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Abstract

Conflict detection and resolution (CD&R)
systems predict loss of separation between aircraft
and propose conflict avoidance maneuvers for the
aircraft involved in the conflict. Given a pair of
aircraft in conflict, the ownship and the intruder, the
resolution system diverts the ownship from its
original trajectory. In this paper, we introduce the
concept of recovery course A recovery course
redirects the ownship to its original target waypoint
without introducing new conflicts, in a geometric
optimal way. Based on resolution and recovery
concepts, we also develop a strategic CD&R
approach that produces conflict-free flight plans for
the ownship and the intruder aircraft. The resolution
and recovery algorithm is computationally efficient
and amenable to formal verification. We provide a
rigorous analysis of the problem and the basis of
the correctness proof of our approach.

Introduction

Conflict Detection and Resolution (CD&R)
systems are designed to warn air traffic controllers
or pilots about an imminent loss of separation
between aircraft, and to assist them in a corrective
maneuver. Algorithms for CD&R have been widely
studied over the last decade and several have been
reported in the literature (for a survey on CD&R
methods see [1]). Emerging reliable surveillance
and communication technologies enalalgborne
CD&R capabilities, and so, they are becoming
fundamental features in new concepts for air traffic
management, such as Free-Flight[2] and
Distributed Air-Ground Traffic Management [3].
These concepts address the expected increase in air
traffic density in the next decades, by distributing
among the different actors of the airspace system
the responsibility for keeping minimum traffic

separation.

In contrast to ground-based systems, airborne
systems have a limited access to computational
resources and are distributed. To target the
complexity of a free-flight environment, new
approaches for CD&R have been proposed based
on non-standard programming techniques such as
genetic algorithms [4,5,6], neural networks [7],
game theory [8], graph theory [9], or semidefinite
programming [10]. These approaches deal with
issues such as multiple aircraft conflicts and
uncertainties in the prediction of aircraft
trajectories. Given the computational complexity of
some of these approaches, they usually require time
and space discretizations.

A more classical approach to CD&R is the so-
called geometric approach [11,12,13,14]. In this
approach, aircraft trajectory predictions are based
on linear projections of current aircraft states.
Linear projections can be computed efficiently and,
moreover, prediction errors are negligible during
short look-ahead times. For the latter reason, this
approach is also referred tectical. For large look-
ahead times a morgrategicapproach that looks at
the pilotintent informationi.e., the flight plan, is in
order. While tactical approaches have well-
understood geometric descriptions that allow for
efficient and clear algorithms, they fall short on
pilots’ expectations in some field studies [15].
Strategic approaches seem to be more appreciated
by pilots, but their theory is far less understood.

In a previous work [14], we have proposed a
geometric optimization algorithm, called KB3D, for
CD&R in a 3-D airspace. In this paper, we address
the recovery problem, that is, redirecting the
ownship to the original path while maintaining the
minimum required separation at all times. The new
proposed algorithm is on the border between
tactical and strategic algorithms. Its inputs are the
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three-dimensional position and velocity vectors of
the ownship and intruder aircraft, and the time
where the ownship is required to arrive at its target
point (“Required Time of Arrival”, RTA). The
RTA defines the position of the target point by the
ownship’s constant movement. RTA is a limited
form of intent information: the target point may be
the next trajectory change point in the ownship
flight plan. Assuming a loss of separation betweer
two aircraft, the algorithm outputs a choice of
maneuvers for the ownship. Each maneuvel
consists of anescape coursethat brings the
ownship off the predicted conflict, and a subsequer
recovery coursehat leads the ownship back to its
original target waypoint. If the ownship follows any
proposed maneuver then it arrives at RTA at the
scheduled position without having experienced &
loss of separation at any time. In the meantime, the
intruder aircraft is assumed to continue its current
trajectory. That is, ownship’s resolution-recovery
maneuvers take place assuming no cooperation (
the intruder aircraft.

