
Formally Certified Round-Off Error
Analysis of Floating-Point Functions

Mariano Moscato Laura Titolo
National Institute of Aerospace

{mariano.moscato,laura.titolo}@nianet.org

Aaron Dutle César A. Muñoz
NASA Langley Research Center

{aaron.m.dutle,cesar.a.munoz}@nasa.gov

Abstract
Round-off errors in floating-point computations can lead to
catastrophic consequences when occurring in safety-critical
systems. For this reason, it is crucial to develop formal meth-
ods to ensure that the behavior of the implementation of
numerical calculations respects some properties of interest
with respect to the ideal real-number description. This pa-
per presents a fully automatic analyzer for the estimation of
round-off errors of floating-point valued functional expres-
sions. This research tool computes an over-approximation of
the round-off error of a given floating-point expression and
also generates a formal certificate that ensures the correct-
ness of the computed estimation. This certificate relies on
a formalization of floating-point arithmetic developed in the
Prototype Verification System (PVS). The proposed analysis
is illustrated by means of two real case studies: a key func-
tion of the Compact Position Reporting (CPR) algorithm,
which is part of communication protocol used to encode
Global Positioning System (GPS) coordinates of an airplane
in a compact way, and the horizontal component of an air-
craft conflict detection algorithm.

1. Introduction
Floating-point arithmetic is an efficient solution for approx-
imating computations on real numbers, which has been ex-
tensively used over the past several decades in a wide range
of applications. One significant problem of floating-point
computation is the presence of round-off errors that can
make the final floating-point result very different from the
one that would be obtained by using real arithmetic. This
issue becomes more problematic for safety-critical appli-
cations such as aerospace and air-traffic control software,

[Copyright notice will appear here once ’preprint’ option is removed.]

where even a small error can lead to catastrophic conse-
quences.

For this reason, it becomes essential to estimate the
round-off error of floating-point computations in a sound
way. This can be used to ensure that the floating-point imple-
mentation behaves correctly with respect to some properties
of interest possessed by the ideal real number implementa-
tion. Several solutions based on different techniques have
been proposed in the literature: abstract interpretation based
analysis (Goubault and Putot 2006), automatic generation
of verification conditions (de Dinechin et al. 2011), Taylor
expansions approximation (Solovyev et al. 2015), among
the many. In this paper, the static analyzer PRECISA (PVS
Round-off Error Certifier vIa Static Analysis) is presented.
This tool is a prototype that automatically computes an over-
approximation for the round-off error of an input program,
and also provides a certificate ensuring its soundness. This
certificate can be automatically checked in PVS (Owre et al.
1992) without the need of any expertise in theorem proving.

PRECISA relies on the floating point formalization for
PVS introduced in (Boldo and Muñoz 2006). This formal-
ization is completed and enriched with new theories to rea-
son about round-off errors approximations, following the
IEEE-754 standard. PRECISA uses a compositional de-
notational semantics that symbolically computes an over-
approximation for the round-off error of the input program,
together with the conditions under which this approxima-
tion is correct. Associating conditions to the computed er-
ror estimation makes the analysis more precise and avoids
considering computations leading to runtime errors such as
division by zero or square root of a negative number. The
compositionality of the proposed semantics and of the PVS
floating point formalization are the basis for the modularity
and scalability of PRECISA.

The contributions of this paper are the following: (1) a
refinement of the PVS formalization of the floating-point
IEEE-754 standard that can be used to formally check prop-
erties about several aspects of floating-point computations;
(2) a technique that estimates in an automatic and certified
way symbolic bounds for the round-off error of a program;
(3) an extension of the branch-and-bound algorithm pre-

1 2016/10/12

sented in (Narkawicz and Muñoz 2013) that computes nu-
merical bounds for a symbolic error expression. The sound-
ness of this extension is formally verified in PVS, ensuring
the correctness of the computed results.

The paper is organized as follow. In Section 2, the new
PVS formalization for floating-point round-off errors is in-
troduced. In Section 3, the denotational semantics which col-
lects symbolic round-off error expressions is defined for a
generic declarative expression language. The PRECISA an-
alyzer is presented is presented Section 4. Some experimen-
tal results and the analysis of two case studies are presented
in Section 5. Related work is discussed in Section 6, and
Section 7 concludes the paper.

The formal development presented in this paper is elec-
tronically available as part of the NASA PVS library (https:
//github.com/nasa/pvslib). For more information about
the tool presented in this paper, the reader is referred to
https://shemesh.larc.nasa.gov/fm/PRECISA.

2. Floating-Point Round-off Error
Formalization

Floating-point numbers1, which are denoted by the symbol
F, are used in computer programs as a finite and discrete
representation of the set of real numbers (R). In concrete im-
plementations, such as the adherents to the IEEE-754 stan-
dard (Stevenson 1981), F is defined as a finite set; whilst in
more abstract developments, for example the formalization
presented in (Boldo and Muñoz 2006), F has an enumerable
cardinality.

A conversion function R ∶ F ↦ R is usually defined
to refer to the real number represented by a given float.
For example, in (Boldo and Muñoz 2006) a floating-point
number is defined as a pair of integers (m,e), where m
is called the significand and e the exponent of the float,
and the conversion function is stated as R(m,e) = m ⋅ be,
where b ∈ N is called the base or radix of the system. As
this representation is redundant, notions about normality and
canonicity are also defined (see (Boldo and Muñoz 2006) for
details).

Not every real number can be exactly represented by a
float, thus, a notion of representation error can be defined as
follows. If a floating-point number p is used to represent a
real number r, the difference ∣R(p)−r∣ is usually called the
round-off error (or rounding error) of the ideal value r with
respect to p.

The floating-point number usually chosen to represent a
real number r, noted in this paper as F(r), is the num-
ber for which the round-off error of r is minimal. Such a
floating-point number is called the closest to r. When there
is more than one closest representation for a real r, some
tie-breaking criteria must be used. In the IEEE-754 stan-
dard (Stevenson 1981) the so-called rounding modes are de-

1 Also referred to simply as floating points or floats.

fined. Examples of them are the rounding to even mode,
where the float with even significand is chosen, and the away
from zero mode, where the float with the greater absolute
value is chosen.

A measure of the precision of a floating-point number p
as a representation of some real is given by the concept of
unit in the last place (ulp in short) defined in (Boldo and
Muñoz 2006) as ulp(p) = bep , where ep is the exponent of
the canonic form of p. The ulp of a floating point can be used
as a bound of the round-off error since, as shown in (Boldo
and Muñoz 2006), if p is the closest representation of some
real r they are apart from each other for no more than half
of the ulp of p. It is also possible to define the ulp of a
real number as the ulp of the canonical form of its floating-
representation, i.e., ulp(r) = ulp(F(r)). Then, the previous
condition can be restated as defined in (Harrison 1999).

∣R(p) − r∣ ≤ ulp(r)
2

.

The previous formula relates an ideal value with its repre-
sentation. As complex expressions can be formed by apply-
ing functions on representations, upper bounds on the round-
off error of those functions based on the round-off error of
their arguments is a key part of a modular approach to a
rounding error calculation of arbitrary floating-point expres-
sions.

In order to express bounds in such way, it is useful
to state some relationship between a real-valued function
and its floating-point counterpart. In the IEEE-754 stan-
dard (Stevenson 1981), an n-ary floating-point operation
f̃(p1,⋯, pn) is considered correctly rounded if it is equiva-
lent to perform the corresponding real-valued operation on
the reals denoted by its operands p1,⋯, pn and then round
the result to the closest floating-point number. In this work, a
weaker definition is used. A floating-point function f̃ is said
to be correctly rounded if the following restriction holds2.

∣R(f̃(pi)ni=1) − f(R(pi))ni=1∣ ≤
ulp(f(R(pi))ni=1)

2
. (2.1)

If every floating point pi representing an ideal value ri
is assumed to carry a round-off error not bigger than some
bound ei, i.e., ∣R(pi) − ri∣ ≤ ei, in order to state a bound on
the accumulated round-off error of f , a bounding expression
εf(ei)ni=1 fulfilling the formula stated below is needed.

∣f(R(pi))ni=1 − f(ri)ni=1∣ ≤ εf(ei)ni=1. (2.2)

Finally, if there exists a nonnegative real-valued expres-
sion υ(ri, ei)ni=1 such that ∣f(R(pi))ni=1∣ ≤ υ(ri, ei)ni=1
holds, the following bound for the round-off between the
floating-point calculation and the real valued counterpart
follows from formulas 2.1 and 2.2 and the triangle inequal-
ity.

