IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO.2, FEBRUARY 2009

Verified Real Number Calculations:
A Library for Interval Arithmetic

Marc Daumas, David Lester, and César Mufoz

Abstract—Real number calculations on elementary functions are remarkably difficult to handle in mechanical proofs. In this paper, we
show how these calculations can be performed within a theorem prover or proof assistant in a convenient and highly automated as well
as interactive way. First, we formally establish upper and lower bounds for elementary functions. Then, based on these bounds, we
develop a rational interval arithmetic where real number calculations take place in an algebraic setting. In order to reduce the
dependency effect of interval arithmetic, we integrate two techniques: interval splitting and Taylor series expansions. This pragmatic
approach has been developed, and formally verified, in a theorem prover. The formal development also includes a set of customizable
strategies to automate proofs involving explicit calculations over real numbers. Our ultimate goal is to provide guaranteed proofs of
numerical properties with minimal human theorem-prover interaction.

Index Terms—Real number calculations, interval arithmetic, proof checking, theorem proving.

1 INTRODUCTION

DEADLY and disastrous failures [1], [2], [3] confirm the
shared belief that traditional testing, simulation, and
peer review are not sufficient to guarantee the correctness of
critical software. Formal Methods in computer science refers
to a set of mathematical techniques and tools to verify safety
properties of a system design and its implementation
functional requirements. In the verification of engineering
applications, such as aerospace systems, it is often
necessary to perform explicit calculations with nonalgebraic
functions. Despite all of the developments concerning real
analysis in theorem provers [4], [5], [6], [7], [8], the formal
verification of the correctness of these calculations is not
routine.
Take, for example, the formula

3m g 357 3.1

180 = vtan(mo) =180 ()
where g is the gravitational force, and v = 250 knots is the
ground speed of an aircraft. This formula appears in the
verification of NASA’s Airborne Information for Lateral
Spacing (AILS) algorithm [9]. It states that the turn rate of
an aircraft flying at ground speed v with a bank angle of
35 degree is about 3 degree/second. A direct proof of this
formula is about a page long and requires the use of several
trigonometric properties.

e M. Daumas is with the Laboratoire Electronique, Informatique, Auto-
matique et Systémes (ELIAUS), Université of Perpignan Via Domitia
(UPVD), 52, avenue Paul Alduy, F-66860 Perpignan Cedex, France.
E-mail: marc.daumas@ens-lyon.org.

o D. Lester is with the School of Computer Science, University of Manchester,
Oxford Road, Manchester M13 9PL, UK. E-mail: dlester@cs.man.ac.uk.

o C. Murioz is with the National Institute of Aerospace, 144 Research Drive,
Hampton, VA 23666. E-mail: Munoz@NIANet.Org.

Manuscript received 22 July 2007; revised 25 Mar. 2008; accepted 18 Sept.
2008; published online 11 Nov. 2008.

Recommended for acceptance by P. Kornerup, P. Montuschi, |.-M. Muller,
and E. Schwarz.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-2007-07-0362.
Digital Object Identifier no. 10.1109/TC.2008.213.

0018-9340/09/$25.00 © 2009 IEEE

In many cases, the formal checking of numerical
calculations is so cumbersome that the effort seems futile;
it is then tempting to perform the calculations out of the
system, and introduce the results as axioms.! Chances are
that the external calculations will be performed using
floating-point arithmetic. Without formal checking of the
results, we will never be sure of the correctness of the
calculations.

In this paper, we present a set of interactive tools to
automatically prove numerical properties, such as (1),
within a proof assistant. The point of departure is a
collection of lower and upper bounds for rational and
nonrational operations. Based on provable properties of
these bounds, we develop a rational interval arithmetic
which is amenable to automation. The series approxima-
tions and interval arithmetic presented here are well
known. However, to our knowledge, this is the most
complete formalization in a theorem prover of interval
arithmetic that includes nonalgebraic functions.

Our ultimate goal is to provide guaranteed formal proofs
of numerical properties with minimum human effort. As
automated processes are bound to fail on degenerate cases
and waste time and memory on simple ones, we have
designed a set of highly customizable proof strategies. The
default values of the parameters are sufficient in most
simple cases. However, a domain expert can set these
parameters to obtain a desired result, e.g., the accuracy of a
particular calculation.

This paper merges and extends the results presented in
[10] and [11]. The rest of this document is organized as
follows: Section 2 defines bounds for elementary functions.
Section 3 presents a rational interval arithmetic based on
these bounds. Section 4 describes a method to prove
numerical propositions. The implementation of this method
in a theorem prover is described in Section 5. Section 6
summarizes our work and compares it to related work.

1. As a matter of fact, the original verification of NASA’s AILS algorithm
contained several such axioms.

Published by the IEEE Computer Society

The mathematical development presented in this paper
has been written and fully verified in the Prototype
Verification System (PVS) [12].2 PVS provides a strongly
typed specification language and a theorem prover for
higher-order logic. It is developed by SRI International. Our
development is freely available on the Internet. The results
on upper and lower bounds have been integrated to the
NASA Langley PVS Libraries’ and the rational interval
arithmetic and the PVS strategies for numerical proposi-
tions are available from one of the authors.* In this paper,
we identify as Propositions those theorems that have been
formalized in PVS. Only one theorem is identified as a Meta-
Theorem since it was not verified in PVS. Although it can be
mathematically proved at the metalevel, the formal proof is
not needed in our development as it can be replaced by a
proof rule that mechanically discharges any particular
instance of the theorem.

For readability, we will use standard mathematical
notations along this paper, and PVS notations will be limited
to illustrate the use of the library. In the following, we use the
first letters of the alphabet a,b,... to denote rational
numbers, and the last letters of the alphabet ..., z,y, 2 to
denote arbitrary real variables. We use boldface for interval
variables. Furthermore, if x is an interval variable, x denotes
its lower bound and X denotes its upper bound.

2 BouNnDs FOR ELEMENTARY FUNCTIONS

A PVS basic theory of bounds for square root and
trigonometric functions was originally proposed for the
verification of NASA’s AILS algorithm [9]. We have
completed it and extended with bounds for natural
logarithm, exponential, and arctangent. The basic idea is
to provide for each real function f: IR — IR, functions f:
(R,IN)~TR and f: (IR,IN)—~IR closed under @, such that
forall z, n

fz,n) < f(z) < f(z,n), (2)
f(@.n) < f(z,n+1), (3)
flz,n+1) < f(z,n), (4)

Jim f(w,n) = f(z) = lim F(z,n). 5)

Formula (2) states that f and f are, respectively, lower and
upper bounds of f, and (3), (4), and (5) state that these
bounds can ultimately be improved, as much as needed, by
increasing the approximation parameter n.

For transcendental functions, we use Taylor approxima-
tion series. We performed a quadrant localization for the
trigonometric functions [13] and we return a trivial interval
if the bounds cannot be located in the four primary
quadrants since the convergence of Taylor series is usually
best for small values. We performed multiplicative range
reduction by a factor 2™ for the logarithm function.

2. PVS is available from http:/ /pvs.csl.sri.com.
3. http:/ /shemesh.larc.nasa.gov/fm/ftp /larc/PVS-library / pvslib.html.
4. http:/ /research.nianet.org/ munoz/Interval.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO.2, FEBRUARY 2009

Additive range reduction is not automatically applied to
the trigonometric functions as it would use a parameterized
approximation of 7. Elaborate range reduction techniques
[14] would significantly enhance the speed and the accuracy
of the functions defined in Sections 2 and 3.

All the stated propositions in this section have been
formally verified in the verification system PVS.

2.1 Square Root

For square root, we use a simple approximation by
Newton’s method. For > 0

sqrt(z,0) =z + 1,

I 1 -
sqrt(z,n + 1) = 3 (y + £>7 where y = sqrt(z, n),
Y

t(z,n) -
sqrt(x,n) = =————.
== sqrt(z, n)

Proposition 1. Vz > 0, n: 0 < sqrt(z,n) < /x < sqrt(z,n).

