

November 2007

NASA/TM-2007-215089

Solving the AI Planning + Scheduling Problem
Using Model Checking via Automatic Translation
From the Abstract Plan Preparation Language
(APPL) to the Symbolic Analysis Laboratory (SAL)

Ricky W. Butler
Langley Research Center, Hampton, Virginia

César A. Muñoz and Radu I. Siminiceanu
National Institute of Aerospace, Hampton, Virginia

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for NASA’s
scientific and technical information. The NASA STI
Program Office provides access to the NASA STI
Database, the largest collection of aeronautical and
space science STI in the world. The Program Office is
also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are published by
NASA in the NASA STI Report Series, which
includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creating
custom thesauri, building customized databases,
organizing and publishing research results ... even
providing videos.

For more information about the NASA STI Program
Office, see the following:

• Access the NASA STI Program Home Page at

http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at (301) 621-0134

• Phone the NASA STI Help Desk at

(301) 621-0390

• Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

November 2007

NASA/TM-2007-215089

Solving the AI Planning + Scheduling Problem
Using Model Checking via Automatic Translation
From the Abstract Plan Preparation Language
(APPL) to the Symbolic Analysis Laboratory (SAL)

Ricky W. Butler
Langley Research Center, Hampton, Virginia

César A. Muñoz and Radu I. Siminiceanu
National Institute of Aerospace, Hampton, Virginia

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7115 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 605-6000

Contents

1 Introduction 2

2 Simple Example 2

3 Constraints Expressed Through Allen Operations 11
3.1 Approach . 11
3.2 The contained by Allen Operator: A contained by B 12
3.3 The contains Allen Operation: A contains B 14
3.4 The meets Allen Operator: A meets B . 16
3.5 The met by Allen Operator: A met by B 17
3.6 The starts Allen Operator: A starts B . 19
3.7 The ends Allen Operator: A ends B . 20
3.8 The equals Allen Operator: A equals B . 20
3.9 The before Allen Operator: A before B . 21
3.10 The after Allen Operator: A after B . 22
3.11 The overlaps Allen Operator: A overlaps B 22

4 Transition Parameters 24

5 Constraint Parameters 25
5.1 Example 1 – Parameter Matching . 25
5.2 Example 2 – Constant Parameters . 27
5.3 Example 3 – Constant Parameters . 28
5.4 Example 4 – Constant Parameters . 29

6 Processing IF THEN ELSE expressions 30

7 Semantic Subtleties 33
7.1 Non-scheduled Actions and Vacuous Solutions 33
7.2 Multiple Invocations with After Constraints 34
7.3 Terminal States . 34
7.4 Parameters . 35

7.4.1 Constant Parameters . 35
7.4.2 Matching and Wild Card Parameters 36

7.5 Loss of Allen Op Symmetry . 36

8 Observations and Conclusions 38

1

1 Introduction

The Abstract Plan Preparation Language (APPL) [2] is a planning language inspired by
the New Domain Description Language (NDDL), a powerful planning language developed
at NASA Ames [4] which has evolved from the Planning Domain Description Language
(PDDL)[5]1. APPL is built around the idea that not all constraints are alike in the spec-
ification of an AI planning problem. In particular, the APPL language provides a special
notation for the actions which must be mutually exclusive on a particular timeline. This
feature enables a more compact specification of actions and states that is similar to the
specification of state transition systems.

Because the syntax and semantics of APPL are simpler than those of NDDL, APPL is
more suitable for formal verification, static analysis, and automated test generation. How-
ever, the language is much less expressive than NDDL.

This paper describes the algorithms and techniques used to translate APPL to SAL[3].
This translator was developed under the Spacecraft Autonomy for Vehicles and Habitats
(SAVH) project, whose purpose is to develop verification & validation technology that can
enable the application of AI planning to man-rated space applications. The long-term goal of
our research is to develop techniques to verify the correctness of the domain knowledge that
is typically expressed in planning languages. The key idea is that once the planning domain
knowledge has been captured in a SAL model, many different properties of that domain can
be analyzed using the SAL model checker. However, at this point in the SAVH program,
a target domain has not been developed, so our efforts have centered on the development
of basic technology. In particular, we have focused on the mechanisms for expressing and
translating constraints, which are central to the NDDL language. To enable the assessment
of the power and usefulness of our translators, one verification property is generated. This
property states that no plan exists that satisfies all of the constraints. The model checker
is then deployed on this property. If a plan does exist, then the model checker will produce
a counterexample that is a viable plan that satisfies the constraints. We do not envision
that this approach will be nearly as efficient or powerful as EUROPA 2. We do believe that
this translation technology could be useful for establishing that key properties of the domain
knowledge are true. We think that this approach may one day provide a powerful means for
debugging the specifications of domain knowledge that are used in safety-critical planning
systems.

