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1. Introduction

Defining the semantic relation of a language and formally reasoning about
this relation is generally difficult, time consuming, and error-prone. Hence, a
formal framework supporting both verification and execution of the operational
semantics of a programming language is useful, for it would reduce the amount
of work needed to define its semantic relation and formally prove its proper-
ties. Moreover, since programming languages tend to evolve constantly, tools
supporting rapid yet correct prototyping of their execution are highly valuable.

The definition of such a framework would be a major endeavor if it had to
be done from scratch for each language. As a minimum, the framework should
include a formal library of binary relations general enough to support the defini-
tions of useful operations, their execution, and formal proofs of their properties.
Fortunately, semantic relations are, in general, built from simple relations with
a limited number of operations, such as reflexive-transitive closure, reduction to
normal form, parallel closure, etc., which have been studied extensively [2].

Operations such as the synchronous relation, which is at the basis of the
operational semantics [27] of synchronous languages such as Esterel [4], Lus-
tre [6], and Signal [15], have been less formally studied in an abstract setting.
Synchronous languages were introduced in the 1980s to program reactive sys-
tems, i.e., systems whose behavior is determined by their continuous reaction
to the environment where they are deployed. Nowadays, synchronous languages
are extensively used in embedded applications and automatic control software of
critical nature. The family of synchronous languages is characterized by the syn-
chronous hypothesis, which states that a reactive system is arbitrarily fast and
able to react immediately in no time to stimuli from the external environment.
One of the main consequences of the synchronous hypothesis is that components
running in parallel are perfectly synchronized and cannot arbitrarily interleave.
The implementation of a synchronous language in a sequential machine requires
the simulation of the synchronous semantics into an asynchronous computation
model and must ensure the validity of the synchronous hypothesis.

This paper presents a formal library of binary set relations for the specifi-
cation, proof of properties, and execution of synchronous relations. The formal
library consists of a set of theories written in the higher-order specification
language of the Prototype Verification System (PVS) [26]. The PVS theories
contain formal definitions of abstract binary relations on sets, and proofs of suf-
ficient conditions of properties such as determinism and compositionality, which
are of particular interest in the development of synchronous languages [9, 20].

The paper also proposes a serialization procedure that correctly and com-
pletely simulates asynchronously a given synchronous relation on sets. Since the
constructed relation is built on top of an asynchronous one, it can be specified
in asynchronous rewriting engines that support set rewriting such as Maude [7].

The application of the formal library and the serialization procedure are il-
lustrated with the specification of a small-step semantics of the Plan FExecution
Interchange Language (PLEXIL) [14] in PVS and its rewriting logic specifica-
tion in Maude. Plan execution is a cornerstone in systems involving intelligent



software agents such as robotics, unmanned vehicles, and habitats. PLEXIL? is
a synchronous plan execution language developed by NASA to support space-
craft automation, and it has been used on midsize autonomy applications at
NASA such as robotic rovers, a prototype of a Mars drill, and to demonstrate
automation for the International Space Station.

Outline. Section 2 presents the definitions of set relations included in the
formal library. Sufficient conditions for determinism and compositionality of
these relations are given in Section 3. Section 4 illustrates how the formalism
presented in this paper can be used to define the small-step semantics of a
simple synchronous language. Section 5 describes the serialization procedure for
synchronous relations. Section 6 gives an overview of the small-step semantics
of PLEXIL in PVS and the rewriting logic specification of this semantics in
Maude. Section 7 discusses related work and concludes this work.

The mathematical development presented in sections 2, 3, and 6.1 have been
formalized and mechanically verified in PVS. The rewriting logic specification
discussed in Section 6.2 has been implemented in Maude. The mathematical
developments in PVS and the implementation in Maude are all publicly available
from http://shemesh.larc.nasa.gov/people/cam/PLEXIL.

2. Set Relations

The proposed library includes several definitions related to abstract set rela-
tions. All the definitions presented in this section are formally specified in PVS.
However, for readability, this paper uses standard mathematical notation.

Let U be a set whose elements are denoted A, B, ... and let — be a binary
relation on Y. An element A € U is called a —-redex if it is a reducible element
for —, i.e., if there exist B € U such that the pair (A;B) € —. As usual, the
fact that the pair (A;B) is in — will be denoted A — B. Moreover, A /~ B
denotes the fact that the pair (A;B) is not in —.

The identity relation, n-fold composition, and reflexive-transitive closure
of — are defined as usual, e.g, see [2], and denoted by —°, —™" and —*, respec-
tively. Observe that — and —! denote the same binary relation. If A —* B and
B is not reducible for —, then B is called a —-normal form and, furthermore,
B is said to be a —-normal form of A. The normalized relation —! of — relates
elements to their normal forms and it is formally defined as follows.

Definition 1 (Normalized relation). The relation —! denotes the set of pairs
(A;B) inUxU such that A—~'B if and only if A~*B and B is a —-normal form.

Note that —!-normal forms do not have a —-normal form. Indeed, assume
that A is a —!-normal form and that B is one its —-normal forms. By definition,
it holds that A—*B. Since B is a —-normal form of A, it holds that A—!B,
which contradicts the fact that A is —*-normal form. Hence, the only elements
in U that are —*-normal forms are those that do not have a —-normal form.

2PLEXIL is available from http://shemesh.larc.nasa.gov/people/cam/PLEXIL.



Example 1. Let U be the set containing the distinct elements A, B,C, D, and
the relation — defined on U as follows:

A — B,
c — C.

The elements A and C are —-redexes, while the elements B and D are —-
normal forms. Moreover, the relation —' consists of the pairs (A;B), (B;B)
and (D;D). The element C is the only —*-normal form.