The first inequality is strict when x > 0.

2.2 Trigonometric Functions
We use the partial approximation by series:

27?—1
sm X, n Z(— Tl)
L mz+l 4 va’,fl
sin(z,n) = » (1) ——,

P (2¢ —1)!
m+1 2'

cos(z,n —1+Z

cos(z,n —1+Z

where m = 2n if z < 0; otherwise, m = 2n + 1.

Proposition 2. Vz, n : sin(x,n) < sin(z) < sin(z,n).

Proposition 3. Vz, n : cos(xz,n) < cos(z) < ¢os(z,n).

Propositions 2 and 3 hold for any value of z, including
|z| > 7/2. However, the smaller the value of x, the better
the accuracy of the approximations. We could have
implemented a range reduction to the interval [—7/2,7/2].
Since this interval is not rational, extra work is needed in
order to parameterize efficiently a range reduction using
rational arithmetic. Such reduction is planned as a future
improvement.

2.3 Arctangent and 7

We first use the alternating partial approximation by series
for0 <z <1t

2n+1 . i

atan(z,n) ZmQ’H , if0<z<l,
—1)

atan(z, n) ZMI , f0o<z<L

We note that for = 1 (which we might naively wish to use
to define /4 and hence) the series: 1 —f+1—1+4—---

DAUMAS ET AL.: VERIFIED REAL NUMBER CALCULATIONS: A LIBRARY FOR INTERVAL ARITHMETIC 3

does converge, but very slowly. Instead, we use Machin’s
Formula 7 =4 atan(1/5) —atan(1/239), that has much
better convergence properties [15]. Using this identity, we

can define bounds on 7

m(n) =16 atan(1,
7(n) =16 atan(1,

n) — 4 atan(1,n),
n) — 4 atan(1,n).

Proposition 4. Vn : n(n) < m < 7(n).

Now, using properties of arctangent, we extend the range of
the function to the whole set of real numbers:

atan(0,n) =atan(0,n) = 0,

1
atan(z,n) = @ — atan(—,n), if 1 <,
x

atan(x,n) = — atan(—z,n), if x <0,

- b 1

atan(z,n) = @ — atan(—,n), if 1 <x,
x

if x < 0.

atan(zr,n) = — atan(—z,n),

Proposition 5. Vz, n : atan(x,n) < atan(z) < atan(z,n).

These are strict inequalities except when = = 0.

2.4 Exponential
The series we use for the exponential function is

i

.\

exp(z) = ; R
We could directly find bounds for negative x from this
series as, in this case, the series is alternating. However, we
will subsequently find that it is convenient to show that our
bounds for the exponential function are strictly positive,
and this is not true for all x < 0. Yet, this property holds for
-1 <x<0.

We define
nt1)
exp(z,n) Z f—7 if —1<x<0,
(7L;0)$
exp(x,n) = ; R it -1<z<0.

Using properties of the exponential function, we obtain
bounds for the whole set of real numbers:

exp(0,n) =exp(0,n

exp —exp<

> , ifax < —1,

exp(m,n)—m, 1fl'>0

. ~|a)
%(ﬂc,n):ﬁ(_tﬂﬂg , ifx<—1,
_ 1 .
exp(ac,n) = M’ if x> 0.

Notice that unless we can ensure that all of the bounding
functions are strictly positive we will run into type-checking

problems using the bound definitions for = >0, e.g.,
1/exp(—x,n) is only defined provided exp(—z,n) # 0.

Proposition 6. Vz, n: 0 < exp(z,n) < exp(x) < exp(z,n).

These are strict inequalities except when z = 0.

2.5 Natural Logarithm

For 0 <z <1, we use the alternating series for natural
logarithm:

n(z + 1) Z 7+1 95
i=1
Therefore, we define

In(z, n) i(@Dy
n(z,n) = - =i z

—_ bl — Z' bl —_)

2n+1 i
_ (=1
(z,n) = Z(q)l“u, if1<2<2.

i=1 ¢

Using properties of the natural logarithm function, we
obtain

l_n(lan) = E(lvn) =0,

1
Lﬂ(%n):—l_n(—,n), if 0 << 1,
x
_ /1 .
ln(l"a”):*hl(*,n), if0<ax<l1.
z

Finally, we extend the range to the whole set of positive
reals. If x > 2, we find a natural number m and real number y
such that z =2"y and 1 <y <2, by using the following
recursive algorithm similar in spirit to euclidean division:

lnnat (x:posreal, k:posnat) :
if x < k then (0, x)
else
let (m, y) = lnnat (x/k, k) in
(m+1,y)
endif

[nat, posreal] =

We next prove the following property.

Proposition 7.Vz > 1, k> 1: k" <z < K", y < k, x=k"y,
where (m,y) = lnnat(z, k).

If (m,y) = 1nnat(2,z), we observe that

In(z) = In(2"y) = mIn(2) + In(y).
Hence
In(z,n) =m In(2,n) + ln(y,n), ifz>2,
In(z,n) =m In(2,n) + In(y,n), ifz>2.

Proposition 8. Vz > 0, n: In(z,n) < In(z) < In(z,n).

These are strict inequalities except when = = 1.

3 RATIONAL INTERVAL ARITHMETIC

Interval arithmetic has been used for decades as a standard
tool for numerical analysis on engineering applications [16],

PVS Listing 1 Definition of interval arithmetic

Interval : THEORY
BEGIN
Interval : TYPE = [#
1b : rat,
ub : rat
#]
X,y : VAR real
n : VAR nat
X,Y : VAR Interval
+(X,Y): Interval = [|1lb(X)+1lb(Y),
ub (X) +ub (Y) |]
-(X,Y) Interval = [|1lb(X)-ub(Y),
ub (X)-1b(Y) |]
- (X) Interval = [|-ub(X),
-1b (X)) I1]
*(X,Y): Interval =
if X >= 0 AND Y >= 0 then pXp(X,Y)
elsif X >= 0 AND Y <= 0 then pXn(X,Y)
elsif X >= 0 then pXm(X,Y)
elsif X <= 0 AND Y <= 0 then nXn(X,Y)
elsif X <= 0 AND Y >= 0 then nXp(X,Y)
elsif X <=0 then nXm(X,Y)
elsif Y >= 0 then mXp(X,Y)
elsif Y <=0 then mXn (X, Y)
else mXm (X, Y)
endif
PXp (X,Y): Interval = [[|1lb(X)=*1b(Y),
ub (X) xub (Y) |]
/(X,Y): Interval = X * [|1/ub(Y),
1/1b(Y) |]
Abs (X) : Interval = ...
~(X,n): Interval = ...
U(X,Y): Interval = [|min(1lb(X),1lb(Y)),
max (ub (X) ,ub(Y)) |]
(x,X): bool = 1lb(X) <= x AND x <= ub (X)
Proper? (X): bool = 1b(X) <= ub(X)
bool = 1b(X) < ub(X)

StrictlyProper? (X) :

END Interval

Fig. 1. Definition of interval arithmetic.

[17]. In interval arithmetic, operations are evaluated on
range of numbers rather than on real numbers. A (closed)
interval [a,b] is the set of real numbers between a and b, i.e.

[a,0] ={z | a <z < b}.

The bounds a and b are called the lower bound and upper
bound of [a, b], respectively. We say that the interval [a, D] is
proper if a < b. Furthermore, it is strictly proper if a < b. Note
that a nonproper interval is equivalent to the empty set. The
notation [a] abbreviates the point-wise interval [a, a].

Interval computations can be performed on the end-
points or on the center and the radius. For this work, we
decided to work on rational endpoints. Trigonometric and
transcendental functions for interval arithmetic are defined
using the bounds presented in Section 2.

