
Affine Arithmetic and Applications to
Real-Number Proving

Mariano M. Moscato1, César A. Muñoz2, and Andrew P. Smith1

1 National Institute of Aerospace, Hampton VA 23666, USA,
{mariano.moscato, andrew.smith}@nianet.org,

2 NASA Langley Research Center, Hampton VA 23681, USA,
cesar.a.munoz@nasa.gov

Abstract. Accuracy and correctness are central issues in numerical
analysis. To address these issues, several self-validated computation meth-
ods have been proposed in the last fifty years. Their common goal is to
provide rigorously correct enclosures for calculated values, sacrificing a
measure of precision for correctness. Perhaps the most widely adopted
enclosure method is interval arithmetic. Interval arithmetic performs well
in a wide range of cases, but often produces excessively large overestima-
tions, unless the domain is reduced in size, e.g., by subdivision. Many ex-
tensions of interval arithmetic have been developed in order to cope with
this problem. Among them, affine arithmetic provides tighter estimations
by taking into account linear correlations between operands. This paper
presents a formalization of affine arithmetic, written in the Prototype
Verification System (PVS), along with a formally verified branch-and-
bound procedure implementing that model. This procedure and its cor-
rectness property enables the implementation of a PVS strategy for auto-
matically computing upper and lower bounds of real-valued expressions
that are provably correct up to a user-specified precision.

1 Introduction

Formal verification of safety-critical cyber-physical systems often requires prov-
ing formulas involving real-valued computations. At NASA, examples of such
verification efforts include formally verified algorithms and operational concepts
for the next generation of air traffic management systems [6, 16, 19]. Provably
correct real-valued computations are also essential in areas such as analysis of
floating point programs [1–3,7], verification of numerical algorithms [9,22], and
in the formalization of mathematical results such as Kepler conjecture [8].

In general, the exact range of a nonlinear function of one or more variables
over an interval domain cannot be determined in finite time. Enclosure methods
are designed to provide sound intervals that are guaranteed to include, but may
however overestimate, the true range of a nonlinear function over a bounded
domain. More formally, given a function f : Rm → R, an interval-valued function
F : IRm → IR is obtained, where IR denotes the set of closed non-empty real
intervals, such that for all V ∈ IRm

v ∈ V =⇒ f(v) ∈ F (V) . (1)

Arithmetic may be performed on intervals, by providing definitions for el-
ementary operators, logarithmic and trigonometric functions, and other real-
valued functions that satisfy Formula (1). For example, if a = [a, a],b = [b, b] ∈
IR, then a + b = [a+ b, a+ b]. Such definitions yield an enclosure method called
interval arithmetic [14]. A natural interval extension E of any real expression
e is then obtained by recursively replacing in e each constant by an interval
containing the constant, each variable by its interval range, and each operator
and function by their interval equivalents. Formalizations of interval arithmetic
are available in several interactive theorem provers [4, 13, 21]. These formaliza-
tions also include proof strategies for performing provably correct real-valued
computations.

While correct, enclosure methods often provide imprecise calculations of ex-
pressions involving real-valued functions due to the fact that approximation
errors quickly accumulate. To mitigate this problem, enclosure methods often
rely on the following property, which must be satisfied by any interval-valued
function F . For all U,V ∈ IRm,

U ⊆ V =⇒ F (U) ⊆ F (V) . (2)

Formula (2) enables the use of domain subdivision techniques, whereby the start-
ing domain is recursively subdivided into smaller box sub-domains, on which the
enclosure methods provide suitable precision. Branch and bound is a recursive
method for computing rigorous approximations that combines domain subdivi-
sion with pruning strategies. These strategies avoid unnecessary computations
that do not improve already computed bounds. A formally verified branch and
bound algorithm for generic enclosure methods is presented in [18].

It is well-known that enclosure methods such as interval arithmetic suffer
from the dependency problem. This problem occurs when a real variable appears
multiple times in an expression. In this case, large over-approximations may oc-
cur when each variable is treated as an independent interval. The dependency
problem can be reduced by using enhanced data structures that, among other
things, keep track of variable dependencies. In the case of polynomial and ra-
tional functions, a method based on Bernstein polynomials [12], provide better
precision than interval arithmetic at the cost of increased computational time.
Multivariate Bernstein polynomials and proof-producing strategies for rigorous
approximation based on their properties are available in PVS [17].

The use of a particular enclosure method depends on a trade-off between
precision and efficiency. At one extreme, interval arithmetic is computationally
efficient but may produce imprecise bounds. At the other extreme, Bernstein
polynomials offer precise bounds but they are computationally expensive. Affine
arithmetic [5] is an enclosure method situated between these two extremes. By
taking into account linear correlations between operands, affine arithmetic pro-
duces better estimates than interval arithmetic at a computational cost that is
smaller than Bernstein polynomials.

This paper presents a deep embedding of affine arithmetic in the Prototype
Verification System (PVS) [20] that includes addition, subtraction, multiplica-

2

tion, and power operation on variables. The embedding is used in an instantia-
tion of a generic branch and bound algorithm [18] that yield a provably correct
procedure for computing enclosures of polynomials with variables in interval do-
mains. The formally verified branch and bound procedure is the foundation of a
PVS proof strategy for mechanically and automatically finding lower and upper
bounds for the minimum and maximum values of multivariate polynomials on a
bounded domain.

