 10, T(3,2) = -T(2,3) = -10From (1), M(2,3) = 22

Note  $N_4$  did not broadcast *Echo* message to  $N_1$ V = M(1,4) = (18, 16, 5)

Using V,  $D_{ii}$ , and trilateration, timing of  $N_4$  in T is determined

*M* is subsequently restored using (1) Network geometry is determined



# **Questions?**