2 In order to save space, we will note the application of a n-ary function f
to the n arguments x1,⋯, xn as f(xi)ni=1.

2 2016/10/12

https://github.com/nasa/pvslib
https://github.com/nasa/pvslib
https://shemesh.larc.nasa.gov/fm/PRECISA

∣R(f̃(pi)ni=1) − f(ri)ni=1∣ ≤ ef(ei)ni=1 +
ulp(υ(ri, ei)ni=1)

2
.

The formal development presented in this paper enriches
and extends the high-level formalization of floating-point
numbers introduced in (Boldo and Muñoz 2006) with the
concepts about rounding error expressed above. Adhering to
the original rationale, these concepts are stated in a general
way. No particular format, such as IEEE single precision
or IEEE double precision, nor specific rounding mode are
assumed in advance. Nevertheless, explicit instantiations for
those formats supporting the even closest rounding mode are
provided in order to deal with concrete examples.

Round-off bounds for the following operations are in-
cluded in the formalization. As above, every floating point
pi is assumed to be used to represent an ideal value ri with
and rounding error ei, i.e., ∣R(pi) − ri∣ ≤ ei. Operations on
reals are denoted as usual (+, ∗,

√
x, etc.), while the floating-

point operations are written with a tilde on top (+̃, ∗̃, s̃qrt ,
etc.).

• Addition (p1 +̃p2)
r1 + r2 + e1 + e2 + 1/2ulp(∣r1 + r2∣ + e1 + e2).

• Subtraction (p1 −̃p2)
r1 − r2 + e1 + e2 + 1/2ulp(∣r1 − r2∣ + e1 + e2).

• Multiplication (p1 ∗̃p2)
r1r2+∣r1∣e2+∣r2∣e1+e1e2+1/2ulp((∣r1∣+e1)(∣r2∣+e2)).

• Division (p1 /̃p2)
r1/r2 + ∣r1∣e2+∣r2∣e1

r2r2−e2∣r2∣ + 1/2 ulp (∣r1∣
∣r2∣ +

∣r1∣e2+∣r2∣e1
r2r2−e2∣r2∣).

• Floor (fl̃oor(p))
⌊r⌋ + e + 1 + 1/2ulp(∣⌊r⌋∣ + e + 1).

• Square root (s̃qrt(p))√
r +√

e + 1/2ulp(√r +√
e).

Bounds for the additive inverse and the absolute value
are also included. As they can be implemented exactly, the
corresponding bound only is affected by the round-off error
of the argument of the operation.

• Additive inverse (−̃p) and absolute value (ãbs(p))
r + e.

The formalization of round-off error of functions is para-
metric on the function. This features aims to facilitate fur-
ther extensions to the formalization, such as the adding of
support for other operations.

3. Static Analysis for Round-off Errors
In this section, a denotational semantics for a generic declar-
ative expression language is introduced. This semantics col-
lects information about the round-off error of floating-point
operations. For each possible program execution path, the
semantics computes a symbolic expression representing the

round-off error of the program when taking this path, and
collects the correspondent path condition together with other
validity conditions that are needed to avoid erroneous be-
haviors. Associating these conditions to the computed error
bounds makes the analysis more precise and avoids consid-
ering erroneous cases such as a division by zero or a square
root of a negative number.

In the following, the sets of arithmetic and boolean ex-
pressions over reals are denoted as AExpr and BExpr , re-
spectively. The floating point counterparts of AExpr and
BExpr are denoted as ÃExpr and B̃Expr , respectively.

The considered expression language contains condition-
als, let-expressions and function calls. Given a set of process
symbols Π, a denumerable set of variables Var , p ∈ Π, and
x ∈ Var , the syntax of program expressions is given by the
following grammar.

Expr ∶∶=ÃExpr ∣ if B̃Expr then Expr else Expr ∣
let x = ÃExpr in Expr ∣ p(ÃExpr , . . . , ÃExpr).

A program is defined as a set of function declarations
of the form p(Ð→x) = S (for some expression S), where
Ð→x denotes a generic tuple of variables in Var . The set of
programs is denoted as Prog .

The proposed semantics collects, for each program path,
the corresponding path condition and two symbolic arith-
metic expressions representing (1) the value of the output
assuming the use of real arithmetic and (2) an upper bound
for the round-off error due to floating-point operations. The
previous information is stored in a conditional error bound,
which is a tuple on the form (c, r, e) where c is the repre-
sentation of a boolean condition, and r and e are symbolic
arithmetic expressions in AExpr . Intuitively, (c, r, e) means
that if the condition c is true, then the output of the ideal real
numbers implementation of the program is r and the round-
off error of the floating-point implementation is bounded
by e. Roughly speaking, the semantics of a program is a set
of conditional error bounds, one for each possible execution
path that can be taken following one or another branch in the
conditionals.

In general, the use of floating-point arithmetic makes the
tests of conditionals unstable. This means that the control
flow is altered and does not correspond to the control flow
that would be taken by the same program with perfect real
arithmetic. The presence of unstable tests can lead to un-
sound results, since the output of the program is not only
disturbed by rounding errors, but also by the errors in the
evaluation of the tests of the conditionals provoked by the
rounding errors.

Consider the conditional statement if φ then S1 else S2.
When φ and its real counterpart (the one corresponding to
the perfect real arithmetic flow) have the same truth value,
the real and the floating-point flows coincide, thus, the anal-
ysis is sound. On the other hand, when they have different
values, the error of taking the incorrect branch must be con-

3 2016/10/12

sidered. In order to distinguish the previous cases, it is neces-
sary to keep the information on the truth value of both float-
ing point and real boolean tests. Therefore, the condition in
a conditional error bound is defined as a pair (η, η̃) where
η ∈ BExpr and η̃ ∈ B̃Expr . Here, η represents the path con-
ditions of the real flow and η̃ the ones of the floating-point
flow.

The domain of conditions is denoted as Cond = BExpr ×
B̃Expr and C = ℘(Cond × AExpr × AExpr) denotes the
domain formed by sets of conditional error bounds, which is
the support domain of the presented semantics. An environ-
ment is defined as a function mapping a variable to a set of
conditional error bounds, i.e., Env = Var → C. The empty
environment is denoted as �Env and maps every variable to
∅.

The semantics of arithmetic expressions is a function
A ∶ ÃExpr × Env → C defined as follows, where σ ∈
Env , a, a1, a2 ∈ ÃExpr , n ∈ F, x ∈ Var and R,E ∶
Var → Var are two functions that associate to each variable
a fresh variable representing the real value and the error of
x, respectively.

AJnKσ ∶= {(true, true,R(n),0)}

AJxKσ ∶=
⎧⎪⎪⎨⎪⎪⎩

{(true, true,R(x),E(x))} if σ(x) = ∅
σ(x) otherwise

AJa1 +̃a2Kσ ∶= ⋃{(η1 ∧ η2, η̃1 ∧ η̃2, r1 + r2,
e1 + e2 + 1/2ulp(∣r1 + r2∣ + e1 + e2))
∣ (η1, η̃1, r1, e1) ∈ AJa1Kσ, (η2, η̃2, r2, e2) ∈ AJa2Kσ}

AJa1 −̃a2Kσ ∶= ⋃{(η1 ∧ η2, η̃1 ∧ η̃2, r1 − r2,
e1 + e2 + 1/2ulp(∣r1 − r2∣ + e1 + e2))
∣ (η1, η̃1, r1, e1) ∈ AJa1Kσ, (η2, η̃2, r2, e2) ∈ AJa2Kσ}

AJa1 ∗̃a2Kσ ∶= ⋃{(η1 ∧ η2, η̃1 ∧ η̃2, r1r2,
∣r1∣e2 + ∣r2∣e1 + e1e2 + 1/2ulp((∣r1∣ + e1)(∣r2∣ + e2)))
∣ (η1, η̃1, r1, e1) ∈ AJa1Kσ, (η2, η̃2, r2, e2) ∈ AJa2Kσ}

AJa1 /̃a2Kσ ∶=
⋃{(η1 ∧ η2 ∧ (r2 − e2 > 0 ∨ r2 + e2 < 0), η̃1 ∧ η̃2, r1/r2,

∣r1∣e2 + ∣r2∣e1
r2r2 − e2∣r2∣

+ 1/2 ulp(∣r1∣
∣r2∣

+ ∣r1∣e2 + ∣r2∣e1
r2r2 − e2∣r2∣

))

