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Abstract

This paper presents a mathematical foundation and a rewriting logic infras-
tructure for the execution and property verification of synchronous set rela-
tions. The mathematical foundation is given in the language of abstract set
relations. The infrastructure, which is written in the Maude system, enables
the synchronous execution of a set relation provided by the user. By using the
infrastructure, algorithm verification techniques such as reachability analysis
and model checking, already available in Maude for traditional asynchronous
rewriting, are automatically available to synchronous set rewriting. In this way,
set-based synchronous languages and systems such as those built from agents,
components, or objects can be naturally specified and simulated, and are also
amenable to formal verification in the Maude system. The use of the infrastruc-
ture and some of its Maude-based verification capabilities are illustrated with an
executable operational semantics of the Plan Execution Interchange Language
(PLEXIL), a synchronous language developed by NASA to support autonomous
spacecraft operations.

Keywords: synchronous set relations, synchronous semantics, abstract set
relations, simulation, verification, rewriting logic, the Maude system, PLEXIL

1. Introduction

Synchronous languages are extensively used in embedded and critical appli-
cations and synchronous set relations provide a natural model for describing
their operational semantics. In a previous work, Rocha et al. [16] have proposed
a serialization procedure for simulating the execution of synchronous set-based
relations by asynchronous term rewriting. The synchronous execution of a set
relation is a parallel reduction, where the terms to be reduced in parallel are
selected according to some strategy. Such a serialization procedure was manu-
ally implemented to provide the rewriting logic semantics of the Plan Execution
Interchange Language (PLEXIL) [7], a synchronous plan execution language
developed by NASA to support spacecraft automation [8]. Defining the syn-
chronous semantic relation of a programming language, such as PLEXIL, is
generally difficult, time consuming, and error-prone. Moreover, manually im-
plementing the generic serialization procedure proposed in [16] adds complexity
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to an already challenging task. This paper presents new contributions in the
direction of supporting more general synchronous set relations and a computer
infrastructure that automatically implements a serialization procedure for a gen-
eral class of synchronous set relations.

In particular, the work presented in this paper extends the development
in [16] in two significant ways. First, it generalizes the theoretical foundations of
synchronous set relations by extending the notion of strategy to include a larger
set of synchronous transformations such as those that enable non-deterministic
ways to select elements in a set to be synchronously reduced. Strategies, as
defined in [16], only enable deterministic ways to select elements in a set to
be synchronously reduced. Deterministic strategies are appropriate in the con-
text of PLEXIL’s operational semantics is deterministic. However, they may
be too restrictive for encoding the semantics of non-deterministic synchronous
languages. Moreover, non-deterministic strategies are fundamental to the de-
velopment of new techniques for symbolic reachability analysis of synchronous
languages [13]. Even in the case of deterministic languages, such as PLEXIL,
non-determinism is introduced by the inherent nature of symbolic variables.

The second major contribution with respect to [16] is a computer infrastruc-
ture that implements, on-the-fly, a serialization procedure for a synchronous
language provided by the user. This infrastructure is written in Maude [4],
a high-performance rewriting logic engine. The infrastructure provides syn-
tactic constructs for defining synchronous relations and their, possibly non-
deterministic, reduction strategies. Using Maude’s reflective capabilities, these
constructs are translated into asynchronous rewriting systems that soundly and
completely simulate the synchronous relations provided as inputs.

These two contributions allow for simpler and more succinct language speci-
fications, and more general synchronous set relations. Also, since programming
languages tend to evolve constantly, this infrastructure can help language de-
signers to focus exclusively on the synchronous semantic design without shifting
their attention to details in the serialization procedure implementation.

The rest of this paper is organized as follows. Section 2 presents, in an
abstract setting, definitions that are relevant to synchronous set relations. These
definitions properly extend those given in [16]. Formally, a synchronous set
relation is defined as the synchronous closure of an atomic relation with a given
strategy. Two sets are synchronously related for a particular strategy if the first
set can be transformed into the second set by parallel atomic transformations
according to the strategy. The strategy selects sets of redexes that can be
synchronously transformed.

Section 3 describes Maude’s rewriting logic, which provides the formal frame-
work for the development presented in this paper. Maude is a reflective language
and rewriting logic system that supports both equational and rewrite theories.
Maude implements set rewriting, i.e., rewriting modulo axioms such as asso-
ciativity, commutativity, and identity. These capabilities are well-suited for
set-based and multiset-based concurrent systems.

Section 4 describes the proposed infrastructure, which comprises generic
sorts and terms, algebraic properties of generic datatypes, and functions that
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support the on-the-fly implementation of a serialization procedure. The alge-
braic datatypes in this specification can be instantiated with the specific con-
structs of a set-based synchronous language provided by the user. These con-
structs are translated into labeled conditional rewriting rules that, under some
conditions, becomes a formal interpreter for the synchronous semantic relation
of the language.

Section 5 describes how the proposed infrastructure can be used for defin-
ing the executable semantics of a simple synchronous language with arithmetic
expressions. Code snippets of the Maude specification are used to illustrate, in
a concrete way, how the infrastructure is used.

As a more involved example, Section 6 presents a rewriting logic semantics
of PLEXIL implemented on top of the infrastructure developed in Maude. This
semantics comprises a significant subset of the language that includes Boolean
and arithmetic expressions, and all language specific predicates. As a direct
advantage of using the infrastructure, all commands in Maude for rewrite speci-
fications such as its rewrite and search commands, and formal verification tools
such as Maude’s LTL Model Checker, are available for analyzing properties of
programs in PLEXIL.

The infrastructure in Maude and the examples presented in this paper are
available from http://shemesh.larc.nasa.gov/people/cam/PLEXIL.

2. Abstract Synchronous Set Relations

This section introduces the concepts of abstract set relations used in this
paper.

Let U be a set whose elements are denoted A,B, . . . and let → be a binary
relation on U . An element A ∈ U is called a →-redex if there exists B ∈
U such that the pair 〈A ;B〉 ∈ →. The expressions A → B and A 6→ B
denote, respectively, 〈A ;B〉 ∈ → and 〈A ;B〉 /∈ →. The identity relation and
reflexive-transitive closure of → are defined as usual and denoted →0 and →∗,
respectively.

Henceforth, it is assumed that U is the family of all nonempty finite sets
over an abstract and possibly infinite set T , i.e., U ⊆ ℘(T ), ∅ /∈ U , and if A ∈ U
then card(A) ∈ N (therefore, → is a binary relation on finite sets of T ). The
elements of U are called terms in this section. The elements of T will be denoted
by lowercase letters a, b, . . . . When it is clear from the context, curly brackets
are omitted from set notation, e.g., a, b → b denotes {a, b} → {b}. Because of
this abuse of notation, the symbol ‘,’ is overloaded to denote set union, e.g., if
A denotes the set {a, b}, B denotes the set {c, d}, and D denotes the set {d, e},
notation A,B → B,D denotes {a, b, c, d} → {c, d, e}.

The parallel relation →‖ of → is the relation defined as the parallel closure
of→, i.e., the set of pairs 〈A ;B〉 in U ×U such that A→‖ B if and only if there
exist A1, . . . , An, (nonempty) pairwise disjoint subsets of A, and sets B1, . . . , Bn

such that Ai → Bi and B = (A \
⋃

1≤i≤nAi) ∪
⋃

1≤i≤nBi.
This paper focuses on synchronous set relations. The synchronous relation

of an abstract set relation → is defined as a subset of the parallel closure of
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→, where a given strategy selects elements from →. Formally, a →-strategy is
a function s that maps an element A ∈ U into a set s(A) ⊆ ℘(→) such that if
{〈A1 ;B1〉, . . . , 〈An ;Bn〉} ∈ s(A), then Ai ⊆ A and Ai → Bi, for 1 ≤ i ≤ n, and
A1, . . . , An are pairwise disjoint.

Definition 1 (Synchronous Relation). Let s be a→-strategy. The relation
→s denotes the set of pairs 〈A ;B〉 in U × U such that A →s B if and only if
B = (A \

⋃
1≤i≤nAi) ∪

⋃
1≤i≤nBi, where {〈A1 ;B1〉, . . . , 〈An ;Bn〉} ∈ s(A).

Example 1. Let T be the set of distinct elements a, b, c, d, e, and the relation
→ = {r1, r2, r3}, where r1 = 〈a, b ; b, d〉, r2 = 〈c ; d〉, and r3 = 〈a, c ; e〉. Let s1,
s2, and s3 be →-strategies defined for A = {a, b, c, d} as follows.

s1(A) = { {r2}, {r3} }, s2(A) = { {r1, r2} }, s3(A) = { {r1, r2}, {r3} }.

