
PVS#: Streamlined Tacticals for PVS 1

Florent Kirchner
2

Laboratoire d’Informatique de l’École Polytechnique
91128 Palaiseau Cedex, France

César Muñoz
3

National Institute of Aerospace
Hampton VA 23666, USA

Abstract

The semantics of a proof language relies on the representation of the state of a proof after a logical rule has
been applied. This information, which is usually meaningless from a logical point of view, is fundamental
to describe the control mechanism of the proof search provided by the language. In this paper, we present a
monadic datatype to represent the state information of a proof and we illustrate its use in the PVS theorem
prover. We show how this representation can be used to design a new set of powerful tacticals for PVS, called
PVS#, that have a simpler and clearer semantics compared to the semantics of standard PVS tacticals.

Keywords: Monads, Proof languages, Tactics, Tacticals, Strategies, PVS.

1 Introduction

The representation of mathematical proofs has been an active research topic in com-

puter science since the early 1970’s, when the first theorem provers were designed.

Several representations of the proof process have been proposed, from the simple

collection of logical formulas [2] to typable lambda-terms (thanks to the Curry-

De Bruijn-Howard isomorphism), where open terms are used to handle incomplete

proofs [8, 9, 4]. However, as mechanical theorem proving picked up pace and proofs

grew in complexity, the need for more involved ways to control the construction of

proofs spawned larger and more refined proof languages.

1 This work was supported by the National Aeronautics and Space Administration at Langley Research
Center under the Research Cooperative Agreement No. NCC-1-02043 awarded to the National Institute of
Aerospace.
2 Email: florent.kirchner@inria.fr
3 Email: munoz@nianet.org

Electronic Notes in Theoretical Computer Science 174 (2007) 47–58

1571-0661/$ – see front matter © 2007 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.10.057

mailto:florent.kirchner@inria.fr
mailto:munoz@nianet.org
http://www.elsevier.com/locate/entcs

In proof assistants such as Coq [3] and PVS [10], the proof language contains

two kinds of proof commands: tactics, which modify the proof tree by applying

logical rules, and tacticals, which provide proof search control. In this work, we are

mainly interested in tacticals and their semantics. We note that the words ‘tactic’

and ‘tactical’ are inherited from the first procedural theorem prover LCF. In PVS,

tactics are called proof rules and tacticals are called strategies. For simplicity, we

use the original LCF terminology.

A tactical is a tactic combinator whose behavior depends on the state of the

proof after the application of its arguments. The state of a proof usually contains

non-logical information such as success or failure that signals whether the tactic

has solved the current goal or has failed. A sophisticated proof language, such

as the languages of PVS and Coq, uses many other types of state information.

For instance, consider the PVS tactical try that is at the same time a conditional

and a backtracking combinator: (try t1 t2 t3) applies its first argument t1 to

the goal, and if it generates subgoals, it applies t2 to the subgoals, else it applies

t3. Furthermore, if t2 fails, for example, because t2 = (fail), then it initiates a

backtracking sequence, which is propagated until it is evaluated as the first member

of another try construct, in which case it evaluates its third argument.

The semantics of try [1] need five different types of state information: failure,

success, skip, subgoals, backtrack. Informally, if |.| is a semantic evaluator, the

semantics of try can be expressed as follows:

|(try t1 t2 t3)| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|t3| if |t1| ∈ {skip, backtrack}

|t1| if |t1| ∈ {failure, success}

backtrack if |t1| = subgoals,

|t2| ∈ {failure, backtrack}

subgoals if |t1| = subgoals,

|t2| ∈ {skip, subgoals}

success if |t1| = subgoals,

|t2| = success ,

where

|(skip)| = skip

|(fail)| = failure .

In a previous attempt to formalize the semantics of the PVS proof language [5],

the state of a proof was recorded by flags that were plainly added to the representa-

tion of the proof tree. In this paper, we show how the proof state information can be

elegantly modeled by a simple monadic datatype. The datatype and its properties

are defined in Section 2. In Section 3, we illustrate the application of this framework

to the design of a new set of tacticals for PVS, which we call PVS#. Finally, the

implementation of the monadic datatype in PVS# is described in Section 4.