For the rest of this paper, it is assumed that U is the family of all finite
sets over an abstract, possibly infinite, set T, i.e., i/ C 27 and, therefore, —
is a binary relation on finite sets of T. The elements of T" will be denoted by
lowercase letters a, b, c, ... and will be called terms. When it is clear from the
context, curly brackets are omitted from set notation, e.g., a,b — b denotes
{a,b} — {b}. Because of this abuse of notation, the symbol ,” is overloaded to
denote set union, e.g., if A denotes the set {a, b}, B denotes the set {c,d}, and D
denotes the set {d, e}, the notation A, B — B, D denotes {a,b,c,d} — {c,d,e}.

The asynchronous relation —" of — is the relation defined as the congruence
closure of —.

Definition 2 (Asynchronous relation). The relation —" denotes the set of pairs
(A;B) in U x U such that A—P B if and only if there exist sets A’ and B’ such
that A’ C A, A’ #0, A - B and B=(A\ A )UB'.

The parallel relation —!l of — is the relation defined as the parallel closure
of —.

Definition 3 (Parallel relation). The relation —!I denotes the set of pairs (A;B)
in U x U such that A—IB if and only if there exist Aq,...,A,, nonempty,
pairwise disjoint subsets of A, and sets Bi,...,B, such that A; — B; and

B= (A \ U1§i§n Ai) U U1gi§n B;.

Example 2. Let T be the set of distinct terms a,b,c,d,e, and the relation —
defined on U as follows

a,b — b,d,
c — d,
a,e — d.
It holds that a,b,c,e = b,c,d e, because {b,c,d,e} = ({a,b,c,e} \ {a,b}) U
{b,d}. Moreover, a,b,c,e —!l b,d, e, because {b,d,e} = ({a,b,c,e} \ ({a,b} U
{c})) U{b, d} U{d}.
The synchronous relation of — is defined as a subset of the parallel closure

of —, where a given strategy selects the —-redexes.

Definition 4 (Strategy). A strategy for — is a function that maps elements
A €U into a set of parts of A such that if A’ € s(A) then A’ is a —-redex.



Since U is the family of all finite sets in T, if A € U, then set s(A) is also a

family of finite sets. Therefore, without loss of generality, it can be considered
that for A € U, s(A) = {A1,..., A}, where for 1 <i<j<n, A; #0, A; is a
—-redex, A; C A, and A4, NA; =0.
Definition 5 (Synchronous relation). Let s be a strategy for —, the relation —*
denotes the set of pairs {A;B) in U XU such that A—*B if and only if there exist
By,...,B, suchthat s(A) = {A;,..., A}, A; = B;, and B = (A\Ulgign AU
Ul <i<n B;.

Example 3. Let — be the binary set relation defined in Example 2 and s1, so,
and sz be strategies for — such that:

si{a,b,c.e}) = {{a,b},{c}},
52({aab7 C’e}’> = {{a,e}’{c}}v
s3({a,b,c.e}) = {{c}}.

It holds that

S
a,b,c,e —%1 b,d,e,

S
a,b,c,e —%2 bd,

a,b,c,e —%  a,b,d,e.

A natural way of defining strategies is via priorities. A priority for a rela-
tion — is a function p that maps —-redexes into numbers.

Definition 6 (Maximal redex). Let A € U and p be a priority function for —.
A nonempty subset B of A is said to be a maximal —-redex of A if B is a —-
redex and for all —-redex A’ such that A’ C A, A’ #0, A’ # B, and ANB # 0,
it holds that p(B) > p(4’).

The maximal —-redexes of A € U are all pairwise disjoint by construction.

Definition 7. Given a priority function p for —, the maximal —-redexes strat-
egy for p is the function that maps elements A € U into the set of its maximal
—-redezes.

Example 4. Let — be the binary set relation defined in Example 2 and p be a
priority for — such that p({a,b}) > p({a,e}). The mazimal —-redezes strategy
for p is s1, as defined in Example 3.

3. Determinism and Compositionality

In addition to the definition of the binary relations presented in Section 2,
the proposed library includes formal proofs of several properties related to de-
terminism and compositionality of the relations —™", —}, and —*, based on the
determinism and compositionality of the relation —. All lemmas presented in
this section are formally proved in PVS. A summary of the PVS results pre-
sented in this section is electronically available from http://shemesh.larc.
nasa.gov/people/cam/PLEXIL/library_summary.txt.



3.1. Determinism
A relation is deterministic if each element is in relation with at most one
element.

Definition 8 (Determinism). A binary relation — on U is said to be determin-
istic if for all A, By, and Bs in U, it holds that A — By and A — Bs implies
B; = Bs.

Determinism is preserved by the n-fold relation, the normalized relation, and
the synchronous relation.

n

Lemma 1 (Determinism of —™"). —™ is deterministic if — is deterministic.

Lemma 2 (Determinism of —!). —! is deterministic if — is deterministic.

Lemma 3 (Determinism of —%). —* is deterministic if — is deterministic and
s is a strategy for —.

In general, the relations —*, —° and — are not deterministic, not even in

the case where the relation — is deterministic.

Example 5. Let T be the set of distinct terms a,b,c,d,e and — be the binary
relation on U defined as follows.

a,b — b,
b — d,

a,c — e.

The relation — is deterministic because every element of U is related to at
most one element. The relation —* is non-deterministic because a,b —* b
and a,b —* d, but {b} # {d}. The relation —" is non-deterministic be-
cause a,b —° b and a,b —° a,d, but {b} # {a,d}. The relation —! is non-
deterministic because a,b,c —!l b,c and a,b,c =\ d,e, but {b,c} # {d,e}. As-
sume that the strategy s is defined such that

s({a, b, C}) = {{avc}v {b}}a

the relation —° is deterministic. In particular, the only element related to
{a,b,c} in —° is {d,e}.

3.2. Compositionality

Intuitively, a relation — is compositional if A — A’ and B — B’ implies
that A | B — A’ | B’, where | is a binary operation that maps elements in U x U
into elements in . Since U C 27 the operation | can be simply defined as the
set union operation. However, most of the results presented in this section hold
for an abstract definition of the binary operation |.

