
NASA/TP–2004–213015

Formal Verification of a Conflict
Resolution and Recovery Algorithm

Jeffrey Maddalon and Ricky Butler
Langley Research Center, Hampton, Virginia

Alfons Geser and César Muñoz
National Institute of Aerospace, Hampton, Virginia

April 2004

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a
key part in helping NASA maintain this
important role.

The NASA STI Program Office is operated
by Langley Research Center, the lead center
for NASA’s scientific and technical
information. The NASA STI Program Office
provides access to the NASA STI Database,
the largest collection of aeronautical and
space science STI in the world. The Program
Office is also NASA’s institutional
mechanism for disseminating the results of
its research and development activities.
These results are published by NASA in the
NASA STI Report Series, which includes the
following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services that complement the
STI Program Office’s diverse offerings
include creating custom thesauri, building
customized databases, organizing and
publishing research results . . . even
providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home
Page at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI Help
Desk at (301) 621–0134

• Phone the NASA STI Help Desk at (301)
621–0390

• Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076–1320

NASA/TP–2004–213015

Formal Verification of a Conflict
Resolution and Recovery Algorithm

Jeffrey Maddalon and Ricky Butler
Langley Research Center, Hampton, Virginia

Alfons Geser and César Muñoz
National Institute of Aerospace, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681–2199

April 2004

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an offical endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076–1320 Springfield, VA 22161–2171
(301) 621–0390 (703) 605–6000

Contents

1 Introduction 1

2 Rationale for Formal Assessment of ATM Systems 2

3 Conflict Detection and Resolution 6
3.1 Kuchar/Yang Taxonomy of CD&R Algorithms 6
3.2 Classification of RR3D . 7
3.3 Geometric CD&R . 8
3.4 Resolution and Recovery . 8

4 RR3D Algorithm 9

5 Formal Verification of RR3D 14
5.1 Basic Definitions and Common Lemmas 14

5.1.1 Horizontal and Vertical Separation 14
5.1.2 Correctness Criteria . 15
5.1.3 Times of Intersection with the Cylinder Lateral Surface . . . 16
5.1.4 Entering and leaving P∞ . 17
5.1.5 Reaching altitude H or −H 20
5.1.6 Time of Switch . 21

5.2 Correctness of Vertical Speed Case 22
5.2.1 In-circle . 22
5.2.2 Out-circle . 24
5.2.3 One-circle . 27

5.3 Ground-Speed Cases . 29
5.3.1 Timeliness . 32
5.3.2 Line and Circle Correctness 33
5.3.3 Line and Circle Cases . 38
5.3.4 In-Circle Case . 42
5.3.5 Out-Circle Case . 44

5.4 Correctness of Heading Case . 45
5.4.1 Important Lemmas . 46
5.4.2 The alpha calc Function . 46
5.4.3 Frequently Appearing Premises 46
5.4.4 The Line Escape Theorem . 46
5.4.5 The Line Recovery Theorem 48
5.4.6 The Circle Escape Theorem 50
5.4.7 The Circle Recovery Theorem 52
5.4.8 The In-Circle Recovery Theorem 55
5.4.9 The Out-Circle Recovery Theorem 55
5.4.10 Timeliness Properties . 56
5.4.11 Line/line . 58
5.4.12 Line/circle . 58
5.4.13 Circle/line . 60

iii

5.4.14 Circle/circle . 61
5.4.15 In-circle . 62
5.4.16 Out-circle . 63
5.4.17 Special Cases . 64

6 Conclusion 66

7 Appendix 69
7.1 Errors Found and Missing Assumptions 69
7.2 Proofs Of Some Useful Lemmas . 69
7.3 Mapping of Notation to PVS . 71

iv

Abbreviations

ADS-B Automatic Dependent Surveillance-Broadcast

ATM Air Traffic Management

ATSP Air Traffic Service Provider

CD&R Conflict Detection and Resolution

CPU Central Processing Unit

CTAS Center TRACON Automation System

DAG-TM Distributed Air-Ground Traffic Management

FAA Federal Aviation Administration

GPS Global Positioning System

ICAO International Civil Aviation Organization

NASA National Aeronautics and Space Administration

PVS Prototype Verification System

RNAV area navigation

RNP Required Navigation Performance

RR3D name of a three dimensional resolution and recovery algorithm described
in [1]

TRACON Terminal Radar Approach Control

URET User Request Evaluation Tool

v

vi

1 Introduction

Air Traffic Management (ATM) has two fundamental objectives: provide safe sep-
aration between aircraft and maximize the efficiency of the airspace system. To-
day, the responsibility to maintain appropriate traffic separation resides in a central
human authority within each sector, the Air Traffic Service Provider (ATSP). The
ATSP monitors the airspace, issues clearances to all controlled aircraft in the sector,
and expects the aircraft to follow these clearances. In the current system, as traffic
levels approach capacity, efficiency is sacrificed for safety and there is little room for
user preferences. Novel approaches to ATM, e.g., Distributed Air-Ground Traffic
Management (DAG-TM) [2, 3] and Free-flight [4, 5], address capacity problems of
the current airspace system by distributing the responsibility for traffic separation
among specially-equipped aircraft in the airspace. In these approaches, on-board
hardware and ATM software provide surveillance information, alerting for possible
loss of separation, and advisories for corrective maneuvers.

On-board conflict detection, resolution, and recovery systems are critical compo-
nents of new ATM concepts. Conflict detection determines if the path of the aircraft
conflicts with any other aircraft. Conflict resolution creates a new path that avoids
conflicts with other aircraft. Conflict recovery creates a path to guide the aircraft
back to its original destination. The algorithm examined in this paper combines
conflict resolution and recovery.

Safety assessment of the correctness of an ATM algorithm amounts to verifying
that for every possible scenario, conflicts are detected and effectively resolved. Tra-
ditionally, this is done via testing, human-in-the-loop simulations, and flight exper-
iments. The traditional techniques are not sufficient for a comprehensive safety as-
sessment given the enormous number of interactions present in this new distributed
environment. Testing, simulations and flight experiments are still valuable for defin-
ing requirements, assessing feasibility, and gaining experience with safety and effi-
ciency issues. Some limitations of these techniques for safety assessment include:

• Simulations can only represent phenomena that have been specifically mod-
eled.

• Biased selection of scenarios may limit the correctness of any generalized claims
made from a collection of simulation results.

• Flight experiments are too expensive to obtain statistically significant results.

• The set of possible scenarios is too large to obtain reasonable coverage with
testing, simulation, and experimentation.

In this paper we propose the first critical step—algorithm verification—in a
formal approach to the safety assessment of future ATM systems; we then provide an
extended example of this step. Formal indicates that the model of the ATM system
and its properties are stated unambiguously by mathematical formulae, and that all
claims are accompanied by rigorous proofs. When the formal proof is checked by a

1

computer program we refer to this as a mechanically checked proof or a mechanical
verification.1

As an illustration of this approach, the formal verification of an algorithm for
air traffic conflict resolution and recovery, called RR3D [1], is presented. A conflict
resolution and recovery algorithm can be considered a state-based geometric conflict
detection and resolution (CD&R) algorithm that satisfies arrival time constraints,
see [6]. Such an algorithm may be seen as a building block for strategic conflict
resolution [7]. In [1] Geser, et al. present a proof of the RR3D algorithm; this paper
formalizes this proof in the mechanical verification system PVS [8]. A proof that
has not been mechanically verified may contain non-obvious errors that are difficult
for humans to recognize. A proof that is checked by a computer ensures every detail
of the proof is throughly examined.

This paper is organized as follows. Section 2 discusses the rationale for a formal
safety assessment methodology. Section 3 presents an overview of CD&R modeling
techniques. Section 4 introduces the resolution and recovery algorithm RR3D. In
Section 5, RR3D serves as a case study for our formal approach to safety analysis.
Section 6 summarizes the paper and discusses future research directions. Appendix
A.1 lists minor errors and missing assumptions in the original proof. Appendix
A.2 includes additional lemmas used in the verification. Appendix A.3 maps the
notations used in this document to the textual representation in PVS.

2 Rationale for Formal Assessment of ATM Systems

Digital avionics systems have been used since the early 1970’s. A fly-by-wire aircraft
such as the Boeing 777 employs safety-critical software in the flight control comput-
ers. This type of software is largely derived from control theory based on rigorous
mathematical methods that provide assurance of key properties such as stability.
Moreover, the basic stability of the aircraft provides protection from occasional
glitches in the control software.

On the ground side, most of the software associated with ATM is packaged into
decision support tools for air traffic controllers, e.g., Center TRACON Automation
System (CTAS) [9] and User Request Evaluation Tool (URET) [10]. This software
provides information to controllers in a convenient format to aid them in managing
the trajectories of the aircraft in their sector. The failure of this software is miti-
gated by human intelligence that has many sources of information about the aircraft
under ATM control including the analog display of radar data. Consequently, the
safety risk resides primarily in the human controllers. The main question to be asked
about such software is whether the software helps the controllers achieve their oper-
ational goals. This question is best answered by qualitative human-factors oriented,

1A computer program that checks proofs is called a theorem prover. A theorem prover rigorously
enforces the rules of mathematical logic and ensures that every step of the proof follows directly
from primitive inference rules of the logic. Traditional mathematical proofs are checked through a
social peer-review process which over decades identifies any errors in these proofs. Since proofs of
software systems are inherently tedious and uninteresting, a social process is not feasible. Therefore,
we rely on theorem provers to discover errors in our proofs.

2

statistical assessments.
Future ATM concepts under development will utilize software in ways that are

fundamentally different from the past. Many of these concepts move the safety risk
directly into executing software. A near-term influence is the ICAO’s (International
Civil Aviation Organization) Required Navigation Performance (RNP) initiative.
RNP-based area navigation (RNAV) extends the capabilities of modern airplanes
by providing more accurate and precise navigation capability leading to more flexible
airspace routes and procedures in both visual and instrument conditions. Although
the RNP-based RNAV system should provide greater accuracy, it will necessarily
rely on more sophisticated on-board software and external infrastructure such as
Global Positioning System (GPS) and their associated augmentations. In RNP-
based RNAV environments the safety risk associated with ATM may migrate from
radar and controllers to on-board software and critical technologies, such as GPS,
that are also dependent upon software systems. Software consequently may have
new safety implications because it can fail in ways that cannot be mitigated by a
human. Hence, it is reasonable to re-examine the methods by which we determine
that software is correct and reliable.

The safety assessment of ATM systems cannot be accomplished using simula-
tion and experimentation alone. To verify that a system containing safety-critical
software is safe, one must ensure that either there are no sequences of inputs that en-
counter a hazard-inducing bug in the software or that any errors due to non-verified
sequences of inputs are mitigated by system level mechanisms. Unfortunately, the
state space of complex systems is intractably large. The input space must cover the
3-D airspace in the vicinity of an aircraft and all possible pilot inputs. Even if these
are discretized, the number of test cases that must be examined to cover the input
domain would require millions of years of experimentation.2 Extensive simulation
can only establish that selected states, from the enormous set of possible states, are
safe. It is unrealistic to infer that all states, or that most states, are also safe. The
case is even worse with flight experiments. The number of input cases covered is so
minuscule that its usefulness for this purpose is virtually nil. Hence the idea that a
simulation or a flight experiment can establish the safety of an air traffic manage-
ment concept must be rejected. A complete coverage of the set of possible states
and a rigorous assessment of safety properties is only possible through a complete
mathematical proof. The purpose of this paper is to elaborate this type of approach.
Within this approach, simulation and flight experiments serve a critical new role in
formal safety assessment, as we will point out below.

It is impossible to guarantee that an ATM system, like any physical system,
works perfectly. There are too many unpredictable elements: changing weather,
system failures, human errors, etc. It has been argued that it is impossible to
achieve any guarantee about the behavior of an ATM system, and hence that a
formal analysis of an ATM system is pointless. We disagree with this generalization.

2For example, even a tiny program consisting of five 10-bit inputs and ten 10-bit internal variables
has 2150 states. If each state could be tested in one microsecond, then complete testing would require
4.5 × 10+31 years.

3

Indeed formal techniques can guarantee that an algorithm is correct3 for all possible
scenarios under reasonable, well-defined assumptions. As we will explain later, this
set of assumptions is a by-product of the formal verification process. We claim that
a formal verification is an essential step in the validation process of avionics systems.

Traditional engineering practice involves making predictions about an extremely
complex and unpredictable environment. This is accomplished by bringing mathe-
matical rigor to the system’s domain as much as possible, thus minimizing uncer-
tainty in the system. Because software systems are intrinsically mathematical, one
might think that there are no unpredictable elements in them. But, the behavior
of embedded computer systems is dependent on assumptions about the environ-
ment in which the system operates and the logic contained within the system. If
the behavior of the computer system is incorrect then either the assumptions or
the logic must be incorrect. Formal verification ensures that the logic is correct
but does not address the validity of assumptions. However, formal verification does
provide a comprehensive list of assumptions and a framework wherein experts can
validate these assumptions. A formally verified system may still fail, but only if the
assumptions were not valid.4 It is therefore critical to validate the assumptions on
which the system was built. This requires experienced, technical judgment. Human
inspection, flight experiments and simulation can provide this validation. For ATM
systems, extensive simulations must be conducted to establish that the operational
procedures that govern the new airspace concept are adequate to sustain the assump-
tions that go into the formal analysis of the software algorithms. Flight experiments
must also be performed to corroborate the assumptions of the simulations (such as
the effects of winds, dynamics, datalink behavior, etc). A flight experiment provides
an essential capability by uncovering shortcomings and errors in the assumptions.
When problems are discovered in flight, the formal analysis must be adjusted to re-
flect the different characteristics of the environment, or the operational procedures
must be modified in order to rule-out the discovered problem.

A credible safety case for an advanced ATM system will be a massive endeavor.
It should be noted that much of the current ATM research is based upon comparative
studies. In other words, a new concept is promoted by comparing it to an exist-
ing capability rather than rigorously establishing that the concept achieves specific
safety and efficiency objectives. The reason for this is that establishing objective,
absolute safety and efficiency properties is extremely difficult. The following is only
a rudimentary list of some of the key characteristics of a comprehensive safety case.

• All of the requirements for safety have been captured and expressed in a rig-
orous manner.

• Verifiable algorithms and designs have been used whose behavior is fully ex-
plicated via mathematical theorems.

3By correct we mean there is a mathematical specification of the algorithm’s intended function-
ality and for all possible inputs it provides that functionality.

4By a formally verified system we mean that not only the algorithm has been shown to be
correct, but its refinement into software has also been shown to be correct.

4

• Software programs have been developed in accordance with certification stan-
dards, such as DO-178B, and shown to be faithful implementations of the
formally verified algorithms using code-level verification.

• The operating system on which the software implementation executes must
provide guarantees of integrity and performance.

• The probability of failure due to physical faults of critical components and in
the infrastructure systems have been shown to meet reliability requirements.

• The adequacy of the fault-tolerance strategies have been established using
fault-trees and Markovian analysis as well as laboratory experimentation.

• Operational procedures have been shown to be complete and safe and have
been extensively simulated.

• Assumptions of the formal analysis have been subjected to extensive investi-
gation through simulation and flight experimentation.

• The pilot and controller workloads have been shown to be reasonable via
simulated and flight experiments.

• Environmental testing requirements, such as DO-160, have been performed.

We believe that the existing incremental approach to system safety is not sufficient to
convince regulatory agencies, such as the Federal Aviation Administration (FAA),
that these systems are certifiably safe. We believe that safety cases built on the
foundation of provably correct algorithms and designs is the only viable approach
for future ATM systems.

As a first step toward a safety case of an advanced ATM concept, this paper
presents the mechanical verification of an algorithm for conflict resolution and re-
covery, called RR3D [1]. The original presentation of this algorithm contained a
hand-written proof of its correctness. Although the documented algorithm is cor-
rect, the mechanical verification revealed missing assumptions and a few errors in
the hand-written proof. This supports our belief that mechanical verification is
valuable even when the system has been diligently analyzed using pencil-and-paper.

Without a mechanical proof it is almost impossible to find these kinds of errors.
A missing assumption, for example, could result in a fatal error in a real imple-
mentation. Since the algorithm has been formally verified, one may be confident
that it is logically correct. Nevertheless, this algorithm must be translated into a
machine-executable language such as Ada or C. This will necessitate several more
steps of logical design, each potentially vulnerable to errors being introduced. There
are many issues that must be addressed as this is done:

1. The algorithm operates within the domain of real numbers; an implementa-
tion operates within the domain of floating point numbers. Therefore, the
executable code must address overflow, underflow, and all of the usual numer-
ical problems.

5

2. The algorithm assumes no errors are present in the input data. But even
the best sensors provide only approximate values. Communication systems,
such as ADS-B, introduce errors by way of interference, latency, drop-outs,
etc. The effect of these errors must be handled in a trustworthy manner.
Also the system must be able to handle some number of computer or device
failure conditions, i.e., it must be fault-tolerant. Mechanisms to handle these
errors inevitably are implemented with software, which must also be rigorously
verified.

3. The algorithm operates in a real-time environment, so one must establish that
the system on which the algorithm executes, has a sufficient CPU time budget
(under all possible scenarios) to complete the algorithm.

This process of design refinement can be understood as a sequence of more and more
complete formal models; from the last model, an implementation can be synthesized.
Each of these formal models can be shown to satisfy all properties of its predecessor
model. This process is usually referred to as design proof and the final verification of
the implementation code is called code verification. If the last step is accomplished
using synthesis, then the auto-code tool must be verified or its output verified against
the detailed design. This paper accomplishes the first step, namely, the proof that
the mathematical algorithm meets its specified properties. Future work will also
address the system level issues. If all of the refinement proofs are accomplished in
addition to the algorithm proofs, then we can be assured that an implementation
that complies with the formal assumptions (and this has to be checked with testing
and simulation) will be free of software design errors.

3 Conflict Detection and Resolution

Conflict detection and conflict resolution algorithms are designed to warn about
potential loss of air traffic separation and to produce avoidance maneuvers to be
flown by the aircraft. There is a wide variety of approaches to CD&R because there
are different ways to (1) predict the future trajectories, (2) define what constitutes
close proximity of trajectories, (3) calculate the resolution trajectories, and (4) gain
assurance about the safety and effectiveness of the algorithms. Algorithms also
differ in the domain of application: (1) how far ahead in time should a conflict
be detected, (2) whether the algorithm deals with only one conflict at a time or
handles multiple simultaneous conflicts, and (3) the amount of coordination and
communication needed to implement the algorithm.

In [11], Kuchar and Yang propose a taxonomy of CD&R algorithms. For com-
pleteness, we give an overview of that taxonomy.

3.1 Kuchar/Yang Taxonomy of CD&R Algorithms

The Kuchar/Yang taxonomy classifies CD&R algorithms based upon the following
criteria: (1) state propagation method, (2) dimensions of the state information,

6

(3) detection alert issued, (4) resolution method, (5) dimensionality of resolution
maneuver, (6) method for handling multiple alerts, and (7) other elements.

The state propagation method criteria classifies each algorithm as nominal,
worst-case, or probabilistic. If the future course of aircraft is represented as the
projected trajectory based on the current state, the algorithm is said to be nominal.
If all possible future trajectories, subject to only physical constraints (e.g. maximum
turn rate) are considered, then the algorithm is said to be worst-case. If possible
future trajectories are assigned probabilities from which a conflict probability is
calculated, the algorithm is said to be probabilistic.

The state dimensions criteria classifies an algorithm on the basis of the dimen-
sions analyzed: horizontal plane only (H), vertical plane only (V), or both (HV).
The detection alert criteria is just a boolean flag (T/F) which is true if the algo-
rithm provides an explicit alert. The resolution criteria classifies an algorithm as
Prescribed (P), Optimized (O), Force field (F), Manual (M), or None (-). Prescribed
algorithms provide simple resolutions such as “pull up” that require no on-board
calculation. Optimization approaches provide explicit calculated trajectories that
remove the conflict. Force field approaches treat each aircraft as a charged par-
ticle and use modified electrostatic models from which resolution trajectories are
calculated. This means that the closer two aircraft are to each other the more dra-
matic the maneuvers to escape from each other. Manual algorithms allow the pilot
to present a trial solution and provide feedback indicating whether the proposed
solution avoids conflict. If the algorithm does not provide a resolution, then it is
designated as “None”.