F. Kirchner, C. Muñoz / Electronic Notes in Theoretical Computer Science 174 (2007) 47–5848

2 A Monadic Datatype for Proof State Representation

Monads are a popular way to describe imperative features, such as side effects and

exceptions, in functional programming languages [11]. The main idea is to view a

program P , not as a pure function, e.g., from A to B, but as a morphism from values

A to a datatype MB, where MB represents the conjunction of side-effects in P

and its return value, which is of type B. Monadic operators, that obey monad laws,

are associated to the datatype and provide a way to build and compose programs.

In general, proof commands can be seen as functional programs that act on

proof objects. However, proof assistants, such as PVS, also provide tacticals that

are not purely functional, e.g., fail and try, which raise and catch exceptions,

respectively. Furthermore, the effects of tacticals on the state of a proof may also

be seen as side effects on the proof object. Based on these observations, we define a

monadic datatype that allows us to give a denotational semantics of tacticals with

imperative features. Strictly speaking, our datatype is not a monad as it is not

fully polymorphic. This prohibits the “stacking” of monadic structures and the

definition of mapping and joining operations. However, these features are not used

in the scope of this paper, and their absence do not hamper the expressiveness of

the proof language.

2.1 Monadic Datatype

We call proof object the concrete representation of a possibly incomplete proof tree.

The formalism presented here makes use of a coarse abstraction of this represen-

tation: we only assume that proof objects provide means to distinguish the set of

current goals among all open goals. We take X as the type of the proof objects,

and x, y, z as inhabitants of X, i.e., proof object variables. We define the monadic

datatype MX as follows:

datatype MX = success : X → MX

| subgoals : N → X → MX

| exception : S → MX ,

where N is the type of natural numbers and S is the type of symbols. We use the

meta-variables m,m1,m2, . . . to range over objects of the type MX. The intended

semantics of the datatype constructors is the following:

• success indicates that the tactic has discharged (proved) the current goals;

• subgoals n indicates that n subgoals have been generated by the tactic. By con-

vention subgoals 0 means that the current goal was not modified;

• exception s indicates that the tactic has raised the exception s.

Overall, this representation is focused on the three fundamental proof states that are

relevant to the user: whether goals were closed, goals were generated, or something

went wrong.

F. Kirchner, C. Muñoz / Electronic Notes in Theoretical Computer Science 174 (2007) 47–58 49

Example 2.1 In PVS, the tactic (split) corresponds to a function that returns

subgoals 2 when applied to a goal that is a simple conjunction, success in the special

case where splitting this conjunction yields two tautologies that are automatically

discharged, and subgoals 0 if the goal is not a conjunction.

In the following, we represent PVS proof commands as functions of type X →

MX. More precisely, let |.|. be a semantic evaluator of PVS proof commands into

objects of type MX. This evaluator is defined for each particular proof command.

We write |t|x the evaluation of the proof command t on the proof object x. There-

fore, |t| has the type X → MX, and can be considered as a function t = λx.m.

Henceforth, we distinguish the proof commands, such as t, from their mathematical

representation, i.e., t, by enforcing their typesetting in, respectively, typewriter and

math fonts.

2.2 Monadic Operators

Figure 1 introduces the operators for our monadic datatype:

• the function unit, of type X → MX, maps a proof object into an element of our

datatype,

• the function �, of type MX → (X → MX) → MX, provides a way to apply a

tactic t to the proof object resulting from the application of another tactic.

unit x = subgoals 0 x ,

m � t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

subgoals n y if m = subgoals n x and (t x) = subgoals 0 y

(t x) if m = subgoals n x and (t x) �= subgoals 0 y

m otherwise ,

Fig. 1. Monadic operators

These operators satisfy the monad laws.