Fig. 1 shows a few definitions from the PVS theory
Interval. PVS developments are organized in theories,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO.2, FEBRUARY 2009

which are collections of mathematical and logical objects
such as function definitions, variable declarations, axiom:s,
and lemmas. The theory defines the type Interval as a
record with fields ub and 1b of type rat (rational
numbers), variables x, y of type real, variable n of type
nat, and variables X, Y of type Interval. For the scope of
the theory, these variables are implicitly universally
quantified. Dots are used to emphasis on the fact that some
parts of the theory have been removed to simplify the
presentation and hide some technical points. Though
writing definitions, lemmas, theorems, and specially proofs
in PVS requires some training, reading theories is possible
to anybody with a minimal background in logic and
functional programming.

If X is a PVS interval, 1b(X) is the lower bound and
ub (X) is the upper bound of X. In PVS, we define the
syntactic sugar [Ix, y|] to represent the interval [z,y].
Interval union x Uy, written in PVS X U Y, is defined as the
smallest rational interval that contains both x and y.
Furthermore, the inclusion z € x is written in PVS x ## X.
This notation is not very intuitive but the set of infix
operators available in PVS is quite limited. In particular, the
more natural keyword in is already reserved.

The four basic interval operations are defined as
follows [18]:

X+y= [

)

Ty.X
-

\% %\

X —

)

—

XXy = min{zz, Xy, Xy, Xy}, max{xy, Xy, Xy, X_y}],

1
x/y=xx |=,—|, ifyy>0.
y'y =

We also define the unary negation, absolute value, and

power operators for intervals:

—x =[x, —x],
x| = [min{|x], ||}, max{|x], [X[}], if xx >0,
x| = [0, max{|x], [x[}], if xx <0,
[1], ifn=0,
if x > 0 or odd?(n),

if X < 0 and even?(n),

X", X",
X", x",
[

0, max{x” X"},

X'VL —

otherwise.

Interval operations are defined such that they include the
result of their corresponding real operations. This property
is called the inclusion property. As illustrated in Fig. 2,
Proposition 9 corresponds to several lemmas in PVS, one
per operator.

Proposition 9 (inclusion property for basic operators). If
rexandy €y, thenrz @y € xRy, where® € {+,—, %, /}.
Moreover, —z € —x, |z| € |x|, and z" € X", for n > 0. It is
assumed that y does not contain 0 in the case of interval
division.

The inclusion property is fundamental to interval
arithmetic. It guarantees that evaluations of an expression
using interval arithmetic bound its exact real value. Any

DAUMAS ET AL.: VERIFIED REAL NUMBER CALCULATIONS: A LIBRARY FOR INTERVAL ARITHMETIC 5

PVS Listing 2 Basic inclusion properties

Add_inclusion : LEMMA
x ## X AND y ## Y = x+y ## X+Y

Sub_inclusion : LEMMA
x ## X AND y ## Y — x-y ## X-Y

Neg_inclusion : LEMMA
X ## X = -x ## X
Mult_inclusion : LEMMA

x ## X AND y ## Y = xxy ## XxY
Div_inclusion : LEMMA
NOT O ## Y AND
x ## X AND y ## Y = x/y ## X/Y

Abs_inclusion : LEMMA
X ## X = abs(x) ## abs(X)

Pow_inclusion : LEMMA
x ## X — x"n ## X"n

Fig. 2. Basic inclusion properties.

operation in interval arithmetic must satisfy the inclusion
property with respect to its corresponding real operation.

3.1 Interval Comparisons

There are several possible ways to compare intervals [19]. In
this work, we use interval-rational comparisons and
interval inclusions:

x <a, ifX < a, similarly for <,
X >a, if x> a, similarly for >,
x Cy, ifzggandigy.

Proposition 10. Assume that x € x:

l. ifxRa thenzRa, for R € {<,<,>,>}, and
2. ifxCy, then x €y.
We use R~ to denote >, >, <, or <, when R is,
respectively, <, <, >, or >.

Proposition 11. If x R a and x R™!
that —=(x R a) does not imply x R~

a, then x is empty. Notice
! a. For instance, [-1,1] is

As in the case of Proposition 9, Propositions 10 and 11
actually correspond to several lemmas in PVS, one per each
order relation.

3.2 Square Root, Arctangent, Exponential, and
Natural Logarithm

Interval functions for square root, arctangent, 7, exponen-

tial, and natural logarithm are defined for an approximation

parameter n > 0:

VA, = [sart(x,n), sari(x,)|, if x>0,

[atan(x)],= [atan(x, n), atan(x, n)],
7], = [x(n), 7(n)],
[exp(x)],, [exp(x n),exp(X n)}
[In(x)],= [In(x,n),In(x,n)], if x> 0.

As consequence of Propositions 1, 5, 6, and 8 in Section 2,
and the fact that these functions are increasing, the above
functions satisfy the following inclusion property that
corresponds to several lemmas in PVS, one per function.

Proposition 12. For all n, if x € x, then f(x) € [f(x)],, where
f € {/atan, exp,In}. Moreover, 7 € [r],. It is assumed that
x is nonnegative in the case of square root, and x is positive in
the case of natural logarithm.

3.3 Trigonometric Functions

Parametric functions for interval trigonometric functions
are defined by case analysis on quadrants where the
functions are increasing or decreasing. The mathematical
definitions are presented in Fig. 3.

Note that sin and cos are defined for the whole real line.
However, for angles a such that |a| > = both functions will
return the interval [—1, 1], a valid bound but not a very good
one. Furthermore, the expression n + 5 in (8) is necessary to
guarantee that lower and upper bounds of cosine are
strictly positive in the interval [—Z%2) 205 and thus, the
interval tangent function is always defmed in that interval.

The interval trigonometric functions satisfy the inclusion
property.

Proposition 13. If zex, then f(z)e|[f(x)],, where

[€ {sin, cos}. Moreover, if x C[-E ”+5) z "2+5>], tan(z) €

neither greater nor less than 0. [tan(x)],,.

[m(x n) ﬁ(iv n)] if xC [_ETn)v %]7
[sin(X, n), sin(x, n)] else it x C [T% x(n)],

[sin(x)], = [min{sin(x,n),sin(X,n)}, 1] else if x C [0,7(n)], (6)
—[sin(—x)],, else if x C [—x(n),0],
[—1,1] otherwise,
[cos(X, n), cos(x, n)] if xC[0,z(n)],

B [cos(—x%)],, else if x C [—m(n),0],

leos@ln = 4 [minfcos(x,n), cos(®,m)}, 1] elscif xC [-Em, Zm] M
[, 1] otherwise,

ftan(x)], = [%(;, n+5), 2;2 ®n+5), ifxc[-E" : 5) z(n = 5. ®)

Fig. 3. Interval trigonometric functions.

As in previous cases, this proposition corresponds to
several lemmas in PVS, one per trigonometric function. We
will see in Section 5 that the fact that all the previous
propositions do not appear in the PVS theory as we
reported them does not reduce the strength of the results
computed and prove by our strategies.

The next section proposes a method to prove numerical
propositions based on the interval arithmetic described here.

4 MEecCHANICAL PROOFS OF NUMERICAL
PROPOSITIONS

This section describes the method we propose to prove
numerical propositions via interval arithmetic. The imple-
mentation of this method as a set of PVS strategies will be
described in Section 5.

We consider the set of arithmetic expressions defined by
the following grammar, where V is a denumerable set of
real variables:

e = alz|etele—e| —elexe |
efellel] e[Vel|n | sin(e) |
cos(e) | tan(e) | exp(e) | In(e) | atan(e),
a € @,
i € N,
r € V.

Numerical propositions P have either the form e; R e,
where R € {<,<,>,>}, or the form e € a, where a is a
constant interval (an interval with constant rational end-
points). As usual, parentheses are used to group real and
interval expressions as needed.

