
A Graphical Environment for the Semantic
Validation of a Plan Execution Language

Camilo Rocha∗, César Muñoz† and Héctor Cadavid‡
∗Department of Computer Science

University of Illinois at Urbana-Champaign, Urbana, IL 61820
hrochan2@cs.uiuc.edu

† National Institute of Aerospace
Hampton, VA 23666, USA
munoz@nianet.org

‡ Escuela Colombiana de Ingenierı́a
Bogotá, Colombia

hcadavid@escuelaing.edu.co

Abstract—This paper presents PLEXIL5, a graphical envi-
ronment providing an user-friendly interface to the formal
operational semantics of PLEXIL. PLEXIL is a synchronous plan
execution language developed by NASA to support autonomous
space operations. PLEXIL5 serves as a testbed for designers,
developers and users of PLEXIL’s executive system to validate,
maintain, and debug the implementation of the system against
the formal semantics of the language. In PLEXIL5, the executable
formal semantics of PLEXIL is implemented as a rewriting logic
theory in Maude’s language.

I. INTRODUCTION

The Plan Execution Interchange Language (PLEXIL) [1]
is a high-level plan execution language developed by NASA.
PLEXIL belongs to the family of synchronous reactive lan-
guages such as Esterel [2], Lustre [3], and Signal [4], where
the only non-determinism allowed originates from the inter-
action with the environment. However, in contrast to these
general purpose languages, PLEXIL has been specifically
designed to support autonomous spacecraft operations. In
particular, the PLEXIL Universal Executive (UE), the software
system that interprets and executes PLEXIL plans, could be
deployed in multiple platforms, usually with limited compu-
tational resources and under uncertain physical conditions.

Given the critical nature of spacecraft operations, PLEXIL’s
operational semantics has been formally defined [5] and
several properties of the language have been mechanically
verified [6] in the Program Verification System (PVS) [7].
This semantics has been also implemented in the formal
notation of Maude [8], a high-performance implementation
of the rewriting logic framework [9]. Rewriting logic is a
computational logic that has good properties as a general and
flexible logical and semantic framework, in which a wide
range of logics and models of computation can be faithfully
represented. In rewriting logic, concurrent computations and

Camilo Rocha and César Muñoz were supported by the National Aeronau-
tics and Space Administration under NASA Cooperative Agreement NCC-1-
02043. Héctor Cadavid was supported by the Escuela Colombiana de Inge-
nierı́a, Bogotá, Colombia. César Muñoz (Cesar.A.Munoz@nasa.gov) is
currently affiliated to NASA Langley.

deduction coincide: rewriting logic’s inference system allows
to derive as proofs all the concurrent computations of the
system axiomatized by a rewriting logic theory [10].

The formal semantics of PLEXIL is organized as a stack
of abstract relations, which range from an atomic relation
describing the evolution of a single computational element of
PLEXIL to an execution relation describing the evolution of
the whole plan after the occurrence of a series of external
events. For efficiency reasons, an executive system may profit
from properties of the language, such as determinism and com-
positionality, to implement these relations in a different way.
Therefore, there may not be a one-to-one relation between
the formal semantics and the executive implementation. A
discrepancy between the executive and the formal semantics
does not necessarily mean that the executive is incorrect. After
all, the language is still evolving and the executive serves as
an implementation of the intended semantics.

We have developed the graphical environment PLEXIL5,
PLEXIL’s Formal Interactive Visual Environment, where de-
signers and developers can validate the formal semantics of the
language against an intended semantics, and plan developers
can execute and debug PLEXIL plans. The graphical environ-
ment consists of a graphical component written in Java, the
formal executable semantics of PLEXIL written in Maude,
and a bidirectional translator from Maude syntax to Java
objects and vice-versa. PLEXIL5 provides an user-friendly
interface that enables step-by-step execution of PLEXIL plans
for recorded sequences of external events. It also allows for
the inspection of the internal state and the execution status,
backtracking, traceability, and cross-reference to the formal
semantics.