Proposition 2.2 The operators satisfy the left and right unit properties:

(unit x) � t = t x

m � λx.unit x = m ,

and the operator � is associative:

m1 � (λx.m2 � λy.m3) = (m1 � λx.m2) � λy.m3 .

Proof. The left and right unit properties are trivial, one can check them simply by

unfolding the definition of �. Associativity in the case of success or exception of one

F. Kirchner, C. Muñoz / Electronic Notes in Theoretical Computer Science 174 (2007) 47–5850

of the tactics is direct. In the case of subgoals, it is inferred from the associativity

of the boolean addition between zero and non-zero subgoals. �

In PVS, unit corresponds to the semantics of the tactical skip:

|(skip)|x = unit x .

The function � describes the semantics of a tactical that combines its arguments in

sequence, applying tactic n + 1 unless tactic n has raised an exception or proved

the goal. Hence, it corresponds to the semantics of a binary sequence. Let t1 and

t2 be the semantic evaluations of tactics t1 and t2,

|(then2 t1 t2)|x = (t1 x) � t2 .

We note that this does not correspond to the semantics of PVS’s proof command

then, which is based on try.

Example 2.3 The semantics of PVS’s try requires two types of exceptions that

handle the “failure” and “backtracking” mechanisms. Let t1, t2, t3 be the semantic

evaluations of t1, t2, t3, respectively,

|(try t1 t2 t3)|x =

⎧⎪⎪⎨
⎪⎪⎩

(t3 x)

if (t1 x) = exception backtrack

or (t1 x) = subgoals 0 y

(t1 x)

if (t1 x) = exception failure

or (t1 x) = success y

exception backtrack

if (t1 x) = subgoals n y, n > 0,

and (t2 y) = exception failure

or (t2 y) = exception backtrack

subgoals n z

if (t1 x) = subgoals n y, n > 0,

and (t2 y) = subgoals 0 z

subgoals n′ z

if (t1 x) = subgoals n y, n > 0,

and (t2 y) = subgoals n′ z

success z

if (t1 x) = subgoals n y, n > 0,

and (t2 y) = success z .

This formalization of the semantics of try is clearly more space-consuming than

F. Kirchner, C. Muñoz / Electronic Notes in Theoretical Computer Science 174 (2007) 47–58 51

the one presented in the introduction. This is partly due to the verbosity of the

exception construct. But it also reflects the complexity of this specific tactical,

which provides several features: sequencing, progress testing, backtracking, and

error catching. This complexity is inherited by the tacticals that are derived from

try, e.g., then and else:

|(then t1 t2)|x = |(try t1 t2 t2)|x

|(else t1 t2)|x = |(try t1 (skip) t2)|x .

As illustrated, the monadic datatype allows for a formal description of PVS’s

tacticals such as skip, then, try, etc. The next section will propose a simpler set

of tacticals that can be derived from our formalism.

3 PVS#

PVS# is a new set of tacticals that replace the native backtracking and failure

mechanisms provided by the PVS tacticals try and fail. The new set of tacti-

cals features an error handling mechanism, based on catch and throw, typical of

programming languages.

Tacticals in PVS# are simpler to combine as their semantics only require one

type of state information for exceptions. Thus, the functionalities of try and fail

have been split in three different tacticals: one tactical #throw for throwing an

exception, one tactical #catch for catching an exception and implicitly backtracking,

and one tactical #ifsubgoals for testing progress. PVS’s tacticals defined via try

and fail cannot be combined with PVS# tacticals. For this reason, PVS# also

provides replacement for try-based PVS tacticals such as then and else.

All the tacticals in PVS# are designed to have simple, if not atomic, interpre-

tations in our framework. In the rest of this section, we will describe these new

tacticals, coupling their traditional informal description with their formal seman-

tics.

Henceforth, we will assume that ti is the semantic evaluation of a proof command

ti for any index i.

3.1 Exception Handling and Progress Testing

(#throw tag) This tactical returns the proof object unchanged with the proof state

set to exception tag.

Semantics:

|(#throw tag)|x = exception tag .