The resolution dimensionality criteria classifies an algorithm using four letters: T
for Turns, V for Vertical maneuvers, S for Speed changes, and C for combined. This
criteria is best explained by example. The notation TV indicates that resolutions
produced by the algorithm involve turns or vertical maneuvers but not both at
the same time. The notation C(TV) indicates that a simultaneous climbing or
descending turn may be produced. The multiple conflicts criteria can be Pairwise (P)
for algorithms where multiple conflicts are handled sequentially in pairs or Global
(G) where all of the conflicts are handled at the same time.

In this taxonomy, “other elements” include how much information is known
about the current state of the aircraft, how uncertainty of input data is handled,
and the degree to which coordination between aircraft is required.

3.2 Classification of RR3D

It is straightforward to classify RR3D according to the Kuchar and Yang taxonomy.
RR3D is a nominal, 3-dimensional algorithm (HV) which produces an alert if a
conflict is detected, but does not provide the detection capability itself. It is designed
to be used in conjunction with other detection algorithms. Therefore the RR3D
algorithm should be classified as not providing conflict detection, i.e. (F).

The RR3D algorithm produces optimal solutions, i.e., minimal change, that are
guaranteed to maintain separation and thus is an (O) algorithm. The resolution
trajectories produced by RR3D only affect one parameter at a time and hence it is

7

a STV algorithm. This is a deliberate design decision. The rationale is that a pilot
will have reduced workload executing a maneuver if only one dimension changes.
RR3D also produces recovery trajectories that return the aircraft to its next way-
point using a second maneuver. The recovery trajectories may involve the change
of ground speed along with a heading change or an altitude change. Currently,
RR3D is a pairwise algorithm (P) though work is under way to establish properties
of some of its solution trajectories in the context of multiple aircraft. Formal proofs
are under development that the RR3D algorithm is complementary in a systems
context without any explicit information being passed between aircraft. In other
words, the evasive maneuvers provided by RR3D, which are executed independently
on different aircraft, are guaranteed to resolve all conflicts.

With regard to the “other elements,” the only information that RR3D requires
is the position and velocity of the own-ship aircraft and any surrounding aircraft.
The algorithm does not require any other data-exchange or handshakes between the
aircraft, nor does it use information about the intent of the aircraft. RR3D currently
does not take input data error into consideration. We envision future versions that
incorporate support for bounded data errors.

In summary, RR3D is a nominal, HV, F, O, STV, P algorithm according to the
Kuchar and Yang taxonomy.

3.3 Geometric CD&R

In recent years, new approaches for CD&R have been proposed that use non-
standard programming techniques such as genetic algorithms [12–14], neural net-
works [15], game theory [16], graph theory [17], and semi-definite programming [18].
Given the computational complexity of some of these techniques, they usually re-
quire costly time and space discretizations. In contrast to these approaches, the
geometric approach [5,6,19,20] is based on standard and well-understood analytical
techniques.

In Kuchar & Yang’s taxonomy, the geometric modeling correspond to nominal
trajectories with either optimized or force field resolutions. Nominal trajectories are
linear projections of the current position and velocity vectors. The conflict resolution
problem is then expressed as a set of polynomial equations that are solved using
analytical techniques. Since linear projections produce prediction errors that are
negligible for short look-ahead times, this approach is also referred to as tactical.
For large look-ahead times a more strategic approach, that uses the other pilot’s
intent (e.g., flight plan), is in order. While tactical approaches have well-understood
geometric descriptions that allow for efficient and clear algorithms, they may fall
short of pilots’ expectations [3, 21].

3.4 Resolution and Recovery

Resolution and recovery algorithms—also called resolution with arrival time con-
straints in [22]—generate, in addition to the avoidance maneuver, merging trajec-
tories that bring an aircraft back to its nominal path on schedule.

8

Figure 1 illustrates the position of conflict resolution and recovery in an abstract
distributed ATM environment. On-board sensors capture the current state of the
aircraft and broadcast this information to all nearby aircraft. When the conflict
detection module [23] detects a conflict within a look-ahead time, the resolution
and recovery module computes a list of escape and recovery maneuvers. The list of
maneuvers is displayed through the cockpit interface for pilot selection or it may be
forwarded to a navigation system that automatically selects one of the maneuvers.

Resolution and Recovery
(RR3D)

Guidance and Control

Cockpit Interface

Conflict Detection

State Estimation
and Data Broadcasting

Airspace

Figure 1. On-board Processing of an ATM System

4 RR3D Algorithm

In RR3D aircraft are represented by a kinematic particle model with the center
of gravity as the coordinate point of the particle. Trajectories are assumed to be
composed of linear segments: speed is constant within a segment and from one
segment to another acceleration is instantaneous.

RR3D resolves conflicts between a pair of aircraft: the ownship aircraft executing
the algorithm onboard and another aircraft, also called the intruder. The intruder is
surrounded by a cylindrical protected zone P of diameter 2D and height 2H, where
D is the required horizontal separation and H is the required vertical separation.
A conflict is an intrusion of the ownship in the intruder’s protected zone. RR3D
computes conflict-free, easily performed escape and recovery maneuvers that result
in trajectories that are tangential to the intruder’s protected zone. The path will
remain conflict-free, assuming the ownship aircraft follows the recommended path

9

ov

ov"

v’o
RR3D

iv
t"

s

t’

Figure 2. RR3D: Input/Outputs

and the intruder does not change its path. If the intruder maneuvers, then new
paths may need to be computed.

For simplicity, we choose a relative Cartesian coordinate system where the in-
truder aircraft is fixed at the origin.5 RR3D has the following inputs (see Figure 2
and Figure 3):

• the relative position s of ownship with respect to intruder.

• the velocity vector of ownship vo.

• the velocity vector of intruder aircraft vi.

• the arrival time t′′ at the target point.

The target point s′′ is defined as

s′′ = s + t′′(vo − vi).

RR3D outputs a choice of escape and recovery maneuvers for the ownship, i.e.,
triples (v′o, t′, v′′o) where v′o is the escape velocity vector, t′ is the time of turn, and
v′′o is the recovery velocity vector. Figure 2 illustrates RR3D’s functionality for a
single output.

In order to reduce the pilot’s workload, the escape and recovery maneuvers are
constrained in such a way that both v′o and v′′o satisfy one of the following conditions:

1. Change of vertical speed only. The ownship’s vertical speed may change but
not its heading or ground speed, i.e., v′ox = vox = v′′ox and v′oy = voy = v′′oy.

2. Change of ground speed only. The ownship’s ground speed may change but not
its heading or vertical speed. Formally, there is a k > 0 such that v′ox = kvox,
v′oy = kvoy, and v′oz = voz, and there is a j > 0 such that v′′ox = jvox, v′′oy = jvoy,
and v′′oz = voz.

3. Change of heading. In the two dimensional projection, the escape course and
the recovery course (each in absolute coordinates) form a triangle. By the
triangle inequality, the escape course and the recovery course together are
longer than the original course. To arrive at the target point at time t′′, the
ownship has to compensate by using a greater average ground speed as opposed
to its original ground speed. Hence, maneuvers where only heading changes

5We are assuming perfect knowledge of the location and velocity of the intruder.

10

are allowed cannot reach the target point in time. In this case, we propose a
change of heading combined with a change of ground speed at time t′. In the
escape course, the ownship’s heading may change, but not its ground speed or
vertical speed; for the recovery course one must allow for a change of ground
speed as well as well as the heading change. Formally, v′2ox + v′2oy = v2

ox + v2
oy,

v′oz = voz, and v′′oz = voz.

Furthermore, we require that the escape and recovery courses are tangential to
the lateral surface of the protected zone. Tangential courses solve a conflict in an
optimal way. They require the least effort to correct the original trajectory such that
the ownship arrives at the next way point6 at the scheduled time while maintaining
separation. Original, escape, and recovery courses are illustrated in Figure 3.

t'

Escape course

t=0

t''

Original course

Intrusion interval

Ownship

Recovery course

Intruder

New trajectory
change point

Figure 3. Relative movement of the ownship w.r.t. the intruder

The RR3D algorithm is presented as a set of solutions to polynomial equations
that represent the initial assumptions, the correctness conditions, one of three con-
straints listed above, and the tangential requirement. The solutions are categorized
according to the part of the surface of the protected zone P that is touched during
the escape and recovery courses. The following cases are identified: line/line (Fig-
ure 4), line/circle (Figure 5), circle/line (Figure 6), one-circle (Figure 7), circle/circle
(Figure 8), in-circle (Figure 9), and out-circle (Figure 10).

The RR3D algorithm is required to satisfy the following properties:

• Correctness of the Escape Course: The ownship maintains separation
during the escape course. Let v′ = v′o − vi; then for all times 0 ≤ t ≤ t′

s + tv′ /∈ P (1)

• Correctness of the Recovery Course: The ownship maintains separation
during the recovery course. Let v′′ = v′′o − vi; then for all times t′ ≤ t ≤ t′′

s + t′v′ + (t − t′)v′′ /∈ P (2)

6RR3D does not consider way points beyond the next one. RR3D could be used in conjunction
with a strategic planner that alters subsequent way points to meet higher-level objectives such as
flow management or weather avoidance.

11

Figure 4. Line/line (top view, perspective view, and side view)

Figure 5. Line/circle (top view, perspective view, and side view)

Figure 6. Circle/line (top view, perspective view, and side view)

12

H

−H

Figure 7. One-circle cases (side views)

Figure 8. Circle-circle cases (side views)

H

−H

Figure 9. In-circle cases (side views)

−H

H

Figure 10. Out-circle cases (side views)

13

• Timeliness: The ownship arrives at the target point at the prescribed time.

s + t′v′ + (t′′ − t′)v′′ = s′′ (3)

Geser et al. [1] present a proof that the RR3D algorithm is correct, i.e., satisfies the
required properties (1), (2), and (3).

We describe in Section 5 how the paper-and-pencil proofs of [1] are mechanized
in PVS.

5 Formal Verification of RR3D

This presentation of the formal verification of RR3D is organized as follows. First we
define a few predicates to express the separation requirements and some geometric
properties, and useful statements about them. Then we prove correctness of the
escape course, correctness of the recovery course, and timeliness for each case that
RR3D defines. We divide the cases according to the constraint they satisfy: Vertical,
Ground-Speed, and Heading.

5.1 Basic Definitions and Common Lemmas

In this section we use s, v, t in an generic way, i.e., they do not necessarily refer to
the relative variables.

5.1.1 Horizontal and Vertical Separation

The infinite cylinder is the set of points

P∞ = {(x, y, z) | x2 + y2 < D2},
and the infinite slice is the set of points

S∞ = {(x, y, z) | |z| < H}.
Associated with these regions, we define three predicates about aircraft separa-

tion in the PVS specification.

hor sep?(s) = sx
2 + sy

2 ≥ D2 (4)

vert sep?(s) = |sz| ≥ H (5)

separation?(s, v) = ∀t : hor sep?(s + tv) ∨ vert sep?(s + tv) (6)

We also define a notion of separation over an interval of time:

pred sep?(s, v, t′′) = ∀t : 0 < t < t′′ ⊃ hor sep?(s + tv) ∨ vert sep?(s + tv) (7)

The following useful lemma enables one to translate the starting point:

14

Lemma 1 (separation lem)

separation?(s, v) ⇔ separation?(s + tv, v) (8)

Proof. Case 1 [separation?(s, v) ⊃ separation?(s + tv, v)] We need to prove that

hor sep?(s + tv + Tv) ∨ vert sep?(s + tv + Tv)

for an arbitrary T. From the premise we have

∀t′′ : hor sep?(s + t′′v) ∨ vert sep?(s + t′′v)

Substituting t + T for t′′ we have the desired result.
Case 2 [separation?(s + tv, v) ⊃ separation?(s, v)] Proof similar to Case 1.

5.1.2 Correctness Criteria

A point s at the boundary of the infinite cylinder and moving with velocity v may
move into or out of the infinite cylinder. The direction is determined by the sign of
the dot product (sx, sy) · (vx, vy). In formulas (9-11) we provide convenient names
for each direction.

entry?(s, v) = sxvx + syvy ≤ 0 (9)
exit?(s, v) = sxvx + syvy ≥ 0 (10)

tangent?(s, v) = sxvx + syvy = 0 (11)

For convenience the tangent case is included in the entry? and exit? definitions. The
predicates entry point?(s, v), exit point?(s, v), and tangent point?(s, v) are defined as
the conjunction of s2

x + s2
y = D2 with entry?(s, v), exit?(s, v), and tangent?(s, v),

respectively.
We provide correctness criteria for the line and circle cases.

Theorem 2 (Line Case Correctness)

tangent point?(s, v) ⊃ separation?(s, v)

Proof. Let s+tv be a moving point such that s is tangent to P∞. Then, by properties
of tangent lines, (sx + tvx)2 + (sy + tvy)2 ≥ D2 for all times t.

Theorem 3 (Circle Case Correctness)

hor sep?(s) ∧ vert sep?(s)
∧ (entry point?(s, v) ∧ szvz ≥ 0 ∨ entry point?(s, v) ∧ szvz ≤ 0)
⊃ separation?(s, v)

Proof. Let s + tv be a moving point such that s2
x + s2

y = D2, |sz| = H, and either
(1) sxvx + syvy ≤ 0 and szvz ≥ 0 or (2) sxvx + syvy ≥ 0 and szvz ≤ 0. Then, for
all times t, either (a) horizontal separation: (sx + tvx)2 + (sy + tvy)2 ≥ D2 or (b)
vertical separation: |sz + tvz| ≥ H.

15

5.1.3 Times of Intersection with the Cylinder Lateral Surface

In order to use the correctness criteria, we have to determine the times t at which
a moving point s + tv intersects the lateral surface of the infinite cylinder. These
times are given as the solutions of

(sx + tvx)2 + (sy + tvy)2 = D2. (12)

The predicate hor speed gt 0? expresses that the horizontal speed is greater than
zero:

hor speed gt 0?(v) ⇔ (v2
x + v2

y > 0). (13)

If hor speed gt 0?(v) holds then (12) reduces to a quadratic equation in t:

t2(v2
x + v2

y) + 2t(sxvx + syvy) + s2
x + s2

y − D2 = 0. (14)

The discriminant ∆(s, v) is defined as

∆(s, v) = 22(sxvx + syvy)2 − 4(v2
x + v2

y)(s
2
x + s2

y − D2) (15)

= 4D2(v2
x + v2

y) − 4(sxvy − syvx)2.

If ∆(s, v) ≤ 0 then the moving point does not intersect P∞. In particular, if
∆(s, v) = 0 we have the tangent case. We define a predicate tangent condition?
by

tangent condition?(s, v) ⇔ (D2(v2
x + v2

y) = (sxvy − syvx)2). (16)

If tangent condition?(s, v) holds then the time τ(s, v) of closest approach in the
horizontal plane is the unique solution of (14):

τ(s, v) = −sxvx + syvy

v2
x + v2

y

. (17)

The following lemma establishes the fundamental property of τ : if the ownship
is on a course satisfying the tangent condition, then it is at the tangent point at
time τ .

Lemma 4 (tau is tangent pt)

hor speed gt 0?(v′)
∧ tangent condition?(s, v′)
⊃ tangent point?(s + v′τ(s, v′), v′)

Proof. Expanding the tangent point? predicate yields two claims:

(sx + τ(s, v′)v′x)2 + (sy + τ(s, v′)v′y)
2 = D2, (18)

(sx + τ(s, v′)v′x)v′x + (sy + τ(s, v′)v′y)v
′
y = 0. (19)

16

Proof of (18). Since v′2x + v′2y 	= 0 by hor speed gt 0?(v′), the tangent condition
(16) can be expressed as

D2 =
(sxv′y − syv

′
x)

v′2x + v′2y
.

Substituting this into equation (18) and expanding the definition of τ(s, v′) yields

(
sx +

[
−sxv

′
x + syv

′
y

v′x
2 + v′y

2

]
v′x

)2

+
(

sy +
[
−sxv

′
x + syv

′
y

v′x
2 + v′y

2

]
v′y

)2

=
(sxv

′
y − syv

′
x)

v′2x + v′2y
.

Algebraic simplification verifies this equality. This concludes the proof of (18).
Expanding the definition of τ(s, v′) in equation (19) yields

(
sx +

[
−sxv

′
x + syv

′
y

v′x
2 + v′y

2

]
v′x

)
v′x +

(
sy +

[
−sxv

′
x + syv

′
y

v′x
2 + v′y

2

]
v′y

)
v′y = 0.

Algebraic simplification verifies this equality.

5.1.4 Entering and leaving P∞

If ∆(s, v) > 0, we get two solutions for (14) which we call Θ−(s, v) and Θ+(s, v),
respectively:

Θ−(s, v) =
−2sxvx − 2syvy −

√
∆(s, v)

2v2
x + 2v2

y

, (20)

Θ+(s, v) =
−2sxvx − 2syvy +

√
∆(s, v)

2v2
x + 2v2

y

. (21)

By definition, Θ−(s, v) < Θ+(s, v).
To facilitate this definition in PVS, a predicate clash? is defined as follows:

clash?(s, v) = vx
2 + vy

2 > 0 ∧ ∆(s, v) > 0 (22)

Thus we have

Θ±(s : vector, v : (clash?)) =
−2sxvx − 2syvy ±

√
∆(s, v)

2vx
2 + 2vy

2
(23)

Before we continue, we need to digress to the solution of quadratic equations.
The following formula characterizes the solutions of a quadratic equation:

ax2 + bx + c = 0 ⇔ discr(a, b, c) ≥ 0 ∧ (x = root(−1, a, b, c) ∨ x = root(1, a, b, c)).
(24)

17

The discriminant discr(a, b, c) and the solutions root(ε, a, b, c) for ε = ±1 are defined
by

discr(a, b, c) = b2 − 4ac, (25)

root(ε, a, b, c) =
−b + ε

√
discr(a, b, c)
2a

. (26)

The following lemma establishes the key property about Θ±:

Lemma 5 (THETA main)

clash?(s, v) ∧ t = Θ±(s, v) ⊃ (sx + tvx)2 + (sy + tvy)
2 = D2

Proof. Application of (24) to (14).

The following two lemmas establish that Θ− is an entry point and that Θ+ is
an exit point:

Lemma 6 (entry it is)

hor sep?(s) ∧ clash?(s, v) ∧ ¬pred sep?(s, v, t′′)
⊃ entry point?(s + vΘ−(s, v), v)

Proof. To show that s + vΘ−(s, v) is an entry point we show that

(sx + Θ−(s, v)vx)2 + (sy + Θ−(s, v)vy)2 = D2, (27)
(sx + Θ−(s, v)vx)vx + (sy + Θ−(s, v)vy)vy ≤ 0. (28)

THETA main [Lemma 5] discharges (27). For the claim (28) let us consider the
derivative of the distance between the two aircraft: 2(sx + tvx)vx + 2(sy + tvy)vy,
which is equal to 2t(v2

x +v2
y)+2(sxvx +syvy). We first show that this is non-positive

for all t ≤ τ(s, v).

t ≤ τ(s, v)

⊃ t ≤ −sxvx + syvy

v2
x + v2

y

⊃ 2t(v2
x + v2

y) ≤ −2(sxvx + syvy)

⊃ 2t(v2
x + v2

y) + 2(sxvx + syvy) ≤ 0

From (20) and (17) it follows trivially that Θ−(s, v) < τ(s, v). Thus we can substi-
tute Θ−(s, v) for t in the previous inequality to get

2Θ−(s, v)(v2
x + v2

y) + 2(sxvx + syvy) ≤ 0

which simplifies to (28).

18

Lemma 7 (exit it is)

hor sep?(s) ∧ clash?(s, v) ∧ ¬pred sep?(s, v, t′′)
⊃ exit point?(s + vΘ+(s, v), v)

Proof. Proof is similar to proof of entry it is except that Θ+(s, v) is used and the
derivative of the distance is non-negative for t ≥ τ(s, v) is shown.