The rest of this paper is structured are follows. Section II
gives an overview of PLEXIL and its formal semantics. Sec-
tion III presents the graphical interface. Section IV discusses
related work. The last section concludes this work and gives
perspectives on future work.



II. PLEXIL AND ITS SEMANTICS: AN OVERVIEW

Plan execution is a cornerstone in systems involving in-
telligent software agents such as robotics, unmanned vehi-
cles, and habitats. The Plan Execution Interchange Language
(PLEXIL) is an open source synchronous language developed
by NASA to support automation of spacecraft operations.1

In this Section, we present a brief overview of PLEXIL and
use an example to illustrate many constructs of the language.
For a detailed description of its formal semantics, and more
examples, we refer the reader to [5], [6].

A PLEXIL plan is a tree of nodes representing a hierarchical
decomposition of tasks. The interior nodes in a plan provide
the control structure and the leaf nodes represent primitive
actions. The purpose of each node determines its type: List
nodes group other nodes and provide scope for local variables,
Assignment nodes assign values to variables (they also have
a priority, which serves to solve race conditions between as-
signment nodes), Command nodes represent call to commands,
and Empty nodes do nothing. Each PLEXIL node has gate
conditions and check conditions. The former specify when the
node should start executing, when it should finish executing,
when it should be repeated, and when it should be skipped.
Check conditions specify flags to detect when node execution
fails due to violations of pre-conditions, post-conditions, or
invariants. Declared variables in nodes have lexical scope, that
is, they are accessible to the node and all its descendants, but
not siblings or ancestors. The execution state of a node is given
by states such as Inactive, Waiting, Executing, etc.
The external state is accessed through lookups on environment
variables.

List SafeDrive {
int pictures=0;
End:
LookupOnChange(WheelStuck)==true OR
pictures==10;

List Loop {
Repeat-while:
LookupOnChange(WheelStuck)==false;

Command OneMeter {
Command: Drive(1);

}
Command TakePic {
Start: OneMeter.status==FINISHED AND

pictures<10;
Command: TakePicture();

}
Assignment Counter {
Start: TakePic.status==FINISHED;
Pre: pictures<10;
Assignment: pictures:=pictures+1;

}
}

}

Fig. 1. SafeDrive: A PLEXIL Plan Example

In Figure 1 we present SafeDrive, an example of a PLEXIL
plan. In this particular example, the plan tasks are represented

1PLEXIL is electronically available from http://plexil.sourceforge.net.

by the interior nodes SafeDrive and Loop, and the leaf
nodes OneMeter, TakePic and Counter. The root of the
plan is the node SafeDrive. OneMeter and TakePic are,
for example, nodes of type Command. The node Counter
has two different conditions: Start is a gate condition
constraining the execution of the assignment to start only when
the node TakePic has finished its execution, while Pre is
a check condition for the number of pictures to be less than
10. The internal state of the plan at a particular moment is
represented by the set of all nodes of the plan, plus the value
of the variable pictures, while the external state of the plan
contains the (external) variable Wheel.

PLEXIL execution is driven by external events. The set
of events includes events related to lookup in conditions,
e.g., changes in the value of an external state that affects a
gate condition, acknowledgments that a command has been
initialized, reception of a value returned by a command, etc.

The execution of a plan proceeds in discrete time steps,
called macro steps. All the external events are processed
in the order in which they are received. An external event
and all its cascading effects are processed until quiescence
before next event is processed; this behavior is known as
run-to-completition semantics. A macro step of execution
consists of a number of micro steps. A micro step is the
parallel synchronous execution of atomic steps of individual
nodes. Consequently, the semantics of PLEXIL is regarded
as a compositional stack of four execution relations, namely,
atomic, micro, quiescence and macro relations. Moreover, the
semantics of PLEXIL is given in terms of the semantics for
atomic and micro relations, as the other relations are based on
well-known abstract relations.