The various maneuvers that our algorithm
proposes differ in the constraints they satisfy. For
example, one constraint requires that during the
maneuver the ownship may only change its ground
speed, but not its heading or its vertical speed.
Another constraint requires that only the vertical
speed of the ownship may change. Imposing such
constraints has a number of benefits:

It restricts the number of choices to finitely many.

It simplifies the calculations performed by the
algorithm.

It is simple to conceive and to perform by the crew.
It enhances passenger comfort.

The maneuvers that our algorithm outputs may
be rendered at a display for air traffic controllers or
pilots who may select among the proposed
solutions. Our algorithm is also suitable for use
underneath a trajectory planner that may perform
the selection. Indeed, we describe a strategic
CD&R approach that produces conflict-free flight
plans, based on our resolution and recovery
algorithm.

However, we do not address the question of
physical feasibility of the maneuvers proposed by
the algorithm. In particular, the algorithm does not
check for minimum/maximum altitude/airspeed.
Nor does it implement cost-based analysis such as
fuel consumption. All these analyses require
performance data that are not available to the
algorithm. They can be implemented in an external

module.

The algorithm is computationally efficient,
suitable for embedding in a flight-deck computer,
and appropriate for formal verification. We provide
a rigorous mathematical description of the problem
and show that the algorithm is correct, i.e., no
matter which of the proposed maneuvers the
ownship picks, it will arrive at the target point at
the scheduled time while maintaining the minimum
required separation to the intruder at all times.
Mechanically checked proofs are currently under
development. We strongly believe that given the
critical nature of CD&R, rigorous techniques and
well-understood mathematical models are required
to guarantee the overall safety of the new, and more
autonomous, air traffic systems.

Definition of the Problem

For conflict detection purposes, aircraft are
assumed to be surrounded by avpidance region
which is typically a cylinder of 5 nautical miles of
diameter and 1000 feet of height. Two aircraft are
said to be inconflict when their avoidance regions
overlap. In this paper, we take an alternative, but
equivalent view, where aircraft are surrounded by
protected zonedwice as big as the individual
avoidance regions. In this view, a conflict is the
incursion of one aircraft in the protected zone of
another oné.

We assume the airspace given as a three-
dimensional Cartesian coordinate system, where the
z-axis points upward in the vertical direction. The
ownship’s initial position, i.e., its position at time
t=0, is given by the vector

S = (SoxSoySod)-

The ownship’s original velocity vector is given by

Vo= (Vox’voy’voz)'

Likewise the intruder’s initial positiors and the

intruder’s velocity vectorv, are given. It is
convenient to consider the ownship’s motion

® In this paper we usdtalic letters to denote
variables. Positions are named and velocities V'
Ownship variables are subscripted witti and intruder
variables with '. Coordinate namesX,'y,’Z are
appended as a subscript to the name. Namdmtiface
indicate vector variables.
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relative to the intruder. For this purpose, we v, i.e., anglex such that:
introduce a relative coordinate system where the v, = v cos@) andv, = v sin(a)
. , e . . - X y 1
intruder’s position is fixed at the origin, and we
consider the relative position vector

$=(Se$S) =% -5
and the relative velocity vector

V= (V,V,V,) =V, -V,

wherev is the ground speed of. We avoid
explicit references toa in our analytical
description of the escape-recovery maneuvers.

x¥yr "2 = Yo - N _ The task of the resolution and recovery
In this coordinate system, the protected zone is algorithm (RR3D) is defined as follows:
defined as a cylindd? around the intruder: Inputs
P={(xy,2 |x*y?<D?and|g <H}, Initial ownship’s relative positioa

whereD andH denote the diameter and height of
the avoidance region, respectively. The aircraft are
said to bein conflict at time twhensttv [J P. They

are in predicted conflictif they are in conflict at . : .
some time 0 <. 0, which determines the target point

: : S = sH" V.
Given a velocity vectow = (v,,v,,v.), we define i
. y MoV, Assumptions
the following concepts.

