Real Number Calculations and Theorem
Proving*

César Munoz! and David Lester?

! National Institute of Aerospace, 144 Research Drive, Hampton VA 23666, USA
munoz@nianet.org
2 University of Manchester, Oxford Road, Manchester M13 9PL, UK

dlester@cs.man.ac.uk

Abstract. Wouldn’t it be nice to be able to conveniently use ordinary
real number expressions within proof assistants? In this paper we out-
line how this can be done within a theorem proving framework. First, we
formally establish upper and lower bounds for trigonometric and tran-
scendental functions. Then, based on these bounds, we develop a rational
interval arithmetic where real number calculations can be performed in
an algebraic setting. This pragmatic approach has been implemented as
a strategy in PVS. The strategy provides a safe way to perform explicit
calculations over real numbers in formal proofs.

1 Introduction

In the verification of an engineering application it is often necessary to perform
explicit calculations on non-algebraic functions. Despite all the developments
on real analysis in theorem provers [7-9,12, 15|, formal justification of these
calculations is not routine.

Take, for example, the formula

3 g 357
180 = v 350) M)
where ¢ is the gravitational force and v = 250 kt is the ground speed of an
aircraft. This formula appears in the verification of the NASA’s Airborne Infor-
mation for Lateral Spacing (AILS) algorithm presented in [18]. It states that the
maximum turn rate of an aircraft flying at ground speed v with a bank angle of
359 is 3° per second. The original proof is about a dozen lines and requires the
use of several trigonometric properties.

In some cases the formal checking of a numerical inequality is so cumbersome
that the effort seems futile; it is then tempting to perform the calculation out

of the system, and introduce the result as an axiom®. However, the chances are

* Many thanks to Behzad Akbarpour for pointing out errors in the formulas for expo-
nential in the formal publication [19].

3 As a matter of fact, the initial verification of NASA’s AILS algorithm contained
several of such axioms.

that the external calculation will be performed using floating-point arithmetic.
Without formal checking of the result, we will never be sure of the correctness
of the calculation.

In this paper we present a method to automatically prove numerical inequal-
ities, such as Formula (1), within a proof assistant. The point of departure is a
collection of lower and upper bounds for rational and non-rational operations.
Based on provable properties of these bounds, we develop a rational interval
arithmetic which is amenable to automation. The series approximations and in-
terval arithmetic used here are well-known. However, to our knowledge, this is
the most complete formalization of exact real arithmetic and interval arithmetic
within a theorem prover.

The rest of this paper is organized as follows. Section 2 defines bounds for
square root and transcendental functions. Section 3 presents a rational interval
arithmetic based on these bounds. Section 4 describes a method to prove nu-
merical inequalities. The implementation of this method in PVS is described
in Section 5. Last section summarizes our work and compares it to related
work. For readability, we will use standard mathematical notation along this
paper. However, we remark that the mathematical development presented in
this paper has been written and fully verified in PVS. Furthermore, all the de-
velopment is freely available on the Internet. The results on upper and lower
bounds have been integrated to the NASA Langley PVS Libraries at http:
//shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html. The ra-
tional interval arithmetic and the PVS strategy for numerical inequalities are
available from http://research.nianet.org/ munoz/Interval.

2 Bounds for Square Root and Transcendental Functions

A PVS basic theory of bounds for square root and trigonometric functions was
originally proposed for the verification of an algorithm for aircraft conflict detec-
tion [18]. It has been completed and extended with bounds for natural logarithm,
exponential, and arctangent. The basic idea is to provide for each real function
f: R+ R, functions f : (R,N) — R and f : (R,N) — R closed under Q, such
that for all x, n B

f(z,n) < fz) < fla,n), (2)
flx,n) < flz,n+1), (3)
Fant1) <), (1)
lim Jen) = f(@) = lm) B

Formula (2) states that f and f are, respectively, lower and upper bounds of f,
and formulas (3), (4), and (5) state that these bounds can be improved, as much
as needed, by increasing the approximation parameter n.

For transcendental functions, we use Taylor’s approximation series. Because
the convergence is usually best for a small range of values, we have used Tay-
lor’s Theorem only on a small range, and then exploited the technique of range

reduction. All the stated propositions in this section have been formally verified
in PVS.