The atomic relation defines the individual evolution of the
elements in the internal state of the plan, i.e., nodes and
variables, at a given time. Those evolutions are originally
described by a dozen of state transition diagrams, in an ad-
hoc graphic notation, indexed by the type and state and of
nodes. Figure 2 shows the state transition diagram2 for a node
of type Assignment in state Executing. Oval vertices in
the diagram represent states of nodes, rectangular yellow ones
represent conditions changes with their respective enabling
value, rectangular green/red and white vertices represent suc-
cess/failure codes and respective actions, and rhombus lyle
vertices represent path decisions on check conditions (like
an if-then-else construct). The state transition diagram in
Figure 2 shows that an Assignment node evolves from
state Executing to either state Finished in the case the
invariant of any of its ancestors is false (in the hierarchical
structure of the plan), or state IterationEnded in the case
its invariant condition is false or its termination condition is
true. The labeling on the edges leaving the vertex Executing
in the diagram, induces an evaluation strategy for the con-
ditions in the diagram, where lower the number, higher the
priority.

For example, recalling our plan SafeDrive in Figure 1,

2Taken from http://plexil.wiki.sourceforge.net.



the node Counter in any particular time when in state
Executing and its EndCondition changes to true while
the other two conditions are not enabled, will increment the
variable pictures in one unit, and then evolve to state
IterationEnded.

Fig. 2. Transitions from state Executing for nodes of type Assignment.

The micro relation, as already mentioned in the preceding
paragraphs, is the parallel synchronous execution of the atomic
relation. It relates internal states to internal states by means of
the atomic relation, namely, it records synchronously changes
in the state of nodes and variables. If two different nodes in
the internal state write to the same variable in a particular
time, only the update of the node with the higher priority is
considered.

The modular definition of the PLEXIL semantics is consid-
erably advantageous for both designing the language itself and
developing plans in the language. On one hand, features of the
language can certainly be identified with a layer of the stack of
execution relations; then evolving or adding new features to the
language becomes often local to a particular layer. Moreover,
properties of each execution relation can be locally studied,
taming the inherent complexity associated to the power of the
entire language. For example, it has been formally proven in
the Program Verification System –PVS- that the micro relation
is deterministic with respect to the environment [6], that is,
once the environment is known the execution of the micro
relation is determined. Then, by the modularity of PLEXIL
semantics, the determinism is inherited by quiescence and
macro. On the other hand, plan developers are able to focus
their testing and debugging efforts to a particular execution
relation. For example, to debug a plan for which no interaction
with the external environment is required, it would suffice to
debug such plan at the level of quiescence.

In the scenarios described above, it would be convenient
and beneficial to have a fully functional graphical environment
supporting the interaction with the modular semantics of
PLEXIL, namely, one allowing designers to visualize with
ease changes to the execution relations of the language and
developers to recreate plans at different execution levels.

III. PLEXIL5: A FORMAL INTERACTIVE VISUAL
ENVIRONMENT FOR THE SYMBOLIC EXECUTION OF

PLEXIL

Both language designers and plan developers demand capa-
ble supporting tools when interacting with a language. In this

Section, we present PLEXIL5, PLEXIL’s Formal Interactive
Visual Environment, for visual and symbolic execution of
PLEXIL plans. In PLEXIL5 users can visualize and interact
with plans and their execution. We first describe the architec-
ture of PLEXIL5 and then state the main features provided
by the graphical environment.

A. Architecture

PLEXIL5 consists of three components, as depicted in
Figure 3:

• A graphical component written in Java with an object
oriented model representing plans and their execution
behavior.

• A symbolic interpreter written in Maude [8], a Rewrit-
ing Logic [9] interpreter, which executes PLEXIL plans
written in PLEXIL-MAUDE, an intermediate language
between PLEXIL syntax and Maude’s syntax.