Lemma 8 (exploit pred conflict)

t′′ > 0 ∧ hor sep?(s) ∧ ¬pred sep?(s, v, t′′) ⊃ clash?(s, v)

Proof. The following chain of implications provides the proof:

¬pred sep?(s, v, t′′)
⊃ ¬(∀t : 0 ≤ t ≤ t′′ ⊃ hor sep?(s + vt))
⊃ (hor speed gt 0?(v) ∧ ∆(s, v) > 0 ∧ 0 < Θ+(s, v) ∧ Θ−(s, v) < t′′)
⊃ clash?(s, v)

The second implication above follows from a characterization, similar to (24), of
the solutions of the quadratic inequality at2 + bt + c ≥ 0 where a = v2

x + v2
y and

b = 2(sxvx + syvy) and c = s2
x + s2

y − D2 derived from (14).

Lemma 9 (vert pred)

s′′ = s + t′′v
∧ ((sz ≥ H ∧ s′′z ≥ H) ∨ (sz ≤ −H ∧ s′′z ≤ −H))
⊃ pred sep?(s, v, t′′)

Proof. In order to show pred sep?(s, v, t′′) it is sufficient to show |sz + t′′vz| ≥ H.
Case 1 [sz ≥ H ∧ s′′z ≥ H]: From the first premise and the case conditions we get
s′′z − t′′vz ≥ H and sz + t′′vz ≥ H. Now if vz ≥ 0 we have sz + t′′vz = |sz + t′′vz| and
hence vertical separation. Otherwise, since s′′z is positive, |s′′z | = s′′z = sz + t′′vz and
hence |sz + t′′vz| ≥ H.
Case 2 [sz ≤ −H ∧ s′′z ≤ −H] Same approach as Case 1 only substituting −sz for
sz.

We will need (16) and (17) instantiated with the parameters of the escape and the
recovery courses. For the escape course we get tangent condition?(s, v′) and the time
of closest approach in the horizontal plane τ(s, v′). The moving point s′′ +(t− t′′)v′′

describes the recovery course in a translated time t− t′′. Therefore, for the recovery
course we get tangent condition?(s′′, v′′) and the time of closest approach in the
horizontal plane τ(s′′, v′′) + t′′.

19

5.1.5 Reaching altitude H or −H

If vz 	= 0 then the times when the ownship reaches altitude H or −H are the solutions
of |sz + tvz| = H for t, which we call θ−(sz, vz) and θ−(sz, vz), respectively:

θ−(sz, vz) =
−sign(vz)H − sz

vz
(29)

θ+(sz, vz) =
sign(vz)H − sz

vz
(30)

The following lemma establishes the main property of θ±: the ownship is at the
top or bottom of the infinite slice.

Lemma 10 (reaching H theta)

vz 	= 0 ⊃ |sz + θ±(sz, vz)vz| = H

Proof. The condition vz 	= 0 is only required to ensure that θ± is defined. If vz > 0
then by (29) or (30) we get

sz + θ±(sz, vz)vz = sz + ±H − sz = ±H,

the absolute value of which is H. If vz < 0 then

sz + θ±(sz, vz)vz = sz −±H − sz = −± H

the absolute value of which is H.

The next lemma establishes another important property of the θ± function: at
time θ+(s, v) the ownship is leaving the infinite slice and at time θ−(s, v) it is entering
the infinite slice.

Lemma 11 (vertical entry exit condition)

vz 	= 0 ⊃ (sz + θ+(sz, vz)vz)vz ≥ 0 ∧ (sz + θ−(sz, vz)vz)vz ≤ 0

Proof. The condition vz 	= 0 is required to ensure that the function θ± is defined.
We use the fact that H > 0.

Case 1 [vz > 0]. By (30) for vz > 0,

sz + θ+(sz, vz)vz = sz + H − sz = H.

By replacement, the first claim reduces to Hvz ≥ 0, which trivially holds. Likewise,
by (29),

sz + θ−(sz, vz)vz = sz − H − sz = −H.

By replacement, the second claim reduces to −Hvz ≤ 0, which trivially holds.
Case 2 [vz < 0]. By (30) for vz < 0,

sz + θ+(sz, vz)vz = sz − H − sz = −H.

20

By replacement, the first claim reduces to −Hvz ≥ 0, which trivially holds. Likewise,
by (29),

sz + θ−(sz, vz)vz = sz + H − sz = H.

By replacement, the second claim reduces to Hvz ≤ 0, which trivially holds.

The next lemma states that θ± values can be translated in time.

Lemma 12 (theta translation)

vz 	= 0 ⊃ θ±(sz + t′′vz, vz) = θ±(sz, vz) − t′′

Proof. The condition vz 	= 0 is required to ensure that the terms θ±(sz + t′′vz, vz)
and θ±(sz, vz) are defined. Replacement by (29) and (30) yields

±sign(vz)H − (sz + t′′vz)
vz

=
±sign(vz)H − sz

vz
− t′′,

which resolves by algebraic simplification.

5.1.6 Time of Switch

The time t′ is the time at which the ownship switches from the escape course to the
recovery course. This time satisfies

t′(v′ − v′′) = t′′(v − v′′),

or in coordinate notation

t′(v′x − v′′x) = t′′(vx − v′′x), (31)
t′(v′y − v′′y) = t′′(vy − v′′y), (32)

t′(v′z − v′′z) = t′′(vz − v′′z). (33)

Equations (31) and (32) allow us to express v′′y and v′′x in terms of t′, t′′, vx, v′x, vy, v
′′
y

which allows us to compute the velocity vector from the arrival time.

v′′x =
t′′vx − t′v′x

t′′ − t′
, (34)

v′′y =
t′′vy − t′v′y

t′′ − t′
. (35)

21

5.2 Correctness of Vertical Speed Case

We impose the constraint that only the vertical component of the velocity vector
may change. Formally, we define a predicate vertical change? as follows

vertical change?(v,w) ⇔ (vx = wx) ∧ (vy = wy) (36)

Constraining both v′ and v′′, we have:

vertical change?(v, v′) ∧ vertical change?(v′, v′′)

In terms of absolute coordinates, we have:

v′ox = vox = v′′ox and v′oy = voy = v′′oy. (37)

If the relative ground speed is zero (v2
x +v2

y = 0) then either the ownship is inside
the infinite cylinder (s2

x + s2
y < D2), and there is no vertical solution, or else there

is no conflict. Otherwise, Θ−(s, v) and Θ+(s, v) are defined as in equations (20)
and (21), and we may have the following independent solutions.

5.2.1 In-circle

If 0 < Θ−(s, v) < t′′ and |s′′z | ≥ H then there is an in-circle solution (Figure 9). It
is given by t′ = Θ−(s, v),

v′′oz = viz +
−sign(s′′z)H − s′′z

Θ−(s, v) − t′′
, and

v′oz = viz +
t′′(voz − viz) − (t′′ − Θ−(s, v))(v′′oz − viz)

Θ−(s, v)

=
t′′(voz − v′′oz)

Θ−(s, v)
+ v′′oz.

The following theorem has been formally verified for this maneuver:

Theorem 13 (vert in circle correctness)

hor sep?(s)
∧ ¬pred sep?(s, v, t′′)
∧ vertical change?(v + vi, v

′ + vi)
∧ vertical change?(v′ + vi, v

′′ + vi)
∧ t′ > 0 ∧ t′ < t′′

∧ t′ = Θ−(s, v)
∧ s′′ = s + t′′v
∧ |s′′z | ≥ H

∧ v′′z =
sign(s′′z)H − s′′z

t′ − t′′

∧ v′z =
t′′vz − (t′′ − t′)v′′z

t′
⊃ separation?(s, v′) ∧ separation?(s + t′v′, v′′)

22

Proof. First we use exploit pred conflict [Lemma 8] to obtain clash?(s, v). Next we
observe that

sz + t′v′z = sign(s′′z)H (38)

by cross multiplying the formulas for v′′z and v′z in the premise and using some
algebra.

Part 1 [Establish separation?(s, v′)] Using separation lem [Lemma 1] we change
the goal to establishing separation at s + t′v′, i.e., to separation?(s + t′v′, v′). Ap-
plication of Circle Case Correctness [Theorem 3] at s + t′v′ will give us the desired
result, provided that we discharge its premises. We do so by proving that

|sz + t′v′z| = H, (39)
entry point?(s + t′v′, v′), (40)

(sz + t′v′z)v
′
z ≥ 0. (41)

The claim (39) follows from (38).
To show (40), we establish entry point?(s+Θ−(s, v)v, v) by entry it is [Lemma 6].

Since entry point? only involves the x and y components of the vector, and we have
vertical change? (v, v′), we also get entry point?(s + Θ−(s, v)v′, v′). The claim (40)
follows by t′ = Θ−(s, v).

This leaves us to establish (41). Replacing with (38). This reduces to sign(s′′z)Hv′z ≥
0. To prove this goal we perform a case split on s′′z ≥ 0.

Case [s′′z ≥ 0]: Expanding sign and using the fact that H is positive, the goal becomes
v′z ≥ 0. Using the formula for v′z in the premise, and using t′ > 0, the goal becomes

t′v′′z − t′′v′′z + t′′vz ≥ 0

From the formula for v′′z in the premise, we obtain t′v′′z − t′′v′′z = H − s′′z , which can
be used to simplify the goal to

H − s′′z + t′′vz ≥ 0

Using s′′ = s + t′′v, we get:
H − sz ≥ 0

From the premise |s′′z | ≥ H, we get s′′z ≥ H. From vert pred [Lemma 9], we get
(sz ≥ H ∧ s′′z ≥ H) ∨ (sz ≤ −H ∧ s′′z ≤ −H) which suffices to finish off this case.

Case [s′′z < 0]: Analogous.

Part 2 [Establish separation?(s+t′v′, v′′)] Since s′′ = s+t′′v, the goal can be rewritten
as:

separation?(s′′ − v′′(t′′ − t′), v′′)

23

An application of Circle Case Correctness [Theorem 3] at s′′ − v′′(t′′ − t′) will give us
the desired result, provided that we can discharge its premises. We do so by proving
that

|s′′z − (t′′ − t′)v′′z | = H, (42)
entry point?(s′′ − (t′′ − t′)v′′, v′′), (43)

(s′′z − (t′′ − t′)v′′z)v′′z ≥ 0. (44)

Substitution of the definition of v′′z in (42) and algebraic simplification yields
|sign(s′′z)H| = H which is trivially true.

For (43), we first show entry point?(s+Θ−(s, v)v, v) using entry it is [Lemma 6].
Then the claim (43) follows by vertical change?(v, v′), vertical change?(v′, v′′), t′ =
Θ−(s, v), and algebra.

Finally let us prove (44). We first cross-multiply the premise that defines v′′z to
get:

(t′ − t′′)v′′z = sign(s′′z)H − s′′z . (45)

Substituting in (44) and simplifying yields

sign(s′′z)v
′′
z H ≥ 0 (46)

Case splitting on the argument to sign:

Case 1 [s′′z ≥ 0]: From the premise |s′′z | ≥ H we get s′′z ≥ H. Expanding sign in (45)
we have (t′ − t′′)v′′z = H − s′′z . Thus (t′ − t′′)v′′z ≤ 0; hence v′′z ≥ 0. The claim (46)
follows.

Case 2 [s′′z < 0]: From the premise |s′′z | ≥ H, we get sz + t′′vz ≤ −H. Expanding
sign in (45) we have (t′ − t′′)v′′z = −H − sz. Thus (t′ − t′′)v′′z ≥ 0; hence v′′z ≤ 0. The
claim (46) follows.

5.2.2 Out-circle

If 0 < Θ+(s, v) < t′′ and |sz| ≥ H then there is an out-circle solution (Figure 10).
It is given by t′ = Θ+(s, v),

v′oz = viz +
−sign(vz)H − sz

Θ+(s, v)
, and

v′′oz = viz +
t′′(voz − viz) − Θ+(s, v)(v′oz − viz)

t′′ − Θ+(s, v)

=
t′′voz − Θ+(s, v)v′oz

t′′ − Θ+(s, v)
.

The verification of this solution was facilitated by the proof of the following
lemmas about the signs of the vectors:

24

Lemma 14 (signs are opposite)

¬pred sep?(s, v, t′′) ∧ |sz| ≥ H

⊃ sign(sz) = −sign(vz)

Lemma 15 (signs ve z)

¬pred sep?(s, v, t′′) ∧ |sz| ≥ H ∧ C > 0

∧ v′z =
−sign(vz)H − sz

C
∧ v′z 	= 0

⊃ sign(v′z) = sign(vz)

Lemma 16 (signs vr z)

¬pred sep?(s, v, t′′)
∧ |sz| ≥ H

∧ v′z =
−sign(vz)H − sz

C
∧ t′′ − C > 0 ∧ C > 0

∧ v′′z =
t′′vz − v′zC

t′′ − C

⊃ sign(v′′z) = −sign(sz)

Proofs of these lemmas are given in Appendix 7.2.

The following theorem has been formally verified for this maneuver:

Theorem 17 (vert out circle correctness)

hor sep?(s)
∧ vertical change?(v, v′) ∧ vertical change?(v′, v′′)
∧ 0 < Θ+(s, v) ∧ Θ+(s, v) < t′′

∧ |sz| ≥ H

∧ v′z =
−sign(vz)H − sz

Θ+(s, v)

∧ v′′z =
t′′vz − Θ+(s, v)v′z

t′′ − Θ+(s, v)
∧ ¬pred sep?(s, v, t′′)
⊃ separation?(s, v′) ∧ separation?(s + v′Θ+(s, v), v′′)

Proof. First we use exploit pred conflict [Lemma 8] to obtain clash?(s, v). Next,
cross-multiplying the premise that defines v′z yields

Θ+(s, v)v′z = −sign(vz)H − sz. (47)

25

Part 1 [separation?(s, v′)]: First we use separation lem [Lemma 1] to translate the
starting point to s + Θ+(s, v)v′. The goal becomes:

separation?(s + Θ+(s, v)v′, v′)

An application of Circle Case Correctness [Theorem 3] at s + v′Θ+(s, v) will give us
the desired result, provided that we can discharge its premises. We do so by proving
that

|sz + Θ+(s, v)v′z | = H, (48)
exit point?(s + Θ+(s, v)v′, v′), (49)

(sz + Θ+(s, v)v′z)v
′
z ≤ 0. (50)

The claim (48) follows trivially from (47).
Next let us prove (49). The lemma exit it is [Lemma 7] is used to show exit point?(s+

Θ+(s, v)v, v). But since exit point? only involves the x and y components of the
vector, and we have vertical change?(v, v′), we also get (49).

This leaves us to prove (50). The case v′z = 0 is trivial, so assume v′z 	= 0. First,
lemma signs ve z [Lemma 15] yields sign(v′z) = sign(vz). Substituting this and (47)
in (50) and simplifying yields

−sign(v′z)Hv′z ≤ 0 (51)

A case split whether or not v′z ≥ 0, and expanding the definition of sign completes
this part.

Part 2 [separation?(s + v′Θ+(s, v), v′′)]:
An application of Circle Case Correctness [Theorem 3] at s + v′Θ+(s, v) will give us
the desired result, provided that we can discharge its premises. We do so by proving
that

|sz + Θ+(s, v)v′z | = H, (52)
exit point?(s + Θ+(s, v)v′z , v

′′), (53)
(sz + Θ+(s, v)v′z)v

′′
z ≤ 0. (54)

The claim (52) follows trivially from (47).
Next let us prove (53). The lemma exit it is [Lemma 7] establishes exit point?(s+

Θ+(s, v)v, v). We use the independence of x and y coordinates and the premises
vertical change? (v, v′) and vertical change?(v′, v′′) to derive (53).

This leaves to prove (54). First we simplify to get the goal:

szv
′′
z + v′zv

′′
z Θ+(s, v) ≤ 0 (55)

Next, we use signs are opposite [Lemma 14] and signs vr z [Lemma 16] to obtain
sign(sz) = −sign(vz) and sign(v′′z) = −sign(sz), respectively. Substituting these
and (47) in (54) and simplifying yields

−sign(v′′z)v′′z H ≤ 0.

26

A case split whether or not v′′z ≥ 0, and expanding the definition of sign completes
the proof.

We also prove a theorem that states the arrival in time:

Theorem 18 (vert out circle timeliness)

hor sep?(s) ∧ ¬pred sep?(s, v, t′′) ∧
vertical change?(v, v′) ∧ vertical change?(v′, v′′) ∧
0 < t′′ ∧ 0 < Θ+(s, v) ∧ Θ+(s, v) < t′′ ∧
v′z =

−sign(vz)H − sz

Θ+(s, v)
∧

v′′z =
t′′vz − Θ+(s, v)v′z

t′′ − Θ+(s, v)
⊃ s + t′′v = s + Θ+(s, v)v′ + (t′′ − Θ+(s, v))v′′

Proof. First, we use exploit pred conflict [Lemma 8] to obtain clash?(s, v). Cross-
multiplying the definition of v′z yields: v′zΘ+(s, v) = −sign(vz)H − sz. Cross-
multiplying the definition of v′′z yields: v′′z (t′′ −Θ+(s, v)) = t′′vz −Θ+(s, v)v′z . Then
algebraic simplifications and rewriting will finish the proof.

5.2.3 One-circle

If 0 < Θ−(s, v) and Θ+(s, v) < t′′ then for both ε ∈ {−1, 1} there may be a one-
circle solution. Figure 7 shows the case where a one-circle solution exists for each
ε = 1 (left) and ε = −1 (right). If εsz < H and εs′′z < H, then we compute the
vertical speeds

v′oz = viz +
εH − sz

Θ−(s, v)
,

v′′oz = viz +
εH − s′′z

Θ+(s, v) − t′′
.

If v′oz 	= v′′oz, then t′ is given by (33) which simplifies to

t′ = t′′
voz − v′′oz

v′oz − v′′oz

.

In this case, there is a one-circle solution for ε given by v′oz, v′′oz, and t′.
We remark that there are no vertical solutions that touch the lines, nor circle-

circle solutions. The following theorem has been proved in PVS:

27

Theorem 19 (vert one circle correctness)

hor sep?(s) ∧ ¬pred sep?(s, v, t′′) ∧
vertical change?(v + vi, v′ + vi) ∧ vertical change?(v′ + vi, v′′ + vi) ∧
0 < t′ < t′′ ∧ 0 < Θ−(s, v) ∧ Θ+(s, v) < t′′ ∧
s′′ = s + t′′v ∧ εsz < H ∧ εs′′z < H ∧
v′z =

εH − sz

Θ−(s, v)
∧

v′′z =
εH − s′′z

Θ+(s, v) − t′′
∧

v′z 	= v′′z ∧ t′ = t′′
vz − v′′z
v′z − v′′z

⊃ separation?(s, v′) ∧ separation?(s + t′v′, v′′)

Proof. First, we use exploit pred conflict [Lemma 8] to obtain clash?(s, v).

Part 1 [separation?(s, v′)]: First we cross-multiply the premise that defines v′z to get:

Θ−(s, v)v′z = εH − sz (56)

Next we use separation lem [Lemma 1] to translate the starting point to s+Θ−(s, v)v′.
The goal becomes:

separation?(s + Θ−(s, v)v′, v′)

An application of theorem Circle Case Correctness [Theorem 3] at s + v′Θ−(s, v) will
give us the desired result, provided that we can discharge its premises. We do so by
proving that

|sz + Θ−(s, v)v′z | = H, (57)
entry point?(s + Θ−(s, v)v′, v′), (58)

(sz + Θ−(s, v)v′z)v
′
z ≥ 0. (59)

The claim (57) follows immediately from (56).
Next let us prove (58). The lemma entry it is [Lemma 6] is used to show

entry point?(s + Θ−(s, v)v, v). But since entry point? only involves the x and y
components of the vector, and vertical change?(v, v′) holds, we also get (58).

This leaves to prove (59). Substituting (56) simplifies the goal to

εHv′z ≥ 0

From the premise εsz < H, equation (56) and the fact that ε = 1 ∨ ε = −1 we
obtain: εv′z > 0 from which the goal trivially follows.