The compositionality property is not stated for all elements A and B, but
for pairs (A4;B) in a given set of elements £ C U x U.

Definition 9 (Compositionality). The relation — is said to be compositional
foraset ECU XU if forall A, A’, B, and B' inU, (A;B) € £, A — A, and
B — B’ implies A| B— A’ | B'.



8.2.1. Compositionality of n-fold relation
In general, it is not true that the relation —" is compositional for £ when —
is compositional for &, as illustrated by the following example.

Example 6. Define the operation | as set union. Let T be the set of distinct
terms a,a’,a”,b,b',b", and — be the binary relation on U defined as follows.

/

a — d,
/ 12
a — d’,
b — ¥,
/ /!
b - b,
a,b — d,b.

The relation — is compositional for & = {{a;b)}, but —?2 is not: it holds that
a—2a" and b —2b", but a,b 4> a", V.

The counter-example above suggests that to achieve compositionality for —"
the set &€ must be closed under the relation —.

Definition 10 (Closed). A set € CU x U is said to be closed under —, if and
only if

o (A;B)e€ & and A — A’ implies (A';B) € £, and
e (A;B) € £ and B — B’ implies (A;B') € €.
A weaker condition is the following.

Definition 11 (Weakly closed). A set of pairs € CU x U is said to be weakly
closed under —, if A— A’, B — B’, and (A;B) € &, implies (A';B’) € £.

Lemma 4. If £ is closed under —, then it is weakly closed.

This weak closure condition happens to be sufficient to prove composition-
ality of —™ as shown by the following lemma.

Lemma 5 (Compositionality of —™). If — is compositional for £, and & is
weakly closed under —, then —™ is compositional for E.

3.2.2. Compositionality of the normalizing relation

In general, it is not true that the relation —! is compositional for £ when —
is compositional for £. It turns out that a stronger notion of compositionality
is needed, one which requires necessarily the set £ to be closed under —. How-
ever, this closure condition happens to be insufficient as shown by the following
counter-example.



Example 7. Define the operation | as set union. Let T be the set of distinct
terms a,a’,a”,b,b',b" and — be the binary relation on U defined as follows.

a — d,
a/ — //7
b — ¥,
a,b — dl,
a,b — a’b.

Let € be the set of pairs {(a;b), (a;b'), (a’;b), (a;0'), (a”;b), (a”';b')}. The rela-
tion — is compositional for the elements of £ and & is closed under —. How-
ever, the relation —' is not compositional for £, because it holds that a —* a”
and b =+ U, but a,b A V.

In this case, a stronger notion of compositionality is needed.

Definition 12 (Strong compositionality). The relation — is said to be strongly
compositional for a set £ C U X U if it is compositional for £ and, moreover,

forall A, A’, B, and B' in U,

1. if (A;BYe&, A— A', and B is a —-normal form, then A| B — A’ | B,
2. if (A;B)e&, A is a —-normal form and B— B’, then A|B — A|B’, and
3. if A and B are —-normal forms, then A | B is a —-normal form.

Lemma 6 (Compositionality of —1). If € is closed under —, and — is strongly
compositional for £, then —' is compositional for E.

In general, the relation —*! is not strongly compositional for €. Indeed this
would not make much sense since, as explained in Section 2, elements in —!-
normal form are non-normalizable for —.

The compositionality property of relations that are built on top of —! may
require the closure of £ under —'. The following lemma states that this closure
property holds when & is closed under —.

Lemma 7 (Closure of —!). If a set £ C U x U is closed under —, then it is
closed under —!.

3.2.8. Compositionality of the synchronous relation
Let s be a strategy and the operation | be the set union.

Definition 13 (Set of disjoints pairs). A set &€ C U x U is said to be a set of
disjoint pairs if for all (A;B) € £, AN B = ).

Definition 14 (Commutation with union). A strategy s is said to commute
with union for elements of £ if for all (A;B) € £, s(AU B) = s(A) U s(B).

Lemma 8 (Strong compositionality of —*). If £ is a set of disjoint pairs and
the strategy s commutes with union for elements of £, then —* is strongly com-
positional for €.



When the strategy s is the maximal —-redex strategy, Lemma 8 requires this
strategy to commute with union for £. The following lemma provides sufficient
conditions to prove this commutation property.

Lemma 9. Let £ be a set of disjoint pairs, the mazrimal —-redexes strategy
commutes with union for elements of € if for all (A;B) € £ and for all —-redex

C such that C C AU B, it holds that C C A or C C B.

The compositionality of relations that are built on top of —¢, such as (Hs)l,
may require the closure of £ under —*. The following lemma provides sufficient
conditions for this closure property to hold.

Lemma 10 (Closure of —*). If

1. the set E CU x U is closed under —,

2. (A;B) € € implies (B;A) € &,

3. (A;B) € € and A’ C A implies (A';B) € €, and

4. for any set C and all a € C, (a;B) € € implies (J,cc{a};B) € €,

then £ is closed under —*.

4. Small-Step Semantics of a Simple Synchronous Language

This section illustrates the concepts presented in the previous sections by
giving the small-step semantics of a simple synchronous language with arith-
metic expressions. The small-step semantic relation of the language will be
defined as the synchronous relation —* of a relation — for a given strategy s.
The relation — is called the atomic relation of the language.

Consider a language that consists of two kinds of elements: memory terms
Mem(m,v) and assignment terms l:=u, where m,l denote memory names and
v, u denote numerical values. In this case, the set T consists of all ground terms
having the form Mem(m,v) or m:=v. As defined in Section 2, the set U is the
family of all finite sets over T'.

The atomic relation — is defined such that A — B if and only if A =
{Mem(m,v),m:=u} and B = {Mem(m, u)}, for some memory name m and values
v, u. For instance, it holds that

Mem(x,3), x:=4 — Men(x,4),
Mem(y,4), y:=3 — Men(y,3).