• A bidirectional translator from the object oriented model
to PLEXIL-MAUDE.

Fig. 3. PLEXIL5 Architecture

The graphical component was designed and developed
using the Model-View-Controller (MVC) architectural/design
pattern (see [11], [12] for a comprehensive definition of MVC).
The model corresponds to the Java objects representing a plan.
The view is, currently, a single view consisting of a tree-like
structure and a indexed set of list. The tree structure represents
plans, while the indexed set of lists represent the external
state of plans at particular times. The controller consists
of a custom “controller-facade” class and “listener” classes
extending the Java framework. JGraph3, an open source Java

3Available at http://www.jgraph.com.



Swing diagramming library, is used to display the internal
state. Due to the adherence of the design to the MVC pattern,
it would be easy to add new types of view to the graphical
component.

The symbolic interpreter is an executable specification in
rewriting logic of PLEXIL semantics. Rewriting logic is a
computational logic that has good properties as a general and
flexible logical and semantic framework, in which a wide
range of logics and models of computation can be faithfully
represented. A rewriting logic theory is a tuple R = (Σ, E, R)
where (Σ, E) is an membership equational theory with signa-
ture Σ and equations E, and a set of rewrite rules R. From
the language semantics viewpoint, a theory R axiomatizes a
concurrent system, whose states are E-equivalence classes of
ground Σ-terms (i.e. elements of the abstract data type (Σ, E)),
and whose atomic transitions are specified by the rules R.
In rewriting logic concurrent computations and deduction
coincide: rewriting logic’s inference system allows to derive
as proofs all the concurrent computations of the system ax-
iomatized by R [10]. Therefore, the specification of PLEXIL
is a rewriting logic theory defining the operational semantics
of PLEXIL that is directly executable in the Maude language4.
We refer the reader to [8], [9] for a self-contained definition
of rewriting logic and the use of Maude as a specification
language and execution environment.

The bidirectional translator is automatically generated from
a BNF specification of PLEXIL-MAUDE by JavaCC5. JavaCC
is a Java parser generator written in Java that generates top-
down (recursive descent) parsers.

The symbolic interpreter and the bidirectional translator
communicate as processes at the operating system’s level.
There is also the possibility of connecting these two compo-
nents through sockets (both Maude and Java have communica-
tion support through sockets). The latter configuration allows
PLEXIL5 to execute in a client-server fashion, in addition to
the stand-alone fashion imposed by the former configuration.
In PLEXIL5, the location of the symbolic interpreter can be
configured by the user. Once this is done, the integration of
the different components is seamless for the end user.

The installation process of PLEXIL5 is as simple as un-
packing a compressed file. PLEXIL5 requires a version of the
Java Virtual Machine for Java 5 or greater. Once PLEXIL5 is
installed, the application can be launched from the command
line by a script (included in the distribution). Once launched,
the user may select the version of the symbolic interpreter
to be used (selecting the symbolic interpreter is mandatory
the first time after installation); PLEXIL5 distribution comes
with the current executable semantics of the language(the
symbolic interpreter) and Maude’s 2.4 distribution. The user
can browse the file system for files containing PLEXIL plans.
In order to inspect and execute a plan, the user interacts
with PLEXIL5 vı́a buttons: the controller in the graphical
component takes the events from the user interaction, sending

4Available at http://maude.cs.uiuc.edu/.
5Available at https://javacc.dev.java.net.

the current state of execution and the execution command
associated to the event to the bidirectional translator, that in
turn will call and receive information from the interpreter,
obtaining a new state in the execution which is translated to
the object model and finally displayed to the end user by the
graphical component. Figure 4 depicts a sequence diagram
representing the interaction of the user with PLEXIL5.

Fig. 4. Diagram sequence for the execution of a relation in PLEXIL5.

B. Main Features

PLEXIL5 represents the internal state of a plan as a tree and
the external state as lists of (the external) variables; Figure 5
shows the graphical rendering of SafeDrive in PLEXIL5.