∣ (η1, η̃1, r1, e1) ∈ AJa1Kσ, (η2, η̃2, r2, e2) ∈ AJa2Kσ}

AJ−̃aKσ ∶= ⋃{(η, η̃,−r, e) ∣ (η, η̃, r, e) ∈ AJaKσ}

AJãbs(a)Kσ ∶= ⋃{(η, η̃, ∣r∣, e) ∣ (η, η̃, r, e) ∈ AJaKσ}

AJfl̃oor(a)Kσ ∶= ⋃{(η, η̃, ⌊r⌋, e + 1 + 1/2ulp(∣⌊r⌋∣ + e + 1))
∣ (η, η̃, r, e) ∈ AJaKσ}

AJs̃qrt(a)Kσ ∶= ⋃{(η ∧ (r − e ≥ 0), η̃,
√
r,

√
e + 1/2ulp(

√
r +

√
e)) ∣ (η, v, e) ∈ AJaKσ}

The semantics of a floating-point numerical value n ∈ F
models the fact that no rounding occurs and the associated
error is 0. The semantics of a variable x ∈ Var is composed
of two cases. If x belongs to the environment, then the vari-
able has been previously bound to an arithmetic expression
a through a let-expression. In this case, the semantics of x
is exactly the semantics of a. If x is not in the environment,
then x is a parameter of the function. Here, a new condi-
tional error bound is added with two fresh variables, R(x)
and E(x), representing the real value and the error of x, re-
spectively.

In the case of arithmetic operations, the real value is
obtained by applying the operation in real arithmetic to the
real values of the operands, and the new error bound is
obtained as a function of the error bounds and real values of
the operands. The new condition is obtain as the combination
of the conditions of the operands.

For division and square root, additional constraints are
needed in the conditions to exclude the cases in which the
program produces runtime errors. More in detail, for the
division, r2 − e2 > 0 ∨ r2 + e2 < 0 implies that r2 and F(r2)
are different from 0. Notice that e2 is always positive and
F(r2) ∈ [r2 − e2, r2 + e2]. For the square root, r − e ≥ 0
implies that r ≥ 0 and F(r) ≥ 0.

Let MGC ∶= {p(Ð→x) ∣ p ∈ Π, Ð→x are distinct variables}.
An interpretation is a function ρ∶MGC → C modulo vari-
ance. The set of all interpretations is denoted as Int . The
empty interpretation is denoted as �Int and maps everything
to ∅.

Given σ ∈ Env and ρ ∈ Int , the semantics of program ex-
pressions, S ∶ Expr ×Env × Int → C, returns the set of con-
ditional error bounds representing the maximum round-off
error for each execution path, together with the correspond-
ing condition.

SJaKρσ ∶= AJaKσ

SJlet x = a in SKρσ ∶= SJSKρ
σ[x↦AJaKσ]

SJif φ then S1 else S2Kρσ ∶=
SJS1Kρσ ⇓(RB(φ),φ) ∪ SJS2Kρσ ⇓(¬RB(φ),¬φ) ∪
⋃{(η1 ∧ η2, η̃1, r2, e1 + ∣r1 − r2∣) ⇓(¬RB(φ),φ)

∣ (η1, η̃1, r1, e1) ∈ SJS1Kρσ, (η2, η̃2, r2, e2) ∈ SJS2Kρσ} ∪
⋃{(η1 ∧ η2, η̃2, r1, e2 + ∣r1 − r2∣) ⇓(RB(φ),¬φ)

∣ (η1, η̃1, r1, e1) ∈ SJS1Kρσ, (η2, η̃2, r2, e2) ∈ SJS2Kρσ}

SJp(a1 , . . . ,an)Kρσ ∶=
⋃{(η ∧ η1 ∧ ⋅ ⋅ ⋅ ∧ ηn, η̃ ∧ η̃1 ∧ ⋅ ⋅ ⋅ ∧ η̃n, r[R(x1)/r1 . . .

R(xn)/rn], e[E(x1)/e1 . . .E(xn)/en]) ∣ (η, η̃, r, e)
∈ ρ(p(x1 . . . xn)), ∀i = 1 . . . n.(ηi, η̃i, ri, ei) ∈ AJaiKσ}

4 2016/10/12

Intuitively, the semantics of a let-expression let x = a in S
updates the current environment by associating to variable x
the semantics of expression a .

The semantics of the conditional uses an auxiliary op-
erator ⇓ for propagating new information in the condi-
tions. Given b ∈ BExpr and b̃ ∈ B̃Expr , (η, η̃, r, e) ⇓(b,b̃)=
(η ∧ b, η̃ ∧ b̃, r, e). The definition of ⇓ naturally extends to
sets of conditional error bounds: given C ⊆ C, C ⇓(b,b̃)=
⋃c∈C c ⇓(b,b̃).

As already mentioned, tests in conditionals need to be
treated carefully to guarantee soundness. Consider the con-
ditional if φ then S1 else S2. Function RB ∶ B̃Expr →
BExpr is introduced to convert a floating-point expression
to a real one, by simply replacing each operation on floating-
point with the corresponding operation on reals and by ap-
plying R to numerical values. The semantics of S1 and S2

are enriched with the information about the fact that real and
floating-point flows match, i.e., both φ and RB(φ) have the
same value. If real and floating point flows do not coincide,
the error of taking one branch instead of the other has to be
considered. For example, if φ is satisfied but RB(φ) is not,
the then branch is taken in the floating point computation,
but the else would have been taken in the real one. In this
case, the error is the difference between the real value of the
result of S2 and the floating point result of S1. It is easy to
show that this error is bounded by the round-off error of S1

plus the difference between the real values of S1 and S2. The
condition (¬RB(φ), φ) is propagated in order to model that
φ holds but RB(φ) does not.

The semantics of a function call, combines the conditions
coming from the interpretation of the function and the ones
coming from the semantics of the parameters. Variables rep-
resenting real values and errors of formal parameters are re-
placed with the symbolic expressions coming from the se-
mantics of the actual parameters.

The semantics of a program F ∶ Prog × Env → C
is defined as the least fixed point (lfp) of the immediate
consequence operator D ∶ Prog × Env × Int → C, i.e.,
FJDK ∶= lfp(DJDK�Int

�Env
), which is defined as follows for

each function symbol p defined in D:3

DJDKρσ(p(x1 . . . xn)) ∶= ⋃{SJSKρσ ∣ p(x1 . . . xn) = S ∈D}.

The least fixed point of D is guaranteed to exist by the
Knaster-Tarski Fixpoint theorem. In fact, it is direct to see
that (C,⊆,∪,∩,Cond × AExpr × AExpr ,∅) is a complete
lattice and D is monotonic over C, since at each iteration
new conditional error bounds are added but not removed.
When the program is non-recursive, this fixpoint computa-
tion converges in a finite number of steps. While this is a re-
strictive assumption, it is not unreasonable in avionics or em-
bedded software, which tends to avoid recursion. However,

3 It is assumed that in D there is only one declaration for each process
symbol. In this case, the notation is simplified by omitting the information
about the types.

in the future, the use of precise widening operators (Cousot
and Cousot 1977) will be explored in order to ensure the
convergence for a wider variety of programs.

In the following, two simple examples of the computation
of the semantics are shown.

EXAMPLE 3.1
Consider the following simple program.

g(x , y) =if x = 3 then x +̃ y else x ∗̃ y

The semantics of the program is the following, where rx =
R(x), ry = R(y), ex = E(x) and ey = E(y). The symbolic
expressions e+ = ex+ey and e∗ = ∣rx∣∗ey+∣ry ∣∗ex+ex∗ey
indicate the propagation of the errors of x and y in the sum
and multiplication.