2.1 Square root
For square root, we use a simple approximation by Newton’s method. For = > 0,

sqrt(z,0) = 2 + 1,

- 1 -
sqri(z,n + 1) = i(y + 5), where y = sqrt(z, n),

x
Sqrt(aj, n) = W

Proposition 1. Vz,n: >0 = 0 < sqrt(z,n) < x < sqrt(z,n).

The first inequality is strict when x > 0.

2.2 Trigonometric functions

We use the partial approximation by series.

. m %l
sin(z,n) = Z(—l)l m
i=1 ’
o m+l -, gl
sin(a,n) = 3 (D' G
i=1 '
m+1 2

xT

21

200

cos(z,n) =1 +Z(—1)1¢

where m = 2n if © < 0; otherwise, m = 2n + 1.

Proposition 2. Vo,n: f(z,n) < f(z) < f(x,n), for f € {sin,cos}.

2.3 Arctangent and 7

We first use the alternating partial approximation by series for 0 < xz < 1.

atan(z,n) = 2 ffo<a<l,
p 20+ 1

2n i

(1)
tan(z,n) =) G ¥
atan(z,n) iZIx 5l | x <

We note that for = 1 (which we might naively wish to use to define 7/4 and
hence 7) the series: 1 — % + % — % + % —- -+ does converge, but very slowly. Instead
we use the equality 7 = 4 atan(1/5) — atan(1/239), which then has much better
convergence properties. Using this identity we can define bounds on :

m(n) = 16 atan(1,n) — 4 atan(1, n),
T(n) = 16 atan(1,n) — 4 atan(1,n).

Proposition 3. Vn: n(n) < n© < 7(n).

Now, we extend the range of the arctangent function to the whole set of real
numbers:

Proposition 4. Vz,n: atan(z,n) < atan(z) < atan(z,n).

These are strict inequalities except when x = 0.

2.4 Exponential

The fundamental series we use for the exponential function is

exp(z) = Z %

1=

We could directly find bounds for negative x from this series as, in this case, the

series is alternating. However, we will subsequently find that it is convenient to

show that our bounds for the exponential function are strictly positive, and with

the above bounds this is not true. It is true for —1 < x < 0. This is proven by

using Taylor’s Theorem for the exponential function on the range —1 < z < 0.
We define

204141
exp(z,n) = Z AR if —1<2z<0,
i=0 :
2(n+1) Z
exp(x,n) = Zﬁ’ if —1<zx<0.
i=0

Using properties of the exponential function, we obtain bounds for the whole
set of real numbers:

exp(0,n) =exp(0,n) = 1,

T —lzJ .
exp(z,n) = exp(m, n) , ifr<—1
1
= — .f 0
exp(z,n) (o)’ if x>0,
—lz]
exp(z,n) = exp(ﬁ, n) , frz<—1
1
=— if 0.
exp(z,n) po if x >

Notice that unless we can ensure that all of the bounding functions are strictly
positive we will run into type-checking problems using the bound definitions for
x>0, eg., 1/exp(—z,n) is only defined provided exp(—z,n) # 0.

Proposition 5. Vz,n: 0 < exp(z,n) < exp(z) < &p(z,n).

These are strict inequalities except when =z = 0.

2.5 Natural Logarithm

For —1 <z <1, we use the alternating series for natural logarithm:

o0

In(z+1) = Z(_n”lii.

; i
=1
Therefore, we define

] = —1)E e <2

In(z, n) ;() — ifl<z<
2n+1 (:17 B 1)1

In(z,n) = » (-1)—=, ifl<z<2

; 1
=1
Using properties of the natural logarithm function, we obtain
In(1,n) =In(l,n) = 0

1
lﬂ(x7n) = _lin(ffn’)a ifo<z< 17
x

— — 1
In(z,n) = —In(—,n), f0<z<l.
x

Finally, we extend the range to the whole set of positive reals. If z > 2, we find
a natural number m and real number y such that z = 2™y and 1 < y < 2, by
using an algorithm similar to Euclidean division. Then, we observe that

In(z) = In(2™y) = mIn(2) + In(y).
Hence,

In(2,n) +In(y,n), ifz>2,
n(2,n) +In(y,n), if x> 2.