Fig. 5. SafeDrive in PLEXIL5.

The visualization of a node consists of its name, gate and
check conditions, and state (including its variables). The user
can visualize a node at different levels of detail by choosing
to show or hide parts of its information. The environment also
supports toggling back and forth between showing or hiding
descendants of a node. Nodes can also be repositioned (using
the mouse).

The external state of a plan can consist of several envi-
ronment instances. Each instance is represented as a list of



variables with their corresponding value. The user can browse
through all environment instances; it is also possible to sort
alphabetically an environment instance. Both variable names
and values can be edited.

PLEXIL5 allows the user to browse for plans in the file
system. Loaded plans can be symbolic executed via the micro,
quiescence, and macro execution relations. In each case, there
is an undo feature returning the state of the the plan to the state
previous to the last execution step, if any. Nodes are colored
according to their particular state and success/failure status
associated by the execution. Figure 6 depicts the execution of
SafeDrive in which SafeDrive is in state Waiting and
Counter is in state Finishing.

Fig. 6. Executing SafeDrive.

The execution trace is kept by PLEXIL5 and its content is
displayed at the bottom of the graphical component. This trace
indicates which atomic steps have been taken by the nodes at
any particular time of the execution. The labels used to identify
such steps map faithfully to the transition diagrams defining
the semantics of the atomic execution relation described in
Section II.

PLEXIL5 is highly portable as the graphical component
is written in Java and the symbolic execution engine in
Maude, for which there are virtual machines and interpreters,
respectively, for several operating systems. The authors have
tested the current version of PLEXIL5 in Mac Os X 10.4 and
10.5, Linux and Windows XP and Vista.

IV. RELATED WORK

The natural candidate to compare PLEXIL5 to is the Uni-
versal Executive, the official implementation and execution
environment of PLEXIL. In this Section we give a brief com-
parison between these tools from the perspective of relevant
features to both language designers and plan programmers.
Visual environments for other synchronous languages are also
mentioned, and the reader is referred to formal developments
supporting the validation of synchronous languages in a more
general setting.

The Universal Executive (UE) is a Unix-based implemen-
tation and execution environment for PLEXIL. It comes with
the Test Executive (TE), a plan execution simulator, and the
Lightweight Universal Executive Viewer (LUV), a graphical
interface to PLEXIL plans. Given a plan file (in PLEXIL-
XML) and a simulation script (also in XML) representing
the external world, the plan is executed in the TE. The
TE is parametrized by a debug configuration file. A typical
debug configuration file shows the state transitions and final
outcomes of every node in the plan.

The LUV is a graphical front-end to the TE, in which plans
are presented in a hierarchical table-like view, and status and
output of each node during execution is visible in the main
window. By clicking in the row corresponding to a particular
node in the hierarchical structure of the plan, auxiliary tabbed
windows show the gate and check conditions, assignments,
variables, command actions, etc. In the LUV it is also possible
to hide/show nodes in the plan’s hierarchy and search for
nodes. For debugging, it is possible to edit debug configuration
files and add interruption /breakpoints directly from the LUV.

With respect to the Graphical Environment presented in
this paper, the TE of the UE is the analogous to the exe-
cutable semantics in Maude of PLEXIL5, in the same way
the graphical and translator components are analogous to the
LUV. The graphical interface of LUV is more developed
that the one offered by PLEXIL5. However, the PLEXIL5 is
directly supported by a formal semantics of a subset of
the language. From a functional point of view, the most
significant difference between the LUV and PLEXIL is that
PLEXIL5 supports step-by-step and undo/redo operations with
different execution relations. This feature is highly convenient
for designers as step-by-step and undo/redo operations allows
for the discovery of mismatches in the semantics and the
localization of logical errors. In future work, we expect to
integrate LUV and PLEXIL5 to provide powerful graphical
execution environment of PLEXIL plans supported by a formal
executable semantics.