The formal development presented in this paper is available as part of the
NASA PVS Library.3 All theorems presented in this paper are formally verified
in PVS. For readability, standard mathematical notation is used throughout
this paper. The reader is referred to the formal development for implementation
details.

2 Affine Arithmetic

Affine arithmetic is a refinement of interval arithmetic that attempts to reduce
the dependency problem by tracking linear dependencies between repeated vari-
able instances and thereby retaining simple shape information. It is based on
the idea that any real value a can be represented by an affine form â, defined as

â
def
= a(0) +

∞∑
i=1

a(i)εi , (3)

where εi ∈ [−1, 1], and a(j) ∈ R, with j > 0. It is assumed that the set of indices
j such that aj 6= 0 is finite. Henceforth, `â denotes the maximum element of that
set or 0 if the set is empty. Each εi stands for an unknown error value introduced
during the calculation of a. An affine form grows symmetrically around its central
value a(0). Each a(i) represents the weight that the corresponding εi has on the
overall uncertainty of a. The coefficients a(i) are called the partial deviations of
the affine form.

There is a close relationship between affine forms and intervals. Given an
affine form â as in Formula (3), it is clear that the value a is included in the
interval

[â]
def
=

[
a(0) −

`â∑
i=1

|a(i)|, a(0) +

`â∑
i=1

|a(i)|

]
. (4)

In fact, for every real value a′ in [â], there exists an assignment N of values from
[−1, 1] to each εi in â such that a′ = â(N), where

â(N)
def
= a(0) +

`â∑
i=1

a(i)N(i) . (5)

As stated in [23], the semantics of affine arithmetic rely on the existence of a
single N for which a′ is equal to the ideal real value a. This property is called
the fundamental invariant of affine arithmetic.

3 http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/.

3

Conversely, any given interval I = [u, v] is equivalent to the affine form

VIk
def
=
v + u

2
+
v − u

2
εk , (6)

where all the partial deviations, except for the k-th coefficient, are equal to 0.
Arithmetic operations on affine forms can be defined. Operations that are

affine combinations of their arguments are called affine operations. In contrast
to affine operations, non-affine operations may require the addition of noise sym-
bols that do not appear in their operands. For simplicity, variables are indexed
by positive natural numbers. It is assumed that the number of variables in any
expression is at most m. Thus, the first m noise symbols are reserved for vari-
ables. Using this convention, the affine form of variable xm ranging over I is
conveniently defined as VIm. An index k > max(m, `â) is referred to as a fresh
index with respect to â.

Addition and multiplication of scalars, as unrestricted subtractions and ad-
ditions, are affine operations. They are defined as shown next. Given an affine
form â = a(0) +

∑`â
i=1 a(i)εi for a as in Formula (3) and c ∈ R,

addc(â)
def
= c+ a(0) +

`â∑
i=1

a(i)εi ,

mulc(â)
def
= c · a(0) +

`â∑
i=1

c · a(i)εi .

(7)

The negation operation is defined as neg(â)
def
= mul−1(â).

Given another affine form b̂ = b(0) +
∑`

b̂
i=1 b(i)εi for some real value b,

add(â, b̂)
def
=
(
a(0) + b(0)

)
+

max(`â,`b̂)∑
i=1

(
a(i) + b(i)

)
εi . (8)

The subtraction operation is defined as sub(â, b̂)
def
= add(â, neg(̂b)).

Whilst affine operations can be performed without the introduction of ad-
ditional error terms, i.e., without any extra overestimation, a suitable rigorous
affine approximation must be used for each non-affine operation. Next, defini-
tions for multiplication and power operation on single variables (instead of ar-
bitrary expressions) are presented. Multiplication of two affine forms is defined
as

mulk(â, b̂)
def
= a(0)b(0) +

max(`â,`b̂)∑
i=1

(a(0)b(i) +a(i)b(0))εi+ εk

`â∑
i=1

|a(i)|
`
b̂∑

i=1

|b(i)| , (9)

where k is a fresh noise index with respect to â and b̂, i.e., k > max(m, `â, `b̂).
Even though the power operation can be implemented by reducing it to suc-

cessive multiplications, the following definition gives a better performing alterna-
tive for the case where a single variable is raised to a power. Given an elementary

4

affine form â = a(0) + a(m)εm for a real value ranging over the interval [â] and a
collection of n− 2 fresh noise indices I with respect to â,

powI(â, n)
def
=

1 if n = 0,

an(0) + n an−1
(0) a(m)εm +

n∑
k=2

(
n
k

)
an−k(0) ak(m)εIk−2

otherwise.
(10)

As in the case of interval arithmetic, the affine arithmetic operations satisfy
containment properties. However, it is not generally true that c ∈ [â] and d ∈ [̂b]

implies c ◦ d ∈ [â ◦ b̂], for an arbitrary affine operation ◦. The correctness of the
containment properties depends on a careful management of the noise symbols.

In general, the implementation of non-affine operations such as transcenden-
tal functions requires a series expansion with a rigorous error term. A Chebyshev
approximation is well-suited and is sometimes used.

