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Abstract

This paper presents an algorithm for detection and
resolution of air traffic conflicts between two aircraft,
namely ownship and intruder, in a 3-dimensional
airspace. The input to the algorithm is the state
information, i.e., three-dimensional position and ve-
locity vectors, of both aircraft. A conflict is predicted
using a linear projection of the aircraft states. The
algorithm outputs a set of solutions. Each solution is
a single maneuver, to be performed by the ownship,
that effectively keeps the required minimum separa-
tion. No cooperation of the intruder aircraft is re-
quired. Each solution modifies only one state param-
eter of the ownship: ground track, ground speed, or
vertical speed. The algorithm accounts for the com-
bined horizontal and vertical separation. Our aim is
to have correct solutions under all circumstances. For
this purpose we do a rigorous analysis of all special
cases. To reinforce this reliability quest, we use for-
mal arguments to derive the algorithm from a math-
ematical definition of the problem.
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1 Introduction

One of the main elements of the Free-Flight con-
cept [12] is the redistribution of responsibilities for
air traffic separation. Under Free-Flight rules, each
aircraft with an appropriate level of equipment is re-
sponsible for keeping separation with other aircraft
in the vicinity. To support this mode of operation,
several automated decision support systems are be-
ing proposed. In this context, Conflict Detection and
Resolution (CD&R) algorithms are designed to warn
pilots about an imminent loss of separation, and to
assist them to perform a corrective maneuver.

In this paper, we present a tactical CD&R algo-
rithm for two aircraft in a 3-D space. In CD&R-
related literature, tactical refers to the exclusive use
of state information to project aircraft trajectories.
Due to this intentionally limited source of informa-
tion, they are rather used with short lookahead times
(a few minutes, typically 5-10) during which aircraft
are assumed to follow straight flight paths. Strate-
gic approaches, in contrast, use intent information
such as flight plans, and are aware of hazards such as
weather conditions. They may have lookahead win-
dows of several minutes and even hours. For a survey
on CD&R methods see [8].

Distributed Air/Ground Traffic Management
(DAG-TM) [1] is a set of concept elements, de-
veloped within the Advanced Air Transportation
Technologies project at NASA, that defines modes
of operation supporting the Free-Flight paradigm.
Prototype tools such as the Autonomous Operations
Planner (AOP) are being developed at NASA Lan-
gley to study the feasibility of self separation under
a variety of operational constraints. Systems with
related goals have been proposed in other research



laboratories, e.g., the Future ATM Concepts Eval-
uation Tool (FACET) [3] at NASA Ames1 and the
Airborne Separation Assurance System (ASAS) [7]
at the National Aerospace Laboratory (NLR) in
the Netherlands. All these tools implement CD&R
algorithms.

Safety assessment of new air traffic management
systems is a main issue in DAG-TM. Standard safety
assessment techniques such as testing and simulation
have serious limitations in new, significantly more au-
tonomous, systems. Failure in rare special cases may
go unnoticed even after thorough simulation and test-
ing. Even if such failures are unlikely, they are un-
acceptable. Given the critical nature of the problem,
we plea that safety statements are made and verified
formally, and that proofs are checked by machine.
We are convinced that only formal verification can
provide the demanded degree of reliability. Our al-
gorithm is designed so as to be verified formally.

Two aircraft are said to be in conffiict if their ver-
tical separation is strictly less than H and their hor-
izontal separation is strictly less than D. Values of
H = 1000 ft (feet) and D = 5 nm (nautical miles)
are commonly used. A body in 3-D space, called pro-
tected zone, is assigned to each aircraft such that a
conflict is equivalent to an intrusion of another air-
plane into its protected zone. The protected zone
forms a cylinder of altitude 2H and radius D around
the position of the aircraft. Note that the boundaries
are not considered part of the protected zone. We will
see later that this choice enables optimal ownship ma-
neuvers that solve potential conflicts by touching the
boundaries of the intruder protected zone.