Graphical environments for the specification and verification
of reactive systems commonly rely on synchronous languages
as they are suitable for the development of reactive sys-
tems [13]. Esterel and Lustre are commercial synchronous lan-
guages well positioned in this niche with powerful graphical
model-based design and verification tools (see [14], [15] for a
survey). There are, nevertheless, two main facts worth notic-
ing. First, the companion graphical environments for these
commercial languages are, in general, only suitable for sup-
porting program development but not for validating language
design. Second, by having Rewriting Logic and Maude as
PLEXIL5’s underpinnings, out-of-the-box formal tools already
available for Maude become available to PLEXIL5 for free.
For example, having an interface in PLEXIL5 for Maude’s
Model Checker is the only development needed in order to
have a model checker for PLEXIL. As a matter of fact, this is
the first task the authors will pursue in the immediate future.
In the same spirit, language designers and program developers
can hope for a theorem prover too.



The executable specification of PLEXIL semantics imple-
menting the symbolic interpreter benefits from the previous de-
veloped formal specification of PLEXIL operational semantics
in PVS [5]. In particular, the property of determinism satisfied
by the micro execution relation accounts for an efficient im-
plementation of the semantics, as this property is sufficient for
the confluence of the rewriting relation induced by the micro
relation: rewrite rules can be turned into oriented equations
and search with rules then becomes “blind” reduction with
equations while maintaining completeness. This is important
not only for efficiency reasons at execution time, but vital for
model checking as the state space is greatly reduced.

V. CONCLUSION AND FUTURE WORK

PLEXIL5, PLEXIL’s Formal Interactive Visual Environ-
ment, is an open source and portable graphical environment
for the validation of PLEXIL semantics. PLEXIL5 consists
of three components: a graphical component for visualizing
plans, a symbolic formal interpreter by means of an executable
specification in rewriting logic of PLEXIL semantics, and
bidirectional translator between the graphical component and
the symbolic interpreter.

The graphical component allows users of the tool to vi-
sualize the internal state of plans in a tree-like configuration
and the external state as an indexed list of sets of pairs of
variables and values. It endows the user with the functionality
for executing PLEXIL plans with different execution relations
in a step-by-step fashion, and to undo/redo steps of execution,
among other things. Because of these features, PLEXIL5 sup-
ports the rapid and user-friendly validation of the language.
Besides being a tool supporting the validation of PLEXIL
semantics, PLEXIL5 is also a tool suitable and convenient
for plan developers.

Our current implementation is a proof of concept. Although
PLEXIL5 does not support yet all the syntactic elements of
PLEXIL, we have already discovered, and fixed, a semantic
rule in the language that deals with assignment of local vari-
ables. During the initial evolution of the language, we expect
that PLEIXL5 will become an important tool for PLEXIL’s
designers.

In the near future, we intend to extend PLEXIL5 in the
following directions:

1) support for formal analysis by incorporating Maude’s
native verification tools such as Maude’s LTL Model
Checker;

2) improve user experience by defining new views for
displaying plans and I/O support for other idioms used
in PLEXIL’s community for the definition of plans;

3) integrate PLEXIL5 with the Universal Executive, so it is
an option for the user to execute plans using the formal
semantics of the language or its standard and optimized
implementation.

We believe that integrating Maude’s model checker in
PLEXIL5 is a relatively simple development, thanks to Maude
and the modularity of its vast companion of formal analysis
tools. As for adding new views to the graphical component,

it is virtue of the MVC meta-pattern to make it simple and
effortless. We believe that the integration of PLEXIL5 with the
Universal Executive is key to the more ambitious but necessary
goal of having formal analysis tools available for the Universal
Executive.