3 Formalization in PVS

In PVS, an affine form α̂, defined as in Formula (3), is represented by a record
type that holds the central value a(0) and the list of coefficients a(1), . . . , a(n).
Since noise terms may be common to several affine forms, they are represented
by an independent type Noise that denotes a mapping from positive natural
numbers (the noise indices) to values in the interval [−1, 1].

The following lemmas, which are proved in PVS, show the correctness of
the affine arithmetic operations. In particular, they provide sufficient conditions
for the containment properties to hold. For each lemma, the name of the corre-
sponding PVS lemma is included in parentheses.

Lemma 1 (containment interval). Let N be a map of type Noise, a be a
real number, and â be an affine form of a over N, i.e., â (N) = a. Then, a ∈ [â].

Proof. Using Formula (5), it has to be proved that a = a(0) +
∑`â
i=1 a(i)N(i) ∈

[a(0)−
∑`â
i=1 |a(i)|, a(0) +

∑`â
i=1 |a(i)|]. A known property from interval arithmetic

called containment add (formally proved in the development interval arith,
part of the NASA PVS Library) states that u + v ∈ [u1 + v1, u2 + v2], when
u ∈ [u1, u2] and v ∈ [v1, v2]. Then it suffices to show that a(0) ∈ [a(0), a(0)],

which is trivially true, and
∑`â
i=1 a(i)N(i) ∈ [−

∑`â
i=1 |a(i)|,

∑`â
i=1 |a(i)|]. This lat-

ter property can be proved by induction on `â and using containment add. ut

Lemma 2 (containment var). Let N be a map of type Noise, k be a natural
number, I be a real interval, and v ∈ I. There exists a real number b ∈ [−1, 1]
such that VIk (N with [n 7→ b]) = v .

Proof. This lemma is proved by using the definition of VIk in Formula (6). ut

5

Lemma 3 (containment aff un). Let N be a map of type Noise, and a, c be

a pair of real numbers. Given â = a(0) +
∑`â
i=0 a(i)εi, an affine form of a over

N,

neg(â) (N) = −a and addc(â) (N) = c+ a and mulc(â) (N) = c · a .

Proof. The equality addc(â) (N) = c+ a is a trivial consequence of Formula (5)
and Formula (7). Meanwhile, neg(â) (N) = −a and mulc(â) (N) = c · a can be
proved by induction on the length of the partial deviation of â. ut

Lemma 4 (containment aff bin). Let N be a map of type Noise and a, b be

a pair of real numbers. Given â = a(0) +
∑`â
i=0 a(i)εi and b̂ = b(0) +

∑`
b̂
i=0 b(i)εi,

affine forms of a and b, resp., over N, i.e., â (N) = a and b̂ (N) = b,

add(â, b̂) (N) = a+ b and sub(â, b̂) (N) = a− b .

Proof. Both properties can be proved by induction on the sum of the lengths of
the partial deviations of â and b̂. ut

Non-affine operations introduce new noise symbols. The following lemma
states that fresh noise symbols can be soundly added to any affine representation.

Lemma 5 (eval updb no idxs). Let N be a map of type Noise, a be a real
number, and â an affine form of a over N, i.e., â (N) = a. For any collection
{ik}nk=1 of fresh indices with respect to â and b1, . . . , bn real numbers in [−1, 1],

â (N) = â (N with [i1 7→ b1, . . . , in 7→ bn]) .

Proof. The proof proceeds by induction on n. The interesting part is the base
case (n = 1), which is proved by induction on `â. That part of the proof relies
on the fact that i1 is a fresh index with respect to â. ut

Henceforth, the notation Np, where p is a positive natural number, denotes
the map that is equal to N in every index except in indices i > p, where Np(i) =
0.

Lemma 6 (containment mul). Let N be a map of type Noise and a, b be a

pair of real numbers. Given â = a(0) +
∑`â
i=0 a(i)εi and b̂ = b(0) +

∑`
b̂
i=0 b(i)εi,

affine forms of a and b (resp.) over N, for each index p > max(m, `â, `b̂), if

N(p) =
â (Np) b̂ (Np)− a(0)b(0) −

∑max(`â,`b̂)

i=1 (a(0)b(i) + a(i)b(0))N(i)∑`â
i=1 |a(i)|

∑`
b̂
i=1 |b(i)|

,

then mulp(â, b̂) (N) = a · b.

Proof. It can be shown that mulp(â, b̂) (N) = â (Np) · b̂ (Np), by applying arith-
metic manipulations and using Formulas (5) and (9) and the hypothesis on N(p).
By Lemma 5, since p > `â, â (Np)=â (N). Also, if â is an affine form of a over

N, â (N) = a. Then, â (Np) = a. Similarly, b̂ (Np) = b. ut

6

Lemma 7 (containment pow var ac). Let N be a map of type Noise, n be
natural number, a be a real number, and â = a(0) + a(l)εl an affine form of a

over N. Given {ik}n−2
k=0 , a collection of fresh indices with respect to â, if

N(ik) = N(l)k+2 for every k,with 0 ≤ k ≤ n

then pow{ik}n−2
k=0

(â, n) (N) = an .