FJ{g(x , y)}K =
{(rx = 3, x = 3, rx + ry, e+ + 1/2ulp(∣rx + ry ∣ + e+)),
(rx ≠ 3, x ≠ 3, rx ∗ ry, e∗ + 1/2ulp(∣rxry ∣ + e∗)),
(rx = 3, x ≠ 3, rx + ry, e∗ + ∣(rx + ry) − (rxry)∣

+ 1/2ulp(∣rxry ∣ + e∗)),
(rx ≠ 3, x = 3, rx ∗ ry, e+ + ∣(rx + ry) − (rxry)∣

+ 1/2ulp(∣rx + ry ∣ + e+))}

The last two elements correspond to the case in which the
real flow does not correspond to the floating point-one. Here,
the real and floating-point conditions do not match and the
error of taking the wrong branch is taken in consideration to
compute the error. For instance, consider x = 3, rx = 3.1 and
y = ry = 5. In this case, the floating-point flow takes the else
branch, but the real flow would take the then one. Thus, the
error corresponding to that case will be:

e+ + ∣(rx + ry) − (rxry)∣ + 1/2ulp(∣rx + ry ∣ + e+)
= 0.1 + ∣8.1 − 15.5∣ + 1/2ulp(8.1 + 0.1)
= 7.6 + 1/2ulp(8.2) ≃ 7.6

In this case, the round-off error (≃ 0.1) is negligible with
respect to the error of taking the incorrect branch.

EXAMPLE 3.2
Consider the following program.

f (x) =if x ≠ 0 then 1 /̃x else x

The semantics of the program is the following, where
R(x) = rx, E(x) = ex, ef = ex/(rx ∗ rx − ex ∗ ∣rx∣) and
c = rx + ex < 0 ∨ rx − ex > 0.

FJ{f (x)}K = {(rx = 0, x = 0, rx, ex),
(c ∧ rx ≠ 0, x ≠ 0,1/rx, ef + 1/2ulp(∣1/rx∣ + ef)),
(c ∧ rx = 0, x ≠ 0, rx, ef + 1/2ulp(∣1/rx∣ + ef) + ∣rx − 1/rx∣),

5 2016/10/12

Figure 1. The analysis framework.

PVS
Floating-Point
Formalization

Input
Program

numerical
bounds for

input values

Semantics-based
error analysis

Lemmas and
Proofs

Branch & Bound

correct?

numerical
bounds for

errors

(c ∧ rx ≠ 0, x = 0,1/rx, ex + ∣rx − 1/rx∣)}

Condition c ensures that no division by zero occurs. In this
case, c contradicts the condition rx = 0 in the third element
and x = 0 in the fourth one. This is an expected result since
in these cases, a division by zero occurs in the ideal real
computation and the presented analysis cannot compute the
estimation of the round-off error.

4. PRECISA: An Analyzer for Estimating
Certified Roundoff Errors

In this section, the prototype tool PRECISA is presented.
This tool combines the semantics of Section 3 with a method
to automatically generate PVS lemmas and proofs certifying
that the computed bounds are correct, with respect to the
IEEE-754 standard formalization defined in Section 2. In
addition, a branch-and-bound technique is used to estimate
a numerical enclosure for the symbolic error expressions
generated.

Figure 1 depicts the functional architecture of the tool.
Given an input program, the first functional block computes
its semantics. For each function f in the input program, a set
of conditional error bounds is generated. Each conditional
error bound is then translated into a PVS lemma that states
that, provided the conditions are satisfied, the floating-point
value resulting from the execution of f differs from the result
of f computed assuming infinite precision, by at most the
round-off error approximation computed by the semantics.

The PVS translation is straightforward. The conditional
error bound (η, η̃, r, e) is translated into a lemma where the
hypothesis are η and η̃ and the consequence states that the
difference between r and the output of f using floating-point
arithmetic is at most e. The following example illustrates this
translation.

EXAMPLE 4.1
Consider the function g and its semantics defined in Ex-
ample 3.1. PRECISA automatically generates the following
lemmas in PVS, one for each conditional error bound in the

semantics of g.

∀rx, ry, ex, ey ∈ R, x, y ∈ F
∣x − rx∣ ≤ ex ∧ ∣y − ry ∣ ≤ ey ∧ x = 3 ∧ rx = 3

⇒ ∣g(x, y) − (rx + ry)∣ ≤ e+ + 1/2ulp(∣rx + ry ∣ + ex + ey)

∀rx, ry, ex, ey ∈ R, x, y ∈ F
∣x − rx∣ ≤ ex ∧ ∣y − ry ∣ ≤ ey ∧ x ≠ 3 ∧ rx ≠ 3

⇒ ∣g(x, y) − (rx ∗ ry)∣ ≤ e∗ + 1/2ulp(∣rx ∗ ry ∣ + e∗)

∀rx, ry, ex, ey ∈ R, x, y ∈ F
∣x − rx∣ ≤ ex ∧ ∣y − ry ∣ ≤ ey ∧ x ≠ 3 ∧ rx = 3

⇒ ∣g(x, y) − (rx + ry)∣ ≤ e∗ + ∣(rx + ry) − (rx + ry)∣
+ 1/2ulp(∣rx ∗ ry ∣ + e∗)

∀rx, ry, ex, ey ∈ R, x, y ∈ F
∣x − rx∣ ≤ ex ∧ ∣y − ry ∣ ≤ ey ∧ x = 3 ∧ rx ≠ 3

⇒ ∣g(x, y) − (rx ∗ ry)∣ ≤ e+ + ∣(rx + ry) − (rx + ry)∣
+ 1/2ulp(∣rx + ry ∣ + e+)

Furthermore, for each function in the input program,
PRECISA generates a lemma stating the overall round-off
error of the function, independently from the chosen com-
putational flow. In this case, the round-off error is the maxi-
mum of all the round-off errors of each flow and the hypoth-
esis of the lemma is the disjunction of all the conditions for
each conditional error bound in the semantics of the func-
tion.

This lemma guarantees the overall soundness and com-
pleteness of the method since it ensures that the round-off
errors of each computational flow is correct and that all pos-
sible computational flows have been considered. If by mis-
take some computational flow is missing, this lemma cannot
be proven. In other words, if a computational flow is miss-
ing, PVS will not be able to discharge all the possible cases
for the considered function.

EXAMPLE 4.2
Consider the function g and its semantics defined in Exam-
ple 3.1. Let gR be the real counterpart of g, where all the
arithmetic operations are evaluated with infinite precision
on real numbers. The lemma that summarizes the overall
round-off error of g is the following:

∀rx, ry, ex, ey ∈ R, x, y ∈ F
∣x − rx∣ ≤ ex ∧ ∣y − ry ∣
⇒ ∣g(x, y) − gR(R(x),R(y))∣ ≤ max(e1, e2, e3, e4)

where e1 = e+ + 1/2ulp(∣rx + ry ∣ + ex + ey), e2 = e∗ +
1/2ulp(∣rx ∗ ry ∣ + e∗), e3 = e∗ + ∣(rx + ry) − (rx + ry)∣ +
1/2ulp(∣rx ∗ ry ∣ + e∗) and e4 = e+ + ∣(rx + ry) − (rx + ry)∣ +
1/2ulp(∣rx + ry ∣ + e+).

6 2016/10/12

Proving lemmas in PVS can be a tedious task which re-
quires a high level of expertise to be completed properly. For
this reason, along with the lemmas, the presented method
also generates the corresponding proof scripts, which can be
automatically verified in PVS without the need of human in-
tervention. In particular, for each conditional error bound,
which is translated to a lemma, a PVS proof script is gen-
erated using structural induction on arithmetic expressions.
A proof script, when executed in PVS, yields a PVS proof.
PVS proofs are internally represented as trees. Each node of
this tree contains the name of the lemma to be applied and
its parameters. The parameters are the real, the floating-point
and the error expressions coming from the operands seman-
tics of the arithmetic operation corresponding to the lemma.
A proof subtree is generated recursively for each operand.
The leaves of the tree correspond to the base cases of vari-
ables and numerical values.

The generated proof scripts are modular. This means that
the proof script for a function f is generated just once, and
if f is used inside another function g, the proof of g will
use the proof script of f with the actual parameters, but it
would not generate the whole f proof again. This feature
makes proof scripts reusable, efficient, and more readable.
The output of PRECISA is a PVS file containing the lemmas
and their respective proof scripts. This file will be the input
to the PVS theorem prover, which using the formalization
described in Section 2, automatically proves the lemmas.
This last steps requires no expertise or familiarity with the
PVS theorem prover.

In the proposed analysis, the error expressions are kept in
a symbolic form so that the method is modular and indepen-
dent from the initial values of the input variables. To com-
pute a numerical estimation of the error of a program, given
some initial ranges for the input variables, an extension of
the branch-and-bound algorithm defined in (Narkawicz and
Muñoz 2013) is used.