Finally, it is important to remark that the definition and
implementation of PLEXIL’s executable semantics as a rewrit-
ing logic theory can be seen as a template for the formal
specification of other synchronous languages in rewriting
logic. In particular, the work presented in this paper directly
contributes to the rewriting logic semantics project [16] in
which rewriting logic semantics has been extensively used as
a logical framework for operational semantics definitions of
programming languages. On top of that, we are contributing
a capable user interface enriching user experience for the
validation of the semantics, a combination resulting in a very
strong and yet simple approach for the formal validation of
PLEXIL semantics.

ACKNOWLEDGMENT

The authors would like to thank the members of the NASA’s
Automation for Operation (A4O) project and, specially, the
PLEXIL development team led by Michael Dalal at NASA
Ames, for their technical support.

REFERENCES

[1] V. Verma, A. Jónsson, C. S. Păsăreanu, and M. Iatauro, “Universal ex-
ecutive and PLEXIL: Engine and language for robust spacecraft control
and operations,” in American Institute of Aeronautics and Astronautics
Space 2006 Conference, 2006.

[2] G. Berry, “The foundations of Esterel,” in Proof, Language and
Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.
[Online]. Available: citeseer.ist.psu.edu/62412.html

[3] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice, “Lustre: A declarative
language for programming synchronous systems,” in Proceedings of
the 14th Symposium on Principles of Programming Languages (POPL),
1987.

[4] P. L. Guernic, T. Gautier, M. L. Borgne, and C. L. M. e, “Programming
real-time applications with SIGNAL,” in Proceedings of the IEEE,
Volume 79(9), 1991, pp. 1321–1336.

[5] G. Dowek, C. Muñoz, and C. Păsăreanu, “A small-step semantics of
PLEXIL,” National Institute of Aerospace, Hampton, VA, Technical
Report 2008-11, 2008.

[6] ——, “A formal analysis framework for PLEXIL,” in Proceedings of
3rd Workshop on Planning and Plan Execution for Real-World Systems,
September 2007.

[7] S. Owre, J. Rushby, and N. Shankar, “PVS: A prototype verification
system,” in 11th International Conference on Automated Deduction
(CADE), ser. Lecture Notes in Artificial Intelligence, D. Kapur, Ed.,
vol. 607. Saratoga, NY: Springer-Verlag, Jun. 1992, pp. 748–752.

[8] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and C. Talcott, Eds., All About Maude - A High-Performance Logical
Framework, How to Specify, Program and Verify Systems in Rewriting
Logic, ser. Lecture Notes in Computer Science, vol. 4350. Springer,
2007.

[9] J. Meseguer, “Conditional rewriting logic as a unified model of con-
currency,” Theoretical Computer Science, vol. 96, no. 1, pp. 73–155,
1992.

[10] T.-F. Serbanuta, G. Rosu, and J. Meseguer, “A rewriting logic approach
to operational semantics,” Inf. Comput., vol. 207, no. 2, pp. 305–340,
2009.

[11] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture. Wiley, 1996, vol. 1.

[12] M. Fowler, Patterns of Enterprise Application Architecture. Reading,
Massachusetts: Addison Wesley, Nov. 2002.



[13] A. K. Bhattacharjee, S. D. Dhodapkar, S. A. Seshia, and R. K. Shyama-
sundar, “A graphical environment for the specification and verification
of reactive systems,” in SAFECOMP, ser. Lecture Notes in Computer
Science, M. Felici, K. Kanoun, and A. Pasquini, Eds., vol. 1698.
Springer, 1999, pp. 431–444.

[14] S. Ramesh and P. Sampath, SCADE: Synchronous Design and Validation
of Embedded Control Software. Springer Netherlands, 2007.

[15] G. Berry, “Synchronous design and verification of critical embedded
systems using scade and esterel,” in FMICS, ser. Lecture Notes in
Computer Science, S. Leue and P. Merino, Eds., vol. 4916. Springer,
2007, p. 2.

[16] J. Meseguer and G. Rosu, “The rewriting logic semantics project,” Theor.
Comput. Sci., vol. 373, no. 3, pp. 213–237, 2007.