Proof. The proof proceeds by separating cases according to the definition of
pow{ik}n−2

k=0
(â, n). The case n = 0 is trivial. When n > 0, using Formulas (5)

and (10) and the hypothesis on N(ik), it can be shown that pow{ik}n−2
k=0

(â, n) (N)

is the combinatorial expansion of â (N)
k
. The hypothesis assuring â (N) = a can

be used to conclude the proof. ut

In PVS, the fundamental property of affine arithmetic (Formula (2)) is proved
on formal expressions containing constants, variables, addition, multiplication,
and power operation on variables. Variables are indexed by positive natural num-
bers. A formal expression e represents a real number e by means of an evaluation
function. More precisely, the PVS function evalΓ from formal expressions into
real numbers is recursively defined as follows, where Γ is a map from positive
natural numbers, representing variable indices, into real values.

evalΓ (vi)
def
= Γ (i),where vi represents the i-th variable,

evalΓ (c)
def
= c,where c represents the numerical constant c,

evalΓ (−e)
def
= −evalΓ (e),

evalΓ (e + f)
def
= evalΓ (e) + evalΓ (e),

evalΓ (e − f)
def
= evalΓ (e)− evalΓ (e),

evalΓ (e × f)
def
= evalΓ (e) · evalΓ (e),

evalΓ (en)
def
= evalΓ (e)n .

(11)

Algorithm 1, which is formally defined in PVS, recursively constructs an
affine form of a formal expression e. It has as parameters the formal expression
e containing at most m variables, a collection {Ii}mi=1 of m intervals (one per
variable), and a map that caches affine forms of sub-expressions of e. It returns a
map of all sub-expressions of e, including itself, to affine forms. The cache map
ensures that noise symbol indices are shared among common sub-expressions.
In the algorithm, the notation I[0...k] stands for a collection containing the first
k + 1 indices in I, and [a . . . b] stands for the collection of consecutive indices
from a to b.

The following theorem, which is proved in PVS, states the fundamental the-
orem of affine arithmetic.

Theorem 1. Let e be a formal expression, {Ii}mi=1 be a collection of intervals,
Γ be map from variable indices in e to real numbers such that Γ (i) ∈ Ii, e =

7

1 RE2AF(e, {Ii}mi=1, cache)
2 if e is in cache then return cache;

3 else if e is the variable vj then return cache with [e 7→ V
Ij
j];

4 else
5 do
6 switch e do

// Affine Operations
7 case −e1 return cache with [e 7→ neg(ê1)];
8 case e1 + k or k + e1 return cache with [e 7→ addk(ê1)];
9 case e1 × k or k × e1 return cache with [e 7→ mulk(ê1)];

10 case e1 + e2 return cache with [e 7→ add(ê1, ê2)];
11 case e1 − e2 return cache with [e 7→ sub(ê1, ê2)];

// Non-Affine Operations
12 case e1 × e2 return cache with [e 7→ mulp(ê1, ê2)];

13 case vki
14 if exists some (vk

′
i 7→ powI(V

Ij
j , k)) ∈ cache then

15 if k < k′ then

16 return cache with [e 7→ powI[0...k−2](V
Ij
j , k)];

17 else

18 return cache with [e 7→ powI
⋃
[p...p+k−k′](V

Ij
j , k)];

19 end

20 else return cache with [e 7→ pow[p...p+(k−2)](V
Ij
j , k)];

21 end

22 endsw

23 where k, k′ are constants expressions and e1, e2 are non-constant
expressions and I is a collection of noise indices
and p > max(m, the greatest noise index in cache)
and cache1 = RE2AF(e1,{Ii}mi=1,cache) and ê1 = cache1(e1)
and cache2 = RE2AF(e2,{Ii}mi=1,cache1) and ê2 = cache2(e2);

24 end

25 end
Algorithm 1: Construction of affine forms of all sub-expressions in e

evalΓ (e), and ê = RE2AF(e, {Ij}mj=1, ∅)(e). There exists a map N of type Noise

such that ê (N) = e.

Proof. The proof proceeds by structural induction on e of a more general state-
ment, where the cache map may be non-empty. The proof of that statement uses
the fact that every expression in the cache map is a sub-expression of e. Since
this condition is encoded in the type of the parameter cache, it is guaranteed by
the PVS type checker. The base cases are discharged with Lemmas 2–7. ut

4 Proof Strategy

The motivation for the formalization of affine arithmetic presented in this paper
is not only to verify the correctness of its operations, but more importantly to

8

develop a practical method for performing guaranteed computations inside a
theorem prover. In particular, the following problem is considered.

Given a polynomial expression p with variables x1, . . . , xm ranging over
real intervals {Ii}mi=1, respectively, and a positive natural number n
(called precision) compute an interval enclosure [u, v] for p, i.e., p ∈ [u, v],
that is provably correct up to the accuracy ε = 10−n, i.e., v−max(p) ≤ ε
and min(p)− u ≤ ε.

Using Algorithm 1 and Theorem 1, it is possible to construct an affine form
p̂ of any polynomial expression p. Lemma 1 guarantees that the interval [p̂], as
defined in Formula (4), is a correct enclosure of p. This approach for computing
correct polynomial enclosures can be easily automated in most theorem provers
that support a soundness-preserving strategy language. However, this approach
does not guarantee the quality of the enclosure.