(#catch t1 &optional tag t2) This tactical behaves as t1 if t1 does not raise an

exception. Otherwise, if the result is an exception named tag then it evaluates

t2. If tag does not correspond to the name of the exception, then the exception

is propagated.

F. Kirchner, C. Muñoz / Electronic Notes in Theoretical Computer Science 174 (2007) 47–5852

Usage: The proof script

(#catch (#throw "exn") "exn" (flatten))

will result in the evaluation of (flatten), but

(#catch (#throw "div0") "exn" (flatten))

will propagate the exception named "div0".

Semantics:

|(#catch t1 tag t2)|x =

⎧⎨
⎩

(t2 x) if (t1 x) = exception tag

(t1 x) otherwise .

(#ifsubgoal t t1 t2) This tactical calls either t1 or t2, depending on the progress

of t. If t generates subgoals, then it applies t1 to all the subgoals. Otherwise, it

applies t2.

Usage: The proof script

(#ifsubgoal (flatten) (propax) (split))

applies (flatten) to the current goal. If the goal does simplify, then (propax)

is applied to the resulting subgoal. Otherwise, (split) is applied to the current

goal.

Semantics:

|(#ifsubgoals t1 t2 t3)|x =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(t2 y) if (t1 x) = subgoals n y and n > 0

(t3 y) if (t1 x) = subgoals 0 y

(t1 x) otherwise .

3.2 Identity, Sequencing and Repeating

(#skip) As in PVS, this tactical has no effect. Actually, (#skip) is strictly equal

to (skip), this alias being provided for the sake of uniformity.

Semantics:

|(#skip)|x = unit x = subgoals 0 x .

(#then t1 . . . tn) This tactical first applies t1 to the current goal, and then

(#then t2 . . . tn) to all of the generated subgoals, if any, or to the original

goal if t1 had no effect.

Semantics:

|(#then t1 t2 . . . tn)|x = (t1 x) � t2 � . . . � tn .

F. Kirchner, C. Muñoz / Electronic Notes in Theoretical Computer Science 174 (2007) 47–58 53

(#repeat t) Iteratively apply t to the current goal until it fails, proves the goal

or does nothing. This tactical may not terminate.

Semantics:

|(#repeat t)|x =

⎧⎨
⎩

|(#repeat t)|y if (t x) = subgoals n y and n > 0

(t x) otherwise ,

3.3 Other Tacticals

(#if expr t1 t2) As in PVS, the Lisp expression expr is evaluated against the

current goal. If t1 and t2 were elements of the PVS proof language, this construct

is equivalent to PVS’s tactical if.

Usage: The proof script

(#if (equal (get-goalnum *ps*) 1) (ground) (prop))

applies (ground) if the current goal is the first subgoal of its parent, else it applies

(prop).

Semantics:

|(#if expr t1 t2)|x =

⎧⎨
⎩

(t1 x) if expr =Lisp nil

(t2 x) otherwise ,

(#when expr t1 . . . tn) This tactical evaluates expr, if it results in nil then noth-

ing is done and this tactical behaves as skip. Otherwise, it applies t1 . . . tn in

sequence using #then.

Usage: The proof script

(#when (equal (get-goalnum *ps*) 1) (ground))

applies (ground) if the current goal is the first subgoal, otherwise it does nothing.

Semantics:

|(#when expr t1 . . . tn)|x = |(#if expr (#then t1 ...tn) (#skip))|x

(#first t1 . . . tn) This tactical applies the first tactic in t1 . . . tn that does not

raise an exception, if any. Otherwise, it does nothing.

Usage: The proof script

(#first (#throw "fault1") (bddsimp) (#throw "fault2"))

applies (bddsimp) to the current goal.

Semantics:
• If n = 1

F. Kirchner, C. Muñoz / Electronic Notes in Theoretical Computer Science 174 (2007) 47–5854

|(#first t)|x =

⎧⎨
⎩

subgoals 0 x if (t x) = exception s

(t x) otherwise .