It holds that

a, b, c, d→s1 a, b, d, a, b, c, d→s1 b, d, e, a, b, c, d→s2 b, d,

a, b, c, d→s3 b, d, a, b, c, d→s3 b, d, e.

A simple mechanism for defining strategies is through priorities. A priority ≺
for a relation → is a U-indexed set ≺ = {≺A}A∈U , where each ≺A is a strict
partial order on → ∩ (℘(A)× U). Priorities can be used to decide between
overlapping redexes.

Definition 2 (Saturation). A set {〈A1;B1〉, . . . , 〈An;Bn〉}⊆ → is ≺-saturated
for A ∈ U (or ≺A-saturated), with ≺ a priority for →, if and only if

1. the sets A1, . . . , An are nonempty pairwise disjoint subsets of A,

2. each 〈Ai ;Bi〉 is such that for any A′ → B′ with A′ ⊆ A and A′ ∩Ai 6= ∅,
〈Ai ;Bi〉 6≺A 〈A′ ;B′〉, and

3. if there is A′ → B′ with 〈A′ ;B′〉 /∈ {〈A1 ;B1〉, . . . , 〈An ;Bn〉} and A′ ⊆ A,
then either

(i) there is 〈Aj ;Bj〉, for some 1 ≤ j ≤ n, such that Aj ∩A′ 6= ∅ or

(ii) there is A′′→B′′ with A′′⊆A, A′′∩A′ 6=∅, and 〈A′ ;B′〉≺A〈A′′ ;B′′〉.

A ≺A-saturated set is a complete collection of non-overlapping redexes in a
term A ∈ U that are maximal with respect to ≺. More precisely, in Defini-
tion 2, the condition (1) states that a ≺-saturated set does not contain over-
lapping redexes, condition (2) states that a ≺-saturated set can only contain
pairs 〈Ai ;Bi〉 that are ≺-maximal, and condition (3) states that any possible
extension of a saturated set with a pair 〈A′ ;B′〉 ∈ → would violate the first or
the second conditions. Note that the ≺-maximality tests in conditions (2) and
(3) of Definition 2 are given with respect to all pairs 〈A′ ;B′〉 in ≺A, and hence
≺A-saturation exclusively depends on the ordering of the finitely many subsets
of →∩ (℘(A)× U).
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Example 2. Recall the relation → = {r1, r2, r3} and the set A = {a, b, c, d}
from Example 1. Let ≺1

A be such that r1 ≺1
A r3. It holds that the sets {r2} and

{r3} are ≺1
A-saturated. The set {r1, r2} is not ≺1

A-saturated because r1 falsifies
condition (2) in Definition 2 with witness r3. Let ≺2

A be such that r3 ≺2
A r1. In

this case, the only ≺2
A-saturated set is {r1, r2}. The set {r3} is not ≺2

A-saturated
because r3 falsifies condition (2) in Definition 2 with witness r1. For ≺3

A = ∅,
the sets {r1, r2} and {r3} are the only ≺3

A-saturated sets.

A maximal strategy defines the most general synchronous behavior of a
relation, which is given by all saturated sets.

Definition 3 (Maximal Strategies). Let≺ be a priority for→. A→-strategy
s is ≺-maximal for A∈U (or ≺A-maximal) if and only if s(A) is the collection
of all ≺A-saturated sets. A →-strategy is ≺-maximal if and only if it is ≺A-
maximal for all A ∈ U .

Example 3. From examples 1 and 2, →-strategies s1, s2, and s3 are, respec-
tively, ≺1

A-maximal, ≺2
A-maximal, and ≺3

A-maximal.

Algorithm 1 witnesses the existence of maximal strategies, which are unique
for a given relation → and a priority ≺ (for →).

Theorem 1. Let ≺ be a priority for →. Then a ≺-maximal →-strategy exists.
Therefore, from Definition 3, the ≺-maximal →-strategy is unique.

Proof. It is proved that the existence of a ≺-maximal →-strategy is witnessed
by Algorithm 1, for any A ∈ U and priority ≺ for →. First, the following are
important and easy to prove remarks about Algorithm 1:

• all three loops (lines 3, 6, and 12) repeat finitely many times and all quan-
tified conditions (lines 7 and 14) require finitely many comparisons because
A ∈ U has finitely many elements; also the complexity of γ decreases with
each iteration of the third loop, i.e., Algorithm 1 terminates;

• α =→∩ (℘(A)× U) is finite and can be computed effectively,

• β = α\{〈A′ ;B′〉 ∈ α | (∃〈A′′ ;B′′〉∈α)A′∩A′′ 6=∅ ∧ 〈A′ ;B′〉≺A〈A′′ ;B′′〉},
i.e., β is the subset of α in which all conflicting pairs in α that are not
maximal elements in ≺A have been omitted;

• σ ⊆ ℘(β) is the collection of largest non-conflicting subsets of β; and

• if C ∈ σ, then for any nonempty C ′ ⊆ (β \ C), C ∪ C ′ /∈ σ.

Let D = {〈A1 ;B1〉, . . . , 〈An ;Bn〉}. It is enough to prove, for A ∈ U and priority
≺ for →, that D is ≺A-saturated if and only if D ∈ σ.

(=⇒) If D is ≺A-saturated, then D ⊆ α follows by definition. If D 6⊆ β, then
there is 〈Ai ;Bi〉∈D satisfying 〈Ai ;Bi〉≺A〈A′ ;B′〉 for some 〈A′ ;B′〉 ∈ α
with A′ ∩Ai 6= ∅. But then, for D, 〈Ai ;Bi〉 violates condition (2) in
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Definition 2, a contradiction. Hence, D ⊆ β. If D /∈ σ, since D ⊆ β
and the A1, . . . , An are pairwise disjoint by assumption, either there is a
nonempty set D′ ⊆ β\D such that D ∪D′ ∈ σ or there is a nonempty set
D′′ ( D such that D′′ ∈ σ. If D ∪D′ ∈ σ and since D′ is nonempty, any
pair 〈A′ ;B′〉 ∈ D′ violates condition (3.ii) in Definition 2, contradicting
the ≺A-maximality of D. If D′′ ∈ σ, then for any pair 〈A′′ ;B′′〉 ∈ D\D′′
the set C = D′′ ∪ {〈A′′ ;B′′〉} falsifies the test in line 14 of Algorithm 1
and hence C ∈ σ. Since D′′ ∈ σ and D′′ ( C ∈ σ, this contradicts the
last remark aforementioned. Therefore, as desired, D ∈ σ.

(⇐=) If D ∈ σ ⊆ ℘(α), then A1, . . . , An are pairwise disjoint →-redexes, i.e.,
subsets, of A. Thus, condition (1) in Definition 2 is satisfied. For condi-
tion (2), since D ∈ σ, it follows that D ⊆ β. Hence, any 〈Ai ;Bi〉 ∈ D
satisfies condition (2) in Definition 2. For condition (3), assume that there
is 〈A′ ;B′〉 ∈ α with 〈A′ ;B′〉 /∈ D. Then, either 〈A′ ;B′〉 ∈ (β \ D) or
〈A′ ;B′〉 ∈ (α\β). If 〈A′ ;B′〉 ∈ (β \D), then D∪{〈A′ ;B′〉} /∈ σ, as previ-
ously stated. However, 〈A′ ;B′〉 ∈ β, so it must be the case that A′∩Ai 6= ∅
for some 1 ≤ i ≤ n. If 〈A ;B′〉 ∈ (α \ β), then 〈A′ ;B′〉 ≺A 〈A′′ ;B′′〉 for
some 〈A′′ ;B′′〉 ∈ α. In either case, D satisfies condition (3) in Definition 2.
Thus, D is ≺A-saturated.

The definitions of strategy and maximal strategy used in this paper are more
general than those in [16,

∮
2]. In that paper, the only possible nondeterminism

in→s arises from→. In the formalization presented in this paper, as illustrated
by strategies s1 and s3, the synchronous relation →s can be nondeterministic
even when the relation → is deterministic. The practical implication of this
generalization is twofold. First, it makes simpler the task of specifying a syn-
chronous system because there are fewer assumptions to check on its atomic
relation. In some cases, proving that the atomic relation is deterministic can
be a daunting task. Second, more general synchronous systems can be for-
mally modeled, executed, and analyzed by allowing a non-deterministic atomic
relation. For example, the extension from a deterministic atomic relation to
a non-deterministic one allows for the study of variants of languages such as
PLEXIL, where the changes to the semantics may lead to non-determinism and
race conditions. In these cases, any analysis without the extension to a non-
deterministic atomic relation could be unsound or incomplete, or simply bogus.