As outlined in the introduction, a way to improve the quality of an enclo-
sure consists in dividing the original range of the variables into smaller inter-
vals and considering the union of all the enclosures computed on these smaller
subdomains. This technique typically yields tighter range enclosures, albeit at
computational cost.

The NASA PVS Library includes the formalization of a branch and bound al-
gorithm that implements domain subdivision on a generic enclosure method [18].
The algorithm, namely simple bandb, can be instantiated with concrete data
types and heuristics for deciding the subdivision and pruning schemas. The in-
stantiation presented here is similar to the one given in [18] using interval arith-
metic. A simplified version of the signature of simple bandb has as parameters
a formal expression e, a domain box for the variables in e, an enclosure method
evaluate, a subdivision schema subdivide, a function combine that combines
results from recursive calls, and an upper bound maxd for the maximum recur-
sion depth. The output of the algorithm is an interval indicating the maximum
and the minimum of the values that the expression e takes over box and addi-
tional information regarding the performance of the algorithm such as number
of subdivisions, maximum recursion depth, and precision of the solution.

Intervals are represented by the data type Interval. The parameter box

is an element of type Box, which is a list of intervals. The abstract data type
RealExpr is used to represent formal expressions such as e. All these types are
available from the development interval arith in the NASA PVS Library. The
parameter evaluate corresponds to a generic enclosure method. In the case of
affine arithmetic, that parameter corresponds to the following function.

Eval(e,box)
def
= [RE2AF(e, box, ∅)(e)] . (12)

The functions that correspond to the parameters subdivide and combine are
defined as in [18]. The former takes as parameter a box and a natural number n,
it returns two boxes, which only differ from the original box in the n-th interval.
That interval is replaced in the first (resp. second) box by the lower (resp. upper)

9

half of the n-th interval in the original box. The latter function is just the union
of two intervals.

The soundness property of simple bandb is expressed in terms of the follow-
ing predicate.

sound?(e, box, I) def
= ∀Γ ∈ box : evalΓ (e) ∈ I . (13)

Corollary 1 in [18] states that when I is the interval returned by simple bandb

applied to e, box, Eval, subdivide, combine, and maxd, three specific properties
suffice to prove sound?(e, box, I). Two of them are properties about the func-
tions subdivide and combine. As they are the same as the interval arithmetic
instantiation of the generic algorithm [18], the proofs of these properties are also
the same. The remaining property is stated below.

∀ box, e : sound?(e, box, Eval(e,box)) .

This property follows directly from Theorem 1, Formula (12), and Formula (13).
The development in [18] includes a more sophisticated algorithm bandb that has
some additional parameters. These parameters, which do not affect the sound-
ness of the algorithm, enable the specification of a pruning heuristic and early
termination conditions.

The formalization presented in [18] includes infrastructure for developing
strategies via computational reflection using a provably correct instantiation of
the generic branch and bound algorithm. In particular, it includes a function,
written in the PVS strategy language, for constructing a formal expression e of
type RealExpr representing a PVS arithmetic expression e of type real and an
element box of type Box that contains of the interval ranges of the variables in e.
Based on that infrastructure, the development presented in this paper includes a
proof-producing PVS strategy aff-numerical that computes probably correct
bounds of polynomial expressions up to a user specified precision.

In its more general form, the strategy aff-numerical has as parameter an
arithmetic expression e. It adds to the current proof sequent the hypothesis
e ∈ I, where I is an enclosure computed by the affine arithmetic instantiation
of bandb on default parameters. Optional parameters that can be specified by
the user include desired precision, upper bound to the maximum depth, and
strategy for selecting the variable direction for the subdivision schema.

Example 1. The left-hand side of Figure 1 illustrates a PVS sequent involving
the polynomial P1(x) = x5 − 2x3, where the variable x is assumed to range
over the open interval (−1000, 0). In a sequent, the formulas appearing above
the horizontal line are the antecedent, while the formulas appearing below the
horizontal line are the consequent. The right-hand side of Figure 1 illustrates the
sequent after the application of the proof command

(aff-numerical "x^5-2*x^3" :precision 3 :maxdepth 14)

This command introduces a new formula to the antecedent, i.e., sequent formula
{-1}. The new formula states that P1(x) ∈ [−999998000000000, 1.066], when

10

{-1} x < 0

{-2} x > -1000

|-------

{1} x^5 - 2*x^3 < 1.1

{-1} x^5 - 2*x^3 ##

[|-999998000000000, 1.066|]

{-2} x < 0

{-3} x > -1000

|-------

{1} x^5 - 2*x^3 < 1.1

Fig. 1. Example of use of the strategy aff-numerical.

x ∈ (−1000, 0). The sequent can be easily discharged by unfolding the definition
of ##, which stands for inclusion of a real number in an interval. The optional
parameters :precision and :maxdepth in the strategy aff-numerical are used
by the branch and bound algorithm to stop the recursion. In this case, the
algorithm stops when either the enclosure is guaranteed to be accurate up to 10−3

or when a maximum depth of 14 is reached. The branch and bound algorithm
uses rational arithmetic to compute enclosures. Since the upper and lower bounds
of these enclosures tend to have large denominators and numerators, the strategy
computes another enclosure whose upper and lower bounds are decimal numbers.
These numbers are the closest decimal numbers, for the given precision, to the
rational numbers of the original enclosure.