2 Simple Example

We will begin our look at the technique for translating APPL to SAL with a very simple
two timeline example2:

1PDDL is the planning language of the Extensible Universal Remote Operations Architecture 2 (EUROPA
2). EUROPA 2 is a component-based software library for constructing highly-tailored, domain-specific
planners.

2We assume a prior knowledge of SAL syntax throughout this document.

2

PLAN ex1

TIMELINE A

ACTIONS

A0: [2,_]

A1

A2

TRANSITIONS

A0 -> A1 -> A2

END A

TIMELINE B

ACTIONS

B0: [2,_]

B1: [1,10]

TRANSITIONS

B0 -> B1

END B

INITIAL-STATE

|-> A.A0

|-> B.B0

GOALS

A.A2

B.B1

END ex1

Timeline A has three actions A0, A1, and A2 with only one possible sequence. The duration
of action A0 is at least 2 time units, while the other two actions have no restrictions on their

3

duration. Similarly, timeline B has two actions B0 and B1, with only one possible sequence.
B0 has a duration of at least 2 time units, while B1 takes between 1 and 10 units.

Corresponding to these actions, the following types are generated

A_actions: TYPE = {A0, A1, A2, A_null};

B_actions: TYPE = {B0, B1, B_null};

In addition to the declared actions, a null state is created for each of the timelines. There
are two purposes for these extra states:

• They provide a means for the completion of an action when the action has no successor.

• They provide a convenient mechanism for recording when a goal state has been reached
on each timeline. As shown below, a transition from a timeline’s goal state to the null
state is generated by the translator.

The generated SAL model consists of three modules:

• Module A_m which corresponds to timeline A.

• Module B_m which corresponds to timeline B.

• Module Clock which advances time.

The structure of the module generated for timeline A is:

A_m : MODULE =

BEGIN

INPUT

GLOBAL

LOCAL

INITIALIZATION

TRANSITION

[

A0_to_A1: %% A0 -> A1

[]

A1_to_A2: %% A1 -> A2

[]

A2_to_A_null: %% A2 -> A_null

4

]

END; %% A_m

Each of these sections is used in the translation:

• INPUT is used to select values for parameters of actions.

• GLOBAL is used to hold state values and their current parameter values.

• LOCAL is used to hold the start time of the currently scheduled action.

• INITIALIZATION is used to set initial values.

• TRANSITION specifies rules for transitioning from one action to another.

The three modules will be asynchronously composed. In SAL this is specified as follows

System: MODULE = A_m [] B_m [] Clock;

The SAL tool links the variables named in the GLOBAL and INPUT sections together. In other
words, variables with the same name are equated even though they are specified in different
modules.

The SAL model checker is then used to search through all possible sequences of actions
on the timelines to find sequences which satisfy all of the constraints specified in the APPL
model. These constraints fall into two broad categories:

• Timing constraints that impact durations and start/stop times of actions.

• Allen operations [1] that specify relationships between time intervals of actions.

The search is started at time 0 and proceeds forward in time until the planning horizon is
reached. The stop time is specified via a constant as follows:

MAX_TM: int = 150; %% Always generated

TM_rng: TYPE = [0 .. MAX_TM]; %% Always generated

The progression of time is controlled by the clock module:

Clock: MODULE =

BEGIN

INPUT

tm_intv: [1 .. 10]

OUTPUT

time: TM_rng

INITIALIZATION

time = 0;

TRANSITION

5

[

advance_clock:

time + tm_intv <= MAX_TM --> time’ = time + tm_intv;

]

END;

This module advances the clock by a value in the range of 1 ..10. The clock is stored in the
variable time. Note that since the modules are asynchronously composed, the clock module
can effectively advance time at any point. Both the A_m and the B_m modules include the
variable time in their INPUT sections.