3 3
sl

Proposition 6. Vz,n: 0 <z = In(z,n) < In(z) < In(x,n).

These are strict inequalities except when =z = 1.

3 Rational Interval Arithmetic

A (closed) interval [a,b] is the set of real numbers between a and b, i.e.,
[a,b] = {z | a <z < b}.

The bounds a and b are called the lower bound and upper bound of [a, b], respec-
tively. Note that if a > b, the interval is empty. The notation [a] abbreviates the
point-wise interval [a, al.

Since interval computations are mostly performed on the bounds of the inter-
vals, the set where these bounds are defined is critical. This set is called the base
number type. Systems for interval analysis and exact arithmetic usually consider
the base number type to be machine floating-point numbers. In general, interval
computations assume a correct implementation of the IEEE 754 standard [13].
For this work, we take a different approach where the base number type is the
set of rational numbers. Trigonometric and transcendental functions for interval
arithmetic are defined using the parameterizable bounding functions presented
in Section 2.

In the following, we use the first letters of the alphabet a,b,... to denote
rational numbers, and the last letters of the alphabet ...x,y, 2z to denote arbi-
trary real variables. We use boldface for interval variables. If x is an interval
variable, x denotes its lower bound and X denotes its upper bound. The four
basic interval operations are defined as follows [14]:

X X y = [min{xy, Xy, Xy, Xy}, max{Xy, Xy, Xy, Xy }],
11

Xx+y=xx[=,—], ifyy>0.
vy =

We also define the unary negation, absolute value, and power operators for in-
tervals:

—-x = [-X, —x],

x| = [min{|x], [X[}, max{[x|, X[}], if xx>0.

x| = [0, max{|x|,[X|}], if xX < 0.
[1] ifn=0,

' — [x",X"] if x>0 orodd?(n),
X", x"] if x <0 and even?(n),
[

0, max{x",X"}] otherwise.

Interval operations are defined such that they include the result of their
corresponding real operations. This property is called the inclusion property and
is formally expressed as follows:

Proposition 7. Ifz € x andy € y then x®@y € xQYy, where ® € {+, —, x,=+}.
Moreover, —x € —x, |z| € |x|, and ™ € x™, for n > 0. It is assumed that 'y

does not contain 0 in the case of interval division.

The inclusion property is fundamental to interval arithmetic. It guarantees
that the evaluations of an expression using interval arithmetic is a correct ap-
proximation of the exact real value. Any operation in interval arithmetic must
satisfy the inclusion property with respect to the corresponding real operation.

3.1 Interval comparisons

There are several possible ways to compare intervals [28]. In this work, we use
interval-rational comparisons and interval inclusions.

x<da ifX<a, for <€ {<,<},
x>a ifxr>a, for > e {> >},
xCy ify<xandx<y.

Proposition 8. Assume that x € x,

1. if xa then x X a, forx € {<, <, >, >}, and
2. ifx Cythenx€y.

We use £ to denote >, >, <, or <, when X is, respectively, <, <, >, or >.
Proposition 9. If x> a and x4 a, then x is empty.

Notice that —(x > a) does not imply x ¥ a. For instance, [—1,1] is neither
greater nor less than 0.

3.2 Square root, arctangent, exponential, and natural logarithm

Interval functions for square root, arctangent, exponential, and natural logarithm
are defined for an approximation parameter n > 0:

[V = [sart(x, n), Sar(%,m)], £ 0 < x <%,

The above functions satisfy the following inclusion property.

Proposition 10. If x € x then f(x) € [f(x)]n, where f € {,/, atan, exp,In}.
It is assumed that x is non-negative in the case of square root, and x is positive
in the case of natural logarithm.