Part 2 [separation?(s + t′v′, v′′)]: Cross-multiplying the premise that contains the
definition of v′′z yields

(Θ+(s, v) − t′′)v′′z = εH − s′′z . (60)

28

First we note that

s + t′v′ = s′′ − (t′′ − t′)v′′ (61)

This is easily put together from the premise s′′ = s + t′′v, the cross-multiplied
definition of t′, and the fact that the the x and y components of v, v′ and v′′ are the
same. We use (61) to change the goal to

separation?(s′′ − (t′′ − t′)v′′, v′′).

Next we use separation lem [Lemma 1] to translate the starting point to s′′ − (t′′ −
t′)v′′ + (Θ+(s, v) − t′)v′′. Applying the equality

s′′ − (t′′ − t′)v′′ + (Θ+(s, v) − t′)v′′ = s′′ + (Θ+(s, v) − t′′)v′′

this yields

separation?(s′′ + (Θ+(s, v) − t′′)v′′, v′′).

An application of theorem Circle Case Correctness [Theorem 3] at s′′ + (Θ+(s, v) −
t′′)v′′ will give us the desired result, provided that we can discharge all its premises.
We do so by proving that

|s′′z + (Θ+(s, v) − t′′)v′′z | = H, (62)
exit point?(s′′ + (Θ+(s, v) − t′′)v′′, v′′), (63)

(s′′z + (Θ+(s, v) − t′′)v′′z)v′′z ≤ 0. (64)

The claim (62) reduces by (60) to the trivial |εH| = H.
Next let us prove (63). The lemma exit it is [Lemma 7] shows exit point?(s′′ +

(Θ+(s, v) − t′′)v, v). Then we exploit the fact that the x and y components are the
same (because this is a vertical maneuver). This shows (63).

This leaves to show (64). Substituting (60) in (64) yields

εHv′′z ≤ 0 (65)

Multiplication of (60) by ε and rewriting by εε = 1 yields

ε(Θ+(s, v) − t′′)v′′z = H − εs′′z .

By the premise εs′′z < H, this is positive, so εv′′z ≥ 0 and so (65) follows.

5.3 Ground-Speed Cases

The ground-speed cases contain six independent solutions. There are four line and
circle cases: line/line (Figure 4), line/circle (Figure 5), circle/line (Figure 6), and
circle/circle (Figure 8) and two more cases: in-circle (Figure 9) and out-circle (Fig-
ure 10). Each case is proven separately; however, the line and circle cases are

29

so similar that two intermediate lemmas (line correctness and circle correctness) are
proven that greatly aid the proof of the more general theorems. For each case, three
conditions must be proven—the correctness of the escape course, the correctness
of the recovery course, and the timeliness of the complete maneuver. Correctness
refers to the property that the aircraft do not violate vertical and horizontal sepa-
ration criteria and timeliness refers to the property that the aircraft complete the
maneuver at the time of the original operation.

All cases of the RR3D algorithm, we assume that there is a conflict along the orig-
inal course7 and that the relative velocity is defined as the ownship velocity minus the
intruder velocity. These two conditions are captured in the RR3D criteria?(s, v, vo, vi, t

′′)
predicate:

RR3D criteria?(s, v, vo, vi, t
′′) ⇔

¬pred sep?(s, v, t′′) ∧ v = vo − vi. (66)

For the ground-speed only cases, we impose the constraint that only the ground
speed of the ownship changes in each step. Formally, there are factors k, j > 0, such
that

v′ox = kvox, v′oy = kvoy, v′oz = voz, (67)

v′′ox = jvox, v′′oy = jvoy, v′′oz = voz. (68)

By the definition of the relative velocity we define the ground speed only absolute?(v, λ, vo, vi)
predicate as follows

ground speed only absolute?(v, λ, vo, vi) ⇔
λ > 0 ∧ vx = λvox − vix ∧ vy = λvoy − viy ∧ vz = voz − viz (69)

Using this predicate and the definitions in (67) and (68), we can constrain the
relative escape and recovery velocities for the ground-speed only cases by

ground speed only absolute?(v′, k, vo, vi) ∧ ground speed only absolute?(v′′, j, vo, vi)

Occasionally we will use the derived property v′z = vz = v′′z which is proven in the
following lemma:

Lemma 20 (vert speeds equal)

RR3D criteria?(s, v, vo, vi, t
′′)

∧ ground speed only absolute?(v′, k, vo, vi)
∧ ground speed only absolute?(v′′, j, vo, vi)
⊃ vz = v′z ∧ vz = v′′z

Proof. From the ground speed only absolute? premises we derive that v′z and v′′z are
equal to voz − viz. We also know from (66) that the relative velocity v is equal to

7in other words, there is not predicted separation along the original course

30

vo−vi. Breaking this equation into its z coordinates we see that vz = voz−viz.

During the development of correctness and timeliness properties, we will need
some properties common to all ground speed only cases. The time definition? pred-
icate combines the equations (31) and (32). It is defined as

time definition?(v, v′, v′′, t′, t′′) ⇔
t′(v′x − v′′x) = t′′(vx − v′′x) ∧ t′(v′y − v′′y) = t′′(vy − v′′y). (70)

First we observe that k 	= j:

Lemma 21 (constants not equal)

RR3D criteria?(s, v, vo, vi, t
′′)

∧ hor speed gt 0?(vo)
∧ ground speed only absolute?(v′, k, vo, vi)
∧ ground speed only absolute?(v′′, j, vo, vi)
∧ time definition?(v, v′, v′′, t′, t′′)
∧ (separation?(s, v′) ∨ separation?(s + t′′v, v′′))
⊃ k 	= j

Proof. Since the ownship’s ground speed must be different from zero (by the predi-
cate hor speed gt 0?), either vox 	= 0 or voy 	= 0. If vox 	= 0 then we get

t′(k − j) = t′′(1 − j) (71)

from (31). If voy 	= 0 then we get (71) from (32).
We proceed with a proof by contradiction. Assume k = j. Observe that t′′ ≥ 0

follows from (66). If t′′ = 0, then by (66), we must start and end in a conflict.
Therefore neither of the two separation conditions can be true. This is a contradic-
tion.

If t′′ > 0 and k = j, then 0 = 1− j follows from (71). So k = j = 1 which means
that v = v′ = v′′ by (67) and (68). This contradicts the premise ¬pred sep?(s, v, t′′).
Thus we have k 	= j.

If k 	= j then t′ is defined uniquely by (71) which is equivalent to

t′ =
t′′(1 − j)

k − j
. (72)

In PVS, this is established in the following lemma.

31

Lemma 22 (escape time defined)

RR3D criteria?(s, v, vo, vi, t
′′)

∧ hor speed gt 0?(vo)
∧ ground speed only absolute?(v′, k, vo, vi)
∧ ground speed only absolute?(v′′, j, vo, vi)
∧ time definition?(v, v′, v′′, t′, t′′)
∧ k 	= j

⊃ t′ =
t′′(1 − j)

k − j

Proof. Since the ownship’s ground speed must be different from zero (by the pred-
icate hor speed gt 0?), either vox 	= 0 or voy 	= 0. If vox 	= 0 then we get (71)
from (31). If voy 	= 0 then we get (71) from (32). Since k 	= j by assumption, using
algebra we get the claim.

5.3.1 Timeliness

Recall the that timeliness condition states that the maneuver is completed at the
same time as the original course and the resulting position is the same as the original
ending position. The lemma that proves the timeliness condition is presented below.
Since this lemma does not depend on the specific definitions of the k and j constants,
all six of the ground-speed-only cases use the same timeliness lemma.

Lemma 23 (gs timeliness)

ground speed only absolute?(v′, k, vo, vi)
∧ ground speed only absolute?(v′′, j, vo, vi)
∧ v = vo − vi

∧ k 	= j

∧ t′ =
t′′(1 − j)
(k − j)

⊃ s + vt′′ = (s + v′t′) + v′′(t′′ − t′)

Proof. Expand both ground speed only absolute? predicates, then substitute the def-
initions of v′ and v′′ into the implication. Next, substitute the definition of v (pro-
vided in the assumptions) into the implication. Separate the implication into its
x, y, and z coordinates and the result will be these three equations

voxt′′ − vixt′′ = (jvox − vix)t′′ +
t′′ − jt′′

k − j
(kvox − vix) − t′′ − jt′′

k − j
(jvox − vix),

voyt
′′ − viyt

′′ = (jvoy − viy)t′′ +
t′′ − jt′′

k − j
(kvoy − viy) − t′′ − jt′′

k − j
(jvoy − viy),

vozt
′′ − vizt

′′ = (voz − viz)t′′ +
t′′ − jt′′

k − j
(voz − viz) − t′′ − jt′′

k − j
(voz − viz),

32

each of which can be reduced by algebra.

5.3.2 Line and Circle Correctness

There are four line and circle cases line/line (Figure 4), line/circle (Figure 5), cir-
cle/line (Figure 6), and circle/circle (Figure 8). These cases are quite similar to
each other and will be described together. Each of these cases can be viewed as a
combination of an escape line subcase or an in-circle subcase combined with either
a recovery line subcase or a out-circle subcase. If we prove the correctness of each
of these four subcases then the subcases can be suitably assembled into proofs for
each of the four line and circle cases. Recall that correctness means that during
the escape or recovery course, there will be no violations of both horizontal and
vertical separation constraints. The escape and recovery line subcases are proven
with line correctness [Lemma 24]. The in-circle and out-circle subcases are proven
with circle correctness [Lemma 27].

The conditions for both the escape and recovery line subcases can be covered
with a single predicate line case? which is defined as

line case?(s, v) ⇔
hor speed gt 0?(v) ∧ tangent condition?(s, v). (73)

Instantiating this predicate as line case?(s, v′) yields an escape line subcase and
instantiating it as line case?(s + t′′v, v′′) yields a recovery line case. Correctness can
be proven without relying on either of these two instantiations: any parameters may
be used. To prove the correctness of line subcases we use the lemma line correctness.

Lemma 24 (line correctness)

hor speed gt 0?(v)
∧ tangent condition?(s, v)
⊃ separation?(s, v)

Proof. From tau is tangent pt [Lemma 4], we can show tangent point?(s+τ(s, v)v, v)
provided that hor speed gt 0?(v) and tangent condition?(s, v). These two conditions
are met since they are assumptions of line correctness. Then by the line case correctness
theorem [Theorem 2], tangent point?(s+τ(s, v)v, v) implies separation?(s+τ(s, v)v, v).
Finally observe that by separation lem [Lemma 1], separation?(s+τ(s, v)v, v) is equiv-
alent to separation?(s, v).

In the original paper [1] the line subcases are defined by the solutions of the
equation

k2[D2(v2
ox + v2

oy) − (sxvoy − syvox)2]+

2k[−D2(voxvix + voyviy) + (sxvoy − syvox)(sxviy − syvix)]+ (74)

D2(v2
ix + v2

iy) − (sxviy − syvix)2 = 0.

33

In order to use line correctness [Lemma 24] for them, we must show that equa-
tion (74) implies the tangent condition.

Lemma 25 (constant for line)

ground speed only absolute?(v, k, vo, vi)
∧ a = D2(v2

ox + v2
oy) − (sxvoy − syvox)2

∧ b = 2(−D2(voxvix + voyviy) + (sxvoy − syvox)(sxviy − syvix))
∧ c = D2(v2

ix + v2
iy) − (sxviy − syvix)2

∧ 0 = ak2 + bk + c

⊃ tangent condition?(s, v)

Proof. Expanding the definitions of ground speed only absolute? and tangent condition?
followed by extensive algebraic manipulation proves this lemma.

An alternate form of this lemma is useful when one is computing the roots of the
quadratic instead of assuming that the quadratic relationship already holds. This
alternate lemma is used in the proofs of the algorithmic form of the ground-speed
only solutions.

Lemma 26 (constant for line alt)

ground speed only absolute?(v, k, vo, vi)
∧ a = D2(v2

ox + v2
oy) − (sxvoy − syvox)2

∧ b = 2(−D2(voxvix + voyviy) + (sxvoy − syvox)(sxviy − syvix))
∧ c = D2(v2

ix + v2
iy) − (sxviy − syvix)2

∧ (a = 0 ∧ b 	= 0 ∧ k = −c/b ∨
a 	= 0 ∧ b2 − 4ac ≥ 0 ∧ (k = root(−1, a, b, c) ∨ k = root(1, a, b, c)))

⊃ tangent condition?(s, v)

Recall that root(−1, a, b, c) and root(1, a, b, c) denote the two roots of the quadratic
equation with coefficients a, b, and c.
Proof. The proof proceeds as two cases.

Case 1 [a = 0 ∧ b 	= 0 ∧ k = −c/b]. Instantiate constant for line [Lemma 25]
then substitute the definitions a = 0 and k = −c/b into the quadratic equation from
this lemma. Reduce with algebra.

Case 2 [a 	= 0 ∧ b2 − 4ac ≥ 0 ∧ (k = root(−1, a, b, c) ∨ k = root(1, a, b, c))].
Using (24), we get ak2 +bk+c = 0. Then instantiating constant for line [Lemma 25]
discharges this proof.

The correctness of both the in-circle and out-circle subcases are proven in cir-
cle correctness [Lemma 27]. The conditions for an in-circle course are captured in

34

the predicate in circle case? (s, v, v′′, t′′), which is defined as:

in circle case?(s, v, v′′, t′′) ⇔
vz 	= 0 ∧ entry point?((s + t′′v) + (θ+(sz, vz) − t′′)v′′, v′′) (75)

The conditions for a out-circle course are captured in the predicate out circle case?(s, v′),
which is defined as:

out circle case?(s, v′) ⇔
v′z 	= 0 ∧ exit point?(s + θ−(sz, v

′
z)v

′, v′) (76)

Observing the similarities between the two circle subcases allows the definition and
proof of a single lemma, circle correctness, that will help in each subcase. This lemma
should be instantiated at the point s along the v′ vector for an escape course (the
out circle case? case) and at the point s + t′′v along the v′′ vector for a recovery
course (the in circle case? case).

Lemma 27 (circle correctness)

vz 	= 0
∧ (exit point?(s + θ−(sz, vz)v, v) ∨ entry point?(s + θ+(sz, vz)v, v))
⊃ separation?(s, v)

Proof. The proof proceeds as one of two cases: either the point is an entry point
or an exit point. For each case, the vz 	= 0 condition is required to ensure that the
θ±(sz, vz) expression is defined.

Case 1 [exit point?(s + θ−(sz, vz)v, v)]. Instantiating the circle case correctness
theorem [Theorem 3] at the point s+θ−(sz, vz)v along the vector v implies separation?(s+
θ−(sz, vz)v, v), provided that we can discharge its premises. We do so by proving
that

|sz + θ−(sz, vz)vz| ≥ H, (77)
exit point?(s + θ−(sz, vz)v, v), (78)

(sz + θ−(sz, vz)vz)vz ≤ 0. (79)

Condition (77) is met by applying reaching H theta [Lemma 10]. The lemma
states that |sz + θ−(sz, vz)vz| = H, and we have H ≥ H. Condition (78) is
met trivially by the exit point? assumption. Lemma vertical entry exit condition
[Lemma 11] discharges (79). Since these three conditions have been met, the cir-
cle case correctness theorem yields separation?(s + θ−(sz, vz)v, v). Applying separa-
tion lem [Lemma 1], separation?(s + θ−(sz, vz)v, v) is equivalent to separation?(s, v).

Case 2 [entry point?(s+θ+(sz, vz)v, v)]. Like Case 1, but with θ+ and entry point?
instead of θ− and exit point?, respectively.

35

Circle subcases are defined in the original paper [1] by certain defining equations.
Therefore, we must show that those equations imply an escape course or a recovery
course. First we will show that the quadratic presented in the paper

λ2t2(v2
ox + v2

oy)+

2λt(sxvox − tvixvox + syvoy − tviyvoy)+ (80)

(sx − tvix)2 + (sy − tviy)2 − D2 = 0.

for both subcases implies that s+tv is at the cylinder lateral surface. For convenience
we introduce a predicate on cyl? for this purpose, defined by

on cyl?(s) ⇔ s2
x + s2

y = D2. (81)

The value t is instantiated by θ−(sz, vz) for an escape course and by θ+(sz, vz)−t′′

for a recovery course. The value λ can be the constant k for an escape course or the
constant j for a recovery course.

Lemma 28 (constant for circle)

ground speed only absolute?(v, λ, vo, vi)
∧ a = t2(v2

ox + v2
oy)

∧ b = 2t(sxvox − tvixvox + syvoy − tviyvoy)
∧ c = (sx − tvix)2 + (sy − tviy)2 − D2

∧ 0 = aλ2 + bλ + c

⊃ on cyl?(s + tv)

Proof. Expanding the definitions of ground speed only absolute?, and on cyl? fol-
lowed by extensive algebraic manipulation proves this lemma.

In a similar way to how both lemmas constant for line [Lemma 25] and con-
stant for line alt [Lemma 26] are developed to define the constants of a line case, an
alternate form of constant for circle [Lemma 28] is useful when one is computing the
roots of the quadratic instead of assuming that the quadratic relationship already
holds. This alternate lemma is used in the proofs of the algorithmic form of the
ground-speed only solutions.

36

Lemma 29 (constant for circle alt)

ground speed only absolute?(v, λ, vo, vi)
∧ a = t2(v2

ox + v2
oy)

∧ b = 2t(sxvox − tvixvox + syvoy − tviyvoy)
∧ c = (sx − tvix)2 + (sy − tviy)2 − D2

∧ (a = 0 ∧ b 	= 0 ∧ λ = −c/b ∨
a 	= 0 ∧ b2 − 4ac ≥ 0 ∧ (λ = root(−1, a, b, c) ∨ λ = root(1, a, b, c)))

⊃ on cyl?(s + tv)

Proof. The proof proceeds as two cases.
Case 1 [a = 0 ∧ b 	= 0 ∧ λ = −c/b]. Instantiate constant for circle [Lemma 28]

then substitute the definitions a = 0 and λ = −c/b into the quadratic equation from
this lemma. Reduce with algebra.

Case 2 [a 	= 0 ∧ b2 − 4ac ≥ 0 ∧ (λ = root(−1, a, b, c) ∨ λ = root(1, a, b, c))].
Using (24) we get aλ2+bλ+c = 0. Then instantiating constant for circle [Lemma 28]
discharges this proof.

From the original paper [1], the equations used to define a circle subcase for an
escape course include equation (80) and require the translated location multiplied
by the escape velocity must be greater than or equal to zero, that is,

(sx + t(λvox − vix))(λvox − vix) + (sy + t(λvoy − viy))(λvoy − viy) ≥ 0. (82)

In this paper, we say that an out-circle subcase (76) must be an exit point. Since we
have already shown that (80) implies on cyl?, we now need to show that the on cyl?
predicate and (82) imply an exit point.

Lemma 30 (constant for circle exit)

ground speed only absolute?(v, λ, vo, vi)
∧ on cyl?(s + tv)
∧ (sx + t(λvox − vix))(λvox − vix) + (sy + t(λvoy − viy))(λvoy − viy) ≥ 0
⊃ exit point?(s + tv, v)

Proof. Expansion of exit point? and on cyl? solves the goal.

From the original paper [1], the equations used to define a circle subcase for an
recovery course include equation (80) and require

(sx + t(λvox − vix))(λvox − vix) + (sy + t(λvoy − viy))(λvoy − viy) ≤ 0. (83)

37

In this paper we say that an in-circle subcase (75) must be an entry point. Since we
have already shown that (80) implies on cyl?, we now need to show that the on cyl?
predicate and (83) imply an entry point.

Lemma 31 (constant for circle entry)

ground speed only absolute?(v, λ, vo, vi)
∧ on cyl?(s + tv)
∧ (sx + t(λvox − vix))(λvox − vix) + (sy + t(λvoy − viy))(λvoy − viy) ≤ 0
⊃ entry point?(s + tv, v)

Proof. Expansion of entry point? and on cyl? solves the goal.