A context T' is a set of hypotheses of the form z € x. A
ground context is a context where all the intervals are
constant. In the following, we use logical judgments in the
sequent calculus style, e.g., I' = P, where all free variables
occurring in P are in I'. The intended semantics of a
judgment I' - P is that the numerical proposition P is true
under the hypotheses T'.

Given a context I', an approximation parameter n, and an
expression e, such that the free variables of e are in I', we
inductively define the interval expression [e]. :

[z]) =x, where (z € x) €T,

[61 & 62}5 = [61]5 ® [62]27 where ® € {+’) X?/}a

e, = (1elr)

[—eln = = lelhs
lelly= il
(s = [7],.,

[f(:v)]gz [f([ﬂg)} r where f € {sin, cos, tan, exp, In, atan}.

Meta-Theorem 1 (inclusion). Let T' be a context, n an
approximation parameter, and e a well-defined arithmetic
expression in T, i.e., side conditions for division, square root,
logarithm, and tangent are satisfied:

Theelel. (9)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO.2, FEBRUARY 2009

Proof. By structural induction on e and Propositions 4, 9, 12,
and 13. O

Since real and interval expressions are not reflected as
abstract data types in the PVS specification language, the
function [e]g, and therefore, Meta-Theorem 1, are pro-
vided at the metalevel. This is not a major drawback as
PVS provides an expressive proof strategy language
where the function [¢]}, can be easily defined by structural
induction on e and Meta-Theorem 1 can be implemented

as a proof rule.

4.1 A General Method for Numerical Propositions
We propose a general method to prove numerical proposi-
tions. First, consider a judgment of the form

F}_EIR627

where I' is a ground context:

1. Select an approximation parameter n.

2. Define e = e; — e».

3. Evaluate [¢] R 0. If it evaluates to true, the following
judgment holds:

Ik lelt RO.

In that case, go to step 5.

4. Evaluate [e]ER’l 0. If this evaluates to true then fail.
By Proposition 11, the judgment I - [e]. R 0 cannot
hold. If [¢].R™' 0 evaluates to false, increase the
approximation parameter and return to step 3.

5. By Meta-Theorem 1,

Tteelel.

6. Proposition 10 yields

I'kFeRO.
7. By definition,
I'kFe—eaRO.
8. Therefore,
'k (&5} R €9.

The method above can be easily adapted to judgments of
the form I'F e R a. In this case, the interval expression
[e]l; C a is evaluated. If the expression evaluates to true,
then the original judgment holds by Meta-Theorem 1 and
Proposition 10. Otherwise, the method should fail.

The general method is sound. In particular, all evalua-
tions can be effectively performed and each step is logically
justified. For instance, propositions [¢]'R 0, [e], /R 0, and
e]) C a can be mechanically computed as they only involve
rational arithmetic and constant numerical values. On the
other hand, the method is not complete as it does not
necessarily terminate. Even if e only involves the four basic
operations and no variables, it may be that both [G]ER 0 and
[l R™! 0 evaluate to false.

DAUMAS ET AL.: VERIFIED REAL NUMBER CALCULATIONS: A LIBRARY FOR INTERVAL ARITHMETIC 7

The absence of a completeness result is a fundamental
limitation on any general computable arithmetic. At a
practical level, the problem arises because all we have
available are a sequence of approximations to the real
numbers z and y; provided x and y differ, with luck we will
eventually have a pair of approximations whose intervals
do not overlap, and hence we can return a result for z R .
However, if x and y are the same real number (note we
might not necessarily get the same sequence of approxima-
tions for both z and y), we can never be sure whether
further evaluation might result in us being able to
distinguish the numbers.

4.2 Dependency Effect

The dependency effect is a well-known behavior of interval
arithmetic due to the fact that interval identity is lost in
interval evaluations. This may have surprising results, for
instance x — x is [0] only if x is point-wise. Moreover, as we
have seen in Section 3.1, both x > a and x < a may be false.
Additionally, interval arithmetic is subdistributive, i.e.,
x X (y+2) Cx xy+x Xz In the general case, the inclu-
sion is strict and some dependency effects appear as soon as
a variable is used more than once in an expression.

For the method presented in Section 4.1, it means that
the arrangement of the expression e matters. For instance,
assume that we want to prove z € [0,1] 2 x z > z. This is
pretty obvious in arithmetic as z is a nonnegative real.
Using our method, we first consider the arithmetic
expressmn e= 2 x ¢ —z and then construct the interval
expression [e] =2xx—x, where x=10,1]. For any
approximation parameter n, [¢]. evaluates to [—1,2] which
is neither greater nor less than 0. Therefore, the method
will not terminate. On the other hand, if instead of the
arithmetic expressmn 2 x x — x, we consider the equivalent
arithmetic expression z, we have [az]n [0,1] and [0,1] >0
evaluates to true.

A second observation is that because of the dependency
effect the width of intervals also matters. Consider again the
expression e = 2 x ¢ —x. We have seen that the interval
evaluation of [e]", for z € [0, 1] results in [—1, 2], which is not
sufficient to Prove that [e] > 0. On the other hand, the
expression [e], evaluates to [-1/2,1] when z € [0,1/2] and it
evaluates to [0 3/2] when z 6111/2 1]. Therefore, we can
prove that, for z€10,1], [e], € [-1/2,1]U]0,3/2], i.e.,
[e}n [-1/2,3/2], which is a better approximation than
[-1,2]. If we continue dividing the interval [0, 1] and
computing the union of the resulting intervals, we can
eventually prove that [¢]}, + ¢ > 0 for an arbitrary small ¢ > 0.

These observations lead to two enhancements of the
general method. First, we divide each interval in I" before
applying the general technique. Second, we replace the
original expression by an equivalent one that is less prone
to the dependency effect.

4.3 Interval Splitting

In interval arithmetic, the dependency effect of the union of
the parts is less than the dependency effect of the whole.
Indeed, the simplest way to reduce the dependency effect is
to divide the interval variables into several tiles (subinter-
vals) and to evaluate the original expression on these tiles
separately. This technique is called interval splitting or
paving and is expressed by the following proposition,
written as a deduction rule.

Proposition 14. Let I' be a context, e an expression whose free
variables are x and those in I', e an interval expression, and

X,X1,...,X, intervals such that x = J, -, Xi:

Vi<i<n:zex,I'Fece
zex,I'Fece

[Splitting].

The integration of the rule Splitting into the general
method is straightforward. Consider the judgment I' - P.
First, a paving of size n is generated for a given variable x
in I', e.g., X1,...xn such that their union is x. Then, the
original method is applied to each one of the n judgments
I, P, where I'; =T\ {z e x} U{z € x;}. If the general
method is successful in all of them, by Theorem 14, the
original judgment holds. Otherwise, the method fails and a
paving of size n + 1 is considered.

Notice that the rule Splitting can be iterated over
multiple variables. However, the method is computation-
ally inefficient for multivariable pavings. Indeed, the
number of tiles generated by interval splitting is exponential
in the number of variables. For instance, if %k is the number
of tiles of the first variable alone, k- is the number of tiles of
the second variables alone, and so forth, the total number of
tiles to be considered for m variables is [[,;.,, k;.

4.4 Taylor Series Expansions

Replacing 2 x ¢ — « by « can be done automatically. In fact,
as we will see in Section 5, these kinds of simplifications are
performed by our PVS implementation of the general
method. However, these simplifications may not be
sufficient even for simple expressions such as z x (1 —z),
where = € [0.1]. The subdistributivity property of interval
arithmetic states that the interval evaluation of x x (1 — x) is
better than that of the equivalent expression z — z”.
Unfortunately, that evaluation is not good enough to prove
that z x (1 —) € [0,1/4]. In this case, as a domain expert
knows, the optimal answer is obtained with the equivalent
expression 1/4 — (1/2 — z)?.