3. Overview of Rewriting Logic

3.1. Order-Sorted Rewrite Theories

An order-sorted signature [2] is a triple Σ = (S,≤, F ), where (S,≤) is a finite
poset of sorts and F is a finite set of function symbols. Set X = {Xs}s∈S is
an S-sorted family of disjoint sets of variables with each Xs countably infinite.
The set of terms of sort s is denoted by TΣ(X)s and the set of ground terms of
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Input : A ∈ U and priority ≺ for →.
Output: s(A), with s the ≺A-maximal →-strategy.

1 begin
2 α, β, γ, σ ← ∅, ∅, ∅, ∅;
3 for Ai →-redex, Ai ⊆ A, and Bi such that Ai → Bi do
4 add 〈Ai ;Bi〉 to α;
5 end
6 for 〈Ai ;Bi〉 ∈ α do
7 if (∀〈A′ ;B′〉 ∈ α) (Ai ∩A′) 6= ∅ =⇒ 〈Ai ;Bi〉 6≺ 〈A′ ;B′〉 then
8 add 〈Ai ;Bi〉 to β;
9 end

10 end
11 γ ← {β};
12 while γ 6= ∅ do
13 remove any element C from γ;
14 if (∃〈Ai ;Bi〉, 〈Aj ;Bj〉 ∈ C) with i 6= j and Ai ∩Aj 6= ∅
15 then add C \ {〈Ai ;Bi〉} and C \ {〈Aj ;Bj〉} to γ;
16 else add C to σ;

17 end
18 return σ;

19 end

Algorithm 1: The ≺-maximal →-strategy.
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sort s is denoted by TΣ,s. It is assumed that for each sort s, TΣ,s is nonempty;
this assumption simplifies the proof system to follow. Algebras TΣ(X) and TΣ

denote the respective term algebras. The set of variables of a term t is written
vars(t) and is extended to sets of terms in the natural way. A term t is called
ground if vars(t) = ∅. A substitution θ is a sorted map from a finite subset
dom(θ) ⊆ X to ran(θ) ⊆ TΣ(X) and extends homomorphically in the natural
way. Substitution θ is called ground if ran(θ) is ground. Expression tθ denotes
the application of θ to term t.

A Σ-equation is a sentence t = u if cond, where t = u is a Σ-equality
with t, u ∈ TΣ(X)s, for some sort s ∈ S, and the condition cond is a finite
conjunction of Σ-equalities. An equational theory is a pair (Σ, E) with order-
sorted signature Σ and finite set of Σ-equations E. For a Σ-equation ϕ, the
judgement (Σ, E) ` ϕ states that ϕ can be derived from (Σ, E) by the deduction
rules in [11]. In this case, it holds that ϕ is valid in all models of (Σ, E). An
equational theory (Σ, E) induces the congruence relation =E on TΣ(X) defined
for any t, u ∈ TΣ(X) by t =E u if and only if (Σ, E) ` t = u. The equivalence
class of a term t ∈ TΣ(X) induced by the equivalence relation =E is denoted by
[t]E . The Σ-algebras TΣ/E(X) and TΣ/E denote the quotient algebras induced
by =E over the algebras TΣ(X) and TΣ. The algebra TΣ/E is called the initial
algebra of (Σ, E).

A Σ-rule is a sentence [ : t ⇒ u if cond, where [ is its name, t ⇒ u is
a Σ-sequent with t, u ∈ TΣ(X)s, for some sort s ∈ S, and the condition cond
is a finite conjunction of Σ-equalities. Note that sequents are excluded from
the condition of a sequent. A rewrite theory is a tuple R = (Σ, E,R) with
equational theory ER = (Σ, E) and a finite set of Σ-rules R. For R = (Σ, E,R)
and [ a Σ-rule, the judgement R ` [ states that [ can be derived from R by
the deduction rules in [2]. In this case, it holds that [ is valid in all models
of R. For [ a Σ-equation, it can be proved that R ` [ if and only if ER ` [.
A rewrite theory R = (Σ, E,R) induces the rewrite relation ⇒R on TΣ/E(X)
defined for every t, u ∈ TΣ(X) by [t]E ⇒R [u]E if and only if there is a one-step
rewrite proof R ` t⇒ u. Relations⇒R and⇒∗R respectively denote a one-step
rewrite and an arbitrary length (but finite) rewrite in R from t to u. Model
TR = (TΣ/E ,⇒∗R) is the initial reachability model of R = (Σ, E,R) [2].

3.2. Reflection in Rewriting Logic

A reflective logic is a logic in which important aspects of its metatheory can
be represented at the object level in a consistent way, so that the object-level
representation correctly simulates the relevant metatheoretic aspects. Maude’s
language design and implementation make systematic use of the fact that order-
sorted rewriting logic is reflective [5].

Order-sorted rewriting logic being reflective precisely means that there is a
finitely represented order-sorted rewrite theory U that is universal in the sense
that any finitely represented order-sorted rewrite theory R (including U) can
be represented in U as a term R. Also, any terms t, u in R and any pair (R, t)
can be represented as terms t, u and (R, t) in U , respectively, in such a way that
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the following equivalence holds:

R ` t⇒ u ≡ U ` (R, t)⇒ (R, u).

3.3. Linear Temporal Logic Semantics of Rewrite Theories

In general, a Kripke structure can be associated with the initial reachability
model TR of a rewrite theory R = (Σ, E,R) by making explicit the intended
sort State of states in the signature Σ and the relevant set Φ of atomic predicates
on states. The set of atomic propositions Φ is defined by an equational theory
EΦ = (ΣΦ, E ∪ EΦ). Signature ΣΦ contains Σ and a sort B with constant
symbols ⊥ and > of sort B, predicate symbols φ : State → B for each φ ∈ Φ,
and optionally some auxiliary function symbols. Equations in EΦ define the
predicate symbols in ΣΦ and auxiliary function symbols, if any, including the
Boolean operations on the sort B. For φ ∈ Φ and a ground term t ∈ TΣ,State,
the semantics of φ in TR is defined by EΦ as follows: φ(t) holds in TR if and
only if EΦ ` φ(t) = >. This defines the Kripke structure

KΦ
R = (TΣ/E,State,⇒R,State, LΦ)

with transition relation ⇒R,State denoting the restriction of ⇒R to terms in
TΣ/E,State and with labeling function LΦ defined for any t ∈ TΣ,State by φ ∈
LΦ(t), written KΦ

R, t |= φ, if and only if φ(t) holds in TR. All formulas of the
Linear Temporal Logic (LTL) can be interpreted in KΦ

R in the standard way.

3.4. Executability Conditions

Because rewriting logic’s rules of deduction [2] are based on equational de-
duction, it may be undecidable to check membership in⇒R for a rewrite theory
R = (Σ, E,R). Furthermore, even if deduction with E is decidable, there may
be an infinite number of terms in E-equivalence classes; so, an infinite search
may be needed to find a term t′ ∈ [t]E that can be rewritten with ⇒R.

The following conditions on a rewrite theory R = (Σ, E,R) make rewriting
with equations E and with rules R modulo E computable, and are assumed
throughout this paper. First the set of equations E of R can be decomposed
into a disjoint union E′ ∪ A, with A a collection of axioms (such as associativ-
ity, and/or commutativity, and/or identity) for which there exists a matching
algorithm modulo A producing a finite number of A-matching substitutions, or
failing otherwise. The second condition is that the equations E′ can be oriented
into a set of ground sort-decreasing, ground confluent, and ground terminating

rules
−→
E′ modulo A. The expression [canΣ,E′/A(t)]A ∈ TΣ/A,s will denote the

E′-canonical form of [t]A. The rules R in R are assumed to be ground coher-
ent relative to the equations E′ modulo A [20]. Intuitively, ground coherence
means that any rewriting with R modulo E ∪ A can be equivalently achieved
by adopting the strategy of first simplifying a term to canonical form with E
modulo A, and then applying a rule in R modulo A.
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4. Synchronous Set Relations in Rewriting Logic

This section presents the infrastructure (Σ, E,R) for specifying and execut-
ing in Maude a synchronous relation defined from a language L.

4.1. The Synchronous Language L
Recall that definitions in Section 2 are given for an abstract set T , an abstract

relation →, and an abstract priority relation ≺. The language L is given by the
user as an order-sorted rewrite theory (ΣL, EL, RL) that enables the definition
of concrete mathematical objects TΣL,Elem, →L, and ≺L that implement T , →,
≺, respectively. The rewrite theory (ΣL, EL, RL) extends the rewrite theory
(Σ, E,R), which provides an infrastructure with definitions of basic sorts and
data structures that are suitable for specifying set rewriting systems. This
rewrite theory exploits rewriting logic’s reflection capabilities available in Maude
to soundly and completely simulate the synchronous relation→s

L, where s is the
≺L-maximal strategy for →L.