The strategy aff-numerical does not depend on external oracles since all
the required theorems are proved within the PVS logic. Indeed, any particular
instantiation of the strategy can be unfolded into a tree of proof commands that
only includes PVS proof rules. The strategy does depend on the PVS ground
evaluator [15], which is part of the PVS trusted code base, for the evaluation
of the function branch and bound algorithm. It should be noted that while the
soundness of the strategy depends on the correctness of the ground evaluator,
the formal development presented in Section 3 does not. Furthermore, it is the-
oretically possible, although impractical, to replace every instance of the PVS
ground evaluator in a proof by another strategy that only depends on deductive
steps such as PVS’s grind.

As part of the development presented in this paper, there is also available a
strategy aff-interval that solves to a target enclosure or inequality as opposed
to a target precision. For that kind of problem, aff-interval is more efficient
than aff-numerical, since aff-interval takes advantage of early termination
criteria, which are not available with aff-numerical.

5 Experimental Results

The objective of the experiments described in this section is to illustrate the
performance of affine arithmetic compared to interval arithmetic using their
PVS formalizations. The experiments use the strategies numerical, which is
part of interval arith in the NASA PVS Library, and aff-numerical, which

11

is part of the development presented in this paper. The strategies share most of
the strategy code and only differ in the enclosure method.

Both strategies were used to find enclosures of polynomials with different
characteristics. The performance was measured not only in terms of the time
consumed by each strategy in every case but also with respect to the quality of
the results. These experiments were performed on a desktop PC with an Intel
Quad Core i5-4200U 1.60 GHz processor, 3.9 GiB of RAM, and 32-bit Ubuntu
Linux.

The first part of this section presents the results obtained for polynomials
in a single variable. The polynomials to be considered are P1 = x5 − 2x3, from
Example 1, and

P2(x) = − 10207769
65536 x20 + 3002285

4096 x18 − 95851899
65536 x16 + 6600165

4096 x14 − 35043645
32768 x12

+ 1792791
4096 x10 − 3558555

32768 x8 + 63063
4096 x

6 − 72765
65536x

4 + 3969
65536 ,

where x ∈ (−1, 1). Turan’s inequality for Legendre polynomials states that, for
x ∈ (−1, 1), Lj(x)2 > Lj−1(x)Lj+1(x) for all x ∈ (−1, 1), where Li stands for
the i-th Legendre polynomial. The formula P2(x) > 0 states Turan’s inequality
for j = 10.

The result of the comparison of the two enclosure methods using these exam-
ples is depicted in Fig. 2. The top graphic shows the magnitude of the overesti-
mation produced by both strategies for each maximum subdivision depth (up to
43). In the bottom graphic, the y axis represents the time spent by the strategies
for both examples and each depth.

The expected behavior of the affine arithmetic method — second-order con-
vergence in overestimation with respect to depth, as compared to first-order for
interval arithmetic — can be clearly seen in these graphs. For both P1 and P2

the rate of convergence for affine arithmetic method is significantly faster. Re-
garding P1, even though the leftmost result is significantly worse than the one
given by the interval arithmetic method, the convergence of the former is so
fast that it reaches its best approximation at depth 16, while the latter needs
a depth of 43 to reach an equivalent result. The difference in performance for
P2 is even sharper: only a depth of 4 is needed for the affine method to achieve
its best result, which could not be matched with a depth below 20 for interval
arithmetic.

For a given depth, the computation time for the affine method is always
higher than the time for the interval method. Nevertheless, when considering
the quality of the result, the former achieves a much better performance in the
same amount of time.

The difference in the performance for P2 is mostly due to the high level
of dependency in the polynomial. In the corresponding affine form almost every
sub-expression has noise terms shared with others in the expression. This sharing
constrains the overall number of noise terms and tracks the dependencies to a
considerable extent, allowing the affine method to reach much better results in
less time.

12

1E-05

1E-03

1E-01

1E+01

1E+03

1E+05

1E+07

1E+09

1E+11

1E+13

1E+15

2E
-03

1E
-03

 Interval

 Affine

Recursion DepthO
ve

re
st

im
at

io
n

P1

P1

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

4E-04

 Interval

 Affine

Recursion Depth

O
verestim

ation

P2

P2

0E+00

1E-01

2E-01

3E-01

4E-01

5E-01

6E-01

7E-01

0.
42

0.
56

 Interval

 Affine

 Time
 (secs.) P1

P1

1E+00

1E+01

1E+02

1E+03

1E+04

2.5

3851.61 Interval

 Affine

Time (secs.)
P2

P2

Fig. 2. Convergence rate for affine and interval arithmetic methods in P1 and P2

Finally, both enclosure methods are tested on the following non-trivial mul-
tivariate polynomial.

P3(x0, x1, x2, x3, x4, x5, x6, x7) = −x0x
3
5 + 3x0x5x

2
6 − x2x

3
6 + 3x2x6x

2
5 − x1x

3
4

+3x1x4x
2
7 − x3x

3
7 + 3x3x7x

2
4 − 0.9563453 ,

where x0 ∈ [−10, 40], x1 ∈ [40, 100], x2 ∈ [−70,−40], x3 ∈ [−70, 40], x4 ∈
[10, 20], x5 ∈ [−10, 20], x6 ∈ [−30, 110], and x7 ∈ [−110,−30]. This polynomial
is taken from a database of demanding test problems for global optimization
algorithms [24].