(1)

The small-step semantic relation of the language can be defined as the syn-
chronous relation —*, where s is the maximal —-redexes strategy for a priority
function p that satisfies

p({Mem(m,v), m:=u}) = u.



This priority function gives a higher priority to —-redexes that assign a higher
value. For instance, since p({Mem(y,4),y:=3}) = 3 > 0 = p({Men(y, 4),y:=0})
and {Mem(x, 3),x:=4} N {Mem(y, 4),y:=3} = 0, it holds that
s({Mem(x, 3),Mem(y,4),x:=4,y:=3,y:=0}) =
{{Men(x, 3),x:=4}, {Men(y, 4),y:=3}}.

Therefore,
Mem(x, 3), x:=4, Mem(y, 4), y:=3, y:=0 —° Men(x,4), Men(y, 3), y:=0,
and
Mem(x, 3), x:=4, Mem(y,4), y:=3, y:=0 (—°)" Mem(x,4), Men(y,0).
Since the atomic relation — is deterministic, the synchronous relation —* is

also deterministic (Lemma 3). Therefore, by lemmas 1 and 2, the n-fold relation
(—*)" and the normalized relation (—*)" are also deterministic.

Let | be the set union operation and £ be a set in U x U. In general, the
relation — is not compositional. For instance, although the set of pairs in

Formula (1) are in —,
Mem(x, 3), x:=4, Men(y, 4), y:=3 +/ Mem(x,4), Men(y, 3).

The relation —* is not compositional for an arbitrary set £ either. For
instance, it holds that

Mem(y, 4),
Mem(y, 4),

y:=3 —° Men(y,3),
y:=0 —° Men(y,O0),
but

Men(y,4), y:=3, y:=0 #° Men(y,3), Men(y,0).

On the other hand, the relation —* is strongly compositional, and therefore
compositional, for the set € of independent pairs, i.e., pairs (4;B) where A and
B have no memory names in common. In that case, it can be shown, using
Lemma 9, that the maximal —-redexes strategy s commutes with union for the
elements of £. Therefore, by Lemma 8, the relation —¢ is strongly compositional
for the set £ of independent pairs. Moreover, using lemmas 5 and 6, it can also
be verified that the n-fold relation (—*)™ and the normalized relation (—*)* are
compositional for £.

The synchronous language defined in this section can be extended with arith-
metic expressions recursively formed using memory names, numerical values,
and expressions of the form e; +ey, where e; and ey denote ground arithmetic
expressions. Of course, other type of expressions can be considered, but the
ones defined here suffice for the discussion that follows. Terms in the extended

10



language are of the form Mem(m,v) or m:=e, where e is a ground arithmetic
expression.

The small-step semantics of the extended language requires the definition of
an evaluation function eval that takes as inputs an element A € U, which is a
set of ground terms, and a ground expression e. It returns a numerical value.
This function is inductively defined on e as follows.

v if e is the numerical value v,
v if e is the memory name m and Mem(m,v) € A,
v1 +wve if e has the form e; +es,

vy = eval(A, er), and vy = eval(A4,es).

eval(A,e) =

The function ewval is not well-defined when A has two terms Mem(m,v) and
Mem(m, u) such that v # u, or when there is a memory name m that occurs in
e but such that there is no a term Mem(m, v) in A.

Definition 15. An element A € U is called a context if

1. for all memory terms Mem(m,v) € A and Mem(m,u) € A, it holds that
v =u, and

2. for all memory names m occurring in an expression e in A, there exists a
term Mem(m,u) € A.

Henceforth, the upper case Greek letter I' denotes an arbitrary context.
For all context I" and ground expression e occurring in I', the term eval(T, e)
is well-defined. For example, let I' be the following context.

I' = {Mem(x,3), Men(y,4), x:=y, y:=x+10, y:=x}. (2)
Then, eval(T',x) = 3, eval(T',x+10) = 13, and eval(T',y) = 4.

For the extended language, the atomic relation L, which depends on a

given context I', is defined such that A L B if and only if A C T, A=
{Mem(m,v),m:=e}, B = {Mem(m,u)}, and u = eval(T,e), for some memory
name m, values v and u, and ground expression e.

For instance, let " be defined as in Formula (2). Therefore,

Mem(x, 3), x:=y L Mem(x, 4),
Mem(y,4), y:=x+10 — Men(y, 13),

Mem(y, 4), y:=x 5 Men(y, 3).

S
The synchronous relation (L) is defined for a strategy s that is the maximal
—-redexes strategy for a priority function p that satisfies

p({Mem(m,v),m:=c}) = w,

where w = eval(T, e). Therefore,

S

Mem(x, 3), x:=y, Mem(y, 4), y:=x+10, y:=x (L) Mem(x, 4), Mem(y, 13), y:=x.

11



The relation — is deterministic for any context I'. Therefore, by Lemma 3,
S
the synchronous relation (L) is also deterministic for any I'. Using Lemma 8, it

S
can be verified that for all contexts I', the synchronous relation (L) is strongly
compositional for the set £ of independent pairs.
It is tempting to define the semantic relation of the extended language as

S
the synchronous relation (L) . However, this is not a good idea because this
relation depends on a given context I', which is fixed. For example, if T is
defined as in Formula (2), it holds that

S

Mem(x,4), Mem(y, 13), y:=x (L) Mem(x,4), Men(y, 3).

A better semantic relation, which does not depend on a fixed context I', is

given by the relation =_, ; defined such that A =_, ; B if and only A (i) B.
In this case,

Mem(x,3),x:=y,Mem(y, 4),y:=x+10,y:=x =_ , Mem(x,4),Mem(y, 13),y:=x,
Mem(x, 4), Mem(y, 13), y:=x =_,; Mem(x,4),Men(y, 4).