This branch-and-bound algorithm relies on bounding
functions for arithmetic operators. These bounding func-
tions, which are defined using interval arithmetic, compute
a correct enclosure for a real-valued arithmetic expression.
The main idea is to recursively split the domain of the func-
tion into smaller subdomains and evaluate the bounds in
these subdomains. The recursion stops when a precise en-
closure is found, based on a given precision, or when the
maximum recursion depth is reached.

In the presented approach, the real-valued arithmetic ex-
pressions are the symbolic error expressions computed by
the semantics, while the initial domain is given as an in-
put of the analysis by providing initial intervals for every
input variable of the program. The algorithm of (Narkawicz
and Muñoz 2013) is enhanced to support the symbolic er-
ror functions produced by the semantic analysis. The output
of the algorithm is a numerical enclosure for the error ex-
pression. If the error expression is undefined for the range of

the input values, e.g., when the range of an input value in-
cludes zero and that value is used in a division, the algorithm
returns an error. Similar to the original branch-and-bound al-
gorithm, the extended branch-and-bound algorithm is spec-
ified and formally verified in PVS. This guarantees that the
numerical bounds of the error expressions are sound.

5. Case Studies and Experimental Results
In this section, some experimental results and case studies
are presented to show performances and applicability of
PRECISA. The times in this section corresponds to a 2.5
GHz Intel Core i7, 16 GB of RAM, running under MacOS
10.11.3 El Capitan.

5.1 A simple comparison with Fluctuat
Fluctuat (Goubault and Putot 2006) is a commercial static
analyzer of numerical programs based on abstract interpre-
tation (Cousot and Cousot 1977). To approximate the round-
off error of a program, it uses several approximations such
as interval arithmetic and zonotopic abstractions (Goubault
and Putot 2011) based on affine arithmetic (de Figueiredo
and Stolfi 2004). In addition, to improve the precision of
the computed error bounds, Fluctuat, similarly to PRECISA,
uses a global optimization search that splits the initial do-
main in smaller domains and computes the error for each of
these subdomains.

Consider the following example introduced in (Goubault
and Putot 2011) where variable x has an initial value in the
interval [0,1].

y(x) = (x −̃1) ∗̃(x −̃1) ∗̃(x −̃1) ∗̃(x −̃1)
z(x) = (x ∗̃x ∗̃x ∗̃x) −̃(4 ∗̃x ∗̃x ∗̃x) +̃(6 ∗̃x ∗̃x) −̃(4 ∗̃x) +̃1

t(x) = z(x) −̃ y(x)

In (Goubault and Putot 2011), this example is analyzed with
the Fluctuat tool. For the function t(x), Fluctuat, using the
interval abstraction, computes a numerical error enclosure
of [−8,8], while using the zonotopic abstraction gets an
enclosure of [−1.95,1.94]. The much tighter enclosure [−2 ⋅
10−6,2 ⋅10−6] is obtained by using the zonotopic abstraction
and the global optimization technique with 1000 domain
subdivisions. In this case, according to (Goubault and Putot
2011), Fluctuat takes 78 seconds to compute the error bound
in an Intel Core 2 Duo 2GHz, 4GB of RAM, running under
MacOS Snow Leopard. For y(x) and z(x), Fluctuat with
zonotopic abstraction computes the error enclosures [−4.2 ⋅
10−7,4.2 ⋅ 10−7] and [−2.1 ⋅ 10−6,2.1 ⋅ 10−6], respectively.

PRECISA takes 0.01 seconds to compute the symbolic
error expressions for y(x), z(x) and t(x). In Table 1, the nu-
merical enclosures for the symbolic error expressions com-
puted by PRECISA by using the branch-and-bound algo-
rithm are presented. The time in seconds and the number of
domain splits performed by the algorithm are also reported.
In this simple example, the results obtained with PRECISA

7 2016/10/12

Table 1. Experimental results for PRECISA

fun. round-off error enclosure time in sec. # splits
y(x) [−4.17 ⋅ 10−7,4.17 ⋅ 10−7] 0.078885 0
z(x) [−2.5 ⋅ 10−6,2.5 ⋅ 10−6] 0.661031 12
t(x) [−2.74 ⋅ 10−6,2.74 ⋅ 10−6] 3.361300 77

are comparable in precision with the ones obtained with
Fluctuat. For the case of t(x), PRECISA is slightly less pre-
cise than Fluctuat, where PRECISA computes the numerical
enclosure in approximately 3 seconds while Fluctuat com-
putes it in 78 seconds. This gap must be also impacted by
the discrepancy in the hardware platforms used in the exper-
iments. Furthermore, the example above should not be taken
as representative of both systems. Since the authors do not
have access to Fluctuat, it is, at this time, difficult to make a
deeper comparison between both systems. However, this is
an encouraging first result for a research tool as PRECISA.
A deeper experimental evaluation is needed to assess its real
potential.

5.2 Case study: Compact Position Reporting
The CPR (Compact Position Reporting) algorithm encodes
and decodes the position of an aircraft in a compact way.
CPR is used in the Automatic Dependent Surveillance-
Broadcast (ADS-B) communication protocol and it was pro-
posed to reduce to 17 the number of bits required to transmit
latitude and longitude. It has been discussed within the stan-
dard organizations responsible for the ADS-B protocol, i.e.,
RTCA in the US and EUROCAE in Europe, that CPR is
numerically unstable when implemented in single-precision
floating point arithmetic, which under some circumstances
could potentially lead to major numerical errors in comput-
ing the actual aircraft positions. The authors are currently
conducting a formal analysis of the CPR protocol.

The CPR algorithm divides the earth surface in indexed
zones. Each zone is itself divided in smaller and equally
sized sections called bins. Each zone contains 217 bins that
are enumerated from 0 to 131072. Each position on the earth
surface is uniquely identified (with a precision of 5.1 meters)
with a latitude zone, a latitude bin, a longitude zone and a
longitude bin. The idea of the CPR encoding process is that
the zone number remains constant for a long period of time,
thus just the bin numbers are needed to be transmitted in the
ADS-B messages. There are two kinds of encoding which
are based on two different subdivisions of the earth in zones,
called even and odd encoding.

In the decoding phase, if the receiver already knows the
zone number and receives a bin number (encoded either
in the even or in the odd way), the receiver can uniquely
decode it obtaining the original coordinates of the aircraft.
Otherwise, if the receiver does not know in which zone the
aircraft is situated, the decoding algorithm uses a property of

the encoding algorithm that relates even and odd encoding
to find the zone number. This property (roughly) states that
the zone number is linearly proportional to the difference
between the odd and the even bin encoding. Thus, given
an even and an odd encoding for an initial coordinate, it is
possible to retrieve the zone number, and then the original
position.

PRECISA was used to examine the roundoff error for the
following function lat zone , which given the odd and even
encoding for a latitude coordinate, computes the zone index
number. Variables lat0 and lat1 denote even and odd encod-
ings respectively, and have initial values in [0,131072].

lat zone(lat0, lat1) =
fl̃oor(((59 ∗̃ lat0 −̃60 ∗̃ lat1) /̃131072) +̃0.5)

For this function, PRECISA computes the error enclosure
[−1.00001,1.00001] in 0.36 seconds performing 19 splits
on the initial domain, and assuming the original program
uses single-precision numbers. The error is wide due to the
use of fl̃oor , which is intrinsically unstable. In fact a small
perturbation on the input can provoke an error of one unit
in the output. This means that, in the worst case, the CPR
decoding function can return a latitude that is different from
the original one by the size of one entire zone, which is
approximately 600 kilometers.

5.3 Case study: Conflict Detection Algorithm
CD2D is the horizontal component of a formally verified
pairwise state-based conflict detection algorithm developed
at NASA (Galdino et al. 2007). The algorithm considers two
aircraft, the ownship and the intruder. It uses a relative coor-
dinate system where the intruder is the center of the system
and the position and velocity of the ownship are represented
by vectors s = (sx, sy) and v = (vx, vy), respectively. In air
traffic management, a loss of separation occurs when two
aircraft are flying too close to each other with respect to a
minimum distance. A conflict is defined as a predicted loss
of separation within a lookahead time.

In the CD2D algorithm, the function τ is used to compute
the time to closest point of horizontal approach between two
aircraft within a lookahead time T . It is defined as follows.