2 Related Work

Our algorithm takes ideas from several previously
proposed algorithms for air traffic conflict detection
and resolution.

1FACET is a CD&R analysis tool rather than a flight deck
decision support tool.

2.1 Conflict Detection

The input to the strategic AOP conffiict detection al-
gorithm [9] is a set of flight paths, one of which is the
ownship flight path. A flight path is a list of points,
where each point is assumed to be joined to its suc-
cessor by a straight line segment. Each such point
is assigned the intended aircraft state at this point.
Conflicts are detected by checking the distance be-
tween the flight paths at time steps of ∆ seconds.
Since the algorithm does not compute the actual time
when the first loss of separation occurs, the choice of
∆ is crucial. Indeed, if ∆ is too large, near misses
can occur without being detected.

Tactical conflict detection algorithms, as for exam-
ple the ones implemented in ASAS and FACET [7, 2],
reason in analytical geometry. In a 2-D framework,
separation is lost if the horizontal distance between
two aircraft is strictly less than D. Thus one can
construct, and solve, a quadratic equation that has
solutions when a conflict occurs. We have successfully
verified a conflict alerting algorithm using a geomet-
ric trajectory model [10]. On the other hand, we have
experienced that discretization makes formal verifica-
tion difficult [4].

2.2 Conflict Resolution

The Modifled Potential Field resolution algorithm
(originally due to Eby [6] and implemented in
ASAS [7]) computes the time τ of closest approach
between the two aircraft. The algorithm proposes a
new velocity vector such that at time τ the distance
between the aircraft is D. It is easy to see that this
maneuver improves the separation between ownship
and intruder, but several maneuvers are required to
solve the conflict.

This problem does not appear in the 2-D Geomet-
ric Optimization Resolution algorithm, proposed by
K. Bilimoria [2] and implemented in FACET [3]. The
intruder is considered fixed in space. The ownship
position and velocity vector are taken relative to the
intruder. A new relative velocity vector for the own-
ship solves the conflict if it does not intersect the
protected zone. Among the infinitely many new ve-
locity vectors that solve the conflict, the algorithm
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chooses those which minimize their angle to the orig-
inal velocity vector. Such velocity vectors are called
optimal.

Since the protected zone is a disk, the optimal so-
lutions lie on tangents to the disk. Any other solu-
tion requires a greater change of the ownship ground
track. Given the direction of the new relative velocity
vector, its length may be chosen arbitrarily. Bilimo-
ria’s algorithm proposes a solution that minimizes the
change of the velocity vector.

3 An Algorithm for 3-D CD&R

In this paper, we only give a sketch of our new al-
gorithm. The reader may refer to the technical re-
port [5] for more details.

In the Modified Potential Field algorithm imple-
mented in ASAS, 3-D conflicts are decomposed into
horizontal and vertical conflicts. The solution to the
horizontal conflict is then merged with the solution
to the vertical conflict in order to provide a 3-D ma-
neuver.

We present a true 3-D extension to the Geometric
Optimization algorithm which is based on an accu-
rate mathematical development and which offers a
complete analysis of special cases.

3.1 3-D conflict detection

We start from a 3-D coordinate system where the in-
truder is fixed at the origin. Position, ~a, and speed, ~v,
of the ownship are given relative to the intruder. We
define the ownship trajectory as the half line originat-
ing from the ownship current position, going along its
velocity vector as time t passes: ~a+ t~v, t > 0.

An ownship at position (x, y, z) is in conffiict with
the intruder if it is in the protected zone, defined by

P = {(x, y, z) | x2 + y2 < D2 and −H < z < H}.