. L * Courses i.e., trajectories between waypoints, are
Ground speedLength of the horizontal projection line segments. Hence, courses are described by a

Absolute velocity vectors, andv; of ownship and
intruder aircraft, respectively.
Required Time of Arrival (RTA) or target timg >

ofv, i.e., \/VX2+ Vyz : position, a velocity vector, and a time interval.
Vertical speedVertical component of, i.e.,v.. * Changes of course or speed are implemented in

. N . " ero time by an aircraft.
Heading: Direction of the horizontal projection of z I y I



Figure 3: Line Course
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Figure 4: Circle Courses

Neither at initial time nor at target time the aircraft
are in conflict.
Neither at initial time nor at target time is the
ownship at the boundary of the intruder’s protected
zone.
The aircraft are in predicted conflict befotg, i.e.,
st+tv 0 P for some time 0 €<t”.
Outputs

A list of maneuvergach one a triplet(\v,',v,”) 1.

composed of
A time of switch’ such that 0 ¢ <t”.
An escape velocity vectoy, that determines a

conflict-free escape coursdor the ownship. A
recovery velocity vectorv,” that determines a 3

conflict-free and on-timeecovery coursdor the
ownship.

Figure 1 illustrates the original situation where
the aircraft are in conflict during the dashed line.
Figure 2 shows a possible pair of escape and
recovery courses. The two vertical lines in the
protected zone mark the points where the owhship
touchesP. If the ownship flies the escape course
from time O tot’, and the recovery course from time
t' to t”, then (1) it shall not be in conflict at any
time between 0 antd , and (2) it shall arrive a&” at
time t”. Note that we assume no cooperation from
the intruder aircraft, i.e., we assume that the

intruder does not maneuver. Henceforth, we call the
ownship’s change of the velocity vector frovgto

v, the escape stepand its change fromw,' to v,
therecovery step

The ownship’s maneuvers shall be constrained
in such a way that both’ andv,” satisfy one of

the following conditions:

Change of vertical speed onlyThe ownship’s
vertical speed may change but neither its heading
nor its ground speed.

Change of ground speed onlyThe ownship’s
ground speed may change but neither its heading
nor its vertical speed.

Change of heading In the two dimensional
projection, the escape course and the recovery
course (each in absolute coordinates) form a
triangle. By the triangle inequality, the escape
course and the recovery course together are longer
than the original course. To arrive at the target point
at time t”, the ownship has to compensate the
longer way by a greater average ground speed as
opposed to its original ground speed. Hence,
maneuvers where only heading changes are allowed
cannot reach the target point in time. In this case,
we propose a change of heading combined with a
change of ground speed at tirtie For the escape
step, the



Figure 5: Line/Line (Top View, Perspective View, and Side View)
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Figure 6: Line/Circle (Top view, Perspective View, and Side View)

ownship’s heading may change, but neither
its ground speed nor its vertical speed; for
the recovery step in addition to a heading
change, one must allow for a change of
ground speed as well.

Furthermore, in all cases, we require the escape and
recovery maneuvers to be tangential to the lateral
surface of the protected zone. Together with the
constraints, this ensures finiteness of the set of
solutions. We distinguish two kinds of tangential
escape and recovery courses

Line Courses (Figure 3): Courses that are *
tangential to the lateral surface of the protected
zone.

Circle Courses (Figure 4): Courses that are
incident to one of the disks of the protected zone
without intersecting its interior.

The bold lines in Figures 3 and 4 indicate the
set of points in the protected zone that define the
direction of line and circle courses, respectively.

In [16], we provide a rigorous mathematical
proof that line and circle cases averrect i.e., they
describe conflict-free courses. We just remark here

that in a line course, horizontal separation is
guaranteed for all times, and that in a circle course,
there is a time such that either vertical separation
is guaranteed beforeand horizontal separation is
guaranteed aftdr or vice versa.