τ(sx, sy, vx, vy, T) = min(max(0, −̃(sx ∗̃ vx +̃ sy ∗̃ vy)),
T ∗̃(vx ∗̃ vx +̃ vy ∗̃ vy))

The initial values for the variables are set to sx, sy ∈
[−100,100], vx, vy ∈ [−600,600] and T = 0.083 hours.
PRECISA computes an error enclosure of [−7.8 ⋅ 10−3,7.8 ⋅
10−3] for τ in 9.58 seconds by using 947 domain splits in
the branch-and-bound. In (Goodloe et al. 2013), the authors
manually calculated an upper bound of 2−21 ≃ 4.76 ⋅ 10−7

for the roundoff error of τ , and checked it with the help
of the Gappa (de Dinechin et al. 2011) tool. The numerical
error enclosure computed by PRECISA is larger than the

8 2016/10/12

one found in (Goodloe et al. 2013), but the latter was not
computed in an automatic way and, hence, can be prone to
human error.

6. Related work
Several different techniques can be found in the literature to
estimate round-off error of floating-point computations.

Some semantics-based approaches have been proposed
with this aim. In (Goubault 2001), a concrete floating-point
semantics is given for basic arithmetic operations, which is
then abstracted in order to give information about the pos-
sible loss of precision due to round-off errors using interval
and affine arithmetic. In (Martel 2002, 2006), a family of se-
mantics for floating-point operations is proposed. Each ele-
mentary operation is associated with a first-order term that is
then combined to produce higher order error terms. In (Mar-
tel 2005), different semantics based on interval, stochastic,
automatic differentiation, and error series methods are in-
troduced and compared with the semantics in (Martel 2002,
2006).

RangeLab (Martel 2011) is a tool that determines the
range of the roundoff errors for elementary arithmetic ex-
pression (sum, multiplication, division, square root). Unlike
PRECISA, RangeLab is able to deal with (stable) loops by
using a widening operator (Cousot and Cousot 1977). It uses
interval arithmetic to approximate the error bounds. Interval
arithmetic is a simple enclosure domain that performs well
in several cases, but can be very imprecise, leading to exces-
sively large over-approximations (for example, when exam-
ining subtraction). The branch-and-bound approach that is
proposed in this paper is able to mitigate some of the interval
analysis accuracy problems leading to more precise results.
Additionally, RangeLab does not generate a certificate for
the computed bounds, and it is less precise than the method
proposed in this paper on the semantics of conditionals. In
particular, RangeLab does not distinguish the errors that dif-
ferent flows produce and does not soundly handle unstable
tests.

In (Ayad and Marché 2010; Boldo and Filliâtre 2007;
Boldo and Marché 2011), the authors propose a methodol-
ogy to formally verify C programs annotated with infor-
mation about the maximum floating-point error allowed.
Verification conditions (VCs) are automatically generated
by using Caduceus (Filliâtre and Marché 2004) or Fra-
maC (Kirchner et al. 2015) and then discharged either in
Coq (Bertot and Castéran 2004), Gappa (de Dinechin et al.
2011) or by means of a suitable SMT solver. In (Marché
2014), the aforementioned method is applied to an indus-
trial case study, whilst PRECISA being still a proof of con-
cept implementation has not been applied yet to a program
of comparable size. The empirical study in (Marché 2014)
highlights the fact that specifying annotations and proving
properties about floating-point numbers on a complex C pro-
gram requires high level of expertise on floating-point com-

putations and interactive theorem proving. On the contrary,
PRECISA does not require such level of expertise since it
automatically provides a certificate for the soundness of the
error bounds.

In (Darulova and Kuncak 2014), the developer writes the
program with real numbers in mind in a functional subset of
Scala, and then specifies the desired precision for the com-
putations. The proposed tool automatically finds (if it exists)
the finite-precision format needed to meet the precision re-
quirements. Then, the input program is compiled in one that
uses the computed finite precision. To do so, for each sup-
ported finite precision representation (fixed or floating-point,
extended, double or single precision), a set of VCs over reals
is automatically generated and proved in Z3 (de Moura and
Bjørner 2008) by using a novel combination of SMT solvers
with affine and interval arithmetic. The least restrictive rep-
resentation that satisfies the precision specification is cho-
sen. Several approximations on the program are applied in
order to meet the limitation of Z3, which for complex func-
tions is not able to give an answer in reasonable time.

Fluctuat (Goubault and Putot 2006) is a commercial an-
alyzer of numerical programs based on abstract interpreta-
tion (Cousot and Cousot 1977). It can be considered as the
state of the art tool for static analysis of floating-point er-
ror bounds. Fluctuat accepts as input a C (or ADA) pro-
gram with annotations about input bound and uncertain-
ties, and it produces bounds for the round-off error of the
program expressions decomposed with respect to its prove-
nance. PRECISA shares nice features with Fluctuat such
as the sound treatment of unstable tests, the modularity of
the analysis, and the automation in the generation of error
bounds. There are, nevertheless, some differences between
these approaches. On the one hand, Fluctuat provides sup-
port for iterative programs and uses a zonotopic abstract do-
main (Goubault and Putot 2011) that is based on affine arith-
metic (de Figueiredo and Stolfi 2004) which is shown to be
more precise than interval arithmetic. On the other hand, in
Fluctuat no certificate is provided for the computed bounds,
thus, trusting the results of the analysis implies trusting the
implementation of the tool.

Gappa (de Dinechin et al. 2011) automatically computes
enclosures for floating-point expression by using interval
arithmetic, and it generates a proof of the results that can
be checked in the Coq proof assistant. The main drawback
of this approach is that it requires some level of expertise
from the user, e.g., hints on the proof must be provided to
Coq, and, furthermore, the Gappa specification correspond-
ing to the C program to verify is not automatically gener-
ated. In the presented work, these problems are addressed by
implementing a fully-automatic analysis that automatically
generate bounds for the floating-point computations and the
correspondent proofs that can be discharged directly in PVS
without assistance from the user.

9 2016/10/12

In (Ramananandro et al. 2016), the authors developed
VCFloat: a framework to automatically compute round-off
error terms of C expressions with the correspondent Coq
correctness proof. Similar to the current approach, VCFloat
uses interval arithmetic to approximate the error bounds and
generates validity conditions on the expressions. In order to
obtain a more precise analysis, the approach presented in
this paper additionally accumulates path conditions, gener-
ating different bounds depending on the control flow. Fur-
thermore, (Ramananandro et al. 2016) computes the ulp by
using the maximum exponent allowed in the floating-point
representation, while the approach presented here computes
the actual exponent for the maximum absolute value in the
expression bounds. In this way, tighter bounds are obtained.

The tool FPTaylor (Solovyev et al. 2015) expresses
floating-point expressions by means of Symbolic Taylor Ex-
pansions and applies a branch-and-bound global optimiza-
tion technique to obtain tight bounds for round-off errors. In
addition, FPTaylor emits certificates for HOL Light (Harri-
son 2009). Unlike PRECISA, it provides support for trigono-
metric functions. However, FPTaylor does not handle condi-
tionals and it is not able to deal with discontinuous functions
such as absolute value or floor.

7. Conclusion and future work
In this paper, PRECISA, a static analyzer for estimating
round-off errors of floating-point computations is defined.
The presented analyzer is a prototype tool which is fully
automatic and generates PVS certificates that ensure the
correctness of the error bounds with respect to the floating-
point IEEE-754 standard. That is, the computed estimations
are always sound over-approximations of the possible round-
off error that can occur in the program.

The analysis is defined in a compositional way, which
is a highly desirable characteristic of an analyzer, since it
enables an incremental, modular, and efficient analysis. This
makes the presented tool suitable to be used also with partial
programs.

PRECISA is parametric with respect to the chosen floating-
point precision (single and double are implemented at the
moment) and it supports all the to-the-nearest rounding
modalities introduced in the IEEE-754 standard. In the fu-
ture, in order to improve the precision of the round-off error
approximation, PRECISA will also support mixed floating-
point precision and integer numbers and operations.

An interesting advantage of the analysis presented in this
work is the sound treatment of unstable tests. In the lit-
erature, the stable test hypothesis is widely used to deal
with this problem. However, this hypothesis may yield un-
sound results when the real flow does not correspond to the
floating-point one. To the best of the authors’ knowledge, the
only other technique which is sound with respect to unstable
tests is the one presented in (Goubault and Putot 2013) for
the Fluctuat analyzer.