The two aircraft are predicted to be in conffiict if the
ownship trajectory intersects the protected zone P .
That is, ~a + t~v ∈ P for some t > 0. The conflict
detection problem is to find out whether such t exist.
It can be solved as follows. We assume that there is
no conflict at time t = 0. The trajectory intersects

the interior of the flat cylinder, P , if it intersects twice
the boundary of P . The two intersections with the
boundary determine the time interval of intrusion to
the protected zone. The cylinder boundary consists
of (1) its lateral surface

P1 = {(x, y, z) | x2 + y2 = D2 and −H ≤ z ≤ H}

and (2) its top and bottom bases

P2 = {(x, y, z) | x2 + y2 < D2 and |z| = H}.

Note that the top and bottom disks belong to P1.
Now, either the vertical velocity component, vz, is

zero, in which case we have the special 2-D case. Or
it is non-zero, in which case we can determine the
times t1 and t2 of intersection of the ownship trajec-
tory with the horizontal planes at altitudes ±H. We
distinguish cases whether or not the distances d1, d2
of the ownship to the intruder at times t1 and t2,
respectively, exceeds D. In the case of a predicted
conflict, we will get either 0, 1, or 2 intersections of
the trajectory with the bases, and 2, 1, or 0 inter-
sections, respectively, with the lateral surface. In no
conflict is predicted, there are no intersections.

3.2 3-D conflict resolution

We assume that at time t = 0 ownship and intruder
are not in conflict, but that they are predicted to be
in conflict. We want a modified velocity vector ~v′
such that the new trajectory ~a + t~v′, t > 0 is not
predicted to be in conflict.

Among the various solutions, we are interested in
the optimal ones, i.e., those where the angle between
~v and ~v′ is minimal in the half plane containing these
vectors. Positive multiples of optimal solutions are
again optimal solutions. Hence, the kernel of our al-
gorithm is a procedure that characterizes the direc-
tions of optimal non-zero solutions.

In an optimal non-zero solution the half line ~a+t~v′
must touch the boundary of the protected zone, and
since it is a solution, it must not enter the protected
zone. We characterize each solution by one of its
touching points at the cylinder’s boundary. We call
such points target points, and the set of all target
points the target set.
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Figure 1: 3-D coordinate system and protected zone

Figure 2: Target set. Case −H < az and −ax > D

Figure 3: Target set. Case az < −H and −ax ≥ D

Figure 4: Target set. Case az < −H and −ax < D

For convenience we assume the coordinate system
rotated around the z axis so as to ensure ax ≤ 0
and ay = 0 for the relative initial ownship position,
(ax, ay, az). By symmetry, we may furthermore as-
sume that az ≤ 0. Otherwise, we mirror the whole
arrangement at the xy plane. See Figure 1.

We get the following description of the target set.

1. Case −H < az and −ax > D. In this case, the
target set is the set of points (x, y, z) of P1 such
that x = D2/ax or (z = H and x < D2/ax) or
(z = −H and x < D2/ax). See Figure 2.

2. Case az ≤ −H and −ax ≥ D. In this case, the
target set is the set of points (x, y, z) of P1 such
that x = D2/ax or (z = H and x < D2/ax) or
(z = −H and x > D2/ax). See Figure 3.

3. Case az < −H and −ax < D. In this case, the
target set is the set of points (x, y, z) of P1 such
that z = −H. See Figure 4.

4 Constrained Solutions

Every point from the infinite set of target points de-
fines a direction. For each direction, we may chose
an arbitrary length for the relative velocity vector ~v′.
Each ~v′ determines a maneuver that optimally solves
the conflict. Some of these maneuvers are more desir-
able than others. For instance, one might have only
one flight parameter changed. If a change of ground
speed is capable of solving the conflict, then one may
disregard a combined change of ground speed and
ground track. In what follows, we use the subscripts
o and i to indicate state values associated to the own-
ship and the intruder aircraft, respectively.