The GLOBAL sections of all of the timeline modules contain variables which record the
action that is scheduled during the current time:

GLOBAL

B_state: B_actions,

A_state: A_actions

The durations of the actions are controlled by the use of a start variable declared as
follows

LOCAL

start: TM_rng

INITIALIZATION

start = 0;

Whenever an action is initiated, the initiation time is stored in this variable. The durations
of an action will be controlled through this variable. This will be explained more carefully
when we discuss the transitions section.

The initial actions on a timeline can be specified as follows:

INITIAL-STATE

|-> A.A0

|-> B.B0

If a timeline’s initial state is not specified, then the model checker will explore all possible
start states.

The APPL TRANSITIONS section is the major focus of the translation process. The SAL
TRANSITIONS section is constructed from this part of the APPL model. For example, the
following APPL code:

TRANSITIONS

A0 -> A1 -> A2

6

is translated into the SAL code:

TRANSITION

[

A0_to_A1: %% A0 -> A1

A_state = A0

AND time >= start + 2

-->

A_state’ = A1;

start’ = time;

[]

A1_to_A2: %% A1 -> A2

A_state = A1

-->

A_state’ = A2;

start’ = time;

[]

A2_to_A_null: %% A2 -> A_null

A_state = A2

-->

A_state’ = A_null;

]

When a transition occurs, an action is completed and another transition is initiated. No
empty time slots are allowed. The TRANSITIONS section defines three transitions3 which are
labeled as follows:

A0_to_A1: %% A0 -> A1

A1_to_A2: %% A1 -> A2

A2_to_A_null: %% A2 -> A_null

The first transition is guarded by the following expression:

A_state = A0

AND time >= start + 2

The first conjunct insures that this transition only applies when the current action on the
timeline is A0 and the second conjunct insures that the duration of the action is at least 2
time units. This corresponds to the fact that A0 was declared as A0: [2,_]. The expressions
after the --> specify that the new state is A1 and that the start variable is re-initialized.

The APPL GOALS statement

3We have adopted a constructive semantics of allowed transitions: only the transitions that are explicitly
specified are allowed. The EUROPA 2 system takes the opposite approach. All possible transitions are
allowed unless specifically ruled out by a constraint. In future versions of the APPL to SAL translator, we
may add an option that allows one to choose between constructive or destructive semantics.

7

GOALS

A.A2

B.B1

lists the two actions that need to be reached (where the default meaning of the expression
is the logical conjunction of the terms). This statement is translated into the following SAL
specification:

sched_sys: THEOREM

System |- AG(NOT(A_state = A_null AND B_state = B_null));

Since the “null” states can only be reached from the goal states (i.e. A2 and B1), these
efficiently record the fact that the appropriate goal has been reached on each timeline. Note
that the APPL goal statement has been negated. Therefore, when the model checker is
instructed to establish the property, any counterexample provided by SAL will serve as a
feasible realization of the plan. If a specific ordering of goal achievement is desired, we can
add a constraint using Allen operations in the CONSTRAINTS section to accomplish this. For
example, if goal A2 must be reached before B1, then the following constraint can be added:

A.A2 WITH before B.B1

Allen operations will be discussed in greater detail in Section 3.
The complete generated SAL model (ex1.sal) is:

%% File ex1.sal

%% Generated from ex1.appl

%% On Fri Oct 20 14:14:39 EDT 2006

%% By APPL-2.b (08/14/06)

ex1: CONTEXT =

BEGIN

INFNTY: int = 1000; %% Always generated

MAX_TM: int = 150; %% Always generated

TM_rng: TYPE = [0 .. MAX_TM]; %% Always generated

A_actions: TYPE = {A0, A1, A2};

B_actions: TYPE = {B0, B1};

A_m : MODULE =

BEGIN

INPUT

time: TM_rng

GLOBAL

8

B_state: B_actions,

A_state: A_actions

LOCAL

start: TM_rng

INITIALIZATION

start = 0;

A_state = A0;

TRANSITION

[

A0_to_A1: %% A0 -> A1

A_state = A0

AND time >= start + 2

-->

A_state’ = A1;

start’ = time;

[]

A1_to_A2: %% A1 -> A2

A_state = A1

-->

A_state’ = A2;

start’ = time;