Proof. This is a consequence of Propositions 1, 4, 5, and 6 in Section 2, and the
fact that these functions are increasing. O

3.3 Trigonometric functions

Parametric trigonometric functions for intervals are defined as follows:

[sin(x, n), sin(x,n)] if x € [~ 254, ZGU],
[sin(, n), sin(x,n)] if x C [T, x(n)],
[sin(x)]n = { [sin(x,n), sin(x, n)] if x C [0, %], (6)
—[sin(—x)],, if x C [—=(n),0],
[-1,1] otherwise,
A £ C Loat
cos(—x)], if x € |—7(n),0],
(€030 = 4 [min{cos(x, n), cos(®,m)}. 1] if x €[22y (D)
[—1,1] otherwise,
[tan(x)], = [%(g,n +3), %(i,n +3)), ifxC [—¥7 ET")]. (8)

The n + 3 in Formula (8) is necessary to guarantee that the lower and upper
bounds of cosine are always positive. Therefore, the tangent function is well-
defined in the interval [—%, E(Q")]

The above functions satisfy the following inclusion property.

Proposition 11. If x € x then f(x) € [f(x)]n, where f € {sin,cos}. Moreover,

if x C [~ 2 2 pan(z) € [tan(x)],.

Proof. This is a consequence of Proposition 2 in Section 2, and a case analysis
on the quadrant where the functions are increasing or decreasing. ad

The next section proposes a method to prove numerical inequalities based
on the rational interval arithmetic described here.

4 Proving Numerical Inequalities

Arithmetic expressions are defined by the following grammar, where V is a de-
numerable set of real variables:

e x=a |z |ete|e—e]| —e|exel|exre]|le | e | Vel
m | sin(e) | cos(e) | tan(e) | exp(e) | In(e) | atan(e)

a € Q

i € N

z €V

As usual, parenthesis are used to group subexpressions as needed.

A context I' is a set of couples (z,x) where x is a real variable and x is a
non-empty interval. The intended semantics of contexts is given by the following
deduction rule in the sequent calculus style:

(z,x) e’
I' - zex’

Given a real expression e, a context I" that includes all variables in e, and an

approximation parameter n, the interval expression [e] is recursively defined as
follows:
[aly, = lal,
]l = x, where (z,x) €T,
[e1 ®ea]l = [e1]F @ [ez]l, where ® € {+, —, x, <},
el = (le]n)",
[~eln = —leln,
llelln = llelnl,
[rln = [z(n), 7 ()],
[f ()] [f([#))]n, where f € {sin, cos, tan, exp, In, atan}.

Proposition 12. Let e be an arithmetic expression, I' be a context that includes
all variables in e, n an approzimation parameter, and e = [e]L. Assume that e
and e are well-defined, i.e., side conditions are satisfied for division, square root,
logarithm, and tangent for real and interval values. Therefore,

I ece. 9)

Proof. By structural induction on e and propositions 3, 7, 10, and 11.

4.1 A general method

We propose the following general method to prove the sequent
I + e] X eq,

where e; and eg are well-defined arithmetic expressions, and <1 € {<, <, >, >}:

Select an approximation parameter n.
Define e = e; — es.
Define e = [e]]” and show that it is well-defined.

By Proposition 12,

- L=

I'Fece.

5. Evaluate e > 0. If it evaluates to true, it means that the following sequent
holds

I'FerxO.

In that case go to step 6. In the other case, evaluate e & 0. If this evaluates
to true then fail. By Proposition 9, the sequent I" F e >0 cannot hold. If
e ¥ 0 evaluates to false, increase the approximation parameter and return
to step 3.

6. Proposition 8 yields

I'terx0.
7. By definition,
I'Fep —eyx0.
8. Therefore,
't e > es.

The method above is a sound, i.e., all the steps can be effectively computed
and each one is formally justified. In particular, well-definedness of e and the
inequalities e 1 0 and e 4 0 can be mechanically checked as they only involve
rational arithmetic. However, the method is not complete as the it does not
necessarily terminate. Even if e only involves the four basic operations, it may
be that both e >0 and e 54 0 evaluate to false.

The absence of a completeness result is a fundamental limitation on any gen-
eral computable arithmetic. At a practical level, the problem arises because all
we have available are a sequence of approximations to the real numbers z and
y; provided x and y differ, with luck we will eventually have a pair of approx-
imations whose intervals do not overlap, and hence we can return a result for
x 1 y. However, if and y are the same real number (note we might not neces-
sarily get the same sequence of approximations for both = and y), we can never
be sure whether further evaluation might result in us being able to distinguish
the numbers. Theoreticians might prefer the statement that to be computable,
a function must at least be (computably) continuous, and that any attempt
to define non-constant continuous functions from the (computable) reals to the
booleans is futile [22, 23,25, 26].