As shown in Table 1, both methods have similar results in this case. Despite
starting with a better result (as in P2) the interval method is overpassed by the
affine method when the depth is set to 30. Nevertheless, the time taken by the
latter is almost the double of the consumed by the former at this depth. The
affine method is likely to perform better for smaller boxes or at even greater
depth.

13

max Interval
depth result time

10 [−895381× 102, 247381× 103] 3.63 s.
20 [−824131× 102, 242342× 103] 16.91 s.
25 [−800610× 102, 238942× 103] 54.09 s.
30 [−794831× 102, 237518× 103] 157.22 s.
35 [−793982× 102, 235733× 103] 322.54 s.
40 [−791026× 102, 234318× 103] 755.40 s.
45 [−790319× 102, 233936× 103] 1524.40 s.

Affine
result time[

−951004× 102, 247079× 103
]

9.2 s.[
−833045× 102, 236464× 103

]
55.96 s.[

−804002× 102, 233724× 103
]

150.87 s.[
−796329× 102, 233405× 103

]
281.45 s.[

−790525× 102, 232709× 103
]

530.89 s.[
−789961× 102, 232657× 103

]
963.66 s.[

−789319× 102, 232480× 103
]

1627.00 s.

Table 1. Data from P3.

6 Conclusion and Further Work

The main contribution of this paper is a formalization of the affine arithmetic
model [23] for self-validated numerical analysis. Although it has been performed
in the Prototype Verification System (PVS), it does not depend on any spe-
cific feature of that system. The techniques presented in this paper could be
implemented in any theorem prover with similar characteristics to PVS such as
Coq, HOL, among others. Additionally, a proof-producing strategy for comput-
ing provably correct bounds of polynomials with variables over bounded domains
was developed. This strategy relies heavily on the generic branch and bound al-
gorithm introduced in [18]. The entire formalization, which is called affine, is
available as part of the NASA PVS Library. The PVS formalization is organized
into 11 theories, including the proofs of 193 properties and 483 non-trivial proof
obligations automatically generated from typing conditions.

The performance of affine arithmetic is compared to interval arithmetic on
some test cases using the PVS strategies developed for both enclosure methods.
These experiments illustrate that, when dealing with problems with a high level
of coupling between sub-expressions, the affine method performs significantly
better than the interval method. The observed second-order rate of overestima-
tion convergence for affine arithmetic accords with the theoretical result. In the
presence of non-trivial functions over many variables, for a wide initial domain,
it is possible that a large subdivision depth is necessary in order to realize this
convergence.

Immler presents a formalization of affine arithmetic in Isabelle and uses it as
part of developments intended to solve ordinary differential equations [9] and to
calculate intersections between zonotopes and hyperplanes [10]. A minor differ-
ence with respect to the work presented in this paper is that that formalization
considers the multiplication inverse, which is not considered here, but it does not
consider the power operation. The authors are not aware of any formalization of
a subdivision technique or the development of proof-producing strategies using
affine arithmetic as the one presented in the current paper. There are imple-
mentations of affine arithmetic in C and C++ [11], but a comparison with these
tools would be also unfair since these are non-formal compiled codes, whereas
the developed affine arithmetic strategy presented in this paper yields a formal
proof.

14

The current approach only supports polynomial expressions. This support
can easily be extended to a larger set of real-valued functions when affine forms
for these functions are implemented. The performance of the proposed approach
could be improved in several ways. The definition of Algorithm 1 uses simple data
structures, which could be replaced by better-performing ones. Furthermore, the
algorithm could also take advantage of some of the improvements proposed to
the basic model of affine arithmetic. A comprehensive survey of such improve-
ments can be found in [11]. Another well-known way to achieve better results
is to combine both interval and affine methods by first applying the more effi-
cient interval arithmetic approach and, after a certain subdivision depth, to take
advantage of the better convergence rate of the affine algorithm.

References

1. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.:
Wave equation numerical resolution: A comprehensive mechanized proof of
a C program. Journal of Automated Reasoning 50(4), 423–456 (Apr 2013),
http://hal.inria.fr/hal-00649240/en/

2. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Trust-
ing computations: a mechanized proof from partial differential equations to actual
program. Computers and Mathematics with Applications 68(3), 325–352 (2014),
http://www.sciencedirect.com/science/article/pii/S0898122114002636

3. Boldo, S., Marché, C.: Formal verification of numerical programs: from C anno-
tated programs to mechanical proofs. Mathematics in Computer Science 5, 377–393
(2011), http://dx.doi.org/10.1007/s11786-011-0099-9

4. Daumas, M., Lester, D., Muñoz, C.: Verified real number calculations: A library
for interval arithmetic. IEEE Transactions on Computers 58(2), 1–12 (February
2009)

5. de Figueiredo, L.H., Stolfi, J.: Affine arithmetic: Concepts and applications. Nu-
merical Algorithms 37(1-4), 147–158 (2004)