S
Since (L) is deterministic for any context I', the semantic relation =_,
is deterministic. Therefore, by lemmas 1 and 2, the n-fold relation =", , and

—,8
the normalized relation =_, ;! are also deterministic. Since (L)é is strongly
compositional for the set £ of independent pairs for any context I', the semantic
relation =_, ; is also strongly compositional, therefore compositional, for the
same set £. Finally, using lemmas 5 and 6, it can be shown that the n-fold
relation =", ; and the normalized relation i_nsl are also compositional.

5. Serialization Procedure for Synchronous Relations

Rewriting systems are a computational way of defining binary relations and
therefore provide a suitable framework for specifying and executing operational
semantics of programming languages [24]. Specifying semantic relations, as the
ones presented in Section 4, by using rewriting systems poses a practical chal-
lenge. The semantic relations —° and =_, ; in Section 4 are defined on top
of synchronous relations. However, rewriting systems typically implement the
maximal concurrency of rewrite rules by asynchronous rewriting. This section
proposes a procedure, called serialization, that enables the specification of syn-
chronous relations by means of asynchronous ones.

Let R; and R; be two binary relations on U. If Ry C R, then the relation
R, is said to correctly simulate Re and, conversely, the relation R, is said to
completely simulate Ry. It is noted that if Ry correctly and completely simulates
R2 then R1 = R2.

For instance, it is easy to see that the synchronous relation —*, where — is a
binary relation on I/ and s is a strategy for —, is included in the relation (—7)*,
i.e., if A—°B, then A (—")* B for A, B € U. Hence, the transitive closure of the
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asynchronous relation of —, i.e., (—)*, completely simulates the synchronous

relation —*. Since the opposite inclusion is not true, the transitive closure of

the asynchronous relation does not correctly simulate the synchronous relation.
The serialization procedure has as parameters an arbitrary set 1T', a binary

relation — on U (the family of all finite sets over T'), and a strategy s for —,

and it outputs a relation R_, ; that correctly and completely simulates —°.
The procedure is defined by the following steps.

1. A new set T is defined such that there is a bijection mark that maps terms
in T into terms in 7®. The families of finite sets over 7° and T'UT*® are
denoted, respectively, ® and U®. The bijection mark extends naturally
to elements in U, i.e., it extends to a bijection that maps elements in U
into elements in U°.

2. The binary relation —* on U® is defined such that A —* C if and only if
A — B and C = mark(B) (observe that A € U and C € U*).

3. The relation R_, s on i is defined such that (4;B) € R_, ; if and only if
B = (A\ A")Umark™'(B'), where

s(A) = {A1... A},
A = U 4,
1<i<n

A (=9 B

Theorem 1. Given a binary relation — on U and a strateqy s for —, the re-
lation R_, 5, constructed by the serialization procedure, correctly and completely
simulates the synchronous relation —°, i.e., R_, s = —°.

Proof. Tt suffices to prove that for all A,B € U, (A;B) € R_, ; if and only
A—*B. Let A € U be such that s(4) = {A4;1,...,A,}, where the elements
A; C A are non-empty, pairwise disjoint, —-redexes. Define A" = [, <i<n Ai-

Simulation correctness. Assume that (A;B) € R_, ;. By definition of R_, ,
B = (A\ A") U mark™"(B'), where A’ ((—>')D)l B’. Since the elements
A; are pairwise disjoint —-redexes, they are also pairwise disjoint —*-
redexes. Moreover, since —* relates elements in I/ into elements in U°,
the normalized reduction ((—>')D)l is exactly the n-fold relation ((—*)7)",
where n is the size of s(A). Therefore, B’ = J,,<,, mark(B;), where

A; — B;. Since mark™'(B') = U, ;<, Bi it holds that A—*B.

Simulation completeness. Assume that A—°B. By definition of —*, B =
(A\ A") U <;<,, Bi, where A; — B;. By definition of —*, it holds that
A; —* mark(B;). Since the elements A; are pairwise disjoint —*-redexes,
it holds that A’ ((—*)7)* B/, where B’ = |, ., mark(B;). However, B’

is a (—*")-normal form. Therefore, it holds that A’ ((H’)D)l B’. Since
mark™ (B') = U, <<, Bi, it holds that (4;B) € R_, .

O
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6. Small-Step Semantics of PLEXIL

This section gives an overview of the small-step semantics of PLEXIL, a plan
execution language developed by NASA to support space operations. PLEXIL is
a synchronous language for specifying actions to be executed by an autonomous
system. These actions can be part of normal spacecraft operations or they can
respond to unexpected changes in the environment.

A PLEXIL program, called a plan, is a tree of nodes representing a hierar-
chical decomposition of tasks. Interior nodes, called list nodes, provide control
structure and naming scope for local variables. The primitive actions of a plan
are specified in the leaf nodes. Leaf nodes can be assignment nodes, which as-
sign values to local memories, command nodes, which call external commands,
or empty nodes, which do nothing. PLEXIL plans interact with a functional
layer that provides the interface with the external environment. This functional
layer executes the external commands and communicate the status and result
of their execution to the plan through external variables.

Nodes have an execution state, which can be Inactive, Waiting, Executing,
Finishing, or Finished, and an execution outcome, which can be None, Success,
or Failure. They can declare local variables, accessible to the node in which
they are declared and all its descendants. In contrast to local variables, which
have a hierarchical scope, the execution state and the execution outcome of a
node are available to all nodes in the plan. Assignment nodes have also a prior-
ity that is used to solve race conditions. The internal state of a node consist of
the current values of its execution state, execution outcome, and local variables.

Each node is equipped with a set of gate conditions and check conditions
that govern the execution of a plan. The gate conditions are start condition,
which specifies when a node starts its execution, end condition, which specifies
when a node ends its execution, repeat condition, which specifies when a node
can repeat its execution, and skip condition, which specifies when the execution
of a node can be skipped. The check conditions signal abnormal execution
states of a node and they are pre-condition, post-condition, and invariant. The
language includes basic Boolean, arithmetic, and string expressions. It also
includes lookup expressions that read the value of external variables provided to
the plan by the functional layer. Expressions appear in conditions, assignments,
and arguments of commands.