We have done an exhaustive analysis for each of the
following constraints on the new (absolute!) ownship
velocity vector ~v′o = (v′ox, v

′
oy, v

′
oz):

• only ground speed may change: ~v′o =
(kvox, kvoy, voz) for some k > 0,

• only ground track may change: v′2ox+v′2oy = v2
ox+

v2
oy, v′oz = voz,

• only vertical speed may change: v′ox = vox, v′oy =
voy.
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Figure 5: Superset of target points

For the analysis we utilize the fact that the target
set is a subset of the point set drawn in Figure 5. For
each of the three constraints, the analysis considers
cases:

1. target points on the boundary circles of the lat-
eral surface of Figure 5; these are defined by the
system of equations

x2 + y2 = D2 (1)
z = εH ε = ±1 (2)

2. target points on the vertical lines of Figure 5;
these are defined by the system of equations

x =
D2

ax
(3)

y =
−εD
ax

√

a2
x −D2 ε = ±1 (4)

3. and also the zero solution ~v′ = ~0, i.e., ~v′o = ~vi.

In each of these cases, quadratic equations obtained
from Equations 1 and 2 or from Equations 3 and 4,
respectively, are solved, and the solutions are checked
for the target point property.

4.1 Ground Speed Change Only

We have ~v′o = (k vox, k voy, voz) for some k > 0.
We must determine the possible k positive such that
at some time t, the point (x, y, z) = (ax + t(v′ox −
vix), t(v′oy − viy), az + t(v′oz − viz)) is on the target
set.

4.1.1 Points on the circles

Equation 2 yields

t = (εH − az)/(voz − viz).

Equation 1 is instantiated to

(ax + t(kvox − vix))2 + (t(kvoy − viy))2 = D2,

which rewrites to

t2(v2
ox + v2

oy)k2

+ (2(ax − tvix)tvox − 2t2voyviy)k
+ (ax − tvix)2 + t2v2

iy −D2 = 0.

We solve this equation for k.
We analyze the singularities of this case.

• Case voz = viz. The vector ~vo − ~vi is horizon-
tal and will remain horizontal if we change the
ground speed of the ownship. Solutions, if any,
are tangential to the circle and also belong to a
line and those are handled in case 2.

Therefore, there are no solutions.

• Case (v2
ox+v2

oy)D2 < ((ax− tvix)voy + tvoxviy)2.
In this case the quadratic equation for k has no
solutions. Therefore, there are no solutions.

4.1.2 Points on the lines

From Equation 3 and Equation 4 one derives

t(kvox − vix) =
D2

ax
− ax (5)

t(kvoy − viy) =
−εD

√

a2
x −D2

ax
. (6)

Multiplication of Equation 5 with opposite sides of
Equation 6 and cancellation yields

√

a2
x −D2(kvoy − viy) = εD(kvox − vix) (7)

Thus, we deduce

k =
viy
√

a2
x −D2 − vixεD

voy
√

a2
x −D2 − voxεD

, (8)

t =
−εDvox

√

a2
x −D2 + (a2

x −D2)voy
ax(vixvoy − voxviy)

. (9)

We analyze the singularities of this case.
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• Case −ax < D. No solution, since there are no
lines.

• Case −ax = D. There is a single line and
the relative initial position of the ownship is
on that line. The only way to reach a target
point on that line is if ~v′ is vertical or null.
If vixvoy − voxviy = 0 then there is a solution:
v′ox = vix, v′oy = viy. Otherwise, there is none.

• Case vixvoy−voxviy = 0. The horizontal compo-
nents of ~vi and ~vo are parallel. The direction of
~v′ is independent of k and, by predicted conflict
for k = 1, is not tangent to the lateral surface of
the cylinder.

• Case εDvox = voy
√

a2
x −D2. No solution, since

t = 0.

4.1.3 Special case ~v′ = ~0

The only way to reach ~v′ = ~0 by changing the ownship
ground speed is to have vixvoy−voxviy = 0 and voz =
viz.