The solution is a lot less intuitive when nonalgebraic
functions are involved. The idea here is to automatically
replace the original expression, seen as a function on one
variable, by its Taylor’s expansion. The rationale for this
replacement is that, Taylor’s expansion removes any first-
order dependency effect in relation to the variable provided
all the occurrences of the variable are explicit. Higher-order
dependency effects decrease geometrically with the order of
Taylor’s expansion as soon as the radius is less than center
in the interval used for the variable.

Taylor’s theorem states that a n-differentiable function
can be approximated near a given point by a polynomial of
degree n whose coefficients depend on the derivatives of
the function at that point. In interval arithmetic, Taylor’s
theorem can be expressed by the following proposition,
written as a deduction rule.

Proposition 15. Let X, Xy, . . . , X, be strictly proper intervals, f a
n-differentiable function on a wvariable x € x, and c€x a
constant:

VO<i<n:F fO%) ex
rexk f(z)€x,
rexk flx) e B (x; x (x —¢))/il

[Taylor].

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO.2, FEBRUARY 2009

PVS Listing 3 Accuracy of the arctangent approximation

fair_atan THEORY
BEGIN
X : var real
r(x) : MACRO real = x — (11184811/33554432) * x*3 — (13421773/67108864) * x"5
e(x) : MACRO real = atan(x) - r(x)
Xt Interval = [| -1/30, 1/30 |]
fair_atan_8 LEMMA x ## Xt IMPLIES e(x) ## [|-27-8, 27-8]]
%$|- fair_atan_8 : PROOF (instint :splitting 18) QED
X : var Interval
R (X) : MACRO Interval = X — 11184811/33554432 % X*3 - 13421773/67108864 % X"5
E (X) : MACRO Interval = Atan(X,4) - R(X)
DE (X) : MACRO Interval =
1/ (1 4+ 8Sg(X)) — 1 + 3%(X"2%(11184811/33554432)) + 5% (X"4x(13421773/67108864))

atan_taylorl LEMMA StrictlyProper? (X)

AND x ## X IMPLIES e (x)

Taylorl[X] (E,DE)

%|—- atan_taylorl : PROOF (taylor) QED
fair_atan_tl_14: LEMMA x ## Xt IMPLIES e(x) ## [|-2"-14, 2~-14]]
%|- fair_atan_t1_14 : PROOF (instint :taylor "atan_taylorl") QED
fair_atan_tl_20: LEMMA x ## Xt IMPLIES e(x) ## [|-27-20, 2~-20]]
%|—- fair_atan_t1_20 : PROOF (instint :taylor "atan_taylorl" :splitting 13) QED

D2E (X)
-2%X/Sq (1l + Sg(X))

: MACRO Interval =

atan_taylor2 LEMMA StrictlyProper? (X)

IMPLIES e (x)

+ 20% (X"3%(13421773/67108864))

+ 6%((11184811/33554432) *X)

AND x ## X
Taylor2[X] (E,DE,D2E)

%|—- atan_taylor2 : PROOF (taylor) QED
fair_atan_t2_14: LEMMA x ## Xt IMPLIES e(x) ## [|-2"-14, 2~-14]|]

%|— fair_atan_t2_14 : PROOF (instint :taylor "atan_taylor2" :spitting 2) QED
fair_atan_t2_20: LEMMA x ## Xt IMPLIES e(x) ## [|-2"-20, 27-20]]

%|- fair_atan_t2_20 : PROOF (instint :taylor "atan_taylor2" :splitting 5) QED

END fair_atan

Fig. 4. Accuracy of the arctangent approximation.

In the rule above, the interval x appears only once in
each term of order ¢ for ¢ between 1 and n — 1, preventing
any dependency effect due to x in a term alone. The term of
order n suffers some dependency effect as x also appears in
the definition of x,,. In most cases, n = 2 is used to cancel
first-order dependency effects as presented in Fig. 4. But in
cases where the first derivatives nearly vanish or where the
evaluation of the last derivative introduces significant
dependency effects, we compute more terms to reach some
better bounds.

From a practical point of view, the rule Taylor requires
more work than the rule Splitting. In particular, we need to
provide intervals xo, ...,x, and constant c that satisfy the
hypotheses of the rule. For ¢, we choose the middle point of x
unless the user proposes another point. It follows immedi-
ately that ¢ € x. For 0 < i < n, we choose x; = [f)(c)], and,
by Meta-Theorem 1, we have f @ (¢) € x;. Finally, we choose
X, = | f(”')(ac)}g, where T' is the context z € x. By Meta-
Theorem 1, we have T' - f(")(2) € x,,.

In order to prove the judgment z € xF f(z) €a, we
consider the interval expression 37 (x; x (x — o)/l Ca
for a given n. If it evaluates to true, then the original
judgment holds by the rule Taylor and Proposition 10. If the
evaluation returns false, the method fails and the expansion
degree n + 1 is considered.

For better results, the evaluation of X! (x; x (x — o/
i! Ca can be performed using the splitting technique.
Contrary to the approach described in [20], we do not have
to generate anew Taylor approximation for each tile. By using
an interval-based Taylor expansion, the same expression can
be reused for all the tiles. One single global Taylor expansion
has to be validated, and the proofs for all the tiles simply
consist of an interval evaluation of this expansion. We do not
suffer from the Taylor coefficients being irrational numbers,
they are simply given by interval expressions involving
rational functions. Relying on rational interval arithmetic
leads to conceptually simpler proofs.

Section 5 describes how the general method and its
extensions are implemented in the PVS theorem prover and
illustrates the practical use of the library with a few
examples.

5 VERIFIED REAL NUMBER CALCULATIONS IN PVS

The interval arithmetic presented in this paper has been
developed as a PVS library called Interval. This library
contains the specification of interval arithmetic described
here and the formal proofs of its properties. We believe that
a domain expert can use this library with a basic knowledge
of theorem provers. Minimal PVS expertise is required as

DAUMAS ET AL.: VERIFIED REAL NUMBER CALCULATIONS: A LIBRARY FOR INTERVAL ARITHMETIC 9

most of the technical burden of proving numerical proper-
ties is already implemented as proof strategies.

5.1 Strategies

The strategy numerical is the basic strategy that imple-
ments the general method and its extensions described in
Section 4. For instance, (1) can be specified in PVS as follows
(comments in PVS start with the symbol % and extend to the
end of the line):

g : posreal = 9.8 percent [m/s"2]
v : posreal = 250 * 0.514 percent [m/s]

tr35: LEMMA
(g * tan(35 % pi/180)/v) * 180/pi
[3,3.11]

percent | - tr35: PROOF (numerical) QED

We emphasize that, in PVS, tan and pi are the real
mathematical function tan and constant w, respectively.
Lemma tr35 is automatically discharged by numerical,
which can be entered interactively or in batch mode, as in
this case, via the ProofLite library developed by one of the
authors [21].

Another example is the proof of the inequality 4.1.35
in [13]:

3z

Vo :0 <z <0.5828=In(1 — z)| < 5

The key to prove this inequality is to prove that the function

G(z) = 3; —In(1 —x)

satisfies G(0.5828) > 0. In PVS

G(x|x < 1) :real =3xx/2 —1n(1 —x)

A_and_S : lemma G(0.5828)>0
percent | - A_and_S : PROOF
(numerical :defs “G”) QED

In this case, the optional parameter :defs “G” tells
numerical that the user-defined function G has to be
expanded before performing the numerical evaluation. The
original proof of this lemma in PVS required the manual
expansion of 19 terms of the In series.

The strategy numerical is aimed to practicality rather
than completeness. In particular, it always terminates and it
is configurable for better accuracy (at the expense of
performance).

Termination is trivially achieved as the strategy does not
iterate for different approximations, i.e., step 3 either goes to
step 5 or fails. In other words, if numerical does not
succeed, it does nothing. Furthermore, numerical uses a
default approximation parameter n =3, which gives an
accuracy of about two decimals for trigonometric functions.
However, the user can increase this parameter or set a
different approximation to each function according to his/
her accuracy needs and availability of computational
power. Currently, there is no direct relation between the
approximation parameter and the accuracy, as all the
bounding functions have different convergence rates. On-
going work aims to provide an absolute error of at most 277
for any expression with a new approximation parameter p.