5.3.3 Line and Circle Cases

We next present the proofs of the four line and circle cases line line [Theorem 32],
circle line [Theorem 33], and line circle [Theorem 34], circle circle [Theorem 35]. For
each case three conditions must be proven: the correctness of escape course, the
correctness of the recovery course, and the timeliness of the maneuver. Recall that
correctness refers to the property that the aircraft do not violate vertical and hor-
izontal separation criteria and timeliness refers to the aircraft completing the ma-
neuver at the time of the original operation. To prove correctness for a line course
(either escape or recovery) we use line correctness [Lemma 24]. To prove correctness
for a circle course (either escape or recovery) we use circle correctness [Lemma 27].
Finally, to prove timeliness we use gs timeliness [Lemma 23]. Three predicates are
used to define the type of escape and recovery course: line case? predicate (73)
in circle case? predicate (75) out circle case? predicate (76)

For the cases involving an escape line course, we check for sanity that 0 <
τ(s, v′) < t′. For the cases involving a recovery line course, we check for sanity that
t′ < τ(s′′, v′′) + t′′ < t′′. Furthermore, for the cases involving a circle course, we
assume that relative vertical speed is not zero, i.e., vz 	= 0; otherwise, there is no
solution. In all the cases, we check for sanity that k, j > 0.

The first case we will consider is the case with a line escape course and a line
recovery course.

38

Theorem 32 (line line)

RR3D criteria?(s, v, vo, vi, t
′′)

∧ hor speed gt 0?(vo)
∧ ground speed only absolute?(v′, k, vo, vi)
∧ ground speed only absolute?(v′′, j, vo, vi)
∧ line case?(s, v′)
∧ line case?(s + t′′v, v′′)
∧ time definition?(v, v′, v′′, t′, t′′)

⊃
separation?(s, v′)

∧ separation?(s + t′′v, v′′)
∧ s + t′′v = (s + t′v′) + (t′′ − t′)v′′

Proof. Step 1 [Escape Correctness]. First instantiate line correctness? [Lemma 24]
for the escape course. This discharges the claim separation?(s, v′).

Step 2 [Recovery Correctness]. Next use [Lemma 24] again for the recovery
course. That is, instantiate the starting point is set to s + t′′v, and the velocity to
v′′. This discharges the claim separation?(s + t′′v, v′′).

Step 3 [Timeliness]. Lemma constants not equal [Lemma 21] supplies k 	= j.
With it, escape time defined [Lemma 22] yields a formula for t′. Both formulas are
in turn used by gs timeliness [Lemma 23] to yield the claim s + t′′v = (s + t′v′) +
(t′′− t′)v′′. The condition v = vo − vi is discharged by expanding the RR3D criteria?
premise (66).

Next we will consider the case with a circle escape course and a line recovery
course.

Theorem 33 (circle line)

RR3D criteria?(s, v, vo, vi, t
′′)

∧ hor speed gt 0?(vo)
∧ ground speed only absolute?(v′, k, vo, vi)
∧ ground speed only absolute?(v′′, j, vo, vi)
∧ out circle case?(s, v′)
∧ line case?(s + t′′v, v′′)
∧ time definition?(v, v′, v′′, t′, t′′)

⊃
separation?(s, v′)

∧ separation?(s + t′′v, v′′)
∧ s + t′′v = (s + t′v′) + (t′′ − t′)v′′

39

Proof. Step 1 [Escape Correctness]. First instantiate circle correctness [Lemma 27]
at the starting point s along the velocity vector v′. This lemma discharges the
separation?(s, v′) predicate provided that we can discharge its premises. We do so
by proving that

v′z 	= 0,
exit point?(s + θ−(sz, v

′
z)v

′, v′).

Both conditions are given by the out circle case? premise (76).
Step 2 [Recovery Correctness]. Next line correctness [Lemma 24] is used for the

recovery course. That is, instantiate the starting point is set to s + t′′v, and the
velocity with v′′. This discharges the claim separation?(s + t′′v, v′′).

Step 3 [Timeliness]. Exactly as in [Theorem 32].

Next we will consider the case with a line escape course and a circle recovery
course.

Theorem 34 (line circle)

RR3D criteria?(s, v, vo, vi, t
′′)

∧ hor speed gt 0?(vo)
∧ ground speed only absolute?(v′, k, vo, vi)
∧ ground speed only absolute?(v′′, j, vo, vi)
∧ line case?(s, v′)
∧ in circle case?(s, v, v′′, t′′)
∧ time definition?(v, v′, v′′, t′, t′′)

⊃
separation?(s, v′)

∧ separation?(s + t′′v, v′′)
∧ s + t′′v = (s + t′v′) + (t′′ − t′)v′′

Proof. Step 1 [Escape Correctness]. First instantiate line correctness [Lemma 24] for
the escape course. This discharges the separation?(s, v′) predicate.

Step 2 [Recovery Correctness]. Lemma circle correctness [Lemma 27] is used for
the recovery course. This lemma is instantiated with a starting point of s + t′′v
along the v′′ velocity vector. This lemma discharges the separation?(s + t′′v, v′′)
claim provided that we can discharge its premises. We do so by proving

v′′z 	= 0, (84)
entry point?((s + t′′v) + θ+(sz + t′′vz, v

′′
z)v′′, v′′). (85)

From the first part of the in circle case? predicate (75), we see vz 	= 0. Using
vert speeds equal [Lemma 20] we see that vz = v′′z . Since vz 	= 0 and vz = v′′z ,
condition (84) is satisfied.

40

In order to prove (85), we expand the in circle case? premise, and show that

(s + t′′v) + θ+(sz + t′′vz, v
′′
z)v′′ = (s + t′′v) + (θ+(sz, vz) − t′′)v′′. (86)

For, if (86) is true then the two entry point? statements coincide. Lemma theta translation
[Lemma 12] turns (86) into

(s + t′′v) + (θ+(sz, v
′′
z) − t′′)v′′ = (s + t′′v) + (θ+(sz, vz) − t′′)v′′

Since v′′z = vz by [Lemma 20], the two sides of the equation are equal; so condi-
tion (85) holds. This implies separation?(s + t′′v, v′′).

Step 3 [Timeliness]. Exactly as in [Theorem 32].

Finally we prove correctness in the case of a circle escape course and a circle
recovery course.

Theorem 35 (circle circle)

RR3D criteria?(s, v, vo, vi, t
′′)

∧ hor speed gt 0?(vo)
∧ ground speed only absolute?(v′, k, vo, vi)
∧ ground speed only absolute?(v′′, j, vo, vi)
∧ out circle case?(s, v′)
∧ in circle case?(s, v, v′′, t′′)
∧ time definition?(v, v′, v′′, t′, t′′)

⊃
separation?(s, v′)

∧ separation?(s + t′′v, v′′)
∧ s + t′′v = (s + t′v′) + (t′′ − t′)v′′

Proof. Step 1 [Escape Correctness]. First instantiate circle correctness [Lemma 27]
at the starting point s along the velocity vector v′. This lemma discharges the
separation?(s, v′) predicate provided that (A) v′z 	= 0 and that (B) the point s +
θ−(sz, v

′
z)v′ along the v′ velocity vector is an exit point?. Both of these conditions

are given in the out circle case? predicate (76).
Step 2 [Recovery Correctness]. Lemma circle correctness [Lemma 27] is instanti-

ated with a starting point of s + t′′v along the v′′ velocity vector. This lemma dis-
charges the separation?(s+t′′v, v′′) claim provided that we can discharge its premises.
We do so by proving

v′′z 	= 0, (87)
entry point?((s + vt′′) + θ+(sz + t′′vz, v

′′
z)v′′, v′′). (88)

From the first part of the in circle case? predicate (75), we get vz 	= 0. Using

41

vert speeds equal [Lemma 20] we see that vz = v′′z . Since vz 	= 0 and vz = v′′z , the
condition (87) is satisfied.

In order to prove (88), we expand the in circle case? premise, and show that

(s + vt′′) + θ+(z(s + t′′v), v′′z)v′′ = (s + vt′′) + (θ+(sz, vz) − t′′)v′′. (89)

For, if (89) is true, then the two entry point? statements coincide. Lemma theta translation
[Lemma 12] turns (89) into

(s + vt′′) + (θ+(sz, v
′′
z) − t′′)v′′ = (s + vt′′) + (θ+(sz, vz) − t′′)v′′

Since v′′z = vz by [Lemma 20], the two sides of the equation are equal; hence condi-
tion (88) holds. This proves separation?(s + t′′v, v′′).

5.3.4 In-Circle Case

This section contains the proof of the in-circle case (Figure 9). Like the proofs of
the line and circle cases, three conditions must be proven: the correctness of escape
course, the correctness of the recovery course, and the timeliness of the maneu-
ver. Recall that correctness refers to the property that the aircraft do not violate
vertical and horizontal separation criteria and timeliness refers to the completing
the maneuver at the time of the original operation. To prove correctness of the
escape course we use circle correctness [Lemma 27]. and to prove timeliness we use
gs timeliness [Lemma 23]. To prove the correctness of the recovery course, neither
of the correctness lemmas can help, so the proofs are developed from lower level
lemmas. These lemmas are presented here.

Lemma 36 (vertical criterion sz vz ge 0)

|sz| = H ∧ szvz ≥ 0
⊃ ∀T : T ≥ 0 ⊃ |sz + Tvz| ≥ H

Proof. Consider four cases:
Case 1 [vz ≤ 0 ∧ sz + Tvz < 0]: Then sz ≤ 0 by szvz ≥ 0, so sz = −H. The goal
−(sz + Tvz) ≥ H follows from T ≥ 0 and vz ≤ 0.
Case 2 [vz ≤ 0 ∧ sz +Tvz > 0]: From T ≥ 0 we get Tvz ≤ 0. Adding this to sz ≤ 0,
it yields sz + Tvz ≤ 0 which contradicts the assumption. So this case is impossible.
Case 3 [vz ≥ 0 ∧ sz + Tvz < 0]: Then sz ≥ 0 by szvz ≥ 0. From T ≥ 0 we
get Tvz ≥ 0. Adding this to sz ≥ 0, it yields sz + Tvz ≥ 0 which contradicts the
assumption sz + Tvz < 0. So this case is impossible.
Case 4 [vz ≥ 0 ∧ sz + Tvz > 0]: Then sz ≥ 0 by szvz ≥ 0, so sz = H. The goal
sz + Tvz ≥ H follows from T ≥ 0 and vz ≥ 0.

Lemma 37 (vertical criterion sz vz le 0)

|sz| = H ∧ szvz ≤ 0
⊃ ∀T : T ≤ 0 ⊃ |sz + Tvz| ≥ H

42

Proof. The proof is similar to vertical criterion sz vz ge 0.

Theorem 38 (in circle)

RR3D criteria?(s, v, vo, vi, t
′′)

∧ hor speed gt 0?(vo)
∧ ground speed only absolute?(v′, k, vo, vi)
∧ ground speed only absolute?(v′′, j, vo, vi)
∧ vz 	= 0
∧ 0 < θ+(sz, vz)
∧ θ+(sz, vz) < t′′

∧ entry point?(s + θ+(sz, vz)v′, v′)
∧ time definition?(v, v′, v′′, t′, t′′)
∧ t′ = θ+(sz, vz)

⊃
separation?(s, v′)

∧ pred sep?(s + t′v′, v′′, t′′ − t′)
∧ s + t′′v = (s + t′v′) + (t′′ − t′)v′′

Observe, that the pred sep? condition is used here instead of the separation? condi-
tion. separation? says that the if the aircraft continue to fly with the same relative
velocity, then the two aircraft will be separated for all time. This is a much stronger
condition than is required. The pred sep? condition says that the aircraft will be
separated for (at least) the given amount of time.
Proof. Step 1 [Escape Correctness]. First instantiate circle correctness [Lemma 27]
at the starting point s along the velocity vector v′. This lemma discharges the
separation?(s, v′) predicate provided that v′z 	= 0. This can be verified since one
assumption is vz 	= 0 and since vz = v′z from [Lemma 20].

Step 2 [Recovery Correctness]. Expanding pred sep? leaves us with

hor sep?((sz + t′v′z) + tv′′z),
vert sep?((sz + t′v′z) + tv′′z). (90)

We only need to prove one of these conditions and we choose to prove (90). Ex-
pansion of vert sep? and usage of the definition of t′ leaves to prove that for all
0 < t < t′′ − t′,

|(sz + θ+(sz, vz)v′z) + tv′′z | ≥ H. (91)

Let us instantiate vertical criterion sz vz ge 0 [Lemma 36] at the point s+θ+(sz, v
′′
z)v′′

along the velocity vector v′′. Then (91) will be satisfied by vertical criterion sz vz ge 0
provided that (A) |(sz+θ+(sz, vz)v′z)+tv′′z | = H and that (B) (sz+θ+(sz, v

′′
z)v′′z)v′′z ≥

0. Condition (A) is met by applying reaching H theta [Lemma 10]. Condition (B)
is met by applying vertical entry exit condition [Lemma 11].

Step 3 [Timeliness]. Exactly as in [Theorem 32].

43

5.3.5 Out-Circle Case

This section contains the proof of the out-circle case (Figure 10). Like the proofs of
the line and circle cases, three conditions must be proven: the correctness of escape
course, the correctness of the recovery course, and the timeliness of the maneuver.
Recall that correctness refers to the property that the aircraft do not violate vertical
and horizontal separation criteria and timeliness refers to the completing the maneu-
ver at the time of the original operation. To prove correctness of the recovery course
we use circle correctness [Lemma 27]. and to prove timeliness we use gs timeliness
[Lemma 23]. To prove the correctness of the escape course, neither of the correctness
lemmas can help, so the proofs are developed from lower level lemmas. Unlike all
the other ground-speed only cases, this case must explicitly state the premise that
k 	= j.

Theorem 39 (out circle)

RR3D criteria?(s, v, vo, vi, t
′′)

∧ hor speed gt 0?(vo)
∧ ground speed only absolute?(v′, k, vo, vi)
∧ ground speed only absolute?(v′′, j, vo, vi)
∧ vz 	= 0
∧ 0 < θ−(sz, vz)
∧ θ−(sz, vz) < t′′

∧ exit point?(s + θ−(sz, vz)v′, v′′)
∧ time definition?(v, v′, v′′, t′, t′′)
∧ t′ = θ−(sz, vz)
∧ k 	= j

⊃
pred sep?(s, v′, t′)

∧ separation?(s + t′′v, v′′)
∧ s + t′′v = (s + t′v′) + (t′′ − t′)v′′

Observe, that the pred sep? condition is used here instead of the separation? condi-
tion. separation? says that the if the aircraft continue to fly with the same relative
velocity, then the two aircraft will be separated for all time. This is a much stronger
condition than is required. The pred sep? condition says that the aircraft will be
separated for (at least) the given amount of time.
Proof. Step 1 [Escape Correctness]. Let us prove pred sep?(s, v′, t′). Expanding
the pred sep? leaves to prove one of

hor sep?(sz + tv′z),
vert sep?(sz + tv′z). (92)

44

We choose to prove (92). Expansion of vert sep? leaves to prove

|sz + tv′z| ≥ H (93)

for all t such that 0 ≤ t ≤ t′. If we instantiate vertical criterion sz vz le 0 [Lemma 37]
at the point s+ θ−(sz, vz)v′ along the velocity vector v′, then it will yield the result

|sz + t̂v′′z + θ−(sz, v
′′
z)v′′z | ≥ H (94)

for all t̂ ≤ 0, provided that (A) |sz+θ−(sz, vz)v′z| = H and (B) (sz+θ−(sz, vz)v′z)v′z ≤
0. Condition (A) is met by vz = v′z from [Lemma 20] and by reaching H theta
[Lemma 10]. Condition (B) is met by vertical entry exit condition [Lemma 11].

To finish the proof of pred sep?(s, v′, t′) we choose t̂ = t − θ−(sz, v
′′
z). Then

from (93) and since v′z = v′′z

sz + tv′z = sz + t̂v′z + θ−(sz, v
′′
z)v′z = sz + t̂v′′z + θ−(sz, v

′′
z)v′′z (95)

From this result the inequalities (94) and (93) coincide. We moreover have t̂ ≤ 0
since t ≤ t′ and t′ = θ−(sz, v

′′
z).

Step 2 [Recovery Correctness]. Lemma circle correctness [Lemma 27] is instanti-
ated with a starting point of s + t′′v along the v′′ velocity vector. This lemma dis-
charges the separation?(s+t′′v, v′′) claim provided that we can discharge its premises.
We do so by proving

v′′z 	= 0, (96)
exit point?((s + t′′v) + θ−(sz + t′′vz, v

′′
z)v′′, v′′). (97)

Lemma vert speeds equal [Lemma 20] yields vz = v′′z . Since vz 	= 0 by premise, the
condition (96) holds. In order to prove (97), we show

(s + t′′v) + θ−(sz + t′′vz, v
′′
z)v′′ = s + θ−(sz, vz)v′, (98)

which entails the exit point? premise and claim (97) coincide. Lemma theta translation
[Lemma 12] yields θ−(sz + t′′vz, v

′′
z) = θ−(sz, v

′′
z)− t′′. Since v′′z = vz by [Lemma 20],

the latter is equal to θ−(sz, vz) − t′′. This turns (98) into

(s + t′′v) + (θ−(sz, vz) − t′′)v′′ = s + θ−(sz, vz)v′

which is a restatement of the timeliness condition and can be proven with gs timeliness
[Lemma 23] as in Step 3 below. Hence condition (97) holds. This finishes the proof
of separation?(s + t′′v, v′′).

Step 3 [Timeliness]. Exactly as in [Theorem 32].

5.4 Correctness of Heading Case

In this section we prove correctness of escape courses that only change the heading,
and recovery courses that only change the heading and the ground speed, of the
ownship’s velocity vector. This is expressed formally as

v′2ox + v′2oy = v2
ox + v2

oy and v′oz = voz = v′′oz.

45

For the various solutions, satisfaction of this property is not obvious; it has to be
explicitly verified.

We have 6 independent solution categories: line/line (ll), line/circle (lc), cir-
cle/line (cl), circle/circle (cc), in-circle (ic), and out-circle (oc).

5.4.1 Important Lemmas

The proofs of the main theorems for these categories are facilitated by correctness
and heading only lemmas for each of the following cases: line escape, line recovery,
circle escape, circle recovery, and in circle recovery, which are reused several times
to establish the main results. Several timeliness lemmas (timeliness, alpha timeliness,
vor timeliness) establish that the evasive maneuver reaches the final destination at
the same time as the original trajectory.

5.4.2 The alpha calc Function

The following function is used throughout this section. This function is used in the
computation of the heading change.

alpha calc(ε, s) ≡ IF D2 = sx
2 THEN

sy
2 − D2

2sxsy

ELSE
−sxsy + εD

√
sx

2 + sy
2 − D2

D2 − sx
2

ENDIF

5.4.3 Frequently Appearing Premises

For the cases involving an escape line course, s must not be at the boundary of the
infinite cylinder, i.e., s2

x + s2
y > D2. The calculated time of closest approach τ(s, v′)

must satisfy 0 < τ(s, v′) < t′. Symmetrically, for the cases involving a recovery line
course, s′′ must not be at the boundary of the infinite cylinder, i.e., s′′x

2 + s′′y
2 > D2,

and the time of closest approach τ(s′′, v′′) + t′′ must satisfy t′ < τ(s′′, v′′) + t′′ < t′′.
For the cases involving a circle course, the initial relative vertical speed must not
equal zero, i.e., vz 	= 0; otherwise, there is no solution. In other cases horizontal
speeds must not equal not zero. (e.g. hor speed gt 0?(v′)). Finally, it is necessary
to relate certain variables explicitly: v′ = voe − vi, v = vo − vi, and s′′ = s + t′′v.