In the implementation of PRECISA, the semantics-based
analysis and the PVS floating-point formalization are com-
pletely independent from the numerical evaluation of the
error expression. This means that different techniques can
be used at this point for the evaluation, depending on the
type of the considered expression and on the desired preci-
sion/efficiency trade-off.

In this work, a branch-and-bound algorithm based on in-
terval arithmetic is proposed to evaluate the symbolic error
expression. Interval arithmetic is a simple enclosure domain
which performs well in several cases, but can lead to exces-
sively large over-approximation in others (for example sub-
traction). Global search techniques, like branch-and-bound,
help mitigate these problems, leading to tighter enclosures.
Other enclosure domains have been proposed in the liter-
ature, such as affine arithmetics (de Figueiredo and Stolfi
2004), Polyhedra (Cousot and Halbwachs 1978), and Bern-
stein polynomials (Lorentz 1986) which, in some cases, can
lead to more accurate results or can converge in a fewer num-
ber of steps compared to interval arithmetic. The authors
plan to instantiate the generic branch-and-bound algorithm
of (Narkawicz and Muñoz 2013) with specific functions for
the aforementioned domains, in order to obtain better ap-
proximations.

In the future, the branch-and-bound algorithm will also
be enhanced in order to consider the conditions generated
by the semantics. The main idea behind this improvement
is that the subdomains that do not meet the conditions have
to be discarded and they do not have to participate in the
final computation of the error enclosure. Thus, the final
result is obtained by propagating the information coming
from the intervals that satisfy the conditions. Only in the
case in which the branch-and-bound finds an error, i.e., a
division by 0, that is not explicitly avoided by the conditions
will it propagate the error to the final results. The output of
the algorithm will be an enclosure for the error expression
and the intervals in which this enclosure holds. The use of
constraint programming will also be explored to simplify
the input of the branch-and-bound algorithm. By using these
techniques, an improvement in the efficiency is expected,
since the input of the branch-and-bound will be a simplified
expression.

The main drawback of the presented approach is that it
generates exceedingly large certificates for programs with
nested conditionals. In fact, the number of conditional error
bounds grows exponentially in these cases. Due to the un-
stable tests handling, four different conditional error bounds
are generated for each conditional. In order to deal with this
problem, abstraction on the domain C should be considered
in the future. In this way, the number of elements in the se-
mantics will be reduced and consequently also the size of the
generated PVS certificate.

The support of recursion and loops will also be consid-
ered by defining abstractions on the domain of conditional

10 2016/10/12

error bounds and widening operators on these domains. An-
other interesting future direction is to use the ideas of this
paper to automatically generate ACSL annotations about
round-off errors for C programs. The annotated program
could then be automatically verified in a tool like FramaC.
Finally, PRECISA will be extended to support a larger set of
functions, such as trigonometric functions, which are widely
used in safety-critical systems of interest to NASA.

References
A. Ayad and C. Marché. Multi-prover verification of floating-point

programs. In Proceedings of the 5th International Joint Con-
ference on Automated Reasoning, IJCAR 2010, volume 6173 of
Lecture Notes in Computer Science, pages 127–141. Springer,
2010. doi: 10.1007/978-3-642-14203-1 11. URL http://dx.

doi.org/10.1007/978-3-642-14203-1_11.

Y. Bertot and P. Castéran. Interactive Theorem Proving and Pro-
gram Development - Coq’Art: The Calculus of Inductive Con-
structions. Texts in Theoretical Computer Science. An EATCS
Series. Springer, 2004. ISBN 978-3-642-05880-6. doi: 10.1007/
978-3-662-07964-5. URL http://dx.doi.org/10.1007/

978-3-662-07964-5.

S. Boldo and J. Filliâtre. Formal verification of floating-point
programs. In 18th IEEE Symposium on Computer Arithmetic
(ARITH-18 2007), pages 187–194. IEEE Computer Society,
2007. doi: 10.1109/ARITH.2007.20. URL http://dx.doi.

org/10.1109/ARITH.2007.20.

S. Boldo and C. Marché. Formal verification of numerical pro-
grams: From C annotated programs to mechanical proofs. Math-
ematics in Computer Science, 5(4):377–393, 2011. doi: 10.1007/
s11786-011-0099-9. URL http://dx.doi.org/10.1007/

s11786-011-0099-9.

S. Boldo and C. A. Muñoz. A High-Level Formalization of
Floating-Point Numbers in PVS. Technical Report CR-2006-
214298, NASA, 2006.

P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lat-
tice Model for Static Analysis of Programs by Construction or
Approximation of Fixpoints. In Proceedings of the 4th ACM
SIGACT-SIGPLAN symposium on Principles of programming
languages, POPL 1977, pages 238–252. ACM, 1977. doi: 10.
1145/512950.512973. URL http://doi.acm.org/10.1145/

512950.512973.

P. Cousot and N. Halbwachs. Automatic Discovery of Linear
Restraints Among Variables of a Program. In Proceedings of
Fifth ACM Symp. Principles of Programming Languages, pages
84–96, 1978.

E. Darulova and V. Kuncak. Sound compilation of reals. In Pro-
ceedings of the 41st Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2014,
pages 235–248. ACM, 2014. doi: 10.1145/2535838.2535874.
URL http://doi.acm.org/10.1145/2535838.2535874.

F. de Dinechin, C. Lauter, and G. Melquiond. Certifying the
floating-point implementation of an elementary function using
Gappa. IEEE Trans. Computers, 60(2):242–253, 2011. doi:
10.1109/TC.2010.128. URL http://dx.doi.org/10.1109/

TC.2010.128.

L. H. de Figueiredo and J. Stolfi. Affine arithmetic: Concepts and
applications. Numerical Algorithms, 37(1-4):147–158, 2004.
doi: 10.1023/B:NUMA.0000049462.70970.b6. URL http://

dx.doi.org/10.1023/B:NUMA.0000049462.70970.b6.

L. de Moura and N. Bjørner. Z3: an efficient SMT solver. In
Proceedings of the 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS
2008, volume 4963 of Lecture Notes in Computer Science, pages
337–340. Springer, 2008. doi: 10.1007/978-3-540-78800-3 24.
URL http://dx.doi.org/10.1007/978-3-540-78800-3_

24.

J. C. Filliâtre and C. Marché. Multi-prover verification of C pro-
grams. In Proceedings of the 6th International Conference
on Formal Engineering Methods, ICFEM 2004, volume 3308
of Lecture Notes in Computer Science, pages 15–29. Springer,
2004. doi: 10.1007/978-3-540-30482-1 10. URL http://dx.

doi.org/10.1007/978-3-540-30482-1_10.

A. Galdino, C. Muñoz, and M. Ayala. Formal verification of an
optimal air traffic conflict resolution and recovery algorithm. In
D. Leivant and R. de Queiroz, editors, Proceedings of the 14th
Workshop on Logic, Language, Information and Computation,
volume 4576 of Lecture Notes in Computer Science, pages 177–
188, Rio de Janeiro, Brazil, July 2007. Springer-Verlag.

A. Goodloe, C. A. Muñoz, F. Kirchner, and L. Correnson. Ver-
ification of numerical programs: From real numbers to float-
ing point numbers. In NASA Formal Methods, 5th Interna-
tional Symposium, NFM 2013, Moffett Field, CA, USA, May
14-16, 2013. Proceedings, volume 7871 of Lecture Notes in
Computer Science, pages 441–446. Springer, 2013. doi: 10.
1007/978-3-642-38088-4 31. URL http://dx.doi.org/10.

1007/978-3-642-38088-4_31.

E. Goubault. Static analyses of the precision of floating-point
operations. In Proceedings of the 8th International Symposium
on Static Analysis, SAS 2001, volume 2126 of Lecture Notes
in Computer Science, pages 234–259. Springer, 2001. doi:
10.1007/3-540-47764-0 14. URL http://dx.doi.org/10.

1007/3-540-47764-0_14.

E. Goubault and S. Putot. Static analysis of numerical algorithms.
In Proceedings of the 13th International Symposium on Static
Analysis, SAS 2006, volume 4134 of Lecture Notes in Computer
Science, pages 18–34. Springer, 2006. doi: 10.1007/11823230
3. URL http://dx.doi.org/10.1007/11823230_3.