The infrastructure in Maude contains several Maude files. The following is
a description of the files meaningful to the exposition in this section:

theory-closure.maude: general purpose functionality for meta-level operations
on modules.

base.maude: specifies the constructs supporting the user-definable data. It in-
cludes several modules defining the sorts and function symbols explained
in Section 4.1.1.

synchr.maude: specifies, in several modules, the realization of Algorithm 1,
which includes the functions explained in sections 4.1.2, 4.1.3, and 4.1.4.

smaude.maude: the infrastructure’s main file. It contains module SMAUDE
specifying the rewrite rule sync, explained in Section 4.2, whose main
purpose is to invoke the implementation of Algorithm 1, resulting in the
simulation of synchronous set rewriting in Maude.

4.1.1. The Set TΣL,Elem.

The set of ground terms TΣL,Elem of the rewrite theory (ΣL, EL, RL) imple-
ments the abstract set T of Section 2. The sort Elem represents elements in Σ
having the form

〈m | a1 :e1, . . . , an :en〉,

where m is an identifier of sort Eid and a1 :e1, . . . , an :en is a map of sort Map.
A map is a collection of attributes. An attribute is a pair a : e where a is an
attribute identifier of sort Aid and e is an expression of sort Expr. Attributes
are a flexible way of defining the internal state of an element. Sorts Aid and
Eid are declared as subsorts of Expr.

The set U of Section 2 corresponds to the set of ground terms TΣL,Ctx, where
the sort Ctx represents sets of elements of sort Elem. A context is an element
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of sort Ctx. The infrastructure (Σ, E,R) includes as part of its signature Σ the
definition of the constant

#CTX# : −→ Ctx,

which is internally maintained by the infrastructure. This constant is used at
runtime to reference, when extended by the language L, the context identifying
the current state of execution in the synchronous semantics of L. The name
of this constant was chosen deliberately to contain the number symbol ‘#’ as
delimiter in order to minimize the chances of naming clashes with user-defined
constants and variables in the signature ΣL.

The sort Val is defined in Σ as a subsort of Expr and represents built-in
values such as Boolean and numerical values. Function symbols

eval : Expr −→ Val,

eval : Ctx× Expr −→ Val

are part of the signature Σ. The unary version of function eval is introduced as a
short-hand for evaluating an expression in the current state of execution, which
at runtime, is identified by the context #CTX#, as explained above. This is
specified in the infrastructure by the following equation in E, for any expression
e of sort Expr:

eval(e) = eval(#CTX#, e).

For the binary version of eval no defining equations are given in E since its
definition comes later, when defined by the user in EL.

The signature Σ also defines the constant

MODULE-NAME : −→ Qid

for identifying the module name that implements the language L. The value of
this constant is maintained by the user when defining the language L. It is used
by the infrastructure to obtain a representation of L in order to compute the
synchronous relation of L at the meta-level. The sort Qid is used in Maude for
representing quoted identifiers and it is part of the standard prelude.

The user is free to extend the signature Σ in ΣL with any syntax and sub-
sorts for element identifiers, attribute identifiers, and expressions. However, it is
assumed that attribute identifiers within a map and element identifiers within a
context are unique. It is also assumed that the theory (ΣL, EL) includes a com-
plete equational interpretation of eval’s binary version for the set of expressions
in ΣL.

4.1.2. The Relation →L.

The synchronous relation in Definition 1 is given for an abstract atomic re-
lation →. In a concrete language, such as L, this relation represents atomic
computational steps that are synchronously executed. For that reason, the con-
crete relation →L is called the atomic relation. As shown in [16], the atomic
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relation is usually parametric with respect to a context that, in this infrastruc-
ture, provides global information to the function eval. Henceforth, the atomic

relation with respect to a context Γ of sort Ctx will be denoted
Γ→L.

The atomic relation →L is specified in RL through atomic rules.

Definition 4 (Atomic Rules). Let ΣL be an order-sorted signature extend-
ing Σ. An atomic ΣL-rule is a ΣL-rule [ : l⇒ r if cond such that:

• rule name [ has the form c–n, where c, the component of [, is an identifier,
and n, the rank of [, is a natural number;

• l does not contain attribute identifier variables, i.e., vars(l) ∩ XAid = ∅;
and

• attribute names appearing in an element term in r are named for that
same element term in l, i.e., if 〈i | m′〉 ∈ r and (a :e′) ∈ m′, then there is
〈i | m〉 ∈ l such that (a :e) ∈ m for some e ∈ TΣL(X)Expr.

An atomic ΣL-rule specifies transitions of contexts (possibly) constrained by a
condition that may involve expressions in the syntax of L. The component and
rank of ΣL-rules are used to define the priority relation ≺L. The restriction
on attribute identifier names and variables is to prevent the user from defining
an atomic relation →L for which computing a →L-reduction could be highly
inefficient or even incorrect.

Definition 5 (Atomic Relation →L). Let L = (ΣL, EL, RL) be a rewrite
theory with (ΣL, EL) extending (Σ, E) and RL a collection of atomic ΣL-rules
with different names. For a rule [ : l ⇒ r if cond ∈ RL, the (parametric)
relation →Γ

[ , with parameter Γ ∈ TΣL,Ctx, denotes the set of pairs 〈A ;B〉 in
TΣL,Ctx × TΣL,Ctx such that there is a ground substitution θ : TΣL(X) −→
TΣL satisfying condθ, (A,A′) = lθ, and B = rθ in L, where any expression is
evaluated in Γ and any element in A is an element in B (but not necessarily
with the same attribute values). The atomic relation →L is the indexed set
{→Γ

[ }Γ∈TΣL,Ctx,[∈RL .

In Definition 5, A, A′, B, and Γ are ground terms of sort Ctx. Furthermore, the
term B is a variant of A in which some expressions and attributes have been
modified. In particular, A and B have the same number of elements with the
same element and attribute identifiers. This means that the atomic relation
does not delete or create elements or attributes in A. This restriction simplifies
the technical development of (Σ, E,R). On the other hand, the term A′ corre-
sponds to a context, possibly empty, that may contain information needed for
the atomic transition but that remains unchanged during the transition. That
is, A and A′ can be seen, respectively, as the ‘write once’ and ‘read many times’
terms of an atomic transition. In any case, creation and deletion of elements
and attributes can be encoded by using additional attributes. Also observe that,
due to the syntactical restrictions of atomic rules in Definition 4, equational sen-
tences condθ, (A,A′)= lθ, and B=rθ can be checked in (ΣL, EL) because they
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are equational expressions that, although may depend on context Γ, do not de-
pend on RL. In this case, since A, A′, B, and Γ are ground, and θ is a ground
substitution, equational deduction with (ΣL, EL) in Definition 5 coincides with
validity in the initial model TΣL/EL .

It is noted that the atomic relation→L and the rewrite relation⇒L induced
by the rewrite theory L, in general, do not coincide for ground context terms.
In particular, →L is defined as the top-most application of the atomic rules,
while ⇒L is defined as the congruence closure of those rules.

4.1.3. The Priority ≺L.

For a given context Γ, the elements in
Γ→L can be regarded as tuples of the

form (A,B, c,m)Γ as a shorthand for A
Γ→c–m B, with c–m ∈ RL. The set

≺L= {≺L(Γ)}Γ∈TΣL,Ctx is defined automatically by the infrastructure as

(A′, B′, c′,m′)Γ ≺L(Γ) (A,B, c,m)Γ ≡ A ⊆ Γ∧A′ ⊆ Γ∧c = c′∧m < m′,

where < is the usual order on natural numbers.

Theorem 2. The indexed set ≺L is a priority for →L.

Proof. It is enough to prove that ≺L(Γ) is a strict partial order, for any Γ ∈
TΣL,Ctx. Irreflexivity of ≺L(Γ) follows from the irreflexivity of <. Transitivity
of ≺L(Γ) follows from the fact that if (A′′, B′′, c′′,m′′)Γ ≺L(Γ) (A′, B′, c′,m′)Γ

and (A′, B′, c′,m′)Γ ≺L(Γ) (A,B, c,m)Γ, then A′′ ⊆ Γ, A ⊆ Γ, c′′ = c′ = c, and
m < m′ < m′′. Therefore, (A′′, B′′, c′′,m′′)Γ ≺L(Γ) (A,B, c,m)Γ.

The priority ≺L is an indexed collection of strict partial orders. In particular,
for each Γ ∈ TΣL,Ctx, priority ≺L(Γ) compares two elements of →L if they are
computed with the same context and they originate from atomic ΣL-rules having
the same component. It assigns a higher priority to elements with smaller rank.