Since escape and recovery courses tagctve
also conjecture that these kinds of courses are
optimal, i.e., they avoid conflicts with a minimal
change to the original ownship velocity vecigr

Resolution and Recovery Algorithm

In this section we develop the algorithm RR3D for
3-D conflict resolution and recovery. We present
the algorithm as a set of formulas that describe
escape-recovery maneuvers, i.e., triples/{,v.")

wheret’ is a time of switchy,’ is a velocity vector
that determines an escape course, agtd is a

velocity vector that determines a recovery course.
The formulas are organized according to the
constraints that are imposed on the escape and
recovery maneuvers. As explained above, we
consider three constraints: change of vertical speed
only, change of ground speed only, and change of



Figure 7: One-Circle Cases (Side Views)

—

Figure 8: Circle/Circle Cases (Side Views)

Figure 10: Recovery-Circle Cases (Side Views

heading combined with a change of ground speed at
time t'. For each one of the constraints, we.
distinguish several cases according to the part of the
surface ofP that is touched during the escape and
recovery courses. We identify the following cases:
Line/Line (Figure 5): Both escape and recovery
courses are line courses.

Line/Circle (Figure 6): The escape course is a

line course and recovery course is a circle

course.
Circle/Line: The escape course is a circle course
and the recovery course is a line course. This case
is symmetric to the line/circle case. 1.
One-Circle (Figure 7): Both escape and recovery
courses are circle courses. The circle that is touched
in both courses is the same. 2,
Circle/Circle (Figure 8): Both escape and recovery
courses are circle courses. The circles that are
touched in both courses are different. 3
Escape-Circle (Figure 9): Both escape and
recovery courses are circle courses. The circle that
is touched in both cases is the same and it is
touched only once. Horizontal separation is

guaranteed for the escape course.

Recovery-Circle (Figure 10). Both escape and
recovery courses are circle courses. The circle that
is touched in both cases is the same and it is
touched only once. Horizontal separation is
guaranteed for the recovery course.

We note that not all the cases are possible in all
situations. For instance, a one-circle case is only
possible when a vertical speed change is allowed.

For each one of these cases we use the following
approach:

We find candidates to maneuvers by solving the
equations given by the constraints and the case
analysis.

We disregard candidates that contradict the
assumptions. This may requisanity checkswith

the implicit meaning that only solutions satisfying
them are considered any further.

Candidates that survive each check are the
maneuvers returned by the algorithm. This way,
correctness is guaranteed by construction.



We have constructed closed-term solutions for
each constraint. For lack of space, we illustrate at :
superficial level how the resolution and recovery
problem is solved under the constraint “change of
heading”. For technical details on all the cases, th¢
reader is encouraged to consult the technica
report [16].

Change of Heading
We impose the constraint that for the escape
step only the heading of the velocity vector may
change. For the recovery step the heading and the
horizontal speed may change. Formally,
Vox “HVoy 2 = Vppd Vo2, andvy, = vy, =V, (1)
Since the vertlcal Speed |s unchanged by the
maneuver, we may find the times when the onwship

reaches altitudegH. If v, = O then there are two
solutions,6'<@", to the equation irt: |s+tv,| = H
The timet’ of switch from the escape course to the
recovery course satisfies

t(v-v") =t" (v-v").

This vector equation is the same as a system of
equations in each coordinate. With the equation in
the zcoordinate useless, we have two equations in
three unknowns, v,” andvy” .

For the cases involving an escape (recovery)
line course, we assume that(s”) is outside the
infinite cylinder, i.e.,

%(2+%/2>D2 (%(”2+%”2>D2).

Furthermore, for the cases involving a circle course,
we assume that relative vertical speed is not zero,
i.e.,v, #0. Otherwise, there is no solution. We have

the following independent solutions.