4.2 Sub-distributive arithmetic

Interval arithmetic is sub-distributive, i.e., x X (y +2) C x X y + x X z. In the
general case the inclusion is strict. This effect is also called decorrelation and
it is due to the fact that interval identity is lost in interval arithmetic. This
may have surprising effects, for instance x — x is [0] only if x is point-wise, e.g.,
[0,1] —[0,1] = [—1, 1]. Moreover, as we have seen in Section 3.1, both x > a and
x < a may be false.

For the method presented in the previous section, it means that the arrange-
ment of the expression e matters. For instance, assume that we want to prove
I' b 2 x x> z assuming that « € [0,1] is in I". This is pretty obvious in arith-
metic as = is a non-negative real. Using our method, we consider the arithmetic
expression e = 2 X ¢ — x and construct the interval expression e = 2 X x — X,
where x = [0, 1]. For any approximation parameter, e evaluates to [—1, 2] which
is neither greater nor less than 0. Therefore, the method will not terminate. This
effect may happen even if e is ground.

On the other hand, if instead of the arithmetic expression 2 X x — x, we
consider the equivalent arithmetic expression (2 — 1) x z, the corresponding
interval property ([2] — [1]) X x evaluates to [0, 1] which is non-negative.

4.3 The bounds of 7

Note that sin and cos are defined for the whole real line. However, for angles «
such that || > 7 both functions will return the interval [—1, 1], a valid approx-
imation but not a very good one.

Even for angles less than 7, the bounds computed by formulas (6) and (7) may
not be very accurate. For example, consider the arithmetic expression e = sin(%)

2
and, for an approximation parameter n, the corresponding interval expression

e= [sin([#, @])]n From the definition of [sin(x)],, we get e = [—1, 1], as the
interval [#, @] falls in the default case. Therefore, the fact that sin(5) > 0,

cannot be proven using our method.

4.4 Symbolic evaluation

Our method relies on explicit calculations to check for well-definedness of inter-
val expressions in step 3 and to verify interval inequalities in step 5. In theorem
provers, explicit calculations usually means symbolic evaluations, which are ex-
tremely inefficient for the interval functions that we want to calculate.

Section 5 describes how all these issues are handled in the PVS Interval
package that we have developed.

5 Automation in PVS

The interval arithmetic presented in this paper has been formalized and veri-
fied in PVS [21]. It is available as a PVS package called Interval. The strategy

numerical, which is part of the Interval package, implements the method de-
scribed in Section 4.1. This strategy automatically discharges sequent of the
forms I' F ej ey, fore {<.<,> >} and I' - e € [q,b].

Actual definitions in PVS have been slightly modified for efficiency reasons.
For instance, multiplication is defined using a case analysis on the sign of the
operands. Additionally, all interval operations are completed by returning an
empty interval if side conditions are not satisfied. This technique avoids the
generation of type correctness conditions in some instances.

The strategy numerical is aimed to practicality rather than accuracy. For
example, it might not be able to prove that /4 € [2], but it can prove that
V4 € [1.5,2.5], or, even better, that v/4 € [1.99,2.01]. With this in mind, we
designed a strategy that:

— Always terminates (in a reasonable period of time).

— Works over the PVS built-in type real (in contrast to a strategy for a new
data type of arithmetic expressions).

— Is configurable for better accuracy (at the expense of performance).

5.1 Termination

Termination is trivially achieved as the strategy does not iterate for different
approximations, i.e., step 5 either goes to step 6 or fails. In other words, if
numerical does not succeed, it does nothing. By default, numerical picks a
default approximation value of 3 which gives an accuracy of about 2 decimals
for trigonometric functions. However, the user can increase this parameter or set
a different approximation to each function according to its accuracy needs and
availability of computational power. Currently, there is no direct relation between
the approximation parameter and the degree of the accuracy, as all the bounding
functions have different convergence rates. On-going work aims to provide an
absolute error of at most 10~ for the approximation parameter n. This will
give additional control to the user on the accuracy of the result. However, this
technique will not guarantee the precision of the final result as computation
errors are accumulative. Automatic iteration of the method for continuously
increasing approximation parameters is not supported as the strategies have not
being designed to reuse past computations. Without a reusing mechanism it will
be prohibitively expensive to automatically iterate numerical to achieve a small
approximation on a complex arithmetic expression.