The strategy has not been designed to reuse past
computations. Therefore, it will be prohibitively expensive
to automatically iterate numerical to achieve a small
approximation on a complex arithmetic expression.

In order to reduce the dependency effect, the strategy
numerical automatically rearranges arithmetic expres-
sions using a simple factorization algorithm. Due to the
subdistributivity property, the evaluation of factorized
interval expressions is more accurate than that of non-
factorized ones. A set of lemmas of the NASA Langley PVS
Libraries are also used as rewriting rules on arithmetic
expressions prior to numerical evaluations. This set of
lemmas is parameterized and can be extended by the user.
For instance, trigonometric functions applied to notable
angles are automatically rewritten to their exact value.
Therefore, numerical is able to prove that sin(n/2) € 1,
even if this proposition is not provable using our interval
arithmetic operators alone. Although it is not currently
implemented, this approach can also be used to normalize
angles to the range [—m, 7| that is suitable for the interval
trigonometric functions in Sections 3.3.

The splitting technique is implemented by allowing the
user to specify the number of tiles to be considered for
each interval variable or a default value for all of them. The
strategy will evenly divide each interval. For example,
the simple expression in Section 4.4 can be proved to be in
the range [0, 9/32] using a paving of 16 tiles.

fair : LEMMA
x## [10, 1|1] IMPLIESx * (1-x) ## [10, 9/32]1

percent | - fair : PROOF
(instint :splitting 16) QED

In this example, we have used the strategy instint. This
strategy is built on top of numerical and performs some
basic logic manipulations such as introduction of real
variables and interval constants. The strategy instructs PVS
to introduce the real variable x and then to apply
numerical by using a paving of 16 tiles on the interval [0, 1].

The Taylor’s series expansion technique is implemented in
two steps. First, the strategy taylor automatically applies
Proposition 15 to a particular function f and degree n. In the
following example, we show that z exFazx(1—2)¢€
S22 o(xi x (x — ¢)')/i!, provided that x is strictly proper.

F(X) : MACRO Interval =X * (1 — X)
DF(X) : MACRO Interval =1 —2xX
D2F(X) : MACRO Interval = [| — 2|]

ftaylor : LEMMA
X ## X AND StrictlyProper? (X) IMPLIES
xx (1 — x) ## Taylor2[X] (F, DF, D2F)

percent | - ftaylor : PROOF (taylor) QED

The keyword MACRO tells the theorem prover to auto-
matically expand the definition of the function. The
expression Taylor2[X] (F, DF, D2F) corresponds to
Sio(xi x (x—¢)")/i!, where F, DF, and D2F are the
interval functions corresponding to f, and its first and
second derivative.

Finally, the strategy instint is called with the lemma
ftaylor.

best : LEMMA
X H#F# HO, 1|] IMPLIES x % (1 — x) 4 [|O, 1/4”

percent | - best : PROOF
percent | - (instint :taylor “ftaylor”)
percent | - QED

5.2 Implementation and Performance Issues

Actual definitions in PVS have been slightly modified for
technical reasons. For instance, interval operations that may
return an unbounded interval such as the reciprocal or the
tangent are completed by returning an empty interval if
side conditions are not satisfied. This technique avoids the
generation of type correctness conditions (TCCs) during the
application of strategies. TCCs are sometimes difficult to
handle within a strategy as the strategy developer has little
control on how, where, and when those TCCs are
generated. By using this technique, those conditions do
not simply disappear, they will show as premises to be
discharged by the user once the strategies have finished.

The strategies in this library use the PVS built-in real
numbers. Technically, we do not provide a deep embedding
[22] of real or interval expressions, i.e., real and interval
expression are not reflected in the PVS specification
language as abstract data types. The major advantage of
this approach is that the functionality of the strategies can
be extended to handle user-defined real functions without
modifying the strategy code. Indeed, optional parameters to
numerical allow for the specification of arbitrary real
functions. The trade-off for the use of the PVS type real, in
favor of a defined data type for arithmetic expressions, is
that Meta-Theorem 1 cannot be specified nor verified inside
PVS. However, PVS provides an expressive strategy
language where this theorem can be implemented as a
proof rule. More precisely, the proof of this lemma is
expressed as a strategy, namely inclusion, that mechani-
cally discharges each particular instance of the theorem.
PVS strategies are conservative in the sense that they do not
add inconsistencies to the theorem prover. Therefore, if
inclusion succeeds to discharge a particular goal, the
answer is sound.

Finally, our method relies on the ability of the theorem
prover to evaluate rational interval arithmetic. Usually,
these calculations are performed using symbolic evaluation,
which can be extremely inefficient for the interval functions
that we want to calculate. The strategy numerical allows
the user to evaluate rational expressions using computa-
tional reflection [23], [24], [25]. In this case, PVS expressions
involving rational functions are first translated into Com-
mon Lisp (the implementation language of PVS) using the
extraction mechanism provided by the PVS ground
evaluator [26]. They are evaluated by the Common Lisp
engine, which relies on the native language implementation
of big numbers. We emphasize that only rational arithmetic
is involved in this evaluation. The result of the evaluation is
translated back into the PVS theorem prover using the
PVSio library developed by one of the authors [27]. Of
course, the result is as sound as the forth and back

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO.2, FEBRUARY 2009

translations between PVS and Lisp, and the Common Lisp
engine. In any case, the user has always the option of a
purely symbolic evaluation of rational arithmetic.

5.3 A Simple Case Study

The arctangent function is heavily used in aeronautic
applications as it is fundamental to many Geodesic formulas.”
One common implementation technique uses an approxima-
tion of the arctangent on the interval x = [-1/30, 1/30] after
argument reduction [28]. For efficiency reasons, one may
want to approximate the function atan(z) to single precision
by the polynomial

(o) = o LISSSLL 13421773
T = T s 432" T 67108864

The coefficients of the polynomial approximation are stored
exactly using IEEE single precision.
The objective of this case study is to show that

x € [-1/30,1/30] F atan(z) — r(z) € [-277,277],

for different values of i. The PVS specification of this
problem for some values of i is presented in Fig. 4. All the
lemmas are automatically discharged by the strategy
instint with different splitting and Taylor’s expansion
degrees. As expected Taylor’s expansions and splitting get
better results than splitting alone. Moreover, second-degree
expansions are almost always better than first-degree
expansions. This is not necessarily the case as illustrated
by lemmas fair_atan_tl_14 and fair_atan_t2_14:
for i =14, a first-degree expansion with no splitting is
enough to prove the property, while a second-degree
expansion requires a splitting of 2.

On a tile t of x, the width of the error expression E that
does not use Taylor’s theorem evaluated on t is larger than
the sum of the width of expressions Atan and R. As the
derivative of the arctangent is between 0.9989 and 1 on x,
we could expect that the width of R is at least twice the
width of tile t. Therefore, to obtain an error bound of
[—277,27], we cannot use tiles larger than 2~/ and we will
need at least 2/15 ~ 214 tiles.

We use the same kind of simple calculation to show that
since |e/(z)| < 2.37- 1075, we will need about 2!'48 tiles of
width 277 - 106/2.37. These figures are accurate when we use
second-degree expansion but actual computations may
require more tiles due to some dependency effects intro-
duced when we use first-degree expansions.

Fig. 5 presents a summary of the time required to prove
tan(z) — r(z) € [-1/30,1/30] for 7 in the range [0, 20] using
splitting, splitting and first-degree Taylor’s expansion, and
splitting and second-degree Taylor’s expansion. It shows
that the simple calculation performed in the previous
paragraphs is correct. It is too early for a comparison with
any standard interval library as properties that are formally
proved in a matter of minutes with our library are
evaluated almost instantaneously with floating-point inter-
vals and most properties that are checked in a few minutes
with floating-point intervals use interval techniques that are
still not available in our library.