5.4.4 The Line Escape Theorem

Theorem 40 (line escape) If α′ = alpha calc(−1, s) or α′ = alpha calc(1, s) holds,
and the quadratic equation

v′2x (1 + α′2) + 2v′x(vix + α′viy) + v2
ix + v2

iy − v2
ox − v2

oy = 0. (99)

has solutions x1 and x2, i.e., the discriminant is non-negative:

discr(1 + α′2, 2vix + α′viy, vix
2 + viy

2 − vox
2 − voy

2) ≥ 0

46

then

sx
2 + sy

2 > D2

∧ vox
2 + voy

2 	= vix
2 + viy

2

∧ hor speed gt 0?(v′)
∧ (v′x = x1 ∨ v′x = x2)
∧ v′y = α′v′x

⊃ separation?(s, v′)

Proof. First we establish that v′x 	= 0: If v′x = 0 then (99) simplifies to vix
2 +

viy
2 = vox

2 + voy
2 which contradicts the second premise. Next using separation lem

[Lemma 1] we change the goal to separation?(s + τ(s, v′)v′, v′). The goal is further
reduced by line case correctness [Theorem 2] to tangent point?(s+τ(s, v′)v′, v′). Next
using tau is tangent pt [Lemma 4] the goal is simplified to tangent condition?(s, v′)
which expands to

D2(v′x
2 + v′y

2) = (sxv′y − syv
′
x)2

Rewriting the goal with the last premise we get D2(v′x
2+(α′v′x)2) = (sxα′v′x − syv

′
x)2.

Dividing both sides by v′2x yields:

D2(1 + α′2) = (sxα′ − sy)
2

which can be rearranged into a quadratic equation in α′:

α′2(D2 − s2
x) + 2α′sxsy + D2 − s2

y = 0. (100)

If D2 = s2
x, the goal simplifies to

2α′sxsy + D2 − s2
y = 0. (101)

which follows trivially from the definition of α′ given by alpha calc. Otherwise,
Equation (100) has solutions

α′ =
−sxsy + ε′D

√
s2
x + s2

y − D2

D2 − s2
x

where ε′ ∈ {−1, 1}. This also matches the definition of α′ given by alpha calc.

Theorem 41 (line esc hd only) If the quadratic equation (99) has solutions x1 and
x2, then

sx
2 + sy

2 > D2 ∧ vox
2 + voy

2 	= vix
2 + viy

2

∧ v′ = v′o − vi ∧ (v′x = x1 ∨ v′x = x2)
∧ v′y = α′v′x ∧ v′oz = voz

⊃ heading only?(vo, v
′
o)

47

Proof. Equation (99) can be re-arranged to

v′x
2 + vix

2 + viy
2 + v′x

2
α′2 + 2v′xvix − vox

2 − voy
2 + 2v′xviyα

′ = 0,

and then to
(v′x + vix)2 + (α′v′x + viy)

2 = vox
2 + voy

2.

Replacing with the premises α′v′x = v′y and v′ = v′o − vi turns this into

(v′ox − vix + vix)2 + (v′oy − viy + viy)
2 = vox

2 + voy
2,

which simplifies to v′ox
2+v′oy

2 = vox
2+voy

2 which is the expanded heading only?(vo, v
′
o).

5.4.5 The Line Recovery Theorem

Theorem 42 (line recovery)

α′′ = alpha calc(ε, s′′)
∧ s′′ = s + t′′v ∧ hor speed gt 0?(v′′)

∧ t′′ 	= t′ ∧ s′′x
2 + s′′y

2 − D2 ≥ 0 ∧ s′′y 	= 0
∧ v′y − α′′v′x 	= 0

∧ t′ = t′′
vy − α′′vx

v′y − α′′v′x

∧ v′′x =
t′′vx − t′v′x

t′′ − t′
∧ v′′y = α′′v′′x ∧ v′z = vz ∧ v′′z = vz

⊃ separation?(s + t′v′, v′′)

Proof. First we show that

s + t′v′ = s′′ − (t′′ − t′)v′′.. (102)

Since s′′ = s + t′′v we need only show that

(t′′ − t′)v′′ = t′′v − t′v′.

To prove this we show (31), (32), and (33). From the premise defining v′′x, we get

v′′x(t′′ − t′) = t′′vx − t′v′x (103)

by cross-multiplying, which establishes (31). From the premise defining t′′, we get

v′yt
′ − v′xα′′t′ = vyt

′′ − vxα′′t′′

by cross-multiplication. Rearrangement yields

v′yt
′ + α′′(vxt′′ − v′xt′) = vyt

′′,

48

which can be rewritten using the premise defining v′′x as:

v′yt
′ + α′′v′′x(t′′ − t′) = vyt

′′.

By v′′y = α′′v′′x, this turns into

v′′y (t′′ − t′) = t′′vy − t′v′y

which establishes (32). Since v′z = vz and v′′z = vz we also have (33).
Now that we have proven (102), we may rewrite the goal of the theorem to

separation?(s′′ − (t′′ − t′)v′′, v′′)

Using separation lem [Lemma 1] we change the starting point for the goal:

separation?(s′′ − (t′′ − t′)v′′ + (τ(s′′, v′′) − t′ + t′′)v′′, v′′)

which can be simplified to

separation?(s′′ + τ(s′′, v′′)v′′, v′′)

Using line case correctness [Theorem 2] this goal can be reduced to tangent point?(s′′+
τ(s′′, v′′)v′′, v′′). Next using tau is tangent pt [Lemma 4] the goal is simplified to
proving tangent condition?(s′′, v′′) which expands to

D2(v′′x
2 + v′′y

2) = (s′′xv′′y − s′′yv
′′
x)2 (104)

We consider two cases:
Case 1 [D2 = s′′2x]: In this case (104) reduces to

D2v′′x
2 = −2s′′xv′′ys′′yv

′′
x + s′′2y v′′2x . (105)

Expansion of alpha calc yields

α′′ =
s′′2y − D2

2s′′xs′′y

This and the premise v′′y = α′′ solve (105).
Case 2 [D2 	= s′′2x]: In this case expansion of alpha calc yields

α′′ =
−s′′xs′′y + εD

√
s′′x

2 + s′′y
2 − D2

D2 − s′′x
2

which solves the quadratic equation

D2(1 + α′′2) = (s′′xα
′′ − s′′y)

2
.

Multiplying both sides by v′′x
2 yields

(1 + α′′2)D2v′′x
2 = (s′′xα

′′ − s′′y)
2
v′′x

2
.

from which (104) follows by the premise v′′y = α′′.

49

5.4.6 The Circle Escape Theorem

First we show that the constructed solution is at the cylinder boundary.

Lemma 43 (cir esc cyl) If the quadratic equation

v2A + vB + C = 0, (106)

defined by

A = 4θ2((sx − θvix)2 + (sy − θviy)2),
B = 4(sx − θvix)θE,

C = E2 − 4(sy − θviy)2θ2(v2
ox + v2

oy),

E = (sx − θvix)2 + (sy − θviy)2 + θ2v2
ox + θ2v2

oy − D2

is a proper quadratic equation, i.e., A 	= 0, and has solutions v1 and v2, i.e.
discr(A,B,C) ≥ 0, then

vz 	= 0
∧ sign(−2(sy − θviy)θv′oy) = sign(E + 2(sx − θvix)θv′ox)

∧ vox
2 + voy

2 ≥ v′ox
2

∧ (v′ox = v1 ∨ v′ox = v2)

∧ v′oy =
√

vox
2 + voy

2 − v′ox
2

⊃ on cyl?(s + θv′)

Proof. Since v′ox is a solution of the quadratic equation (106), we have:

Av′ox
2 + Bv′ox + C = 0

Substituting A, B, C; using the squared premise that defines v′oy:

v′2oy = v2
ox + v2

oy − v′2ox;

and simplifying turns this into

[−2(sy − θviy)θv′oy]
2 =

[(sx − θvix)2 + (sy − θviy)2 + 2(sx − θvix)θv′ox + θ′2v′2ox + θ′2v′2oy − D2]2.

By premise,

sign(−2(sy − θviy)θv′oy) = sign(E + 2(sx − θvix)θv′ox),

so we can take the square-root of both sides and further simplify to obtain:

(sx + θ(v′ox − vix))2 + (sy + θ(v′oy − viy))2 = D2,

which is the expansion of on cyl?(s + θv′).

50

Theorem 44 (circle escape) If the quadratic equation

v2A + vB + C = 0,

defined by

A = 4θ2((sx − θvix)2 + (sy − θviy)2),
B = 4(sx − θvix)θE,

C = E2 − 4(sy − θviy)2θ2(v2
ox + v2

oy),

E = (sx − θvix)2 + (sy − θviy)2 + θ2v2
ox + θ2v2

oy − D2

is a proper quadratic equation, i.e., A 	= 0, and has solutions v1 and v2, i.e.
discr(A,B,C) ≥ 0, and

vz 	= 0 ∧ θ = θε(sz, vz)
∧ ((exit?(s + θv′, v′) ∧ ε = −1) ∨

(entry?(s + θv′, v′) ∧ ε = 1))

∧ vox
2 + voy

2 ≥ v′ox
2

∧ (v′ox = v1 ∨ v′ox = v2)

∧ v′oy =
√

vox
2 + voy

2 − v′ox
2

∧ v = vo − vi ∧ v′ = v′o − vi ∧ v′z = vz

∧ sign(−2(sy − θviy)θv′oy) = sign(E + 2(sx − θvix)θv′ox)

then we have
separation?(s + θv′, v′′)

Proof. Using circle correctness [Lemma 27] the goal can be reduced to:

exit point?(s + θ−(sz, v
′
z)v

′, v′) ∨ entry point?(s + θ+(sz, v
′
z)v

′, v′)

By expanding the definitions of entry point? and exit point? and by simplifying, the
goal becomes:

(on cyl?(s + θε(sz, v
′
z)v

′) ∧
((exit?(s + θε(sz, v

′
z)v

′, v′) ∧ ε = −1) ∨
(entry?(s + θε(sz, v

′
z)v

′, v′) ∧ ε = 1))

Using the entry? and exit? premises we end up with the following subgoal:

on cyl?(s + θε(sz, v
′
z)v

′)

This is discharged with cir esc cyl [Lemma 43] and by the premise v′z = vz.

51

Theorem 45 (circle hd only)

vox
2 + voy

2 ≥ v′ox
2

∧ v′oy =
√

vox
2 + voy

2 − v′ox
2 ∧ v′oz = voz

∧ v = vo − vi ∧ v′ = v′o − vi ∧ v′z = vz

⊃ heading only?(vo, v
′
o)

Proof. The result follows trivially by squaring both sides of the second premise and
expanding the definition of heading only?.

5.4.7 The Circle Recovery Theorem

First we prove that the constructed solution is on the boundary of the infinite
cylinder.

Lemma 46 (cir rec lem) If the quadratic equation at2 + bt + c = 0, defined by

Ax = s′′x + (θ′′ − t′′)v′x, Ay = s′′y + (θ′′ − t′′)v′y,

Bx = sx + θ′′vx, By = sy + θ′′vy,

a = Ax
2 + Ay

2 − D2,

b = 2t′′(D2 − AxBx − AyBy),

c = t′′2(Bx
2 + By

2 − D2),

is a proper quadratic equation, i.e., a 	= 0, and has solutions t1 and/or t2, i.e.
discr(a, b, c) ≥ 0,

(t′ = t1 ∨ t′ = t2)
∧ s′′ = s + t′′v ∧ t′ 	= t′′

∧ v′′x =
t′′vx − t′v′x

t′′ − t′

∧ v′′y =
t′′vy − t′v′y

t′′ − t′
⊃ on cyl?(s + t′v′ + (θ′′ − t′)v′′)

Proof. Expanding the coefficients of the quadratic equation yields

t′2[(s′′x + (θ′′ − t′′)v′x)2 + (s′′y + (θ′′ − t′′)v′y)
2 − D2]+

2t′t′′[D2 − (s′′x + (θ′′ − t′′)v′x)(sx + θ′′vx) − (s′′y + (θ′′ − t′′)v′y)(sy + θ′′vy)]+

t′′2((sx + θ′′vx)2 + (sy + θ′′vy)2 − D2) = 0.

Rewriting with s′′ = s + t′′v, and rearranging yields:

[sx(t′′ − t′) − vxt′t′′ − v′xt′θ′′ + vxθ′′t′′ + v′x(t′′ − t′)t′ + v′xt′t′]2

+ [sy(t′′ − t′) − vyt
′t′′ − v′yt

′θ′′ + vyθ
′′t′′ + v′y(t

′′ − t′)t′ + v′yt
′t′)]2

= D2(t′′ − t′)2.

52

From the premises defining v′′x and v′′y , we get by cross-multiplication:

v′′x(t′′ − t′) = t′′vx − t′v′x,

v′′y(t′′ − t′) = t′′vy − t′v′y.

rewriting with these and re-arranging yields

[(sx + t′v′x + (θ′′ − t′)v′′x)(t′′ − t′)]2

+ [(sy + t′v′y + (θ′′ − t′)v′′y)(t′′ − t′)]2 = D2(t′′ − t′)2.

Factoring out (t′′ − t′)2 and dividing both sides by (t′′ − t′)2 yields the on cyl? claim
when it is expanded.

Theorem 47 (circle recovery) If the quadratic equation at2 +bt+c = 0, defined by:

Ax = s′′x + (θ′′ − t′′)v′x Ay = s′′y + (θ′′ − t′′)v′y
Bx = sx + θ′′vx By = (sy + θ′′vy)

a = Ax
2 + Ay

2 − D2

b = 2t′′(D2 − AxBx − AyBy)

c = t′′2(Bx
2 + By

2 − D2)

is a proper quadratic equation, i.e., a 	= 0, and has solutions t1 and t2, i.e. discr(a, b, c) ≥
0, and the following hold

hor speed gt 0?(v′) ∧ v′ = v′o − vi ∧ s′′ = s + t′′v
∧ vz 	= 0 ∧ θ′′ = θ+(sz, vz)
∧ θ′′ < t′′

∧ (t′ = t1 ∨ t′ = t2)

∧ t′ 	= t′′ ∧ v′′x =
t′′vx − t′v′x

t′′ − t′

∧ v′′y =
t′′vy − t′v′y

t′′ − t′
∧ v′z = vz ∧ v′′z = vz

∧ [s′′x + (θ′′ − t′′)v′′x]v′′x + [s′′y + (θ′′ − t′′)v′′y]v′′y ≤ 0

then we have
separation?(s + t′v′, v′′)

Proof. From the premises defining v′′x and v′′y , and the premises v′′z = vz = v′z, we
get:

v′′x(t′′ − t′) = t′′vx − t′v′x, (107)
v′′y (t′′ − t′) = t′′vy − t′v′y, (108)

v′′y (t′′ − t′) = t′′vy − t′v′y;

53

Hence we have
v′′(t′′ − t′) = t′′v − t′v′.

Using t′′v = s′′ − s, and rearranging, we get

s + t′v′ = s′′ − (t′′ − t′)v′′.

Thus the goal is reduced to separation?(s′′ − (t′′ − t′)v′′, v′′). We use separation lem
[Lemma 1] to change the starting point for the goal to

separation?(s′′ − (t′′ − t′)v′′ + (θ′′ − t′)v′′, v′′),

which can be simplified to

separation?(s′′ + (θ′′ − t′′)v′′, v′′).

Using circle case correctness [Theorem 3] this goal can be reduced to:

|s′′z + (θ′′ − t′′)v′′z | ≥ H, (109)
entry point?(s′′ + (θ′′ − t′′)v′′, v′′), (110)

(s′′ + (θ′′ − t′′)v′′z)v′′z ≥ 0. (111)

Claim (109) follows directly from the definition of θ+ (30). For (110), we expand
the definition of entry point. This produces the subgoals

on cyl?(s′′ + (θ′′ − t′′)v′′) (112)
[s′′ + (θ′′ − t′′)v′′x]v′′x + [s′′ + (θ′′ − t′′)v′′y]v′′y ≤ 0 (113)

(s′′z + (θ′′ − t′′)v′′z)v′′z ≥ 0 (114)

In (112), we expand on cyl?. This reduces the goal to

[s′′x + (θ′′ − t′′)v′′x]2 + [s′′y + (θ′′ − t′′)v′′y]2 = D2 (115)

From cir rec lem [Lemma 46] we have:

[sx + t′v′x + (θ′′ − t′)v′′x]2 + [sy + t′v′y + (θ′′ − t′)v′′y]2 = D2 (116)

which is the horizontal distance to the origin at time θ′′. Rearranging and substi-
tuting formulas (107) and (108) into (116), we obtain:

[sx + v′′x(θ′′ − t′′) + t′′vx]2 + [sy + v′′y (θ′′ − t′′) + t′′vy]
2 = D2

By s′′ = s + t′′v, we get (112).

The subgoal (113) is exactly the last premise.

This leaves to prove (114). Lemma vertical entry exit condition [Lemma 11] gives
us:

szvz + θ′′vzvz ≥ 0

Using sz = s′′z − t′′vz and vz = v′′z , we get

(s′′z − t′′v′′z)v′′z + θ′′v′′z v′′z ≥ 0

Factoring this formula yields (114) as wanted. This also proves (111).

54

5.4.8 The In-Circle Recovery Theorem

Theorem 48 (in circle recovery)

vz 	= 0 ∧ t′ = θ+(sz, vz) ∧
v′z = vz ∧ v′′z = vz

⊃ separation pos?(s + t′v′, v′′)

where separation pos? is defined by

separation pos?(s, v) = ∀ T ≥ 0 :hor sep?(s + Tv) ∨ vert sep?(s + Tv)

Proof. Since t′ = θ+(sz, vz), we seek to establish

vert sep?(s + θ+(sz, vz)v′ + Tv′′)

for all T ≥ 0. By definition of vert sep? this is

|sz + θ+(sz, vz)v′z + Tv′′z | ≥ H (117)

Case A [vz ≥ 0]: From definition of θ+ (30) we get:

sz + θ+(sz, vz)vz = H

and since v′z = vz, the goal (117) becomes:

|H + Tv′′z | ≥ H

By v′′z = vz, we have Tv′′z ≥ 0 and the result trivially follows.
Case B [vz < 0]: From definition of θ+ (30) we get:

sz + θ+(sz, vz)vz = −H

and since v′z = vz, the goal (117) becomes:

| − H + Tv′′z | ≥ H

Now, since v′′z = vz, we have Tv′′z < 0 and the result follows.

5.4.9 The Out-Circle Recovery Theorem

Theorem 49 (out circle recovery) If the quadratic equation

v2A + vB + C = 0,

defined by

A = 4θ′2((sx − θ′vix)2 + (sy − θ′viy)2),
B = 4(sx − θ′vix)θ′E,

C = E2 − 4(sy − θ′viy)2θ′2(v2
ox + v2

oy),

E = (sx − θ′vix)2 + (sy − θ′viy)2 + θ′2v2
ox + θ′2v2

oy − D2

55

is a proper quadratic equation, i.e., A 	= 0, and has solutions v1 and v2, i.e.
discr(A,B,C) ≥ 0, and

vz 	= 0 ∧ θ′ = t′ = θ−(sz, vz)
∧ s′′ = s + t′′v
∧ vox

2 + voy
2 ≥ v′ox

2

∧ (v′ox = v1 ∨ v′ox = v2)

∧ v′oy =
√

vox
2 + voy

2 − v′ox
2

∧ v′ = v′o − vi ∧ v′z = vz ∧ v′′z = vz

∧ sign(−2(sy − θ′viy)θ′v′oy) = sign(E + 2(sx − θ′vix)θ′v′ox)
∧ exit?(s + θ′v′, v′′)

⊃ separation?(s + t′v′, v′′)

Proof. Using the lemma circle case correctness [Theorem 3], the goal is reduced to

|sz + t′v′z| ≥ H, (118)
exit point?(s + t′v′, v′′), (119)

(sz + t′v′z)v
′′
z ≤ 0 (120)

Claim (118) is easily discharged using reaching H theta [Lemma 10]. By the exit?
premise, (119) reduces to on cyl?(s+ t′v′) which is proven by cir esc cyl [Lemma 43].
This leaves us with

(sz + t′v′z)v
′′
z ≤ 0.

Substituting with t′ = θ′, v′z = vz and v′′z = vz yields:

(sz + θ′vz)vz ≤ 0 (121)

From the definition of θ−(sz, vz) described in (29), we obtain

θ′vz = −sz − sign(vz)H

and so the goal simplifies to

−sign(vz)Hvz ≤ 0. (122)

Case analysis whether or not vz > 0 solves this goal.