4.2 Ground Track Change Only

Since ground speed and vertical speed are constant,
we have

v′2ox + v′2oy = v2
ox + v2

oy (10)

v′oz = voz (11)

and we must determine the possible v′ox and v′oy such
that at some time t, the point (x, y, z) = (ax+t(v′ox−
vix), t(v′oy−viy), az+t(v′oz−viz)) is on the target set.

4.2.1 Points on the circles

Equation 2 gives t = (εH−az)/(voz−viz). Equation 1
rewrites to

2t2v′oyviy = E + 2(ax − tvix)tv′ox, (12)

where

E = (ax − tvix)2 + t2v2
iy + t2v′2ox + t2v′2oy −D2

= (ax − tvix)2 + t2v2
iy + t2v2

ox + t2v2
oy −D2.

Squaring Equation 12 yields

4t4v′2oyv
2
iy = (E + 2(ax − tvix)tv′ox)2.

Using Equation 10, we get

4t4v2
iy(v2

ox + v2
oy − v′2ox) = (E + 2(ax − tvix)tv′ox)2

Hence,

4t2((ax − tvix)2 + t2v2
iy)v′2ox (13)

+ 4E(ax − tvix)tv′ox (14)

+ E2 − 4t4v2
iy(v2

ox + v2
oy) = 0. (15)

To solve Equation 13 on v′ox, we compute its discrim-
inant ∆ = 16v2

iyt
4∆′, where

∆′ = −E2 + 4t2(v2
ox + v2

oy)((ax − tvix)2 + v2
iyt

2).

If ∆′ ≥ 0, the solutions are

v′ox =
−E(ax − tvix) + ε′viyt

√
∆′

2t((ax − tvix)2 + t2v2
iy)

, (16)

where ε′ = ±1. Then, we get

v′oy =
E + 2(ax − tvix)tv′ox

2t2viy
(17)

=
Etviy + ε′(ax − tvix)

√
∆′

2t((ax − tvix)2 + t2v2
iy)

. (18)

We analyze the singularities.

• Case voz = viz. The vector ~vo − ~vi is horizon-
tal and will remain horizontal if we change the
ground track of the ownship. Solutions, if any,
are tangential to the circle and also belong to a
line and those are handled in case 2.

• Case viy = 0 and ax 6= tvix. Then Equation 12
yields one solution for v′ox which meets Equa-
tion 16. Equation 10 gives two solutions for v′oy
which meet Equation 18.

• Case viy = 0 and ax = tvix. At time t, the in-
truder will be where the ownship is at time 0.
Changing the ownship ground track does not af-
fect the horizontal distance between the aircraft
at time t (that will be t

√

v2
ox + v2

oy in all cases).
Therefore, it does not help to solve the conflict.
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4.2.2 Points on the lines

If −ax 6= D then v′ox = vix is not a solution and
Equation 3 gives t in function of v′ox

t =
D2 − a2

x

ax(v′ox − vix)
.

Equation 4 rewrites to

(D2 − a2
x)(v′oy − viy)

ax(v′ox − vix)
= −εD

ax

√

a2
x −D2

v′oy − viy
v′ox − vix

=
εD

√

a2
x −D2

v′oy =
εD(v′ox − vix)
√

a2
x −D2

+ viy

Replacing v′oy in Equation 10, we get

(
εD(v′ox − vix)
√

a2
x −D2

+ viy)2 + v′2ox = v2
ox + v2

oy.

We solve this equation and get v′ox and then v′oy.
We analyze the singularities.

• Case −ax < D. No solution since there are no
lines.

• Case −ax = D. The only solution is v′ox = vix,
v′oy = viy. In this case, we must have v2

ix+ v2
iy =

v2
ox + v2

oy. Hence, ~v′ is vertical or ~0.

4.2.3 Special case ~v′ = ~0

The only way to get ~v′ = ~0 by changing the ownship
ground track is to have v2

ix + v2
iy = v2

ox + v2
oy and

voz = viz. In this case, we take ~v′o = ~vi.

4.3 Vertical Speed Change Only

If the target point is on a line then it is also on a
circle. So we have only two cases here.