4.1.4. Implementing Algorithm 1

The rewrite theory (Σ, E,R) includes the function

max-strat : Module× Ctx −→ TransitionSet

that computes the ≺L-maximal
Γ→L-strategy, where Γ ∈ TΣL,Ctx is the param-

eter of the relation →L. That function implements Algorithm 1 (see Section 2)
in Maude using the meta-level capabilities of the system. It takes as input the
meta-representation L of language L and ground context Γ, and returns the
collection s(Γ), where s is the ≺L-maximal →L-strategy. The sort Module is
used in Maude for terms denoting meta-representations of modules and it is
part of Maude’s standard prelude. The sort Transition denotes sets of pairs in
TΣL(X)Ctx and sort TransitionSet denotes collections of transitions with multi-
set union operator ‘,’.

The function max-strat(L,Γ) reduces the problem of computing the ≺L-
maximal →Γ

L-strategy into four smaller problems that are handled sequentially
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by different functions. Namely, it first updates the current state of execution of
L to Γ, obtaining a module L′ meta-represented by L′. Second, it computes the
one-step atomic relation →Γ

L on Γ by using L′. Third, it uses the strategy ≺L
on the resulting collection from the second step to keep only maximal redexes.
Fourth, it computes the collection of all saturated sets from the output of the
third step.

Updating the current state of execution of L. As explained in Section 4.1.1, con-
stant #CTX# is used by the infrastructure to reference the context identifying
the current state of execution. The function

set-state : Module× Ctx −→ Module

on input L of sort Module and Γ of sort Ctx adds the equation

#CTX# = Γ

producing a module L′. This has the effect that the evaluation of any expression
in L′ with eval’s unary version will use Γ as the default context. In fact, the
task of adding the equation above to L is achieved by using Maude’s meta-level
and the meta-representation of such equation.

Computing the atomic relation →L. The function

compute-atomic : Module× Ctx −→ LabeledTransition

on input L′ and Γ computes the atomic relation→Γ
L on the context Γ. This func-

tion implements the part of Algorithm 1 in lines 3–5. The sort LabeledTransition
represents collections of labeled transitions, i.e., collections of tuples of the form
(A,B, c,m)Γ. A labeled transition (A,B, c,m)Γ is obtained from a rule

c-m : l⇒ r if cond ∈ RL

that satisfies the conditions in Definition 5. The task of computing the ground
substitutions θ in Definition 5 is achieved by using Maude’s metaXmatch meta-
level function for each rule in RL. Also, each tuple (A,B, c,m)Γ computed by
the function compute-atomic is such that if there is an element elem′ ∈ A with
identifier id, then there is an element elem′ ∈ B with identifier id, and viceversa.

Applying the strategy ≺L. The function

apply-strategy : LabeledTransition −→ Transition

on input Γ′ of sort LabeledTransition, computed from compute-atomic(L′,Γ),
uses the strategy ≺L to filter out those labeled transitions that cannot be part
of any ≺L-saturated set for Γ (see Definition 2), and returns a term of sort
Transition consisting of those pairs 〈A ;B〉 such that (A,B, c,m) has not been
filtered out. This function implements the part of Algorithm 1 in lines 6–10 and
does not make use of Maude’s meta-level facilities.
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Computing all ≺L-saturated sets. The function

compute-saturated : Transition −→ TransitionSet

implements recursively the part of Algorithm 1 in lines 12–19 and does not make
use of Maude’s meta-level facilities.

Henceforth, the strategy s will denote the ≺L-maximal→L-strategy as com-
puted by max-strat.

4.2. Simulation of →s
L

The set of Σ-rules R of the order-sorted rewrite theory (Σ, E,R) includes
only one rule: for l, r ∈ XCtx, T ∈ XTransition, and S ∈ XTransitionSet

sync : {l} ⇒ {r} if T, S := max-strat(L, l)
∧ r := update(l, T ).

This rule, along with the rules RL provided by the user, implements the serial-
ization algorithm defined in Algorithm 1. Note in the condition of sync that the
equality symbol ‘=’ has been replaced by the operator ‘:=’ in both equalities,
which is idiom in Maude for a matching equality. For instance, expression

T, S := max-strat(L, l)

means that, when evaluating the condition, the right-hand side term

max-strat(L, l)

is first evaluated to canonical form and then the left-hand side pattern

T, S

is used to match that canonical form (modulo associativity, commutativity, and
identity, which are the axioms for sort TransitionSet).

The function

update : Ctx× Transition −→ Ctx

on input A, a ground context of sort Ctx, and a ground transition term

C = {〈A1 ;B1〉, . . . , 〈An ;Bn〉},

computes the ground context

B = (A \
⋃

1≤i≤n

Ai) ∪
⋃

1≤i≤n

Bi.

It is noted that the rule sync acts on contexts that are syntactically wrapped
by curly brackets, that is, terms of the form {A} with A a ground context term.
Those terms are of sort Sys. The curly brackets operator prevents its context
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A to be directly rewritten by the user defined atomic rules in RL. The actual
application of those rules is done by the function update.

Rule sync is nondeterministic because a matching ground substitution for l
and satisfying its condition depends on the choice of T , i.e., on all possible
transitions computed by max-strat. However, there will be exactly one rewrite
with sync for each transition.

Theorem 3. Let L = (ΣL, EL, RL) be an extension of (Σ, E,R). For A,B ∈
TΣL,Ctx, the following equivalence holds:

L ` {A} ⇒ {B} ≡ A→s
L B,

where s denotes the ≺L-maximal →L-strategy as computed by max-strat.

Proof. The key observation is that because max-strat computes the ≺L-maximal
→L-strategy s, the following equivalence holds:

C ∈ s(A) ≡ (∃C ′ ∈ TΣL,TransitionSet)C,C
′ =EL max-strat(L, A).

(=⇒) Since {A} can be rewritten only by rule sync ∈ R, there is a ground
substitution θ : X −→ TΣL satisfying A=EL lθ, B =EL rθ, Tθ, Sθ =EL

max-strat(L, lθ), and rθ =EL update(lθ, Tθ). By the observation above,
Tθ ∈ s(A). Then, from the definition of update, it follows that A→s

L B.

(⇐=) If A →s
L B, there is C = {〈A1 ;B1〉, . . . , 〈An ;Bn〉} ∈ s(A) such that

B = (A \
⋃

1≤i≤nAi) ∪
⋃

1≤i≤nBi. By the observation above and the
definition of update, there is C ′ ∈ TΣL,TransitionSet such that C,C ′ =EL

max-strat(L, A) and B =EL update(A,C). Then substitution θ satisfying
A =EL lθ witnesses L ` {A} ⇒ {B}.

One key advantage of this approach is that, while it offers support for the
execution of a synchronous relation→s

L, it does that by simulating→s
L using the

standard asynchronous semantics of Maude. Therefore, all commands available
in Maude for executing and verifying rewrite relations are directly available for
→s
L. Sections 5 and 6 illustrate some of these features for, respectively, a sim-

ple synchronous language and a non-toy synchronous plan execution language
developed by NASA.

5. Executable Semantics of a Simple Synchronous Language

Module SMAUDE implements in Maude the rewrite theory (Σ, E,R) pre-
sented in Section 4. This section illustrates the use of SMAUDE by giving the
small-step semantics of a simple synchronous language with arithmetic expres-
sions. Code snippets of the Maude language are used to illustrate explicitly how
the infrastructure in SMAUDE is extended. Therefore, some familiarity with
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Maude’s syntax is assumed (see [4] for a reference to the Maude language and
system).

Consider a language S that consists of two kinds of elements: memory ele-
ments Mem(m, v) and assignment elements m:=e, where m denotes a memory
name, v denotes a numerical value, and e denotes an arithmetic expression.
Arithmetic expressions are recursively formed using memory names, numerical
values, and expressions of the form e1 + e2, where e1 and e2 are arithmetic ex-
pressions. In this case, set T consists of all elements having the form Mem(m, v)
or m:=v.

The small-step semantics of S requires the definition of an evaluation func-
tion eval that takes as inputs a context Γ, which is a set of elements T , and an
arithmetic expression e. It is inductively defined on expressions:

eval(Γ, e) =


v if e is the numerical value v,

v if e is the memory name m and Mem(m, v) ∈ Γ,

v1 + v2 if e has the form e1 + e2, vi = eval(Γ, ei) for i ∈ {1, 2}.

The (parametric) atomic relation →S of the language S is defined for a
context Γ by A →Γ

S B if and only if A ⊆ Γ, A = {Mem(m, v),m:=e}, B =
{Mem(m,u),m:=e}, and u = eval(A, e), for some memory name m, values v
and u, and expression e. The semantic relation of the language is the relation
→Γ,s
S (or →s

S), where s is the ≺-maximal →Γ-strategy, Γ is a ground context,
and ≺S is the empty priority.