5.2 Data type for real numbers

The strategies in the Interval package work over the PVS built-in real numbers.
The major advantage of this approach is that the functionality of the strate-
gies can be extended to handle user defined real operators and functions with-
out modifying the strategy code. Indeed, optional parameters to the strategy
numerical allow for the specification of arbitrary real functions. If the interval

interpretations are not provided, the strategy tries to build them from the syn-
tactic definition of the functions. The trade-off for the use of the PVS type real,
in favor of a defined data type for arithmetic expressions, is that the function
[e]l and Proposition 12 are at the meta-level, i.e., they are not written in PVS.
It also means that the soundness of our method cannot be proven in PVS itself.
In particular, Proposition 12 has to be proven for each particular instance of e
and [e]L'. This is not a major drawback as, in addition to numerical, we have
developed a strategy called sharp that discharges the sequent I" F e € [e]]
whenever is needed. We assume that PVS strategies are conservative in the
sense that they do not add inconsistencies to the theorem prover. Therefore, if
numerical succeeds to discharge a particular goal the answer is correct.

5.3 Decorrelation

Decorrelation is a well-known problem in interval arithmetic. Daumas et al.
describe in [5] additional strategies in the Interval package that address this
problem. Those strategies, which are intended for verification of numerical algo-
rithms, are computationally intensive and not suitable for interactive theorem
proving. In contrast, the strategy numerical uses two basic methods to reduce
decorrelation. First, it automatically rearranges arithmetic expressions using a
simple factorization algorithm. Due to the sub-distributivity property, factor-
ized interval expressions are likely to be more accurate than non-factorized ones.
Second, a configurable parameter allows the user to specify a splitting param-
eter for interval sub-divisions. This technique is described in detail in [5]. The
naive implementation of interval sub-divisions in numerical is exponential with
respect to the number of interval variables.

A set of lemmas of the NASA Langley PVS Libraries are also used as rewrit-
ing rules on arithmetic expressions prior to numerical evaluations. This set
of lemmas is parameterizable and can be extended by the user. For instance,
trigonometric functions applied to notable angles are automatically rewritten
to their exact value. Although is not currently implemented, this approach can
also be used to normalize angles to the range —m ... 7 that is suitable for the
trigonometric bounding functions in Sections 3.3.

5.4 Numerical evaluations

To avoid symbolic evaluations, numerical is implemented using computational
reflection [2,11,27]. Interval expressions are translated to Common Lisp (the
implementation language of PVS) and evaluated there. The extraction and eval-
uation mechanism is provided by the PVS ground evaluator [24]. The result of
the evaluation is translated back to the PVS theorem prover using the PVSio
package developed by one of the authors [17].

We illustrate the use of the numerical with some examples. Lemma tr35 is
the PVS version of Formula (1). The proof is just one step of numerical with
no parameters:

98/10 %[m/s~2]
250%514/1000 %[m/s]

g : posreal
v : posreal

tr35: LEMMA 3x7/180 < gxtan(35Xx7/180)/v
%1- tr35: PROOF (numerical) QED

Another example is the proof of the inequality 4.1.35 in Abramowitz & Ste-
gun [1]:
3x

Ve @ 0<xz<0.5828 = |ln(1—x)\<7.

The key to prove this inequality is to prove that the function

G(z) = 3; —In(1 —z)

satisfies G(0.5828) > 0. In PVS:

G(xlx < 1): real = 3xx/2 - 1n(1-x)

A_and_S : lemma
let x = 5828/10000 in
G(x) >0
%1- A_and_S : PROOF (numerical :defs "G") QED

In this case, the optional parameter :defs "G" tells numerical that the user-
defined function G has to be considered when performing the numerical evalua-
tion. The original proof of this lemma in PVS required the manual expansion of
19 terms of the In series.