5. See, for example, Ed William’s Aviation Formulary at http://
williams.best.vwh.net/avform.htm.

DAUMAS ET AL.: VERIFIED REAL NUMBER CALCULATIONS: A LIBRARY FOR INTERVAL ARITHMETIC 11

atan(x) - r(x) ## || 21, 21 11

50 T T T T T T T T
Splitting —+—

T
s Splitting Taylor 1 —s—]|
Splitting Taylor 2 —w— -

time [s]

Fig. 5. Time required to prove tan(z) — r(x) € [-1/30,1/30].

6 CONCLUSION

We have presented a pragmatic approach to verify common
real number computations in theorem provers. To this end,
bounds for nonalgebraic functions were established based
on provable properties of their approximation series.
Furthermore, a library for interval arithmetic was devel-
oped. The library includes strategies that automatically
discharge numerical inequalities and interval inclusions.

The PVS Interval library contains 306 lemmas in total.
It is roughly 10,000 lines of specification and proofs and
1,000 lines of strategy definitions. These numbers do not
take into account the bounding functions, which have been
integrated into the NASA Langley PVS Libraries. It is
difficult to estimate the human effort for this development
as it has evolved over the years from an original axiomatic
specification to a fully foundational set of theories. As far as
we know, this is the most complete formalization within a
theorem prover of an interval arithmetic that includes
nonalgebraic functions.

Research on interval analysis and exact arithmetic is rich
and abundant (see for example, [18], [29], and [30]). One
goal of interval analysis is to bound the round-off error in a
computation performed using floating-point numbers. In
contrast, in an exact arithmetic framework, an accuracy is
specified at the beginning of the computation and the
computation is performed in such way that the final result
respects this accuracy.

Real numbers and exact arithmetic is also a subject of
increasing interest in the theorem proving community.
Pioneers in this area were Harrison and Gamboa who,
independently, developed extensive formalizations of real
numbers for HOL [4] and ACL2 [6]. In Coq [31], an
axiomatic definition of reals is given in [7], and constructive
definitions of reals are provided in [32] and [33]. The goal of
Section 2 could be attained by very different means using
coinductive streams [34] on a formal system that handles
them efficiently. As real numbers are built-in in PVS, there
is not much metatheoretical work on real numbers.
However, a PVS library of real analysis was originally
developed by Dutertre [35] and currently being maintained
and extended as part of the NASA Langley PVS Libraries.
An alternative real analysis library is proposed in [8].

Closer to our approach are the tools presented in [36]
and [37]. The first one generates bounds on the round-off
errors of numerical programs, and formal proofs that these

bounds are correct. The formal proofs are proof scripts that
can be checked offline using a proof assistant. Zumkeller
presented a formalization of Taylor’s Models in Coq using
real interval arithmetic [37]. His final goal is similar to
ours: to provide formal proofs of numerical nonlinear
inequalities. However, the two approaches are different.
Zumkeller’s work is motivated by the Flyspeck Project,’®
which aims to formalize Hales’ proof of Kepler’s Con-
jecture. That proof requires the solution of highly complex
nonlinear inequalities. Hence, precision, performance, and
scalability are the main requirements for that task. Our
goal is in some sense more modest. We focus on the
mechanization and automation of proofs of routine nu-
merically properties in theorem provers. These properties
are typically introduced as axioms after they have been
validated using a pocket calculator. We argue that this
practice is error prone and we propose a set of strategies
that safely performs these computations. In order to do
that, we formalize several ad-hoc techniques that have
been used in interval analysis for decades but that, to our
knowledge, have never been formalized before. The
strategies presented in [10] have been completely rede-
signed for this work in order to provide a higher degree of
automation in their default mode. Furthermore, the
redesigned strategies allow the user to parameterize them
for either better accuracy or better performance as needed.

Another benefit of this work is that it can be easily
replicated in a different theorem prover. Our interval
library only requires rational arithmetic. Our strategies
can be implemented in any strategy language that provides
a mechanism to access the syntactical structure of arith-
metic expressions. Other developments focus on getting
better performances or precision by taking advantage of
advanced features such as, for example, efficient exact real
arithmetic. Theoretical and practical advances on theorem
prover are necessary to handle complex problems, but this
work shows that modern theorem provers, such as PVS,
already provides the basic capabilities to solve routine
problems in a practical way.

We continue developing this library and it is currently
being used to check numerical properties of aircraft naviga-
tion algorithms developed at the National Institute of
Aerospace (NIA) and NASA. Future enhancements include

e development of a fully functional floating-point
arithmetic library [38] in order to generate guaran-
teed proofs of round-off-errors [36],

e integration of this library and an exact arithmetic
formalization in PVS developed by one of the
authors [39], and

e implementation of latest developments on Taylor
Models [40], [41], [42], which will enable a greater
automation of the Taylor’s series expansion
technique.

ACKNOWLEDGMENTS

Marc Daumas is supported in part by the PICS 2533 of the
NRS and by the EVA-Flo project of the French ANR.
David Lester is supported in part by the French Région

6. http:/ /www lix.polytechnique.fr/~zumkeller /Flyspeck.html.

12

Languedoc-Roussillon and the University of Perpignan.
César Mufoz is supported in part by the US National
Aeronautics and Space Administration under NASA Co-
operative Agreement NCC-1-02043 and by the University of
Perpignan.

REFERENCES

(1]

(2]

B3]

(4
[5]

o]

[

(8]

]

(10]

(1]

(12]

(13]

(14]

[15]
[1o]

(17]

(18]

[19]

[20]

(21]

Information Management and Technology Division, Patriot
Missile Defense: Software Problem Led to System Failure at
Dhahran, Saudi Arabia, US General Accounting Office, Report
B-247094, http://www fas.org/spp/starwars/gao/im92026.htm,
1992.

J.-L. Lions et al., “Ariane 5 Flight 501 Failure Report by the Inquiry
Board,” technical report, European Space Agency, http://ravel.
esrin.esa.it/docs/esa-x-1819eng.pdf, 1996.

D. Gage and J. McCormick, “We Did Nothing Wrong,” Baseline,
vol. 1, no. 28, pp. 32-58, http://common.ziffdavisinternet.com/
download/0/2529/Baseline0304-DissectionNEW.pdf, 2004.

J. Harrison, Theorem Proving with the Real Numbers. Springer-
Verlag, 1998.

J. Fleuriot and L. Paulson, “Mechanizing Nonstandard Real
Analysis,” LMS]. Computation and Math., vol. 3, pp. 140-190,
http:/ /www.lms.ac.uk/jem/3/1ms1999-027/, 2000.

R. Gamboa, “Mechanically Verifying Real-Valued Algorithms in
ACL2,” PhD dissertation, Univ. of Texas at Austin, ftp://
ftp.cs.utexas.edu/pub/boyer/diss/gamboa.pdf, 1999.

M. Mayero, “Formalisation et Automatisation de Preuves en
Analyse Réelle et Numérique,” PhD dissertation, Université Pierre
et Marie Curie, http://www.pps.jussieu.fr/~mayero/specif/
these-mayero.ps, 2001.

H. Gottliebsen, “Automated Theorem Proving for Mathematics:
Real Analysis in PVS,” PhD dissertation, Univ. of St. Andrews,
http://www.dcs.qmul.ac.uk/~hago/thesis.ps.gz, 2001.

C. Mufoz, V. Carreno, G. Dowek, and R. Butler, “Formal
Verification of Conflict Detection Algorithms,” Int’l]. Software
Tools for Technology Transfer, vol. 4, no. 3, pp. 371-380, http://
dx.doi.org/10.1007 /s10009-002-0084-3, 2003.