[]

A2_to_A_null: %% A2 -> A_null

A_state = A2

-->

A_state’ = A_null;

]

END; %% A_m

B_m : MODULE =

BEGIN

INPUT

time: TM_rng

GLOBAL

A_state: A_actions,

B_state: B_actions

LOCAL

start: TM_rng

INITIALIZATION

start = 0;

9

B_state = B0;

TRANSITION

[

B0_to_B1: %% B0 -> B1

B_state = B0

-->

B_state’ = B1;

start’ = time;

[]

B1_to_B_null: %% B1 -> B_null

B_state = B1

AND time >= start + 1

AND time <= start + 10

-->

B_state’ = B_null;

]

END; %% B_m

Clock: MODULE =

BEGIN

INPUT

tm_intv: [1 .. 10]

OUTPUT

time: TM_rng

INITIALIZATION

time = 0;

TRANSITION

[

advance_clock:

time + tm_intv <= MAX_TM --> time’ = time + tm_intv;

]

END;

System: MODULE = A_m

[] B_m

[] Clock;

sched_sys: THEOREM

System |- AG(NOT(A_state = A_null

10

AND B_state = B_null

));

END %% ex1

3 Constraints Expressed Through Allen Operations

The allowed transitions on a timeline can be further restricted through use of Allen opera-
tions. The following Allen operations are allowed in the APPL language:

• contains

• contained_by

• meets

• met_by

• starts

• equals

• ends

• before

• after

• overlaps

In the generated SAL model, these constraints result in additional guards on the transitions
and additional variable updates.

3.1 Approach

In this section, we will explain the translation approach without consideration of action
parameters. In a later section, we will describe how the action parameters are handled. In
the first pass of the translator, all of the Allen operations are collected in a data structure
which stores five key fields:

• tml_A: Timeline of the first action.

• act_A: First action.

• allop: The Allen operation.

• tml_B: Timeline of the second action.

11

• act_B: Second action.

For example, the Allen operation

Nav.X2 starts Instr.Y3

results in tml_A = Nav, act_A = X2, allop = starts, tml_B = Instr, act_B = Y3. In
the second pass of the translator, all of these constraints are matched against the transition
that is being generated. We will use the following notation to represent the transition under
construction:

<tml>: <current_action> -> <next_action>

The current timeline is <tml> and we are processing the transition from <current_action>

to <next_action>. We will introduce some notation to indicate when there is a “match.”
A constraint will be denoted as follows:

tml_A act_A <op> tml_B act_B

where <op> is one of the Allen ops (e.g. meets, contains, etc). We will express the matching
requirement by drawing lines between items that must be equal:

<tml>: <current_action> −−> <next_action>

act_A tml_B act_B<op>tml_A

This diagram expresses the requirement that <tml> = tml_A and <current_action> =
act_A.

The basic approach is as follows. For each transition being generated, the translator
searches through all of the constraints looking for matches against patterns associated with
each type of Allen operation. The patterns are used to specify:

• guards on the transition which occur on the left or pre side of the -->

• variable updates which occur on the right or post side of the -->

These “patterns” are described in the next subsections. We will not include the routine
update of the time variables in the following sections, to simplify the presentation.

3.2 The contained by Allen Operator: A contained by B

There are two matching patterns required for the contained_by operation. Suppose we have
a constraint

tml_A.act_A contained_by tml_B.act_B

which can be illustrated as follows:

12

tml_A.act_A
tml_B.act_B

While generating any transition of the form <current_action> -> act_A for timeline tml_A,
a check needs to be made to insure that act_B is already executing on the tml_B timeline.
Therefore, the following guard is added to the <current_action> -> act_A transition:

tml_B_state = act_B

The translator searches through the list of all of the constraints while processing a
<current_action> -> <next_action> transition. If it finds a constraint with <op> =
contained_by, tml_A = <tml> and act_A = <next_action>, then this guard is added
and the net result is:

tml_A_state = <current_action>;

tml_B_state = act_B

-->

tml_A_state’ = act_A; %% = <next_action>

This particular match is illustrated below:

<tml>: <current_action> −−> <next_action>

act_Btml_A contained_byact_A tml_B

It is also necessary to keep act_B from terminating while act_A is still executing. This is
accomplished using another pattern:

<tml>: <current_action> −−> <next_action>

act_Btml_A contained_byact_A tml_B

In other words for transitions of the form tml_B: act_B -> <next_action> (i.e. where
<tml> = tml_B and <current_action> = act_B), we must add the following guard:

AND tml_A_state /= act_A

The net result is

tml_B_state = <current_action>;

AND tml_A_state /= act_A

-->

tml_B_state = act_B %% = <next_action>;

13

3.3 The contains Allen Operation: A contains B

There are three matching patterns required for the contains operation:

tml_A.act_A
tml_B.act_B

The first pattern is

<tml>: <current_action> −−> <next_action>

act_A tml_B act_Bcontainstml_A

Whenever there is a match, shown in this illustration, the following additional guard is added
to the <current_action> -> <next_action> transition:

AND tml_B_state /= act_B

The net result is:

tml_A_state = act_A; %% = <current_action>;

AND tml_B_state /= act_B

-->

tml_A_state’ = <next_action>;

The reason for this guard is simple. Because tml_A.act_A contains tml_B.act_B, act_A

cannot be allowed to terminate as long as act_B is still active. But what if act_B never
executed at all? We do not want the action act_A to terminate until after an action act_B

has started and completed. So, we need to keep track of this event using a state variable.
We add a variable act_B_while_act_A to record this information. We then add a test on
this variable to the transition guard:

tml_A_state = act_A; %% = <current_action>;

AND tml_B_state /= act_B

AND act_B_while_act_A

-->

tml_A_state’ = <next_action>;

act_B_while_act_A = false;

The variable act_B_while_act_A is reset to false in preparation for a future execution of
the action. The initial value of this variable is set as:

act_B_while_act_A = (tml_A_state = act_A) AND

(tml_B_state = act_B);

14

The second pattern is

<tml>: <current_action> −−> <next_action>

act_Btml_A act_A tml_Bcontains
When a transition into state act_B occurs, we need to update the value of the variable
act_B_while_act_A. If action act_A is executing on the other timeline, then the variable
act_B_while_act_A is set to true as follows:

IF tml_A_state = act_A THEN

act_B_while_act_A’ = true;

ENDIF;

The net result is

tml_B_state = <current_action>;

-->

tml_B_state’ = act_B %% = <next_action>;

act_B_while_act_A’ = IF tml_A_state = act_A THEN

true

ELSE

act_B_while_act_A

ENDIF;

where the update syntax is rewritten in a form suitable for SAL.
The third pattern is

<tml>: <current_action> −−> <next_action>

act_Btml_A act_A tml_Bcontains
When a transition into state act_A occurs, we need to update the value of the variable
B_while_A if the time has not advanced. If action act_B has just been initiated on timeline
tml_B, then the variable B_while_A is set to true as follows:

tml_A_state = <current_action>;

-->

tml_A_state’ = act_A %% = <next_action>;

act_B_while_act_A’ = IF tml_B_state = act_B AND B_start = time THEN

true

ELSE

act_B_while_act_A

ENDIF;

It should be noted that this allows equal start times for actions A and B. If a strict “contains”
is desired, one should leave out the code generated from this last pattern.

15

3.4 The meets Allen Operator: A meets B

There are two matching patterns required for the meets operation:

tml_A.act_A tml_B.act_B

The first one occurs when tml_A.act_A terminates:

<tml>: <current_action> −−> <next_action>

act_A tml_B act_Btml_A meets

Whenever there is a match shown in this figure, the following variable update is added to
the <current_action> -> <next_action> transition:

tml_B_state’ = act_B;

The net result is

tml_A_state = act_A; %% = <current_action>;

-->

tml_A_state’ = <next_action>;

tml_B_state’ = act_B;

Thus, whenever act_A terminates, act_B is initiated on timeline tml_B. But, what if the
currently executing action on timeline tml_B is not an allowed predecessor of act_B? To
handle that case, we need an additional guard on the <current_action> -> <next_action>

transition resulting in:

tml_A_state = act_A; %% = <current_action>;

(tml_B_state = act_PB1 OR

tml_B_state = act_PB2 OR
...

tml_B_state = act_PBn)