Line/Line. The situation is shown in Figure 5. We

ignore thezcoordinate. First, we find the escape

velocity vectorv’, then, the time of switcl’, and

finally, the recovery velocity vecta’.
For the escape step, we construct the tangent
from the pointsto the infinite cylinder. That is,
given s, we look for a velocity vectow’ such
thatst+tv’ is tangent to the infinite cylinder. This
velocity vector is determined only up to a
scaling factor, i.e., for every solutiori, vector
AV, whereA > 0, is also a solution. We solve
the scaling factor using (1). Thus we get
Likewise for the recovery step, we construct the
tangent from the target poi’ to the infinite
cylinder. That is, givens”, we look for a
velocity vector,v”, up to a scaling factor, such
that s"+(t"-t)v" is tangent to the infinite

cylinder. This yields a system of equations for
the time of switcht’ and the scaling factor. We
solve it to get’ andv”.
We check for sanity that 0 ¥ <t <T1” <t”,
wheret’ andt” are the times when the infinite
cylinder is touched during the escape and
recovery course, respectively.
Line/Circle. The situation is depicted in Figure 6.
The line case of the escape step is solved exactly as
in the line/line case. Thus we geét
For the circle case of the recovery step, we
determine the timed” of arrival at relative
altitudesign(v,)H. * For sanity, we check that
0<T <@ <t".
The horizontal distance to the origin at tirfé
is D. This yields an equation iti, v,", andvy”.
The unknowns,”, andv,” can be expressed by
t', using the equations defining the time of
switch. We derive and solve the quadratic
equation irt’, and finally gev”.
Circle/Line. For the circle case of the escape step,
we get the timed' of arrival at altitude sign(v,)H.

We check for sanity that 0& <t”.
Since at timef' the escape course touches the
boundary of the infinite cylinder, we get a
system of equations i, andyv,’. Using (1), we
determine solutions fov,” andy,’. Unknownst'

andv’ are then solved as in the line/line case.
Circle/Circle. Circle/circle solutions (Figure 8)
may exist if the time®’ < 0" satisfy 0 <0’ and@”
<t". We getv’ as in the circle/line case. Then we
get t’ andv” as in the line/circle case.

We check for sanity tha®’ <t < 8" and that

the times® and 8” are exit and entry points,

respectively, to the protected zone.
Escape-Circle. Escape-circle solutions (Figure 9)
may exist if there is only one

* sign@) is the function that returns 1 if is
positive, -1 ifais negative, and 0 & is zero.
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intersection with a circle at tim@”. We check

for sanity that 0 € <t".

The escape velocity vectar is derived as in

the circle/line case, but fé& instead ob'.

The time of switch’ is given byt' =6 .

We check for sanity that at tim@ there is an

entry point to the infinite cylinder.
Recovery-Circle.  Recovery-circle solutions
(Figure 10) may exist if there is only one
intersection with a circle at timé&'. We check for
sanity of@’ that 0 <@’ <t”.

We derive solutions fow' exactly as in the

circle/line case. We check for sanity that at time

@ there is an exit point from the infinite

cylinder. The time of switch is given by=0'.

Strategic CD&R

In this section, we describesrategicCD&R
algorithm that uses RR3D to construct conflict-free
flight plans.

We define aflight plan as a sequence of pairs
(Spto) --- (S,ty), wheret, <t ,, for O<sk < n. The
point s is the 3-D coordinate of th&-th trajectory
change point, ang is the time when the aircraft is ’

required to be at that point. Teegmenk, where
0 <k < n, is given by the subsequent pointg,{)
and 6,p.t..,). We assume that segments describé

linear trajectories, i.e., velocity vectors are constant
between trajectory change points. We say that two
segments in two flight plans, respectively,
correspondf they have the same segment number.
The inputs of the strategic CD&R algorithm
are the flight plans of the ownship and the intruder.

Notice that we cannot apply directly our resolution
and recovery algorithm (RR3D) to corresponding
segments of the flight plans since they do not
necessarily coincide in time. Hence, we first
synchronize both flight plans in such a way that
they have exactly the same number of segments and
that corresponding segments coincide in time. This
may be achieved by addingirtual trajectory
change points to both flight plans. The
synchronization step is performed in linear time
with respect to the number of waypoints in the
flight plans.