The execution in PLEXIL is driven by external events that trigger changes
in the gate conditions. All nodes affected by a change in a gate condition
synchronously respond to the event by modifying their internal state. These in-
ternal modifications may trigger more changes in gate conditions, which in turn
are synchronously processed until quiescence by all nodes involved. External
events are considered in the order in which they are received. An external event
and all its cascading effects are processed before the next event is considered.
This behavior is known as run-to-completion semantics.

Consider the PLEXIL plan in Figure 1. The plan consists of a root node
Exchange of type list, and leaf nodes SetX and SetY of type assignment. The
node Exchange declares to local variables x and y. The values of these variables
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Exchange {
Integer x =
Integer y =
Start: Lookup (
Invariant: x +
NodeList:

SetX {
Assignment: x := y; x y SetX SetY

1;
2; Exchange
P

}
SetY {
Assignment: y := x; memories nodes
}
}

@ (b)

Figure 1: A PLEXIL Plan

are exchanged by the synchronous execution of the node assignments SetX and
SetY. The node Exchange also declares a start condition and an invariant con-
dition. The start condition states that the node waits for an external variable
T to be greater than 0 before starting its execution. The invariant condition
states that at any execution step the values of x and y add to 3.

The small-step semantics of PLEXIL has been specified in PVS’ higher-
order logic and Maude’s rewriting logic. Both formalizations are available from
http://shemesh.larc.nasa.gov/people/cam/PLEXIL. This paper focuses on
the synchronous and run-to-completion aspects of the semantics. For a more
complete presentation of the formal semantics, the reader is referred to [11, 12].

6.1. Synchronous and Run-To-Completion Semantics of PLEXIL

The mathematical development presented in this section has been written
and mechanically verified in PVS. It is based on the formal library of set relations
presented in sections 2 and 3.

Although PLEXIL is much more complex than the synchronous language
with arithmetic expressions presented in Section 4, the development of PLEXIL’s
small-step semantics follows a similar approach to that of the simple language.

First, a set of ground terms 7T is defined. Then, an atomic relation L, for a
given context I', is defined on U, the family of all finite sets over T. Next, a

S
semantic relation =_, ; is defined on top of the synchronous relation (L) , for
a given strategy s for —. More complex relations, such the normalized relation
;$_>7sl, are built on top of the semantic relation as needed. Finally, proper-
ties such as determinism and compositionality are proved for each one of these
relations in a hierarchical way.

In the case of PLEXIL, the set T of terms consists of nodes, written Node(N),
local variables, written Mem(NN, m,v), and external variables, written Ext(m,v),
where N denotes qualified names, m denotes names, and v denotes literal values.
A qualified name uniquely identifies a node in a PLEXIL plan and it consists
of the name of the node concatenated to the name of its ancestors. The term
Node(N) represents a record [Name = N, Type = t,...,State = s, 0utcome = 0]
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that contains the complete definition of the node N of a PLEXIL plan, its
current execution state s, and its current execution outcome o. The term
Mem(N, m,v) represents a local variable m, which is declared in the node N
of a PLEXIL plan, with a current value v. The term Ext(m,v) represents an
external variable m with a current value v.

Dot-notation is used to access the fields of the record represented by a node
term, e.g., Node(NN).Invariant refers to the Boolean expression specifying the
invariant condition of the node N in PLEXIL plan and Node(XNV).State refers
to the current execution state of the same node. Furthermore, the notation

Node(N) with [fo = vo,. .., fn = Un]

is used to represent a record that is exactly as Node(N) except in the fields f;,
where it has the value v;, for 0 < i < n.
A context is a set A € U, where U is the family of all finite sets over T, if:

1. Node(N;) € A, Node(Nz) € A, and N; = Ny implies that Node(N;) and
Node(N2) are field by field equal,

2. Mem(N,m,v1) € A and Mem(N, m,v2) € A implies that v; = va,

3. Ext(m,v1) € A and Ext(m,ve) € A implies v; = vq, and

4. local and external variables occurring in expressions in A are terms in A.

Contexts are denoted by uppercase Greek letters I', X, etc.

An environment is a context that consists only of external variables. Given
a syntactically correct PLEXIL plan that only refers to external variables in an
environment Y, an initial context I'g can be constructed such that 3 C I'y and
there is a term in I'y for each node and local variable declared in the plan. Node
and memory names are fully qualified in I'y. Furthermore, the initial execution
state and execution outcome of a node term in I'y are set to Inactive and None,
respectively. Node memories in I'g have as value the initial value declared in
the plan (or a default value if none is declared).

Given I' and a PLEXIL expression e that occurs in T, eval(T', €) is a function
defined in a similar way to the evaluation function presented in Section 4.

6.1.1. Atomic Relation

The atomic relation £>7 for a given context I', defines the changes in the
internal state of nodes as consequence of changes in their gate conditions. It is
formally defined by 42 individual rules (see [11, 12]). For instance, the rule that
updates a memory by an assignment node whose execution state is Executing
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is defined such that A 5 B if

A C T,
A = {Node(N),Mem(M,m,v)},
Node(N).State = Executing,
Node(N).Type = Assignment,
Node(N).Body = (M, m):=e,
u = eval(T,e),and
B = {Node(N) with [State = IterationEnded,

Outcome = Success], Mem(M,m, u)}.

The following theorem is proved by considering all 42 rules that define the

. . r
atomic relation —.