E. Goubault and S. Putot. Static analysis of finite precision
computations. In Proceedings of the 12th International Con-
ference on Verification, Model Checking, and Abstract Inter-
pretation, VMCAI 2011, volume 6538 of Lecture Notes in
Computer Science, pages 232–247. Springer, 2011. doi: 10.
1007/978-3-642-18275-4 17. URL http://dx.doi.org/10.

1007/978-3-642-18275-4_17.

E. Goubault and S. Putot. Robustness analysis of finite preci-
sion implementations. In Proceedings of the 11th Asian Sym-
posium on Programming Languages and Systems APLAS 2013,
volume 8301 of Lecture Notes in Computer Science, pages 50–
57. Springer, 2013. doi: 10.1007/978-3-319-03542-0 4. URL
http://dx.doi.org/10.1007/978-3-319-03542-0_4.

J. Harrison. A machine-checked theory of floating point arithmetic.
In Proceedings of the 12th International Conference on Theorem

11 2016/10/12

http://dx.doi.org/10.1007/978-3-642-14203-1_11
http://dx.doi.org/10.1007/978-3-642-14203-1_11
http://dx.doi.org/10.1007/978-3-662-07964-5
http://dx.doi.org/10.1007/978-3-662-07964-5
http://dx.doi.org/10.1109/ARITH.2007.20
http://dx.doi.org/10.1109/ARITH.2007.20
http://dx.doi.org/10.1007/s11786-011-0099-9
http://dx.doi.org/10.1007/s11786-011-0099-9
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/2535838.2535874
http://dx.doi.org/10.1109/TC.2010.128
http://dx.doi.org/10.1109/TC.2010.128
http://dx.doi.org/10.1023/B:NUMA.0000049462.70970.b6
http://dx.doi.org/10.1023/B:NUMA.0000049462.70970.b6
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-30482-1_10
http://dx.doi.org/10.1007/978-3-540-30482-1_10
http://dx.doi.org/10.1007/978-3-642-38088-4_31
http://dx.doi.org/10.1007/978-3-642-38088-4_31
http://dx.doi.org/10.1007/3-540-47764-0_14
http://dx.doi.org/10.1007/3-540-47764-0_14
http://dx.doi.org/10.1007/11823230_3
http://dx.doi.org/10.1007/978-3-642-18275-4_17
http://dx.doi.org/10.1007/978-3-642-18275-4_17
http://dx.doi.org/10.1007/978-3-319-03542-0_4

Proving in Higher Order Logics, TPHOLs ’99, pages 113–130.
Springer-Verlag, 1999. ISBN 3-540-66463-7. URL http:

//dl.acm.org/citation.cfm?id=646526.694890.

J. Harrison. HOL light: An overview. In Proceedings of the
22nd International Conference on Theorem Proving in Higher
Order Logics, TPHOLs 2009, volume 5674 of Lecture Notes in
Computer Science, pages 60–66. Springer, 2009. doi: 10.1007/
978-3-642-03359-9 4. URL http://dx.doi.org/10.1007/

978-3-642-03359-9_4.

F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski. Frama-c: A software analysis perspective. For-
mal Aspects of Computing, 27(3):573–609, 2015. doi: 10.1007/
s00165-014-0326-7. URL http://dx.doi.org/10.1007/

s00165-014-0326-7.

G. G. Lorentz. Bernstein Polynomials. Chelsea Publishing Com-
pany, 1986.

C. Marché. Verification of the functional behavior of a floating-
point program: An industrial case study. Science of Computer
Programming, 96:279–296, 2014. doi: 10.1016/j.scico.2014.04.
003. URL http://dx.doi.org/10.1016/j.scico.2014.

04.003.

M. Martel. Propagation of roundoff errors in finite precision
computations: A semantics approach. In Proceedings of the
11th European Symposium on Programming Languages and
Systems, ESOP 2002, volume 2305 of Lecture Notes in Com-
puter Science, pages 194–208. Springer, 2002. doi: 10.1007/
3-540-45927-8 14. URL http://dx.doi.org/10.1007/

3-540-45927-8_14.

M. Martel. An overview of semantics for the validation of nu-
merical programs. In Proceedings of the 6th International Con-
ference on Verification, Model Checking, and Abstract Interpre-
tation, VMCAI 2005, volume 3385 of Lecture Notes in Com-
puter Science, pages 59–77. Springer, 2005. ISBN 3-540-24297-
X. doi: 10.1007/978-3-540-30579-8 4. URL http://dx.doi.

org/10.1007/978-3-540-30579-8_4.

M. Martel. Semantics of roundoff error propagation in finite
precision calculations. Higher-Order and Symbolic Computa-
tion, 19(1):7–30, 2006. URL http://dx.doi.org/10.1007/

s10990-006-8608-2.

M. Martel. RangeLab: A static-analyzer to bound the accuracy of
finite-precision computations. In 13th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing,
SYNASC 2011, pages 118–122. IEEE Computer Society, 2011.
doi: 10.1109/SYNASC.2011.52. URL http://dx.doi.org/

10.1109/SYNASC.2011.52.

A. Narkawicz and C. A. Muñoz. A formally verified generic
branching algorithm for global optimization. In Revised Se-
lected Papers of the 5th International Conference on Verified
Software: Theories, Tools, Experiments,VSTTE 2013, volume
8164 of Lecture Notes in Computer Science, pages 326–343.
Springer, 2013. doi: 10.1007/978-3-642-54108-7 17. URL
http://dx.doi.org/10.1007/978-3-642-54108-7_17.

S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification
system. In D. Kapur, editor, 11th International Conference on
Automated Deduction (CADE), volume 607 of Lecture Notes in
Artificial Intelligence, pages 748–752, Saratoga, NY, June 1992.
Springer-Verlag.

T. Ramananandro, P. Mountcastle, B. Meister, and R. Lethin. A
unified coq framework for verifying C programs with floating-
point computations. In Proceedings of the 5th ACM SIGPLAN
Conference on Certified Programs and Proofs, CPP 2016, pages
15–26. ACM, 2016. doi: 10.1145/2854065.2854066. URL
http://doi.acm.org/10.1145/2854065.2854066.

A. Solovyev, C. Jacobsen, Z. Rakamaric, and G. Gopalakrish-
nan. Rigorous estimation of floating-point round-off errors with
symbolic taylor expansions. In Proceedings of the 20th In-
ternational Symposium on Formal Methods, FM 2015, volume
9109 of Lecture Notes in Computer Science, pages 532–550.
Springer, 2015. doi: 10.1007/978-3-319-19249-9 33. URL
http://dx.doi.org/10.1007/978-3-319-19249-9_33.

D. Stevenson. A proposed standard for binary floating-point arith-
metic. IEEE Computer, 14(3):51–62, 1981. doi: 10.1109/
C-M.1981.220377. URL http://dx.doi.org/10.1109/

C-M.1981.220377.

12 2016/10/12

http://dl.acm.org/citation.cfm?id=646526.694890
http://dl.acm.org/citation.cfm?id=646526.694890
http://dx.doi.org/10.1007/978-3-642-03359-9_4
http://dx.doi.org/10.1007/978-3-642-03359-9_4
http://dx.doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1007/s00165-014-0326-7
http://dx.doi.org/10.1016/j.scico.2014.04.003
http://dx.doi.org/10.1016/j.scico.2014.04.003
http://dx.doi.org/10.1007/3-540-45927-8_14
http://dx.doi.org/10.1007/3-540-45927-8_14
http://dx.doi.org/10.1007/978-3-540-30579-8_4
http://dx.doi.org/10.1007/978-3-540-30579-8_4
http://dx.doi.org/10.1007/s10990-006-8608-2
http://dx.doi.org/10.1007/s10990-006-8608-2
http://dx.doi.org/10.1109/SYNASC.2011.52
http://dx.doi.org/10.1109/SYNASC.2011.52
http://dx.doi.org/10.1007/978-3-642-54108-7_17
http://doi.acm.org/10.1145/2854065.2854066
http://dx.doi.org/10.1007/978-3-319-19249-9_33
http://dx.doi.org/10.1109/C-M.1981.220377
http://dx.doi.org/10.1109/C-M.1981.220377

	Introduction
	Floating-Point Round-off Error Formalization
	Static Analysis for Round-off Errors
	PRECISA: An Analyzer for Estimating Certified Roundoff Errors
	Case Studies and Experimental Results
	A simple comparison with Fluctuat
	Case study: Compact Position Reporting
	Case study: Conflict Detection Algorithm

	Related work
	Conclusion and future work