M. Daumas, G. Melquiond, and C. Mufioz, “Guaranteed Proofs
Using Interval Arithmetic,” Proc. 17th IEEE Symp. Computer
Arithmetic (ARITH '05), P. Montuschi and E. Schwarz, eds.,
pp- 188-195, http://hal.archives-ouvertes.fr/hal-00164621,
2005.

C. Mufioz and D. Lester, “Real Number Calculations and Theorem
Proving,” Proc. 18th Int’l Conf. Theorem Proving in Higher Order
Logics (TPHOLs '05), pp. 239-254, http://dx.doi.org/10.1007/
11541868_13, 2005.

S. Owre,].M. Rushby, and N. Shankar, “PVS: A Prototype
Verification System,” Proc. 11th Int’l Conf. Automated Deduction
(CADE '92), D. Kapur, ed., pp. 748-752, http://pvs.csl.sri.com/
papers/cade92-pvs/cade92-pvs.ps, 1992.

M. Abramowitz and LA. Stegun, eds., Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. Dover
Publications, 1972.

J.-M. Muller, Elementary Functions, Algorithms and Implementation.
Birkhatiser, http://www.springer.com/west/home/birkhauser/
computer+science?SGWID=4-40353-22-72377986-0, 2006.
Mathematics by Experiment: Plausible Reasoning in the 21st Century,
J. Borwein and D.H. Bailey, eds. A K. Peters, 2003.

A. Neumaier, Interval Methods for Systems of Equations. Cambridge
Univ. Press, 1990.

L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval
Analysis. Springer, http://www.springeronline.com/sgw/cda/
frontpage/0, 10735, 5-40106-22-2093571-0, 00.html, 2001.

Rigorous Global Search: Continuous Problems, R.B. Kearfott, ed.
Kluwer Academic Publishers, 1996.

A. Yakovlev, “Classification Approach to Programming of
Localizational (Interval) Computations,” Interval Computations,
vol. 1, no. 1, pp. 61-84, 1992.

J. Sawada, “Formal Verification of Divide and Square Root
Algorithms Using Series Calculation,” Proc. Third Int’l Workshop
ACL2 Theorem Prover and Its Applications (ACL2 '02), pp. 31-49,
2002.

C. Mufioz, “Batch Proving and Proof Scripting in PVS,” Report
NIA report no. 2007-03, NASA/CR-2007-214546, NIA-NASA
Langley, Nat'l Inst. Aerospace, Hampton, Va., Feb. 2007.

[22]

(23]

(24]

(23]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

(40]

[41]

(42]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 58, NO.2, FEBRUARY 2009

R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and
J.V. Tassel, “Experience with Embedding Hardware Descrip-
tion Languages in HOL,” Proc. IFIP TC10/WG 10.2 Int'l Conf.
Theorem Provers in Circuit Design (TPCD '92), pp. 129-156, 1992.
J. Harrison, “Metatheory and Reflection in Theorem Proving: A
Survey and Critique,” Technical Report CRC-053, SRI Cambridge,
Millers Yard, Cambridge, U.K., 1995.

S. Boutin, “Using Reflection to Build Efficient and Certified
Decision Procedures,” Proc. Third Int’l Symp. Theoretical Aspects of
Computer Software (TACS '97), pp. 515-529, 1997.

F.W. von Henke, S. Pfab, H. Pfeifer, and H. Ruef3, “Case Studies in
Meta-Level Theorem Proving,” Proc. 11th Int’'l Conf. Theorem
Proving in Higher Order Logics (TPHOLs '98), J. Grundy and
M. Newey, eds., pp. 461-478, Sept. 1998.

N. Shankar, “Efficiently Executing PVS,” Computer Science
Laboratory, SRI Int'l, Menlo Park, CA, project report, http://
www.csl.sri.com/shankar/PVSeval.ps.gz, Nov. 1999.

C. Mufioz, “Rapid Prototyping in PVS,” Report NIA Report 2003-
03, NASA/CR-2003-212418, NIA-NASA Langley, Nat'l Inst.
Aerospace, Hampton, Va., May 2003.

P. Markstein, IA-64 and Elementary Functions: Speed and Precision.
Prentice Hall, 2000.

P. Gowland and D. Lester, “A Survey of Exact Arithmetic
Implementations,” Proc. Fourth Int’l Workshop Computability and
Complexity in Analysis (CCA '00), pp. 30-47, http://www.link.
springer.de/link/service/series /0558 /bibs /2064 /20640030.htm,
2000.

V. Ménissier-Morain, “Arbitrary Precision Real Arithmetic:
Design and Algorithms,” J. Logic and Algebraic Programming,
vol. 64, no. 1, pp. 13-39, http://dx.doi.org/10.1016/j.jlap.2004.07.
003, 2005.

G. Huet, G. Kahn, and C. Paulin-Mohring, The Coq Proof Assistant:
A Tutorial: Version 8.0, ftp://ftp.inria.fr/INRIA/coq/current/
doc/Tutorial.pdf.gz, 2004.

A. Ciaffaglione and P. Di Gianantonio, “A Certified, Corecursive
Implementation of Exact Real Numbers,” Theoretical Computer
Science, vol. 351, no. 1, pp. 39-51, http://dx.doi.org/10.1016/
j-ts.2005.09.061, 2006.

J. Hughes and M. Niqui, “Admissible Digit Sets,” Theoretical
Computer Science, vol. 351, no. 1, pp. 61-73, http://dx.doi.org/
10.1016/j.tcs.2005.09.059, 2006.

Y. Bertot, “Affine Functions and Series with Co-Inductive Real
Numbers,” Math. Structures in Computer Science, vol. 17, no. 1,
pp- 37-63, http://dx.doi.org/10.1017/50960129506005809, 2007.
B. Dutertre, “Elements of Mathematical Analysis in PVS,” Proc.
Ninth Int’l Conf. Theorem Proving in Higher Order Logics (TPHOLs ’96),
J. von Wright,]. Grundy, and J. Harrison, eds., pp. 141-156, http://
www.sdl.sri.com/papers/tphol96/, Aug. 1996.

M. Daumas and G. Melquiond, “Generating Formally
Certified Bounds on Values and Round-Off Errors,” Real
Numbers and Computers, pp. 55-70, http://hal.inria.fr/inria-
00070739, 2004.

R. Zumkeller, “Formal Global Optimisation with Taylor
Models,” Proc. Third Int’l Joint Conf. Automated Reasoning
(IJCAR ’06), U. Furbach and N. Shankar, eds., pp. 408-422,
http://dx.doi.org/10.1007 /11814771_35, 2006.

S. Boldo and C. Mufioz, “Provably Faithful Evaluation of Poly-
nomials,” Proc. 21st ACM Symp. Applied Computing (SAC '06),
pp-1328-1332, http:/ /doi.acm.org/10.1145/1141277.1141586,2006.
D. Lester and P. Gowland, “Using PVS to Validate the Algorithms
of an Exact Arithmetic,” Theoretical Computer Science, vol. 291,
no. 2, pp. 203-218, Nov. 2002.

K. Makino and M. Berz, “Taylor Models and Other Validated
Functional Inclusion Methods,” Int’l]. Pure and Applied Math.,
vol. 4, no. 4, pp. 379-456, http://bt.pa.msu.edu/pub/papers/
TMIJPAMO03/TMIJPAMO3.pdf, 2003.

F. Chaves and M. Daumas, “A Library to Taylor Models for PVS
Automatic Proof Checker,” Proc. NSF Workshop Reliable Eng.
Computing (REC '06), pp. 39-52, http://www.gtsav.gatech.edu/
workshop /rec06/papers/Chaves_paper.pdf, 2006.

F. Chaves, M. Daumas, C. Mufioz, and N. Revol, “Automatic
Strategies to Evaluate Formulas on Taylor Models and Generate
Proofs in PVS,” Proc. Sixth Int'l Congress on Industrial and Applied
Math. (ICIAM '07), http://www .iciam07.ch/, 2007.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