Lemma 11. PLEXIL’s atomic relation - is deterministic for any context I

6.1.2. Micro Relation
The synchronous aspect of PLEXIL’s execution is captured by the semantic
relation =_, 4, called micro. This relation is defined such that A =_, ; B if and

S
only if A(i) B, where s is the maximal redexes strategy for a priority function
p that satisfies

p(A) — { maX{NOde(N),Priority | NOde(N) c A/} if A 7é m’

0 otherwise,
where A’ = {Node(N) € A | Node(N).Type = Assignment}.
Lemma 12. PLEXIL’s micro relation =_, , is deterministic.

Proof. By lemmas 3 and 11, the relation —* is deterministic for all I". Therefore,
the relation =_, , is deterministic. O

Since =_, , is deterministic, given an environment ¥ and an initial context
I’y that includes X, there are unique contexts I'y, ..., I';, such that I'y =_, 4
I'n =5 ... >_ 5 I's. Furthermore, as none of the atomic rules modify the
external environment, it hold that ¥ C I';, for i < n. Each one of these execution
steps is called a micro-step.

Let £ be the set of independent pairs of U, i.e., (A;B) € &£ if and only if
A and B have no names in common. The following theorem is proved using
Lemma 9.

Lemma 13. The strategy s commutes with union for the elements of £.

Lemma 14. PLEXIL’s micro relation =_, s is strongly compositional, and
therefore compositional, for the set £ of independent pairs.

Proof. The result follows from lemmas 8 and 13. O
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Using Lemma 10, it can be proved that the set £ is closed under —*, for all
I'. The following lemma follows from that result.

Lemma 15. The set £ is closed under =_, ;.

6.1.3. Quiescence Relation
The run-to-completion aspect of PLEXIL’s execution is captured by the
quiescence relation, which is formally defined as the normalized relation :>H7sl.

Lemma 16. PLEXIL’s quiescence relation =_, ;' is deterministic.
Proof. By lemmas 2 and 12. O

Lemma 17. PLEXIL’s quiescence relation =_, ;' is compositional for the set
E of independent pairs.

Proof. The result follows from lemmas 6, 15, and 14. O

6.2. Rewriting Logic Semantics of PLEXIL

This section presents the rewrite theory Rpx1, that specifies the rewriting
logic semantics of PLEXIL at the level of the atomic and micro relations. The
construction of Rpxr, follows the serialization procedure presented in Section 5
for a correct and complete simulation of PLEXIL’s micro relation =_, ;.

Rewriting logic [22] is a general semantic framework that unifies a wide
range of models of concurrency. Rewriting logic specifications can be executed
in Maude, a high-performance rewriting logic implementation, and benefit from
formal analysis tools available to it, such as Maude’s LTL model checker.

A rewriting logic specification is a tuple R = (3, EU A, R), where

e (X,EUA) is an order-sorted equational logic theory with ¥ a signature
of disjoint sets of sorts partially ordered and a family of sets of operators;
A a set of structural axioms (typically associativity, commutativity, and
identity) such that there exists a matching algorithm modulo A producing
a finite number of A-matching substitutions; and E a set of universally
quantified conditional equations of the form

(VX)L t=uif N\t =u,

where X is a set of sorted variables, t,u, t;, and u; are X-terms with
variables among those in X.

e R is a set of universally quantified conditional rewrite rules (with equa-
tional conditions) of the form

VX)Lt —uif [\t =u.
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Intuitively, R specifies a concurrent system, whose states are elements of the
initial algebra T, pua specified by the equational theory (X, EU A) and whose
concurrent transitions are specified by the rules R.

The binary relation —x on Tx/pu4 is defined such that [a]pua —= [b]EUA
iff there is a term a’ € [a]gua such that o’ can be rewritten to ¥, using some
rule in R, and V' € [b|gua. For arbitrary E and R, whether [a]pua —r [blEua
holds is in general undecidable, even when the equations in E are confluent
and terminating modulo A. Therefore, the most useful rewrite theories satisfy
additional executability conditions under which the relation —% can be reduced
to simpler forms of rewriting just modulo A, where both equality modulo A
and matching modulo A are decidable. This is the case when FE is ground
strongly normalizing and ground confluent modulo A [10], and, furthermore, R
is ground coherent [31] relative to the equations E modulo A. Intuitively, ground
coherence means that the strategy of first simplifying a term to a canonical form
with £ modulo A and then applying a rule with R modulo A achieves the effect
of rewriting with R modulo F U A.

6.2.1. The Rewrite Theory RpxL

PLEXIL’s rewriting logic specification Rpx1, = (ZPXLa FEpx1, U Apxr, RPXL)
is defined as follows.

The signature Ypxy, defines the sets T and U, which are specified by sorts
Object and Configuration, respectively. These sorts are predefined in Maude’s
CONFIGURATION module for object-oriented specifications. The set T' consists of
objects (N : type | attr; =valy,...,attr, = val,) representing node terms,
objects (m.N : Mem | Value = v) representing local variables, and objects (m :
Ext | Value =v) representing external variables. The sort Object is extended
to allow marked versions of objects.

The set of structural axioms Apxy, consists of structural axioms for function
symbols in ¥pxy,. For instance, it defines the laws of associativity (A), commu-
tativity (C), identity (U), and idempotency (I) for elements in U. Therefore,
a term A € U is actually an equivalence class of terms, i.e., the set of terms
representing all contexts congruent to A modulo ACUI.

The equational theory (¥pxy,, Epxi, U Apxy,) specifies the functions eval
and mark. The relation R T a8 constructed by the serialization procedure in
Section 5, is given by a function R equationally defined in Epxy,. The function R
has as type Configuration X Configuration — Configuration. It is defined
by conditional eqllations that implement the marked version of PLEXIL’s atomic
relation, e.g., L The first argument of R corresponds to the context I', the
second argument correspond to the configuration that is synchronously reduced..
Since PLEXIL’s atomic relation is deterministic (Lemma 11), the relation RN
is also deterministic, and hence confluent.