• If n > 1,

|(#first t1 t2 . . . tn)|x =

⎧⎨
⎩

|(#first t2 . . . tn)|x if (t1 x) = exception s,

(t1 x) otherwise ,

(#solve t1 . . . tn) This tactical applies the first tactic in t1 . . . tn that proves

the current goal, if any. Otherwise, it does nothing.

Usage: The proof script

(#solve (case "y > 0") (bddsimp))

tries to apply the case analysis command to the current goal, if it does not

completely prove the current goal it applies (bddsimp). If this tactic also fails to

discharge the current goal, it does nothing.

Semantics:
• If n = 1

|(#solve t)|x =

⎧⎨
⎩

(t x) if (t x) = success x

subgoals 0 x otherwise .

• If n > 1,

|(#solve t1 t2 . . . tn)|x =

⎧⎨
⎩

(t1 x) if (t1 x) = success x

|(#solve t2 . . . tn)|x otherwise ,

4 Implementation

This section presents the internal tacticals that were used to deal with the imple-

mentation in PVS of the monadic datatype. They are separated into two different

categories, the constructors and destructors of MX.

4.1 Constructors

(piks) This is the constructor for subgoals 1 x. It generates one subgoal, which is

identical to the original goal.

Semantics:

|(piks)|x = subgoals 1 y

where y is x with the current goal being inferred from itself.

(backtrack) This generates the exception backtrack proof state, identical to the

one created by try.

Semantics:

F. Kirchner, C. Muñoz / Electronic Notes in Theoretical Computer Science 174 (2007) 47–58 55

|(backtrack)|x = exception backtrack .

4.2 Destructors

flag This is a simple list structure, with five boolean fields: success, subgoal

which is short for subgoals n ≥ 1, skip which is short for subgoals 0, backtrack

which is short for exception backtrack, and failwhich is short for exception failure.

It is used to record the outcome of tactics that are tested by the following tacti-

cals.

(figure t otc) This helper is the core of the destructor. It applies t to the

current goal, analyzes its outcome, and fills in otc (an instance of flag) with it.

However, if t proves the goal, then otc is not updated (because no computation

can be done after the goal was proven). This tactical returns either success (if t

was a success), exception backtrack (if t was a subgoals 0, an exception backtrack

or an exception failure), or subgoals n ≥ 1 (if t returned subgoals n ≥ 1).

Semantics:

|(figure t otc)|x =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

exception backtrack

if (t x) = subgoals 0 y

or (t x) = exception backtrack

or (t x) = exception failure

(t x) otherwise .

(inspect t otc) This helper applies (figure t otc) to a dummy goal, then dis-

cards it, fills in completely the outcome in otc and returns to the original goal.

Semantics:

|(inspect t otc)|x = subgoals 0 x .

(info t) This is the easiest tactical written with inspect. It simulates the appli-

cation of t, fills in an instance of flag, and prints it out.

Semantics:

|(info t)|x = subgoals 0 x .

(test-case t t1 t2 t3 t4 t5) This is the destructor of the datatype. It analyzes

t using inspect, and according to the result applies one of the ti.

Semantics:

F. Kirchner, C. Muñoz / Electronic Notes in Theoretical Computer Science 174 (2007) 47–5856

|(test-case t t1 ... t5)|x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t1 x) if (t x) = success y

(t2 x) if (t x) = subgoals n y and n > 0

(t3 x) if (t x) = subgoals 0 y

(t4 x) if (t x) = exception backtrack

(t5 x) if (t x) = exception failure .

(testsuccess t t1 t2)

(testsubgoalsN t t1 t2)

(testsubgoals0 t t1 t2)

(testexceptionbacktrack t t1 t2)

(testexceptionfail t t1 t2) These tacticals are instances of the test-case tac-

tical, they apply their first argument. If its outcome is the one expected they

apply their second argument. Else they apply their third argument.

Semantics:

|(testsuccess t t1 t2)|x =

⎧⎨
⎩

(t1 x) if (t x) = success y

(t2 x) otherwise .

The semantics of the other testing strategies are analogous.