Let (Syptp) - Sypetyy) @and §oito) - (1) be the
synchronized flight plans of the ownship and
intruder aircraft, respectively. We may assume that
trajectory change pointg, ands,, forO<k<n, are
separated either horizontally or vertically. If this is
not the case, we can always mosgg out of the

protected zone surroundiisg

A conflict-free flight plan for the ownship is
constructed as follows. Assume that there is a
conflict during the corresponding segmekitsf the
ownship and intruder flight plans. We use RR3D
with inputs

S= Sk~ Sk

U =t &
to get a set of escape-recovery maneuvers. We pick
one of the proposed maneuversay (v, .v,").

This maneuver determines a new trajectory change

® For correctness purposes any maneuver can be
selected, since RR3D produces only correct maneuvers.



point for the ownships(;t)):
S = Sk T UV

t=t +t

i k

The pair soj,tj) is inserted between the trajectory
change points(,,t,), (Sy:1.lcsy) Of the ownship’s
synchronized flight plan. Note that indegg< t <

terq-
Figure 11 illustrates the situation. The dashed line
is the original segment of the ownship flight plan
that is in conflict with the intruder’s flight plan, and
the bold lines indicate the new escape and recovery
segments.

Since the two flight plans are synchronized, we can
formally prove that if all the corresponding
segments are conflict-free then the two flight plans
are also conflict-free. That is, the correctness of
RR3D implies the correctness of thstrategic
conflict detection and resolution approach.

The algorithm can be summarized as follows:
Synchronize flight plans.

Move trajectory change points that are in conflict.
Call RR3D for each one of the segments that are in
conflict. Each time pick one solution of the choice
provided by RR3D.

Remove virtual points unless that they belong to an
escape or recovery course.

In the worst case we have introduced 3 new
trajectory change points for each corresponding
segments in conflict: 2 virtual points due to
synchronization and one trajectory change point
due to the escape -recovery maneuver.

Conclusion and Future Work

We presented aonflict resolution and recovery
algorithm, RR3D, for two aircraft in 3-D airspace.
Given the position and velocity vectors of the two
aircraft, ownship and intruder, and the required
time of arrival of the ownship at its next target
point, RR3D proposes a choice of maneuvers to the
ownship. Each maneuver consists of an escape
course and a subsequent recovery course that
together replace the original course. The ownship is
expected to perform one of the proposed maneuvers
while the intruder is expected to keep its original
velocity vector.

A maneuver is calledcorrect if, given some
reasonable assumptions about the situation, the
ownship, executing the maneuver, will arrive at the
target point at the scheduled time, while

maintaining separation to the intruder during the
whole maneuver. We gave a rigorous mathematical
description of the problem and proved that RR3D
proposes only correct maneuvers. We intend to
check the correctness proof using the PVS theorem
prover [17].

The problem may have infinitely many solutions.
We restrict the solutions to finitely many by
requiring that both escape course and recovery
course are tangential to the intruder's protected
zone and by imposing some additional constraints.
In this paper we showed in some detail the
constraint “change of heading”, i.e., for the escape
step, only the heading may change but not
horizontal or vertical speed, and for the recovery
step, only heading and horizontal speed may
change. Other constraints and more technical
details are discussed in [16].

We outlined how RR3D may be embedded in a
strategic CD&R algorithm, which provides a
conflict-free flight plan for the ownship. RR3D is
called once per corresponding segments of the
synchronized flight plan that are in conflict, and
each proposed maneuver may be used to change the
ownship’s flight plan. The formally proven
correctness of RR3D extends easily to the strategic
algorithm.

A prototype of RR3D, written in Java, is currently
under development. Future work includes the
implementation of the strategic approach and the
integration in a trajectory planner that takes into
account conflicts with multiple aircraft in the same
segment.
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