Finally, the set of rules Rpxt,, which specifies PLEXIL’s micro relation =_, ,
is defined as the single rewrite rule

I' — unmark(R(T',T)).
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The run-to-completion semantics of Exchange is depicted at the level of the
micro relation in Figure 6.2.1. Since the start condition of Exchange is true in
the initial context [y, a series of synchronous reactions occurs until quiescence is
reached at the ninth micro-step. The values of memories x and y are effectively
exchanged exactly in the fifth micro step. For all contexts I';, 0 < i < 9, the
invariant condition of x+y = 3 is satisfied.

EXECUTION STATE

Exchange SetX SetY Xy
Ty Inactive Inactive Inactive 1 2
't Waiting Inactive Inactive 1 2
Ty Executing Inactive Inactive 1 2
I's Executing Waiting Waiting 1 2
T4 Executing Executing Executing 1 2
I's Executing IterationEnded IterationEnded 2 1
T's Executing Finished Finished 2 1
I'7 Finishing Finished Finished 2 1
I's IterationEnded Finished Finished 2 1
Ty Finished Finished Finished 2 1

Table 1: Summarized execution trace of Exchange

7. Conclusion

Synchronous languages provide a natural model for synchronous reactive
systems. They were first proposed in the early 1980’s as a technique for modeling
and constructing process control systems [18]. Because of their importance to
critical embedded systems, significant work has taken place in the application
of formal methods to the design and implementation of synchronous languages
(see, for example, [11, 28, 8]). State of the art synchronous languages include
Esterel [4], Lustre [6], Signal [15], and NASA’s Plan Ezecution Interchange
Language (PLEXIL) [14]. The Coq system is used in [4] to give the formal
foundations of the synchronous language Esterel. The determinism property for
Esterel was formally proven by O. Tardieu in [30]. Based on ideas borrowed from
process algebras, Liittgen proposes step algebras [21] to model the synchronous
step reactions of Harel’s Statecharts [17]. All these efforts have led to solid
foundations of the respective languages. However, they rely on the specifics of
their language of interest. The work presented in this paper has been applied to
the PLEXIL language [12, 13]. However, it is based on mathematical constructs
that are common to several synchronous languages.

The relationship between synchronous languages and rewriting techniques
can be tracked down to Synchronous Rewriting Systems [16, 25]. Semantics
of synchronous and parallel languages have been already considered and spec-
ified in rewriting logic (see, for example, [1, 23]). Synchronous rewriting is
often related to parallel rewriting because of their similar nature. The notions

20



presented in this paper draw a clear distinction between them, in which syn-
chronous relations can be seen as parallel ones parametrized by a reduction
strategy. Rewriting logic has been used previously as a testbed for specify-
ing and animating the semantics of synchronous languages. M. AlTurki and J.
Meseguer [1] have studied the rewriting logic semantics of the language Orc,
which includes a synchronous reduction relation. T. Serbanuta et al. [29] define
the execution of P-systems with structured data with continuations. The focus
of the former is to use rewriting logic to study the (mainly) non-deterministic
behavior of Orc programs, while the focus of the latter is to study the relation-
ship between P-systems and the existing continuation framework for enriching
each with the strong features of the other. P. Lucanu [19] studies the problem
of the interleaving semantics of concurrency in rewriting logic for synchronous
systems from the perspective of P-systems. The contribution of this paper to
rewriting logic research is the definition of serialization procedure that enables
the simulation of arbitrary synchronous relations on sets via set rewriting sys-
tems. Future work on this area will study the development of an extension
of Maude in which rewrite rules can be executed synchronously for set rewrite
systems given user-defined reduction strategies.

This paper proposed a formalism, which is based on binary set relations,
for specifying the small-step semantics of synchronous languages. The basic
construct is an atomic set relation on top of which more complex relations, such
as the synchronous relation, can be constructed. Properties of these complex
relations are proved in a hierarchical way. Moreover, a serialization procedure is
provided for the specification of the semantic relation of a synchronous language
in the asynchronous computational model supported by traditional rewriting
systems. This simple, yet powerful, approach is used to define the semantics of
a complex synchronous language such a PLEXIL, to prove properties such as
determinism and compositionality in a modular way, and to provide a formal
executable interpreter of the language.

Set rewriting systems is at the basis of models of concurrent computations
such at the Gamma model [3] and the Chemical Abstract Machine [5]. The
formalism presented here closely follows these models but focuses on the syn-
chronous relation and the mechanical verification of its properties. It rests to
be studied how this formalism corresponds to higher level mathematical con-
structs such as Moore and Mealy automata, which are often used for modeling
synchronous languages.

The concrete contribution of this paper is a library in PVS that formalizes
the mathematical development presented here. The library consist of definitions
of six operations that construct relations from simpler relations: the n-fold iter-
ation, the reflexive-transitive closure, the reduction to a normal form, and the
asynchronous, parallel, and synchronous relations. For these relations, proper-
ties related to determinism and compositionality have been formally proved. An
apparent limitation of the library is that it only deals with relations constructed
on the same set & C 27. In principle, this is not a major drawback as the set U
can always be extended to include other terms (as it was done for example with
the definition of —* in Section 5). However, for technical reasons it may be
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desirable to keep relations on different sets separated and to provide operations,
such as Cartesian product, that combine relations defined on different types. A
need for such operations was noted when defining higher-level relations on top of
PLEXIL’s quiescence. These cases were handled appropriately in the PLEXIL
semantics, but they were not properly isolated in the formal library. Making
these operations explicit in the library will be considered for future work.

Although the formalism presented here has only been used to define the
formal semantics of PLEXIL and to prove its properties, it is believed that
this formalism can be applied to other deterministic synchronous languages.
To the best of the authors’ knowledge, there was no mechanized library of
abstract set relations suitable for the definition and verification of synchronous
relations; neither was there a correctness proof of a serialization procedure for
the simulation of synchronous relations by rewrite systems.
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