6 Conclusion

We have presented a pragmatic and safe way to perform ordinary real number
computations in formal proofs. To this end, bounds for non-algebraic functions
were established based on provable properties of their approximation series. Fur-
thermore, a package for interval arithmetic was developed. The package includes
a strategy that automatically discharges numerical inequalities and interval in-
clusions.

The PVS Interval package, which is available at http://research.nianet.
org/ munoz/Interval, contains in total 306 lemmas. It is roughly 10 thousand
lines of specification and proofs and 1 thousand lines of strategy definitions.
These numbers do not take into account the bounding functions which have been
fully integrated to the NASA Langley PVS Libraries (http://shemesh.larc.
nasa.gov/fm/ftp/larc/PVS-1library/pvslib.html). It is difficult to estimate
the human effort for this development as it has evolved over the years from an
original axiomatic specification to a fully foundational set of theories. As far as
we know, this is the most complete formalization of exact real arithmetic and
interval arithmetic within a theorem prover.

Research on interval analysis and exact arithmetic is rich and abundant (see
for example [10, 14, 16]). The goal of interval analysis is to compute an upper
bound of the round-off error in a computation performed using floating-point
numbers. In contrast, in an exact arithmetic framework, an accuracy is specified
at the beginning of the computation and the computation is performed in such
way that the final result respects this accuracy.

Real numbers and exact arithmetic is also a subject of increasing interest
in the theorem proving community. Pioneers in this area were Harrison and
Gamboa who, independently, developed extensive formalizations of real numbers
for HOL [12] and ACL2 [8]. In Coq, an axiomatic definition of reals is given
in [15], and constructive definitions of reals are provided in [3] and [20]. As real
numbers are built-in in PVS, there is not much meta-theoretical work on real
numbers. However, a PVS library of real analysis was originally developed by
Dutertre [6] and currently being maintained and extended as part of the NASA
Langley PVS Libraries. An alternative real analysis library is proposed in [9].

Closer to our approach are the tools presented in [4] and [5]. These tools
generate bounds on the round-off errors of numerical programs, and formal proofs
that these bounds are correct. The formal proofs are proof scripts that can be
checked off-line using a proof assistant.

Our approach is different from previous works in that we focus on automa-
tion and pragmatism rather than accuracy. In simple words, our practical con-
tribution is a symbolic pocket calculator for real number computations in for-
mal proofs.* Thanks to all the previous developments in theorem proving and
real numbers, lemmas like Lemma tr35 and Lemma A_and S are provable in
HOL, ACL2, Coq, or PVS. The Interval package and, in particular, the strategy
numerical make these proofs routine in PVS.

Acknowledgment

The authors would like to thank Marc Daumas for his early interest on this work, and
his key suggestion to use interval arithmetic to automate our initial lower/upper bound
technique. We are also grateful to Jacques Fleuriot for providing the original proofs of
trigonometric bounds in Isabelle/HOL, to Hanne Gottliebsen for providing the same
proofs in PVS, to Jeff Maddalon for comments on early drafts of this manuscript, and
to the anonymous referees for their insightful comments that helped to improve this
document. This work was supported by the National Aeronautics and Space Adminis-
tration under NASA Cooperative Agreement NCC-1-02043.

References

1. M. Abramovitz and I. Stegun. Handbook of Mathematical Functions. National
Bureau of Standards, 1972.

2. S. Boutin. Using reflection to build efficient and certified decision procedures.
Lecture Notes in Computer Science, 1281:515-530, 1997.

3. A. Ciaffaglione. Certified Reasoning on Real Numbers and Objects in Coinductive
Type Theory. PhD thesis, Universita degli Studi di Udine, 1993.

4. M. Daumas and G. Melquiond. Generating formally certified bounds on values
and round-off errors. In Real Numbers and Computers, pages 55-70, Dagstuhl,
Germany, 2004.

5. M. Daumas, G. Melquiond, and C. Munoz. Guaranteed proofs using interval arith-
metic. Accepted for publication at the 17th IEEE Symposium on Computer Arith-
metic, 1995.

6. B. Dutertre. Elements of mathematical analysis in PVS. In J. von Wright, J.
Grundy, , and J. Harrison, editors, Theorem Proving in Higher Order Logics: 9th
International Conference. TPHOLs’ 97, number 1125 in Lecture Notes in Computer
Science, pages 141-156, Turku, Finland, August 1996. Springer-Verlag.