Example 4. If Γ = {Mem(x, 3),Mem(y, 4), x:=y, y:=x}, then:

Mem(x, 3),Mem(y, 4), x:=y, y:=x →Γ,s
S Mem(x, 4),Mem(y, 3), x:=y, y:=x.

Language S is specified by the Maude system module SIMPLE, which in-
cludes system module SMAUDE, and has the following syntax:

mod SIMPLE is

including SMAUDE .

eq MODULE-NAME = ’SIMPLE .

...

endm

Note that constant MODULE-NAME is identified with the quoted identifier
representing the name of module SIMPLE, as required by the infrastructure
(see Section 4.1.1).

Element identifiers include the following constructors with sort Eid:

op a : Nat -> Eid [ctor] .

ops x y : -> Eid [ctor] .

Memory elements use constructors x and y for element identifiers, and as-
signment elements use constructors a( ) for element identifiers.

Attribute identifiers include the following constructors with sort Aid:
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ops mem body to : -> Aid [ctor] .

Memory elements have attribute mem as their only attribute, while assign-
ment elements have attributes body and to as their only attributes. In the syntax
of SIMPLE, memory element Mem(x, v) and an assignment element x:=e can
be represented, respectively, by elements

< x | mem : v > < a(1) | body : e, to : x > .

Built-in natural numbers are values of the language and addition corresponds
to the built-in one in Maude. These are specified in SIMPLE with the following
subsort and operation declarations:

subsort Nat < Val .

op _+_ : Expr Expr -> Expr [ditto] .

Expressions are evaluated equationally by following the definition of eval:

var C : Ctx . vars I J : Eid . vars E E’ : Expr .

var M : Map . var N : Nat .

eq eval(C,N) = N .

eq eval(( < I | mem : N , M > C), I ) = N .

eq eval(C,E + E’) = eval(C,E) + eval(C,E’) .

Atomic rule r–1 specifies the atomic relation of the language:

rl [r-1] :

< I | mem : N > < J | body : E, to : I >

=> < I | mem : eval(E) > .

The specification of atomic rules is slightly different to the usual specification
of rules in rewriting logic. First, in the lefthand side of an atomic rule, it is
sufficient to only mention the attributes involved in the atomic transition. In
this case, SMAUDE will complete each lefthand side term by automatically
adding a variable of sort Map, unique for each element, before any matching
is performed. Second, in the righthand side of an atomic rule, it is sufficient
to only mention the elements and the attributes that can change in the atomic
step. In this case, SMAUDE updates in the current state only the attributes
of the elements occurring in the righthand side of the rule, while keeping the
other ones intact. So, in atomic rule r–1, the only attribute that can change is
attribute mem of the memory element. Note also that in the righthand side of
r–1, a unary version of function eval, without mention of any particular context,
is used; SMAUDE will automatically extend it to its binary counterpart, for the
given context, when computing function max-strat.

The context Γ in Example 4, written in the syntax of SIMPLE, is

< x | mem : 3 > < y | mem : 4 >

< a(1) | body : y, to : x > < a(2) | body : x, to : y > .

Maude’s search command can be used to compute, for instance, the one-step
synchronous semantic relation of the language in Example 4 from context Γ:
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Maude> search { Γ } =>1 X:Sys .

search in SIMPLE : { Γ } =>1 X:Sys .

Solution 1 (state 1)

states: 2 rewrites: 514 in 53ms cpu (54ms real) (9655 rewrites/second)

X:Sys --> {< x | mem : 4 > < y | mem : 3 >

< a(1) | body : y, to : x > < a(2) | body : x, to : y > }
No more solutions.

6. A Rewriting Logic Semantics of PLEXIL

This section presents a rewriting logic semantics of the Plan Execution In-
terchange Language (PLEXIL) developed with the infrastructure in Maude in-
troduced in Section 4. The overview of PLEXIL semantics and the running
example of this section are borrowed from [16].

6.1. Overview of PLEXIL

A PLEXIL program, called a plan, is a tree of nodes representing a hierar-
chical decomposition of tasks. Interior nodes, called list nodes, provide control
structure and naming scope for memories, i.e., local variables. The primitive
actions of a plan are specified in the leaf nodes. Leaf nodes can be assignment
nodes, which assign values to memories, command nodes, which call external
commands, or empty nodes, which do nothing. PLEXIL plans interact with a
functional layer that provides the interface with the external environment. This
functional layer executes the external commands and communicates the status
and result of their execution to the plan through external variables.

Nodes have an execution status, which can be inactive, waiting, executing,
finishing, iterationended, or finished, and an execution outcome, which can be
none, success, or failure. They can declare memories, accessible to the node in
which they are declared and all its descendants. In contrast to memories, which
have a hierarchical scope, the execution status and the execution outcome of a
node are available to all nodes in the plan. Assignment nodes have also a priority
that is used to solve race conditions. The internal state of a node consists of
the current values of its execution status, execution outcome, and memories.

Each node is equipped with a set of gate conditions and check conditions
that govern the execution of a plan. The gate conditions are start condition,
which specifies when a node starts its execution, end condition, which specifies
when a node ends its execution, repeat condition, which specifies when a node
can repeat its execution, and skip condition, which specifies when the execution
of a node can be skipped. The check conditions signal abnormal execution
states of a node and they are pre-condition, post-condition, and invariant. The
language includes basic Boolean, arithmetic, and string expressions. It also
includes lookup expressions that read the value of external variables provided to
the plan by the functional layer. Expressions appear in conditions, assignments,
and arguments of commands.
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The execution in PLEXIL is driven by external events that trigger changes
in the gate conditions. All nodes affected by a change in a gate condition syn-
chronously respond to the event by modifying their internal status. These in-
ternal modifications may trigger more changes in gate conditions, which in turn
are synchronously processed until quiescence by all nodes involved. External
events are considered in the order in which they are received. An external event
and all its cascading effects are processed before the next event is considered.
This behavior is known as run-to-completion semantics.

Consider the PLEXIL plan in Figure 1. The plan consists of a root node
Exchange of type list, and leaf nodes SetX and SetY of type assignment. The
node Exchange declares two memories x and y. The values of these memories
are exchanged by the synchronous execution of the node assignments SetX and
SetY. The node Exchange also declares a start condition and an invariant con-
dition. The start condition states that the node waits for an external variable
T to be greater than 10 before starting its execution. The invariant condition
states that at any execution step the values of x and y add to 3.

Exchange {
  Integer x = 1;
  Integer y = 2;
  Start: Lookup(T) > 10; 
  Invariant: x + y == 3;
  NodeList: 
    SetX {
      Assignment: x := y;
    }
    SetY {
      Assignment: y := x;
    }
  }

(a) (b)

Exchange

yx SetX SetY

memories nodes

Figure 1: A PLEXIL plan.

6.2. Node Transitions

The atomic relation of PLEXIL defines the changes in the internal state
of nodes as consequences of changes in their gate conditions. It is defined by
42 individual transitions, indexed by type and execution status of nodes into
a dozen groups (see [19] for a version of node transition diagrams or [6] for a
version of transition rules).

For instance, Figure 2 depicts the three atomic transitions corresponding to
list nodes with status executing. The first transition, labeled with 1, updates the
status and outcome of the list node to failing and parent failure, respectively,
if the invariant condition of any of its ancestors does not hold. The second
transition updates the status and outcome of the list node with failing and
invariant failure, respectively, if its invariant condition does not hold. The
third transition updates the status of the list node with finishing if its end
condition does hold. If there are multiple condition changes that may happen
simultaneously for a particular node, the integer labels in the transition diagram
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are used to represent the precedence order of its atomic transitions. A condition
change with precedence order 1 gets priority over any other condition change.
A condition change with precedence order 2 is processed if there is no condition
change with priority 1 and so on. It is noted that the evaluation of conditions in
the transitions takes place with respect to the current state of nodes, memories,
and external variables of the given plan.

Figure 2: Atomic transitions for list nodes with executing status.

6.3. The Rewriting Logic Semantics L
The synchronous semantics of the PLEXIL language is specified by the order-

sorted rewrite theory L = (ΣL, EL ∪ AL, RL), that extends the rewrite theory
(Σ, E,R) providing the infrastructure presented in Section 4. This semantics
comprises Boolean and arithmetic values and expressions, evaluation of expres-
sions, list and assignment nodes, memories, and external variables, which rep-
resents a significant subset of the entire PLEXIL language.

6.3.1. The Set TΣL,Elem

A node, memory, or external variable is a ground term in TΣL,Elem of the
form

〈N | a1 :e1, . . . , an :en〉

with nonempty qualified name N of sort NeQualName ≤ Eid that uniquely
identifies the node, memory, or external variable, attribute identifiers a1, . . . , an,
and expressions e1, . . . , en.