6. Galdino, A., Muñoz, C., Ayala, M.: Formal verification of an optimal air traffic
conflict resolution and recovery algorithm. In: Leivant, D., de Queiroz, R. (eds.)
Proceedings of the 14th Workshop on Logic, Language, Information and Computa-
tion. Lecture Notes in Computer Science, vol. 4576, pp. 177–188. Springer-Verlag,
Rio de Janeiro, Brazil (July 2007)

7. Goodloe, A., Muñoz, C., Kirchner, F., Correnson, L.: Verification of numerical
programs: From real numbers to floating point numbers. In: Brat, G., Rungta,
N., Venet, A. (eds.) Proceedings of the 5th NASA Formal Methods Symposium
(NFM 2013). Lecture Notes in Computer Science, vol. 7871, pp. 441–446. Springer,
Moffett Field, CA (May 2013)

8. Hales, T., Adams, M., Bauer, G., Tat Dang, D., Harrison, J., Le Hoang, T.,
Kaliszyk, C., Magron, V., McLaughlin, S., Tat Nguyen, T., Quang Nguyen, T.,
Nipkow, T., Obua, S., Pleso, J., Rute, J., Solovyev, A., Hoai Thi Ta, A., Tran,
T.N., Thi Trieu, D., Urban, J., Khac Vu, K., Zumkeller, R.: A formal proof of the
Kepler conjecture. ArXiv e-prints (Jan 2015)

9. Immler, F.: Formally verified computation of enclosures of solutions of ordinary
differential equations. In: Badger, J.M., Rozier, K.Y. (eds.) NASA Formal Methods
- 6th International Symposium, NFM 2014, Houston, TX, USA, April 29 - May

15

1, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8430, pp. 113–127.
Springer (2014), http://dx.doi.org/10.1007/978-3-319-06200-6

10. Immler, F.: A verified algorithm for geometric zonotope/hyperplane inter-
section. In: Proceedings of the 2015 Conference on Certified Programs
and Proofs (CPP). pp. 129–136. ACM, New York, NY, USA (2015),
http://doi.acm.org/10.1145/2676724.2693164

11. Kiel, S.: Yalaa: Yet another library for affine arithmetic. Reliable Computing 16,
114–129 (2012)

12. Lorentz, G.G.: Bernstein Polynomials. Chelsea Publishing Company, New York,
N.Y., second edn. (1986)

13. Melquiond, G.: Proving bounds on real-valued functions with computations. In:
Armando, A., Baumgartner, P., Dowek, G. (eds.) Proceedings of the 4th Inter-
national Joint Conference on Automated Reasoning. Lecture Notes in Artificial
Intelligence, vol. 5195, pp. 2–17. Sydney, Australia (2008)

14. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM,
Philadelphia (2009)

15. Muñoz, C.: Rapid prototyping in PVS. Contractor Report NASA/CR-2003-212418,
NASA, Langley Research Center, Hampton VA 23681-2199, USA (May 2003)

16. Muñoz, C., Carreño, V., Dowek, G., Butler, R.: Formal verification of conflict detec-
tion algorithms. International Journal on Software Tools for Technology Transfer
4(3), 371–380 (2003)

17. Muñoz, C., Narkawicz, A.: Formalization of a representation of Bernstein polyno-
mials and applications to global optimization. Journal of Automated Reasoning
51(2), 151–196 (August 2013), http://dx.doi.org/10.1007/s10817-012-9256-3

18. Narkawicz, A., Muñoz, C.: A formally verified generic branching algorithm for
global optimization. In: Cohen, E., Rybalchenko, A. (eds.) Proceedings of the
5th International Conference on Verified Software: Theories, Tools, and Experi-
ments (VSTTE 2013). Lecture Notes in Computer Science, vol. 8164, pp. 326–343.
Springer, Menlo Park, CA, US (May 2014)

19. Narkawicz, A., Muñoz, C., Dowek, G.: Provably correct conflict prevention bands
algorithms. Science of Computer Programming 77(1–2), 1039–1057 (September
2012), http://dx.doi.org/10.1016/j.scico.2011.07.002

20. Owre, S., Rushby, J., Shankar, N.: PVS: A prototype verification system. In: Kapur,
D. (ed.) Proceedings of the 11th International Conference on Automated Deduction
(CADE). Lecture Notes in Artificial Intelligence, vol. 607, pp. 748–752. Springer
(June 1992)

21. Solovyev, A., Hales, T.C.: Formal verification of nonlinear inequalities with Taylor
interval approximations. In: Brat, G., Rungta, N., Venet, A. (eds.) Proceedings
of the 5th International Symposium NASA Formal Methods. Lecture Notes in
Computer Science, vol. 7871, pp. 383–397 (2013)

22. Solovyev, A., Hales, T.: Efficient formal verification of bounds of linear programs.
In: Davenport, J., Farmer, W., Urban, J., Rabe, F. (eds.) Intelligent Computer
Mathematics, Lecture Notes in Computer Science, vol. 6824, pp. 123–132. Springer
Berlin Heidelberg (2011)

23. Stolfi, J., Figueiredo, L.H.D.: Self-validated numerical methods and applications
(1997)

24. Verschelde, J.: Algorithm 795: PHCpack: A general-purpose solver for polynomial
systems by homotopy continuation. ACM Transactions on Mathematical Software
25(2), 251–276 (1999)

16