7. J. Fleuriot and L. Paulson. Mechanizing nonstandard real analysis. LMS Journal
of Computation and Mathematics, 3:140-190, 2000.

8. R. Gamboa. Mechanically Verifying Real- Valued Algorithms in ACL2. PhD thesis,
University of Texas at Austin, May 1999.

9. H. Gottliebsen. Automated Theorem Proving for Mathematics: Real Analysis in
PVS. PhD thesis, University of St Andrews, June 2001.

4 The results are — of course — only as sound as PVS.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

P. Gowland and D. Lester. A survey of exact computer arithmetic. In Jens Blanck,
Vasco Brattka, Peter Hertling, and Klaus Weihrauch, editors, Computability and
Complexity in Analysis, volume 272 of Informatik Berichte, pages 99-115. FernUni-
versitiat Hagen, September 2000. CCA2000 Workshop, Swansea, Wales, September
17-19, 2000.

J. Harrison. Metatheory and reflection in theorem proving: A survey and critique.
Technical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK, 1995.
J. Harrison. Theorem Proving with the Real Numbers. Springer-Verlag, 1998.

T. Hickey, Q. Ju, and M.H. van Emden. Interval arithmetic: from principles to
implementation. Journal of the ACM, 2001.

R. B. Kearfott. Interval computations: Introduction, uses, and resources. Furomath
Bulletin, 2(1):95-112, 1996.

M. Mayero. Formalisation et automatisation de preuves en analyses réelle et
numérique. PhD thesis, Université Paris VI, décembre 2001.

V. Ménissier. Arithmétique Ezxacte : Conception, Algorithmique et Performances
d’une Implantation Informatique en Précision Arbitraire. PhD thesis, Université
Paris VI, Paris, France, 1994.

C. Mufioz. PVSio reference manual — Version 2.a. Available from http://
research.nianet.org/ munoz/PVSio, 2004.

C. Muinioz, V. Carreno, G. Dowek, and R.W. Butler. Formal verification of con-
flict detection algorithms. International Journal on Software Tools for Technology
Transfer, 4(3):371-380, 2003.

C. Munoz and D. Lester. Real number calculations and theorem proving. In J. Hurd
and T. Melham, editors, Proceedings of the 18th International Conference on Theo-
rem Proving in Higher Order Logics, TPHOLs 2005, volume 3603 of Lecture Notes
in Computer Science, pages 195-210, Oxford, UK, 2005. Springer-Verlag.

M. Niqui. Formalising Exact Arithmetic: Representations, Algorithms and Proofs.
PhD thesis, Radboud University Nijmegen, 1994.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.
In Deepak Kapur, editor, 11th International Conference on Automated Deduction
(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748-752,
Saratoga, NY, June 1992. Springer-Verlag.

M. Pour-El and J. Richards. Computability in Analysis and Physics. Perspectives
in Mathematical Logic. Springer, Berlin, 1989.

R.M. Robinson. Review of “Peter, R., Rekursive Funktionen”. The Journal of
Symbolic Logic, 16:280-282, 1951.

N. Shankar. Efficiently executing PVS. Project report, Computer Science Labo-
ratory, SRI International, Menlo Park, CA, November 1999. Available at http:
//www.csl.sri.com/shankar/PVSeval.ps.gz.

E. Specker. Nicht konstruktiv beweisbare Sétze der Analysis. The Journal of
Symbolic Logic, 14(3):145-158, 1949.

A. Turing. On computable numbers, with an application to the “Entschei-
dungsproblem”. Proceedings of the London Mathematical Society, 42(2):230-265,
1936.

F. W. von Henke, S. Pfab, H. Pfeifer, and H. Rue. Case Studies in Meta-Level
Theorem Proving. In Jim Grundy and Malcolm Newey, editors, Proc. Intl. Conf.
on Theorem Proving in Higher Order Logics, number 1479 in Lecture Notes in
Computer Science, pages 461-478. Springer-Verlag, September 1998.

A. Yakovlev. Classification approach to programming of localizational (interval)
computations. Interval Computations, 1(3):61-84, 1992.