5.4.10 Timeliness Properties

Lemma 50 (timeliness)

t′ 	= t′′ ∧ v′′x =
t′′vx − t′v′x

t′′ − t′
∧

v′′y =
t′′vy − t′v′y

t′′ − t′
∧ v′z = vz ∧ v′′z = vz

⊃ s + t′′v = s + t′v′ + (t′′ − t′)v′′

56

Proof. The result follows trivially by cross-multiplying premises 2 and 3.

Theorem 51 (alpha timeliness)

t′ 	= t′′ ∧ v′′x =
t′′vx − t′v′x

t′′ − t′
∧ v′′y = αv′′x ∧ v′y − αv′x 	= 0

∧ t′ = t′′
vy − αvx

v′y − αv′x
∧ v′z = vz ∧ v′′z = vz

⊃ s + t′′v = s + t′v′ + (t′′ − t′)v′′

Proof. Using timeliness [Theorem 50] the goal is reduced to

v′′y =
t′′vy − t′v′y

t′′ − t′

Cross-multiplication, replacement by v′′y = αv′′x, and rearrangement reduces this to

αv′′x(t′′ − t′) = t′′vy − t′v′y. (123)

Multiplying both sides of the defining premise of v′′x by (t′′ − t′)α and re-arranging
yields

vxαt′′ = v′′xαt′′ − v′′xαt′ + v′xαt′ (124)

Cross-multiplying the defining premise of t′ yields

v′yt
′ − v′xαt′ = vyt

′′ − vxαt′′

Replacing (124) in this equation and simplifying yields (123) as wanted.

Theorem 52 (vor timeliness)

t′ 	= t′′ ∧ v′′ox =
t′v′ox − t′′vox

t′ − t′′

∧ v′′oy =
t′v′oy − t′′voy

t′ − t′′
∧ v′z = vz ∧ v′′z = vz

∧ v = vo − vi ∧ v′ = v′o − vi ∧ v′′ = v′′o − vi

⊃ s + t′′v = s + t′v′ + (t′′ − t′)v′′

Proof. Using lemma timeliness the goal is reduced to

v′′x =
t′v′x − t′′vx

t′ − t′′

v′′y =
t′v′y − t′′vy

t′ − t′′

Modulo the definitions of v, v′, and v′′, the cross-multiplied versions of these equa-
tions match the cross-multiplied versions of premises 2 and 3.

57

5.4.11 Line/line

The line/line situation is shown in Figure 4.

Theorem 53 (llhd) If α′ = alpha calc(−1, s) or α′ = alpha calc(1, s), and the
quadratic equation

v′2x (1 + α′2) + 2v′x(vix + α′viy) + v2
ix + v2

iy − v2
ox − v2

oy = 0

has solutions x1 and x2, i.e., the discriminant is non-negative:

discr(1 + α′2, 2vix + α′viy, vix
2 + viy

2 − vox
2 − voy

2) ≥ 0

then

v′ = v′o − vi ∧ v = vo − vi ∧ s′′ = s + t′′v
∧ sx

2 + sy
2 > D2

∧ vox
2 + voy

2 	= vix
2 + viy

2

∧ hor speed gt 0?(v′) ∧ hor speed gt 0?(v′′)
∧ (v′x = x1 ∨ v′x = x2)
∧ v′y = α′v′x ∧ t′′ 	= t′

∧ s′′x
2 + s′′y

2 − D2 ≥ 0 ∧ s′′y 	= 0
∧ α′′ = alpha calc(ε, s′′) ∧ v′y − α′′v′x 	= 0

∧ t′ = t′′
vy − α′′vx

v′y − α′′v′x

∧ v′′x =
t′′vx − t′v′x

t′′ − t′
∧ v′′y = α′′v′′x ∧ v′z = vz ∧ v′′z = vz

⊃
separation?(s, v′) ∧
separation?(s + t′v′, v′′) ∧
heading only?(vo, v

′
o) ∧

s + t′′v = s + t′v′ + (t′′ − t′)v′′

Proof. The theorem follows directly from the four theorems line escape [Theorem 40],
line recovery [Theorem 42], line esc hd only [Theorem 41], and alpha timeliness [The-
orem 51].

5.4.12 Line/circle

The line/circle situation is depicted in Figure 5.

58

Theorem 54 (lchd) If α′ = alpha calc(−1, s) or α′ = alpha calc(1, s), and the
quadratic equation

v′2x (1 + α′2) + 2v′x(vix + α′viy) + v2
ix + v2

iy − v2
ox − v2

oy = 0

has solutions x1 and x2, i.e., the discriminant is non-negative:

discr(1 + α′2, 2vix + α′viy, vix
2 + viy

2 − vox
2 − voy

2) ≥ 0

and the quadratic equation at2 + bt + c = 0, defined by

Ax = s′′x + (θ′′ − t′′)v′x Ay = s′′y + (θ′′ − t′′)v′y
Bx = sx + θ′′vx By = sy + θ′′vy

a = Ax
2 + Ay

2 − D2

b = 2t′′(D2 − AxBx − AyBy)

c = t′′2(Bx
2 + By

2 − D2)

is a proper quadratic equation, i.e., a 	= 0, and has solutions t1 and t2, i.e.,
discr(a, b, c) ≥ 0, then

v′ = v′o − vi ∧ v = vo − vi ∧ s′′ = s + t′′v
∧ sx

2 + sy
2 > D2 ∧ vox

2 + voy
2 	= vix

2 + viy
2

∧ hor speed gt 0?(v′)
∧ (v′x = x1 ∨ v′x = x2)
∧ v′y = αv′x ∧ v′z = vz ∧ vz 	= 0

∧ θ′′ = θ+(sz, vz) ∧ θ′′ < t′′

∧ (t′ = t1 ∨ t′ = t2)

∧ t′ 	= t′′ ∧ v′′x =
t′′vx − t′v′x

t′′ − t′

∧ v′′y =
t′′vy − t′v′y

t′′ − t′
∧ v′z = vz ∧ v′′z = vz

∧ [s′′x + (θ′′ − t′′)v′′x]v′′x + [s′′y + (θ′′ − t′′)v′′y]v′′y ≤ 0
⊃

separation?(s, v′) ∧
separation?(s + t′v′, v′′) ∧
heading only?(vo, v

′
o) ∧

s + t′′v = s + t′v′ + (t′′ − t′)v′′

Proof. The theorem follows directly from line escape [Theorem 40], circle recovery
[Theorem 47], line esc hd only [Theorem 41], and timeliness [Theorem 50].

59

5.4.13 Circle/line

A circle/line maneuver is shown in Figure 6.

Theorem 55 (clhd) If the quadratic equation

v2A + vB + C = 0,

defined by

A = 4θ′2((sx − θ′vix)2 + (sy − θ′viy)2),
B = 4(sx − θ′vix)θ′E,

C = E2 − 4(sy − θ′viy)2θ′
2(v2

ox + v2
oy),

E = (sx − θ′vix)2 + (sy − θ′viy)2 + θ′2v2
ox + θ′2v2

oy − D2

is a proper quadratic equation, i.e., A 	= 0, and has solutions v1 and v2, i.e.
discr(A,B,C) ≥ 0, then

v = vo − vi ∧ v′ = v′o − vi ∧ s′′ = s + t′′v ∧ vz 	= 0
∧ θ′ = θ−(sz, vz) ∧ exit?(s + θ′v′, v′)

∧ vox
2 + voy

2 ≥ v′ox
2

∧ v′ox = v1 ∨ v′ox = v2

∧ v′oy =
√

vox
2 + voy

2 − v′ox
2 ∧ v′z = vz

∧ sign(−2(sy − θ′viy)θ′v′oy) = sign(E + 2(sx − θ′vix)θ′v′ox)
∧ hor speed gt 0?(v′′) ∧ t′′ 	= t′

∧ s′′x
2 + s′′y

2 − D2 ≥ 0 ∧ s′′y 	= 0
∧ α′′ = alpha calc(ε, s′′) ∧ v′y − α′′v′x 	= 0

∧ t′ = t′′
vy − α′′vx

v′y − α′′v′x

∧ v′′x =
t′′vx − t′v′x

t′′ − t′
∧ v′′y = α′′v′′x ∧ v′z = vz ∧ v′′z = vz

⊃
separation?(s, v′) ∧
separation?(s + t′v′, v′′) ∧
heading only?(vo, v

′
o) ∧

s + t′′v = s + t′v′ + (t′′ − t′)v′′

Proof. The theorem follows directly from circle escape [Theorem 44], line recovery
[Theorem 42], circle hd only [Theorem 45], and alpha timeliness [Theorem 51].

60

5.4.14 Circle/circle

Circle-circle solutions are shown in Figure 8.

Theorem 56 (cchd) If the quadratic equation

v2A + vB + C = 0,

defined by

A = 4θ′2((sx − θ′vix)2 + (sy − θ′viy)2),
B = 4(sx − θ′vix)θ′E,

C = E2 − 4(sy − θ′viy)2θ′
2(v2

ox + v2
oy),

E = (sx − θ′vix)2 + (sy − θ′viy)2 + θ′2v2
ox + θ′2v2

oy − D2

is a proper quadratic equation, i.e., A 	= 0, and has solutions v1 and v2, i.e.
discr(A,B,C) ≥ 0, and the quadratic equation at2 + bt + c = 0, defined by

Ax = s′′x + (θ′′ − t′′)v′x Ay = s′′y + (θ′′ − t′′)v′y
Bx = (sx + θ′′vx) By = (sy + θ′′vy)

a = Ax
2 + Ay

2 − D2

b = 2t′′(D2 − AxBx − AyBy)

c = t′′2(Bx
2 + By

2 − D2)

is a proper quadratic equation, i.e., a 	= 0, and has solutions t1 and t2, i.e. discr(a, b, c) ≥

61

0, then

v = vo − vi ∧ v′ = v′o − vi ∧ s′′ = s + t′′v ∧ vz 	= 0
∧ θ′ = θ−(sz, vz) ∧ exit?(s + θ′v′, v′)

∧ vox
2 + voy

2 ≥ v′ox
2 ∧ (v′ox = v1 ∨ v′ox = v2)

∧ v′oy =
√

vox
2 + voy

2 − v′ox
2 ∧ v′z = vz

∧ sign(−2(sy − θ′viy)θ′v′oy) = sign(E + 2(sx − θ′vix)θ′v′ox)
∧ hor speed gt 0?(v′) ∧ vz 	= 0
∧ θ′′ = θ+(sz, vz) ∧ θ′′ < t′′

∧ (t′ = t1 ∨ t′ = t2)

∧ t′ 	= t′′ ∧ v′′x =
t′′vx − t′v′x

t′′ − t′

∧ v′′y =
t′′vy − t′v′y

t′′ − t′
∧ v′z = vz ∧ v′′z = vz

∧ [s′′x + (θ′′ − t′′)v′′x]v′′x + [s′′y + (θ′′ − t′′)v′′y]v′′y ≤ 0
⊃

separation?(s, v′) ∧
heading only?(vo, v

′
o) ∧

separation?(s + t′v′, v′′) ∧
s + t′′v = s + t′v′ + (t′′ − t′)v′′

Proof. The theorem follows directly from circle escape [Theorem 44], circle recovery
[Theorem 47], circle hd only [Theorem 45], and timeliness [Theorem 50].

5.4.15 In-circle

In-circle solutions are shown in Figure 9.

Theorem 57 (ichd) If the quadratic equation

v2A + vB + C = 0

defined by

A = 4θ′2((sx − θ′vix)2 + (sy − θ′viy)2),
B = 4(sx − θ′vix)θ′E,

C = E2 − 4(sy − θ′viy)2θ′
2(v2

ox + v2
oy),

E = (sx − θ′vix)2 + (sy − θ′viy)2 + θ′2v2
ox + θ′2v2

oy − D2

is a proper quadratic equation, i.e., a 	= 0, and has solutions v1 and v2, i.e. discr(A,B,C) ≥

62

0, and

v = vo − vi ∧ v′ = v′o − vi ∧ v′′ = v′′o − vi

∧ vz 	= 0 ∧ θ′′ = θ+(sz, vz)
∧ entry?(s + θ′′v′, v′)

∧ vox
2 + voy

2 ≥ v′ox
2

∧ (v′ox = v1 ∨ v′ox = v2)

∧ v′oy =
√

vox
2 + voy

2 − v′ox
2

∧ sign(−2(sy − θ′′viy)θ′′v′oy) = sign(E + 2(sx − θ′′vix)θ′′v′ox)
∧ t′ = θ′′ ∧ θ′′ < t′′

∧ v′′ox =
t′v′ox − t′′vox

t′ − t′′

∧ v′′oy =
t′v′oy − t′′voy

t′ − t′′
∧ v′z = vz ∧ v′′z = vz

⊃
separation?(s, v′) ∧
heading only?(vo, v

′
o) ∧

separation pos?(s + t′v′, v′′) ∧
s + t′′v = s + t′v′ + (t′′ − t′)v′′

Proof. The theorem follows directly from circle escape [Theorem 44], in circle recovery
[Theorem 48], circle hd only [Theorem 45], and vor timeliness [Theorem 52]. Instead
of separation pos?, separation?(s + t′v′, v′′) would be a more general result, but it is
not required. All that is required is separation over the interval [t′, t′′]. This interval
is covered with the separation pos? predicate.

5.4.16 Out-circle

Out-circle solutions are shown in (Figure 10).

Theorem 58 (ochd) If the quadratic equation

v2A + vB + C = 0

defined by

A = 4θ′2((sx − θ′vix)2 + (sy − θ′viy)2),
B = 4(sx − θ′vix)θ′E,

C = E2 − 4(sy − θ′viy)2θ′
2(v2

ox + v2
oy),

E = (sx − θ′vix)2 + (sy − θ′viy)2 + θ′2v2
ox + θ′2v2

oy − D2

63

is a proper quadratic equation, i.e., A 	= 0, and has solutions v1 and v2, i.e.
discr(A,B,C) ≥ 0, and

v = vo − vi ∧ v′ = v′o − vi ∧ v′′ = v′′o − vi

∧ s′′ = s + t′′v ∧ vz 	= 0 ∧ θ′ = θ−(sz, vz)

∧ exit?(s + θ′v′, v′) ∧ vox
2 + voy

2 ≥ v′ox
2

∧ (v′ox = v1 ∨ v′ox = v2)

∧ v′oy =
√

vox
2 + voy

2 − v′ox
2

∧ sign(−2(sy − θ′viy)θ′v′oy) = sign(E + 2(sx − θ′vix)θ′v′ox)
∧ t′ = θ′ ∧ θ′ < t′′

∧ exit?(s + θ′v′, v′′) ∧ [s′′z − (t′′ − t′)v′′z]v′′z ≤ 0

∧ v′′ox =
t′v′ox − t′′vox

t′ − t′′

∧ v′′oy =
t′v′oy − t′′voy

t′ − t′′
∧ v′z = vz ∧ v′′z = vz

⊃
separation?(s, v′) ∧
heading only?(vo, v

′
o) ∧

separation?(s + t′v′, v′′) ∧
s + t′′v = s + t′v′ + (t′′ − t′)v′′

Proof. The theorem follows directly from circle escape [Theorem 44], out circle recovery
[Theorem 49], circle hd only [Theorem 45], and vor timeliness [Theorem 52].

5.4.17 Special Cases

Theorem 59 (line escape 0)

v′ = v′o − vi ∧ vox
2 + voy

2 ≥ vix
2

∧ D2 = sx
2 ∧ v′ox = vix

⊃ separation?(s, v′)

Proof. First we use separation lem [Lemma 1] to change the goal to

separation?(s + τ(s, v′)v′, v′)

Next, using line case correctness [Theorem 2] we can establish this goal if we prove
tangent point? (s + τ(s, v′)v′, v′). To do this we use the lemma tau is tangent pt
which reduces the goal to tangent condition?(s, v′), which expands to

D2(v′x
2 + v′y

2) = (sxv′y − syv
′
x)2

64

From the premises v′ = v′o − vi and v′ox = vix we obtain: v′x = 0. The goal follows
by premise D2 = sx

2.

Theorem 60 (line esc 0 hd only)

vox
2 + voy

2 ≥ vix
2 ∧ v′ox = vix ∧

v′oy = ε
√

vox
2 + voy

2 − vix
2 ∧ v′oz = voz

⊃ heading only?(vo, v
′
o)

Proof. To establish heading only?(vo, v
′
o), we must show v′ox

2 + v′oy
2 = vox

2 + voy
2 ∧

v′oz = voz. Using the premises v′ox = vix and v′oz = voz we can reduce this to
vix

2 + v′oy
2 = vox

2 + voy
2. This follows trivially by squaring both sides of the

definition of v′oy.

The next theorem describes a strange maneuver. During the escape course, the
ownship solves the conflict; during the recovery course, it only waits.

Theorem 61 (llhd recovery 0)

hor speed gt 0?(v′′)
∧ D2 = (sx + t′′vx)2

∧ v′x 	= 0 ∧ t′ = t′′
vx

v′x

∧ v′′x = 0 ∧ v′′y =
t′′vy − t′v′y

t′′ − t′
∧ v′z = vz ∧ v′′z = vz

⊃ separation?(s + t′v′, v′′)

Proof. Define s′′ = s + t′′v. Using separation lem [Lemma 1] we change the starting
point for the goal:

separation?(s′′ − (t′′ − t′)v′′ + (τ(s′′, v′′) − t′ + t′′)v′′, v′′)

which can be simplified to

separation?(s′′ + τ(s′′, v′′)v′′, v′′)

Using line case correctness [Theorem 2] this goal can be reduced to: tangent point?(s′′+
τ(s′′, v′′)v′′, v′′).
Next using lemma tau is tangent pt the goal is simplified to proving tangent condition?(s′′, v′′),
which expands to

D2(v′′x
2 + v′′y

2) = (s′′xv
′′
y − s′′yv

′′
x)2.

Since v′′x = 0, this reduces to

D2v′′y
2 = (s′′xv′′y)2.

Since a premise provides that s′′x
2 = D2, this equality is true.

65

Theorem 62 (llhd recovery B)

hor speed gt 0?(v′′) ∧ s′′ = s + t′′v

∧ D2 = s′′x
2 ∧ v′x 	= 0 ∧ t′′ 	= t′

∧ t′ = t′′
vx

v′x
∧ v′′x = 0

∧ v′′y =
t′′vy − t′v′y

t′′ − t′
∧ v′z = vz ∧ v′′z = vz

⊃ separation?(s + t′v′, v′′)

Proof. As in the proof of llhd recovery 0 the goal can be reduced to

D2(v′′x
2 + v′′y

2) = (s′′xv′′y − s′′yv
′′
x)2

This goal follows from the premises v′′x = 0 and D2 = s′′x
2 by simplification.

6 Conclusion

In this paper, a formal safety approach to the development of Air Traffic Manage-
ment (ATM) systems is advocated. An example of the first step of this approach—
the formal verification of a critical component of a distributed ATM concept (an air
traffic resolution and recovery algorithm)—is presented.

One reason formal verification is valuable is that it provides the system designer
with a much better means to handle the inherent unpredictability of complex sys-
tems. Once the behavior of some of the system’s components is fully understood
(through the formal verification process), the properties of other unpredictable com-
ponents can be characterized more easily. Using a set of algorithms whose behavior
is fully understood under explicitly enumerated assumptions greatly aids the de-
signer of ATM operational concepts. Not only is the designer liberated from having
to define contingency plans for failures of the algorithm, but by knowing the assump-
tions built into the algorithm, the designer has explicit knowledge about where to
concentrate attention in order to produce a robust and safe operational concept. In
this approach, human-in-the-loop simulation and expensive flight experiments are
used to validate assumptions made during the formal verification. This is a ma-
jor shift from traditional approaches where testing and simulation drive the safety
validation and certification of avionics systems.

Proof-of-correctness of an algorithm does not guarantee a fault-free system.
Complete verification of a system implementation must deal with many other con-
siderations that do not arise in an abstract algorithm such as floating point overflow
and underflow, validity of input data, meeting real-time deadlines, communication
flaws, etc. Furthermore, at the system design level, additional algorithms are intro-
duced to handle inter-aircraft communications (e.g. ADS-B), to detect and mask
faulty input data, to format output data for pilot displays, to schedule execution,

66

Concrete

AbstractFormal Proof

Formal Proof

ATM System Design

ATM Implementation

ATM Core Algorithms

Simulation and Experimentation

Figure 11. System Verification

and to coordinate with other systems. All of these algorithms must be shown to
satisfy critical safety properties in addition to the core resolution and recovery al-
gorithm.