5 Conclusion

We have defined a representation of proof state information via a monadic datatype,

which is orthogonal to the physical representation of proof objects. This has allowed

us to give a synthetic representation of the PVS proof state.

The formal description of PVS tacticals in our formalism has revealed unnec-

essary complexities in the PVS proof language. Therefore, we have proposed a

new set of PVS tacticals implemented on top of the existing proof language, called

PVS#, that arguably have a simpler semantics with respect to error handling and

sequencing. A preliminary prototype of PVS# is available at [7].

The topic of this paper is the subject of ongoing work, including, in particular,

the development of new tacticals for PVS#, the meta-theoretical study of monads in

proof languages, and its application to other theorem provers. In particular, another

implementation of the monadic datatype was already carried out in the Fellowship

proof assistant [6]. In the long term, we believe that the concept of monads will

play a central role in the design and semantics of proof languages for procedural

theorem provers.

References

[1] Archer, M., B. Di Vito and C. Muñoz, Developing user strategies in PVS: A tutorial, in: Proceedings
of Design and Application of Strategies/Tactics in Higher Order Logics STRATA’03, NASA/TP-2003-

F. Kirchner, C. Muñoz / Electronic Notes in Theoretical Computer Science 174 (2007) 47–58 57

212448, NASA LaRC,Hampton VA 23681-2199, USA, 2003, pp. 16–42.

[2] Boyer, R. S. and J. S. Moore, “A Computational Logic,” Academic Press, New York, 1979.

[3] The Coq Development Team, LogiCal Project, INRIA, “The Coq Proof Assistant: Reference Manual,
Version 8.0,” (2004).
URL coq.inria.fr/doc/main.html

[4] Jojgov, G. I., Holes with binding power, in: H. Geuvers and F. Wiedijk, editors, TYPES, Lecture Notes
in Computer Science 2646 (2002), pp. 162–181.
URL link.springer.de/link/service/series/0558/bibs/2646/26460162.htm

[5] Kirchner, F., Coq tacticals and PVS strategies: A small-step semantics, in: M. A. et al., editor, Design
and Application of Strategies/Tactics in Higher Order Logics (2003), pp. 69–83.

[6] Kirchner, F., “Fellowship: who needs a manual anyway?” (2005).
URL www.lix.polytechnique.fr/Labo/Florent.Kirchner/fellowship

[7] Kirchner, F., “Programmation Tacticals,” (2005).
URL research.nianet.org/fm-at-nia/Practicals/

[8] Magnusson, L., “The Implementation of ALF—A Proof Editor Based on Martin-Löf’s Monomorphic
Type Theory with Explicit Substitution,” Ph.D. thesis, Chalmers University of Technology and
Göteborg University (1995).

[9] Muñoz, C., “Un calcul de substitutions pour la représentation de preuves partielles en théorie de types,”
Thèse de doctorat, Université Paris 7 (1997), English version available as INRIA research report RR-
3309.

[10] Owre, S., J. M. Rushby and N. Shankar, PVS: A prototype verification system, in: D. Kapur, editor, 11th
International Conference on Automated Deduction (CADE), Lecture Notes in Artificial Intelligence
607 (1992), pp. 748–752.

[11] Wadler, P., Monads for functional programming, in: J. Jeuring and E. Meijer, editors, Advanced
Functional Programming, LNCS 925, Springer Verlag, 1995 .

F. Kirchner, C. Muñoz / Electronic Notes in Theoretical Computer Science 174 (2007) 47–5858

coq.inria.fr/doc/main.html
link.springer.de/link/service/series/0558/bibs/2646/26460162.htm
www.lix.polytechnique.fr/Labo/Florent.Kirchner/fellowship
research.nianet.org/fm-at-nia/Practicals/

	Introduction
	A Monadic Datatype for Proof State Representation
	Monadic Datatype
	Monadic Operators

	PVS#
	Exception Handling and Progress Testing
	Identity, Sequencing and Repeating
	Other Tacticals

	Implementation
	Constructors
	Destructors

	Conclusion
	References