4.3.1 Points on the circles

Equation 1 rewrites to

(ax + t(vox − vix))2 + (t(voy − viy))2 = D2.

We solve this equation to get t. Equation 2 yields

v′oz = viz + (εH − az)/t.

If vox = vix, voy = viy, Equation 1 has a solution
only when −ax = D and in this case there is no
conflict.

4.3.2 Special case ~v′ = ~0

The only way to reach ~v′ = ~0 by changing the ownship
vertical speed is to have vox = vix and voy = viy. We
take v′oz = viz.

5 A Prototype Implementation

We have implemented the algorithm in a prototype
written in Java. The prototype is a few hundred
lines of code containing assignments and condition-
als. Expressions use the four basic arithmetic oper-
ations and square root, but no trigonometric func-
tions. We do use trigonometric functions in the
interface, to print the ground track of the aircraft
from the computed Cartesian coordinates of the ve-
locity vector. The implementation is available at
http://www.icase.edu/~munoz/sources.html.

Here is a typical execution: we have two aircraft
flying at the same altitude with a horizontal separa-
tion of 10 nm. In the coordinate system where the
intruder is at the origin and the ownship at coordi-
nates (−10, 0, 0), the ground track of the ownship is
0 and the ground track of the intruder is 180◦. The
ground speed of the ownship is 400 nm/h and that of
the intruder is 300 nm/h. The ownship is climbing
at a vertical speed of 1000 ft/mn and the intruder is
descending at a vertical speed of −1000 ft/mn. The
input to the algorithm is a file containing the follow-
ing information.

Ground distance = 10 nm Vertical distance = 0 ft
Ownship: 0 deg 400 nm/h 1000 ft/mn
Intruder: 180 deg 300 nm/h -1000 ft/mn

The programs detects a conflict and proposes five
solutions:
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Conflict in the time interval (25.7143,29.1456)

There are 5 solutions.

Modify GROUND SPEED 317.5889 nm/h (TOP)
Modify GROUND TRACK 29.1888 deg (TOP)
Modify GROUND TRACK -29.1888 deg (TOP)
Modify VERTICAL SPEED 1266.8799 ft/mn (TOP)
Modify VERTICAL SPEED -3266.8799 ft/mn (BOTTOM)

The first solution is to reduce ground speed to 317
nm/h. The second and third modify ground track.
The last two solutions modify vertical speed. On
the other hand, in the first four solutions, the tar-
get points are on the top circle of the target set. In
the last solution, the target point is on the bottom
circle.

Notice that some solutions may not be physically
possible. For instance, the last solution proposes an
absolute change of vertical speed of more than 4000
ft/mn. Our algorithm does not check the solutions
for satisfaction of aircraft capabilities. Such checks
may however easily be added.

6 Conclusion

We have given a complete and rigorous analysis of
tactical detection and resolution of air traffic con-
flicts in the 3-dimensional space and described a new
CD&R algorithm that produces a set of solutions.
Each solution proposed by the algorithm is a con-
strained single maneuver that, when performed by
the ownship, solves the conflict without collaboration
of the intruder aircraft. Experiments have indicated
that our algorithm always yields at least two solu-
tions. After thousands of randomly generated exam-
ples the average was three solutions per conflict.

Our algorithm can be integrated within a more
comprehensive system, such as AOP, to detect and
solve conflicts in piece-wise linear flight plans. It is
well suited to serve this purpose. First, it is efficient.
Particularly, it does not contain loops nor calls to
trigonometric functions. Moreover, extra information
such as intent information, aircraft performance in-
formation, and area hazard information may be used
to chose one maneuver from the set that our algo-

rithm offers.
We designed our algorithm so as to enable its for-

mal verification. Our next step is to prove in PVS [11]
formally that every proposed maneuver indeed solves
the conflict and that the set of proposed maneuvers
is always non-empty.
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