Nevertheless, the verification of a resolution and recovery algorithm is a fun-
damental step toward complete verification of an ATM system. In particular, as
the RR3D algorithm is refined into a high-level design and then translated into a
programming language, additional formal proofs will be constructed. An ATM sys-
tem that integrates an implementation of RR3D will be then formally supported by
several layers of abstraction (Figure 11). These kinds of system design properties
have not been addressed. Some issues related to system verification that will be
addressed as the research continues include:

• Strategic Resolution and Recovery. RR3D is a state-based algorithm
with minimal intent information. It propagates an aircraft trajectory based on
current location, velocity, and an arrival time constraint. The arrival time con-
straint makes RR3D suitable for strategic CD&R. Indeed, Geser and Munoz
describe in [7] an algorithm that incorporates RR3D to a conflict-free flight
planner. The correctness of the flight planner is based on the correctness of
RR3D. A separate resolution and recovery algorithm enables the decomposi-
tion of the flight planner into less complex parts and, more importantly, the
decomposition of its correctness proof.

• Geodesic Coordinates. As with most geometric ATM algorithms, RR3D
is presented in a Cartesian coordinate system that assumes a flat earth. An
interface module has been developed that converts from geodesic coordinates
to a Cartesian coordinates eliminating errors due to the flat earth assumption.
The formalization and correctness proof of the coordinate transformation is in
progress.

• Floating Point Errors. The formalization of RR3D assumes exact real arith-
metic, whereas programming languages provide only floating point arithmetic.
It is well-known that floating point numbers do not satisfy even elementary
properties of real numbers. An interval analysis of RR3D that considers float-
ing point inaccuracy errors, underflows, and overflows will complement a pre-

67

liminary work on refinement of abstract algorithms into real-life programming
languages.

A formal safety approach to the design and verification of ATM systems pro-
vides an intellectually defensible means to move advanced technology into the na-
tional airspace. Current research approaches—which center around comparative
studies—can only establish some characteristics of a proposed system in precon-
ceived scenarios. Formal analysis, including appropriate assumptions, provides an
objective, absolute statement about a proposed system over all possible scenarios.
Admittedly this analysis is a difficult and time-consuming endeavor. But, as un-
precedented amounts of software are introduced in new safety critical roles, a more
comprehensive assessment of safety is needed.

68

7 Appendix

7.1 Errors Found and Missing Assumptions

While checking the hand-written proof of RR3D presented in [1], we have discovered
the following errors and missing assumptions (all formula and section numbers refer
to [1]):

• Definition of C in Formula 4.16 should be:

C = E2 − 4(sy − θ′viy)2θ′2(v2
ox + v2

oy)

A square expression was missing in the original formula.

• The escape-circle case in Section 4.3 should refer to formula

(sx + θ′(kvox − vix))(kvox − vix) +
(sy + θ′(kvoy − viy))(kvoy − viy) ≤ 0

instead of Formula 4.28.

• The recovery-circle case in Section 4.3 should refer to formula

(s′′x + (θ′′ − t′′)(jvox − vix))(jvox − vix) +
(s′′y + (θ′′ − t′′)(jvoy − viy))(jvoy − viy) ≥ 0

instead of Formula 4.31.

• Solutions to Equation 4.42 are valid only under the assumption:

θ′v′oy(sy − θ′viy)(E + 2θ′v′ox(sx − θ′vix)) ≤ 0

• The correct definition of α′′ in the solution of Formula 4.46 is

α′′ = −(D2 − s′′2y)/(2s′′xs′′y)

A negative symbol is missing in the original formula.

• The circle/circle derivation in Section 4.4 is invalid. The formal verification
reported in this paper contains a valid derivation.

7.2 Proofs Of Some Useful Lemmas

Lemma 14 (signs are opposite)

¬pred sep?(s, v, t′′) ∧ |sz| ≥ H

⊃ sign(sz) = −sign(vz)

69

Proof. From ¬pred sep?(s, v, t′′) we obtain ¬vert sep?(s + t̂v) for some time t̂, where
0 ≤ t̂ ≤ t′′. From definition of ¬vert sep? we get |sz + t̂vz| < H.
Case 1 [vz > 0]: If sign(sz) = −1, then the goal is reached trivially. If sign(sz) = 1,
then sz > 0, so by the second premise H ≤ sz. We also observe that t̂vz > 0 so,
sz + t̂vz > H. This yields a contradiction with the ¬vert sep?(s + t̂v) premise.
Case 2 [vz ≤ 0]: If sign(sz) = 1, then the goal is reached trivially. If sign(sz) = −1,
then sz < 0, so by the second premise sz ≤ −H. We also observe that t̂vz < 0 so,
sz + t̂vz < −H. This yields a contradiction with the ¬vert sep?(s + t̂v) premise.

Lemma 15 (signs ve z)

¬pred sep?(s, v, t′′) ∧ |sz| ≥ H ∧ C > 0 ∧
v′z =

−sign(vz)H − sz

C
∧ v′z 	= 0

⊃ sign(v′z) = sign(vz)

Proof. Using lemma signs are opposite [14] we get sign(sz) = −sign(vz). Rewriting
the definition of v′z with this and cross-multiplying we get:

v′zC = sign(sz)H − sz

Case 1: [v′z > 0]: Expanding sign, we have: v′zC = H − sz from which the result
easily follows.
Case 2: [v′z ≤ 0]: Expanding sign, we have: v′zC = −sz − H. Since magnitude of sz

is greater than H we have the desired result.

Lemma 16 (signs vr z)

¬pred sep?(s, v, t′′) ∧ |sz| ≥ H

∧ v′z =
−sign(vz)H − sz

C
∧ t′′ − C > 0 ∧ C > 0

∧ v′′z =
t′′vz − v′zC

t′′ − C

⊃ sign(v′′z) = −sign(sz)

Proof. Using lemma signs are opposite we get sign(sz) = −sign(vz). Cross-multiplying
definition of v′z yields: v′zC = −sign(vz)H − sz. Cross-multiplying definition of v′′z
yields: v′′z (t′′ −C) = t′′vz −Cv′z Rewriting the second formula with the first formula

v′′z (t′′ − C) = t′′vz − (−sign(vz)H − sz).

From definition of vert sep? we get |sz + t∗vz| < H. One then case splits on both
vz > 0 and v′′z > 0 and simplifies all formulas. Inequality reasoning involving v′′z t∗

70

and vzt
∗ yields the desired result.

7.3 Mapping of Notation to PVS

s s relative ownship position
s′ se relative turn point
s′′ sr relative final position
v v relative ownship velocity
v′ ve relative ownship escape velocity
v′′ vr relative ownship recovery velocity
vx v‘x x component of relative ownship velocity
v′y ve‘y y component of relative escape velocity
v′′z vr‘z z component of relative recovery velocity
t t time variable
t′ te turn time
t′′ tr final time

71

References

1. Geser, A.; Muñoz, C.; Dowek, G.; and Kirchner, F.: Air Traffic Conflict
Resolution and Recovery. ICASE Report No. 2002-12 NASA/CR-2002-211637,
ICASE-NASA Langley, ICASE Mail Stop 132C, NASA Langley Research Cen-
ter, Hampton VA 23681-2199, USA, May 2002.

2. NASA: Concept Definition for Distributed Air/Ground Traffic Management
(DAG-TM), Version 1.0, 1999. Advanced Air Transportation Technologies
(AATT) Project. NASA Ames Research Center. NASA Langley Research Cen-
ter.

3. Wing, D. J.; Adams, R. J.; Duley, J. A.; Legan, B. M.; Barmore, B. E.; and
Moses, D.: Airborne Use of Traffic Intent Information in a Distributed Air-
Ground Traffic Management Concept: Experiment Design and Preliminary Re-
sults. NASA/TM-2001-211254, NASA Langley Research Center, Hampton VA
23681, USA, November 2001.

4. RTCA: Final Report of the RTCA Board of Directors’ Select Committee on
Free Flight. Issued 1-18-95, RTCA, Washington, DC, 1995.

5. Hoekstra, J.; Ruigrok, R.; van Gent, R.; Visser, J.; Gijsbers, B.; Valenti, M.;
Heesbeen, W.; Hilburn, B.; Groeneweg, J.; and Bussink, F.: Overview of NLR
Free Flight Project 1997-1999. NLR-CR-2000-227, National Aerospace Labora-
tory (NLR), May 2000.

6. Dowek, G.; Muñoz, C.; and Geser, A.: Tactical Conflict Detection and Resolu-
tion in 3-D Airspace. 4th USA/Europe Air Traffic Management R&D Seminar
(ATM-2001), Santa Fe, New Mexico, 2001. Extended version available as ICASE
Report No. 2002-12 NASA/CR-2002-211637.

7. Geser, A.; and Muñoz, C.: A Geometric Approach to Strategic Conflict De-
tection and Resolution, 2002. Proceedings of the 21st Digital Avionics Systems
Conference.

8. Owre, S.; Rushby, J. M.; and Shankar, N.: PVS: A Prototype Verification Sys-
tem. 11th International Conference on Automated Deduction (CADE), D. Ka-
pur, ed., Springer-Verlag, Saratoga, NY, vol. 607 of Lecture Notes in Artificial
Intelligence, June 1992, pp. 748–752.

9. Sanford, B.; Harwood, K.; Nowlin, S.; Bergeron, H.; Heinrichs, H.; Wells, G.;
and Hart, M.: Center/TRACON automation system: Development and eval-
uation in the field. 38th Annual Air Traffic Control Association Conference,
October 1993.

10. Brudnicki, D.; Lindsay, K.; and McFarland, A.: Assessment of Field Trials,
Algorithmic Performance, and Benefits of the User Request Evaluation Tool
(URET) Conflict Probe. 16th Digital Avionics Systems Conference, Irvine, CA,
October 1997, pp. 9.3.35–9.3.44.

72

11. Kuchar, J.; and Yang, L.: A Review of Conflict Detection and Resolution Mod-
eling Methods. IEEE Transactions on Intelligent Transportation Systems, vol. 1,
no. 4, December 2000, pp. 179–189.

12. Durand, N.; Alliot, J.-M.; and Noailles, J.: Automatic aircraft conflict resolution
using genetic algorithms. Symposium on Applied Computing , Philadelphia, PA,
1996.

13. Granger, G.; Durand, N.; and Alliot, J.-M.: Optimal resolution of en route
conflicts. 4th USA/Europe Air Traffic Management R&D Seminar (ATM-2001),
Santa Fe, New Mexico, 2001.

14. McDonald, J.; and Vivona, R.: Strategic Airborne Conflict Detection of Air
Traffic and Area Hazards. NASA Contract: NAS2-98005 RTO-29, TITAN Sys-
tems Corporation, SRC Division, November 2000.

15. Durand, N.; Alliot, J.-M.; and Medioni, F.: Neural Nets trained by genetic al-
gorithms for collision avoidance. Applied Artificial Intelligence, vol. 13(3), 2000.

16. Tomlin, C.; Pappas, G.; and Sastry, S.: Conflict Resolution for Air Traffic
Management: A Study in Multi-Agent Hybrid Systems. IEEE Transactions on
Automatic Control , vol. 43(4), 1998.

17. Chiang, Y.-J.; Klosowsky, J.; Lee, C.; and Mitchell, J.: Geometric Algorithms
for Conflict Detection/Resolution in Air Traffic Management. 36th IEEE Con-
ference on Decision and Control , 1997.

18. Frazzoli, E.; Mao, Z.-H.; Oh, J.-H.; and Feron, E.: Resolution of Conflicts
Involving Many Aircraft via Semidefinite Programming. Journal of Guidance,
Control, and Dynamics, vol. 24, no. 1, 2001, pp. 79–86.

19. Eby, M.: A Self-Organizational Approach for Resolving Air Traffic Conflicts.
Lincoln Laboratory Journal , vol. 7, no. 2, 1994, pp. 239–254.

20. Bilimoria, K.: A Geometric Optimization Approach to Aircraft Conflict Reso-
lution. Guidance, Navigation, and Control Conference, Denver, CO, vol. AIAA
2000-4265, August 2000.

21. Wing, D.; Adams, R.; Barmore, B.; and Moses, D.: Airborne Use of Traffic
Intent Information in a Distributed Air-Ground Traffic Management Concept:
Experiment Design and Preliminary Results. 4th USA/Europe Air Traffic Man-
agement R&D Seminar (ATM-2001), Santa Fe, New Mexico, 2001.

22. Bilimoria, K.; and Lee, H.: Aircraft Conflict Resolution with an Arrival Time
Constraint. Guidance, Navigation, and Control Conference, Monterey, CA, vol.
AIAA 2002-4444, August 2002.

23. Muñoz, C.; Butler, R.; Carreño, V.; and Dowek, G.: On the verification of
conflict detection algorithms. NASA/TM-2001-210864, NASA Langley Research
Center, NASA LaRC,Hampton VA 23681-2199, USA, May 2001.

73

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

1. REPORT DATE (DD-MM-YYYY)

01-04-2004
2. REPORT TYPE

Technical Publication
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Formal Verification of a Conflict Resolution and Recovery Algorithm

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

23-727-01-26

6. AUTHOR(S)

Maddalon, Jeffrey; Butler, Ricky; Geser, Alfons; and Muñoz, César

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23681-2199

8. PERFORMING ORGANIZATION
REPORT NUMBER

L–18323

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSOR/MONITOR’S ACRONYM(S)

NASA

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

NASA/TP–2004–213015

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category 63
Availability: NASA CASI (301) 621-0390 Distribution: Standard

13. SUPPLEMENTARY NOTES

An electronic version can be found at http://techreports.larc.nasa.gov/ltrs/ or http://ntrs.nasa.gov.

14. ABSTRACT

New air traffic management concepts distribute the duty of traffic separation among system participants. As a consequence, these
concepts have a greater dependency and rely heavily on on-board software and hardware systems. One example of a new on-board
capability in a distributed air traffic management system is air traffic conflict detection and resolution (CD&R). Traditional methods for
safety assessment such as human-in-the-loop simulations, testing, and flight experiments may not be sufficient for this highly distributed
system as the set of possible scenarios is too large to have a reasonable coverage. This paper proposes a new method for the safety
assessment of avionics systems that makes use of formal methods to drive the development of critical systems. As a case study of this
approach, the mechanical verification of an algorithm for air traffic conflict resolution and recovery called RR3D is presented. The RR3D
algorithm uses a geometric optimization technique to provide a choice of resolution and recovery maneuvers. If the aircraft adheres to
these maneuvers, they will bring the aircraft out of conflict and the aircraft will follow a conflict-free path to its original destination.
Verification of RR3D is carried out using the Prototype Verification System (PVS).

15. SUBJECT TERMS

air traffic management, safety assessment, conflict resolution, conflict recovery, arrival time constraint, theorem proving,
formal methods

16. SECURITY CLASSIFICATION OF:

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

82

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

19b. TELEPHONE NUMBER (Include area code)

(301) 621-0390

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /APCCourier
 /APCCourierBold
 /APCCourierBoldOblique
 /APCCourierOblique
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AmericanTypewriter
 /AmericanTypewriter-Bold
 /AmericanTypewriter-Condensed
 /AmericanTypewriter-CondensedBold
 /AmericanTypewriter-CondensedLight
 /AmericanTypewriter-Light
 /AndaleMono
 /Apple-Chancery
 /AppleGothic
 /AppleMyungjo
 /AppleSymbols
 /AquaKana
 /AquaKana-Bold
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /Baskerville
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /Baskerville-SemiBold
 /Baskerville-SemiBoldItalic
 /BastionBold
 /BastionBoldOblique
 /BastionOblique
 /BastionPlain
 /BigCaslon-Medium
 /Bookman-DemiItalic
 /Bookman-Light
 /BrushScriptMT
 /CapitalsRegular
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Chalkboard
 /Charcoal
 /Chicago
 /Cochin
 /Cochin-Bold
 /Cochin-BoldItalic
 /Cochin-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /Copperplate
 /Copperplate-Bold
 /Copperplate-Light
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Courier
 /Courier-Bold
 /CourierCE
 /CourierCE-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CurlzMT
 /DFKaiShu-SB-Estd-BF
 /Didot
 /Didot-Bold
 /Didot-Italic
 /Dirtyhouse
 /EdwardianScriptITC
 /Futura-CondensedExtraBold
 /Futura-CondensedMedium
 /Futura-Medium
 /Futura-MediumItalic
 /GadgetRegular
 /GeezaPro
 /GeezaPro-Bold
 /Geneva
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GrHelvetica
 /GrHelveticaBold
 /GrPlain
 /GrTimes
 /GrTimesBold
 /Hangang
 /Helvetica
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Light
 /Helvetica-LightOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HelveticaNeue
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-CondensedBlack
 /HelveticaNeue-CondensedBold
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightItalic
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItalic
 /Herculanum
 /HiraKakuPro-W3
 /HiraKakuPro-W6
 /HiraKakuStd-W8
 /HiraMaruPro-W4
 /HiraMinPro-W3
 /HiraMinPro-W6
 /HoeflerText-Black
 /HoeflerText-BlackItalic
 /HoeflerText-Italic
 /HoeflerText-Ornaments
 /HoeflerText-Regular
 /Impact
 /JCHEadA
 /JCfg
 /JCkg
 /JCsmPC
 /LatinskijBold
 /LatinskijBoldItalic
 /LatinskijBook
 /LatinskijItalic
 /LiGothicMed
 /LiHeiPro
 /LiSongPro
 /LiSungLight
 /LucidaGrande
 /LucidaGrande-Bold
 /LucidaHandwriting-Italic
 /MarkerFelt-Thin
 /MarkerFelt-Wide
 /Monaco
 /MonotypeCorsiva
 /MonotypeSorts
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewYork
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-ExtraBlack
 /Optima-Italic
 /Optima-Regular
 /Osaka
 /Osaka-Mono
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Papyrus
 /RoPlain
 /SIL-FangSong-Reg-Jian
 /SIL-Hei-Med-Jian
 /SIL-Kai-Reg-Jian
 /SIL-Song-Reg-Jian
 /SandRegular
 /Skia-Regular
 /StoneInformal
 /StoneInformal-Bold
 /StoneInformal-BoldItalic
 /StoneInformal-Italic
 /StoneInformal-Semibold
 /StoneInformal-SemiboldItalic
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /StoneSerif
 /StoneSerif-Bold
 /StoneSerif-BoldItalic
 /StoneSerif-Italic
 /StoneSerif-Semibold
 /StoneSerif-SemiboldItalic
 /Symbol
 /Tahoma
 /Tahoma-Bold
 /TechnoRegular
 /TextileRegular
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /TimesOERoman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /WarnockPro-Bold
 /WarnockPro-BoldCapt
 /WarnockPro-BoldDisp
 /WarnockPro-BoldIt
 /WarnockPro-BoldItCapt
 /WarnockPro-BoldItDisp
 /WarnockPro-BoldItSubh
 /WarnockPro-BoldSubh
 /WarnockPro-Capt
 /WarnockPro-Disp
 /WarnockPro-It
 /WarnockPro-ItCapt
 /WarnockPro-ItDisp
 /WarnockPro-ItSubh
 /WarnockPro-Light
 /WarnockPro-LightCapt
 /WarnockPro-LightDisp
 /WarnockPro-LightIt
 /WarnockPro-LightItCapt
 /WarnockPro-LightItDisp
 /WarnockPro-LightItSubh
 /WarnockPro-LightSubh
 /WarnockPro-Regular
 /WarnockPro-Semibold
 /WarnockPro-SemiboldCapt
 /WarnockPro-SemiboldDisp
 /WarnockPro-SemiboldIt
 /WarnockPro-SemiboldItCapt
 /WarnockPro-SemiboldItDisp
 /WarnockPro-SemiboldItSubh
 /WarnockPro-SemiboldSubh
 /WarnockPro-Subh
 /Webdings
 /Wingdings
 /ZapfDingbatsITC
 /Zapfino
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