Attribute identifiers include the following constructors with sort Aid:

type status outcome parent set sort val init-val values
pre post inv start end repeat skip
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Node elements have attributes type, status, outcome, parent, pre, post, inv, start,
end, repeat, and skip. Additionally, assignment node elements have attribute set
that takes as parameter a nonempty qualified name specifying the name of the
assignment’s target memory. Attributes pre, post, inv, start, end, repeat, and
skip are used to identify the gate and check conditions of a node element. Mem-
ory elements have attributes parent, sort, val, and init-val. External variable
elements have attributes sort, value, and values. Attributes type, status, and
outcome identify the type, i.e., list or assignment, status, and outcome of a
node element, respectively. Attribute parent identifies the qualified name of the
parent of a node or memory element. Attributes sort, val and init-val identify
the typing, i.e., Boolean or integer, current value, and initial value, respectively,
of a memory element. Attribute values identifies the values of an external vari-
able at future time steps.

Expressions are defined inductively from nominal constants, Boolean and
integer values, memory bindings, lookups on external variables, and Boolean
predicates. Nominal constants are used to identify a type, status, outcome,
etc., of a node and have sort Val. For instance, list, assg, mem, and ext are
nominal values identifying elements of type list, assignment, memory, and ex-
ternal variable, respectively. Boolean values have sort BVal and integer values
have sort IVal, both subsorts of the predefined sort Val. Boolean and integer
constant values use constructors

c : Bool→ BVal

c : Int→ IVal

where Bool and Int are Maude’s built-in Boolean and integer values. Sorts
BExpr and IExpr represent Boolean and integer expressions, respectively, and
are defined satisfying the following subsort relations:

BVal ≤ BExpr ≤ Expr and IVal ≤ IExpr ≤ Expr.

Memory bindings and lookups on external variables use constructors

bm, bl : NeQualName→ BExpr

im, il : NeQualName→ IExpr

Boolean predicates, with sort BExpr, include PLEXIL’s built-in predicates. For
instance, the Boolean predicate anc-inv-false(N) can be used to check if the
invariant condition of any ancestor of a node N does not hold. Boolean and
integer expressions can use most of the traditional connectives and relations
including, for instance, negation and conjunction, and addition and multiplica-
tion, respectively.

6.3.2. The Evaluation Function

Expressions are equationally evaluated using their inductive definition with
respect to a given context. For example, evaluation of integer values, memory
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bindings, external variable lookups, and addition is defined by the following
equations, for Γ∈XCtx, N ∈XEid, i ∈ XIVal, M ∈ XMap, and iE1, iE2 ∈ XIExpr:

eval(Γ, i) = i

eval(Γ, im(N)) = i if 〈N | type : mem, sort : int, val : i,M 〉 ∈ Γ

eval(Γ, il(N)) = i if 〈N | type : ext, sort : int, val : i,M 〉 ∈ Γ

eval(Γ, iE1 + iE2) = eval(Γ, iE1) + eval(Γ, iE2).

Function eval is similarly defined for all expressions considered in L.

6.3.3. The Synchronous Relation →s
L and the Priority ≺L

The atomic rules in RL include all transitions for list and assignment nodes.
For example, the following atomic rules in RL specify the atomic transitions for
list nodes with status executing depicted in Figure 2, for N ∈ XEid, o ∈ XExpr,
and bE ∈ XBExpr:

exlist-1 : 〈N | type : list, status : executing, outcome : o 〉
⇒ 〈N | status : failing, outcome : fail(parent)〉

if eval(anc-inv-false(N)) = c(true)

exlist-2 : 〈N | type : list, status : executing, outcome : o, inv : bE 〉
⇒ 〈N | status : failing, outcome : fail(inv)〉

if eval(bE) = c(false)

exlist-3 : 〈N | type : list, status : executing, end : bE 〉
⇒ 〈N | status : finishing〉

if eval(bE) = c(true)

As explained in Section 4.1.1, the unary application of the function eval is
rewritten by the infrastructure into a binary application, where the context
of evaluation is the constant #CTX# maintained by the infrastructure. It is
noted that these three atomic rules have the same component name because
they correspond to the same group of atomic rules and their ranks correspond
to the integer labels in Figure 2. Atomic rules in different groups have different
component names, so that conflicts are not resolved among redexes from atomic
rules in different groups.

6.3.4. Interaction with the External Environment

The set of ΣL-rules RL includes rule tick that updates the values of external
variables in a context with the next available value, if any. This rule is applicable
only if quiescence has been reached by all nodes. It is defined for l, r∈XCtx by:

tick : {l} ⇒ {r} if ∅ := max-strat(L, l)
∧ has-future(l) = true

∧ r := update-ext-vars(l)
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This rule acts on terms of sort Sys and hence it does not specify an atomic
transition. Given a ground term {Γ}, with context Γ, rule tick is applied if

s(Γ) = ∅ for the ≺L-maximal
Γ→L-strategy s (see Section 4.1.2) and there is at

least one external variable in Γ to be updated (specified by auxiliary function
has-future). Auxiliary function update-ext-vars(Γ) returns a context similar to Γ
in which the values of external variables with a next available value is updated
or they are unchanged otherwise. It is observed that rules sync (Section 4.2)
and tick have mutually unsatisfiable conditions.

6.4. Formal Analysis with L
As previously stated, one key advantage of using the infrastructure presented

in Section 4 is that by simulating the synchronous relation →s
L of a language L

by means of standard asynchronous rewriting in Maude, all commands available
in Maude for executing and verifying rewrite relations are directly accesible to
formally analyze →s

L.

6.4.1. Simulation and Debugging

Maude’s rew and search commands can be used to compute, for instance, the
n-step and run-to-completion semantics of plans in L. In particular, command
search is useful in computing all posible execution paths of a PLEXIL plan
from a given initial state. Since PLEXIL is deterministic [16], checking for a
race condition between two assignment nodes is logically equivalent to checking
for more than one execution path, which can be achieved with search. For
example, for ground context Γ in L representing the initial configuration of
plan Exchange in Figure 1, and with external variable T having initial and only
value 4, command search verifies that this plan does not have race conditions,
which is equivalent to checking that there exists exactly one quiescent state,
reachable from the initial state {Γ}, where all nodes have finished executing.

Maude> search { Γ } =>! X:Sys .
search in EXCHANGE : { Γ } =>! X:Sys .
Solution 1 (state 9)
states: 10 rewrites: 7220 in 565ms cpu (566ms real) (12761 rewrites/second)
X:Sys --> {

< Exchange | type : list, status : finished, outcome : success, pre : c(true),
post : c(true), inv : (c(3) === im(memx . Exchange) + im(memy . Exchange)),
start : (c(10) < il(T)), end : children-finished(Exchange), repeat : c(false),
skip : c(false), parent : nil >

< SetX . Exchange | type : assg, status : finished, outcome : success,
pre : c(true), post : c(true), inv : c(true), start : c(true), end : c(true),
repeat : c(false), skip : c(false), parent : Exchange,
set(x . Exchange) : im(y . Exchange) >

< SetY . Exchange | type : assg, status : finished, outcome : success,
pre : c(true), post : c(true), inv : c(true), start : c(true), end : c(true),
repeat : c(false), skip : c(false), parent : Exchange,
set(y . Exchange) : im(x . Exchange) >

< x . Exchange | type : mem, sort : int, init-val : c(1), val : c(2), parent : Exchange >
< y . Exchange | type : mem, sort : int, init-val : c(2), val : c(1), parent : Exchange >
< T | type : ext, sort : int, val : c(4), values : nil >
}

No more solutions.
states: 10 rewrites: 7220 in 566ms cpu (567ms real) (12753 rewrites/second)
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Maude’s strategy language [10] can be used to debug PLEXIL plans with
a high degree of precision. For instance, the ‘normalizing’ strategy “!” can be
used with parameter sync to obtain the quiescence synchronous reduction

(sync)!

that computes the quiescence state {Γ′} for a given state {Γ} without updat-
ing the values of any external variable in context Γ. Similarly, two quiescence
synchronous reductions can be obtained by the strategy

(sync)! ; tick ; (sync)!

where ; is the ‘sequential composition’ strategy.

6.4.2. LTL Model Checking

As explained in Section 3.3, a Kripke structure can be associated with the ini-
tial reachability model TL of L = (ΣL, EL, RL) by making explicit the intended
sort of states in the signature ΣL and the relevant set of atomic predicates on
states. LTL model checking of PLEXIL plans in L takes place at the level of
sort Sys. The set of atomic propositions ΦN is parameterized by the set of qual-
ified names of nodes, memories, and external variables in the plan to be model
checked. The BNF-like notation in Figure 3 defines the syntax of the atomic
propositions ΦN and formulas LTLN automatically available for model checking
a plan p with set of qualified names N . The sort of PLEXIL Boolean expressions

Status ::= inactive | waiting | executing | finishing | iterationended |
failing | finished

Failure ::= parent | invariant | pre | post

Outcome ::= unknown | skipped | success | fail(µ)

Cond ::= start | end | repeat | pre | post | inv

ΦN ::= true | false | status(λ, σ) | outcome(λ, ω) | ψ(λ, δ) | eval-exp(δ)

LTLN ::= α | ¬ϕ | ϕ ∨ ϕ′ | ϕ ∧ ϕ′ | ϕ⇒ ϕ′ |
�ϕ | ♦ϕ | ©ϕ | ϕUϕ′ | ϕWϕ′ | ϕRϕ′

with variables
µ : Failure λ : N σ : Status ω : Outcome
ψ : Cond δ : BExprN α : ΦN ϕ,ϕ′ : LTLN

Figure 3: Parameterized atomic predicates ΦN and LTL formulas LTLN in L.

parameterized by N is denoted by BExprN . Atomic propositions ΦN include
the constants true and false, predicates for testing the status, outcome, and
gate and checking conditions of a node. They also include the atomic propo-
sition eval-exp for testing PLEXIL’s Boolean expressions. Formulas in LTLN
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include the usual Boolean connectives, and the temporal connectives ‘always’
(�), ‘eventually’ (♦), ‘next’ (©), ‘until’ (U), ‘weak until’ (W), and ‘release’
(R), all interpreted in the standard way.

Given a plan p, a ground initial context Γ, and a LTLN formula ϕ over the
names N in p, Maude’s LTL model checker can be used to check

KΦN
L(p), {Γ} |= ϕ,

where KΦN
L(p) is the Kripke structure associated with TL(p), having set of states

TΣL(p)/EL(p),Sys, transition relation →s
L(p), and labeling function LΦN .

For example, the formula

� inv(Exchange, true) ∧ ♦ status(Exchange,finished)

for the plan Exchange in Figure 1, tests the invariant of node Exchange and that
it will eventually transition to state finished. For example, for ground context
Γ in L representing the initial configuration of plan Exchange in Figure 1, and
with external variable T having initial and only value 4, the following result is
obtained with Maude’s LTL Model Checker:

Maude> red modelCheck({Γ}, []inv(Exchange,c(true))∧<>status(Exchange,finished)) .
reduce in EXCHANGE : modelCheck({Γ}, []inv(Exchange,c(true))∧<>status(Exchange,finished)) .
rewrites: 7368 in 581ms cpu (585ms real) (12661 rewrites/second)
result Bool: true

6.5. Comparing L with Another Rewriting Logic Semantics of PLEXIL

As stated in Section 1, another rewriting logic semantics of PLEXIL in
Maude has been developed [7]. In that semantics the serialization procedure
was manually coded as part of the atomic transitions specification. This section
presents a brief comparison between that semantics of PLEXIL and the rewrit-
ing logic semantics L developed in this paper. Henceforth, the rewriting logic
semantics in [7] is denoted by P.

Specifications L and P comprise 600 and 2500 lines of Maude code, respec-
tively. Approximately, 2100 lines of code in P account for the functionality
present in L. Table 1 presents a size comparison between L and P in terms
of lines of code required to specify the functionality common to both specifi-
cations. It is noted that a significant size difference can be observed for the
specification of datatypes and atomic transitions. Datatypes for the manually
implemented serialization procedure account for most of the difference between
the specifications. The column L in Table 1 does not include 948 lines of code
that implement the generic infrastructure described in Section 4.

In terms of efficiency, P outperforms L on average by one order of magnitude.
This is to be expected because, although metalevel computations in Maude are
efficient, they are not as efficient as object level computations. Therefore, the
on-the-fly implementation of the serialization procedure at the metalevel adds
overhead to the overall computation of L’s atomic relation →L. Also, the com-
putation of the maximal redexes strategy for→L is essentially exponential in the
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L P
Datatypes 110 450
Function eval 270 282
Atomic relation 155 408
Executing lists (Figure 2) 14 29
Total 549 1169

Table 1: Size comparison between L and P for functionality common to both specifications.

size of the input ground context. However, as it is usually the case for many for-
mal analysis tools in the realm of the Maude system, the idea is to use (Σ, E,R)
as a prototype for a future extension of Maude at the C++ level. A comple-
mentary idea is to investigate specific-purpose serialization procedures that use
language-specific information, such as determinism of the atomic relation in the
case of PLEXIL, to obtain more efficient synchronous reductions.

7. Conclusion

Rewriting logic has been used previously as a test bed for specifying and
animating synchronous rewrite relations. M. AlTurki and J. Meseguer [1] have
studied the rewriting logic semantics of the language Orc, which includes a syn-
chronous reduction relation. T. Serbanuta et al. [18] and C. Chira et al. [3] define
the execution of P -systems with structured data with continuations. The focus
of the former is to use rewriting logic to study the (mainly) non-deterministic be-
havior of Orc programs, while the focus of the latter is to study the relationship
between P -systems and the existing continuation framework for enriching each
with the strong features of the other. D. Lucanu [9] studies the problem of the
interleaving semantics of concurrency in rewriting logic for synchronous systems
from the perspective of P -systems. More recently, T. Serbanuta [17] advances
the rewriting-based framework K with resource sharing semantics that enables
some kind of synchronous rewriting. J. Meseguer and P. Ölveczky [12] present
a formal specification of the physically asynchronous logically synchronous ar-
chitectural pattern as a formal model transformation that maps a synchronous
design, together with performance bounds on the underlying infrastructure, to a
formal distributed real-time specification that is semantically equivalent to the
synchronous design.

The work presented in this paper is closely related to those works in that it
presents techniques for specifying and executing synchronous rewrite relations.
However, the work presented here is a first milestone towards the development of
symbolic techniques for the analysis of synchronous set relations. In particular,
the authors strongly believe that the infrastructure presented in Section 4 can
be extended with rewriting and narrowing based techniques, in the style of [15],
to obtain a deductive approach for verifying symbolic safety properties, such
as invariance or race conditions, of synchronous set relations. Another feature
that distinguishes this work from related work is the idea of priorities as a
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mechanism for controlling non-determinism of synchronous relations. Of course,
in some cases priorities can be encoded in the condition of rewrite rules, but
the treatment here seems to be more convenient and simpler for the end-user.
One interesting exercise would be to study how best to implement this feature
in the framework K and for real-time specifications in rewriting logic.

The contribution of this paper to rewriting logic research is the implementa-
tion of general synchronous set relations via asynchronous set rewrite systems.
This work extends previous work reported in [16] by giving an on-the-fly im-
plementation of the serialization procedure for rewrite theories that supports
execution and verification of more general synchronous set relations. The in-
frastructure exploits rewriting logic’s reflective capabilities and its implemen-
tation in Maude, to soundly and completely simulate the synchronous relation
associated with an atomic relation and a maximal strategy specified by atomic
rules. This work also generalizes the concept of priority, so that more general
synchronous set relations are supported both theoretically and in the Maude
infrastructure. A priority, as treated in this work, enables non-deterministic
synchronous relations even when the atomic relation is deterministic. In [16],
the only possible non-determinism in a synchronous relations arises from its
atomic relation. A direct benefit to the user from using the infrastructure pre-
sented in this paper, is the wealth of Maude’s ground analysis tools for rewrite
theories such as its rewrite and search commands, and its LTL Model Checker.

This paper has shown that the current implementation of the Maude in-
frastructure supports non-trivial synchronous languages such as PLEXIL. The
current infrastructure is being integrated into the PLEXIL Interactive Verifi-
cation Environment (PLEXIL5) [14], a graphical software environment for the
validation and verification of PLEXIL programs.

The infrastructure proposed in this paper can help designers of synchronous
languages to focus on the synchronous semantic design without shifting their at-
tention to details in the serialization procedure implementation. A size compar-
ison to another rewriting logic semantics of PLEXIL in Maude, which manually
implemented the serialization procedure, evidenced the benefits of the infras-
tructure in terms of elegance and succinctness. However, more cases studies
that stress the infrastructure capabilities are needed to streamline the core al-
gorithms and data structures. The ultimate goal is for the infrastructure to be
used as a prototype in a future extension of Maude, say Synchronous Maude,
that natively supports efficient execution of synchronous set-based rewrite rela-
tions.

The examples provided in this paper do not exploit non-deterministic syn-
chronous strategies. This feature is useful in symbolic reachability analysis tech-
niques in rewriting logic for synchronous set relations [15] . The combination of
these techniques with rewriting modulo SMT solving and narrowing-based tech-
niques is a promising area of research on symbolic analysis of safety properties
of synchronous set relations.
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