-->

tml_A_state’ = <next_action>;

tml_B_state’ = act_B;

where act_PB1, act_PB2, ... act_PBn are all the allowed predecessor actions of act_B.
It is also necessary to check that the duration constraints on all of these predecessor actions
are met. These necessitate the use of global start variables: A_start and B_start. If there
were two predecessor actions to act_B, say B0 and B1, we would end up with a guard similar
to the following:

16

((B_state = B0

AND time >= B_start + 0

AND time <= B_start + 10

) OR (B_state = B1

AND time >= B_start + 5

)

)

It is also necessary to make sure that any constraints on the initiated action on the time-
line are satisfied. In the above example it is necessary to examine the B0 -> act_B and
B1 -> act_B against all of the Allen operators in the database. This is accomplished by a
recursive call to the procedure we are describing in this section.

The semantics of the constraint can be strengthened by matching a second pattern:

<tml>: <current_action> −−> <next_action>

act_Btml_A act_A tml_Bmeets

When processing the transitions into the act_B action on the tml_B timeline, we update the
tml_A timeline as well:

tml_B_state = <current_action>

AND tml_A_state = act_A;

-->

tml_B_state’ = act_B %% = <next_action>

tml_A_state’ IN act_NA_i, ... , act_NA_n;

where act_NA_i, . . . , act_NA_n are the successor actions of act_A. And, of course, we must
check that the durations and constraints are satisfied for this transition as before.

3.5 The met by Allen Operator: A met by B

There are two matching patterns needed for the met_by operation:

tml_A.act_B tml_B.act_A

Whenever the translator finds the following match:

<tml>: <current_action> −−> <next_action>

act_Btml_A act_A tml_Bmet_by

17

the following variable update is added to the <current_action> -> <next_action> tran-
sition:

tml_A_state’ = act_A;

In other words, when act_B is terminated on timeline tml_B, action act_A is started on the
other timeline. This of course, necessitates a check that a predecessor action of act_A is
currently executing. The net result is:

tml_B_state = act_B

(tml_A_state = act_PA1 OR

tml_A_state = act_PA2 OR
...

tml_A_state = act_PAn

)

-->

tml_B_state’ = <next_action>

tml_A_state’ = act_A;

where act_PA1, act_PA2, . . . , act_PAn are the predecessor actions of act_A.
Also it is necessary to match transitions on the other timeline as well:

<tml>: <current_action> −−> <next_action>

act_Btml_A act_A tml_Bmet_by

In other words, we can allow entrance into state act_A, if action act_B is currently executing.
Therefore, the following guard must be added:

tml_B_state = act_B

Since act_A is met by act_B, it is necessary that act_B be terminated with an update to
tml_B_state:

tml_B_state’ IN {act_NB1, .., act_NBn};

where NB_i, .., NB_n are the successor actions of act_B. The net result is

tml_A_state = act_A; %% = <current_action>;

tml_B_state = act_B

-->

tml_A_state’ = <next_action> ;

tml_B_state’ IN {act_NB1, act_NB2, ...act_NBn} ;

So whenever act_A is terminated, act_B is initiated. And of course we must check that the
durations and constraints are satisfied for this transition as in the meets operator.

18

3.6 The starts Allen Operator: A starts B

There is just one matching pattern needed for the starts operation:

tml_A.act_A
tml_B.act_B

Whenever there is a match

<tml>: <current_action> −−> <next_action>

act_Btml_A act_A tml_Bstarts

the following variable update is added to the <current_action> -> <next_action> tran-
sition:

tml_B_state’ = act_B;

The net result is

tml_A_state = <current_action>;

(tml_B_state = act_PB1 OR

tml_B_state = act_PB2 OR
...

tml_B_state = act_PBn

)

-->

tml_A_state’ = act_A; %% = <next_action>

tml_B_state’ = act_B;

where act_PB1, act_PB2, ... act_PBn are all of the allowed predecessor actions of act_B.
So, whenever act_A is initiated, act_B is also initiated, and this transition is guarded with
the requirement that a predecessor action of act_B is executing.

There is a semantics issue that arises here: whether or not act_B can be scheduled
without act_A being started. For example, does the following timeline trace

A: A1 | A3 |

B: B1 | B2 |

satisfy the constraints

19

A1 -> (A2 | A3)

B1 -> B2

A.A2 starts B.B2

In this trace, A2 does not execute. Since the semantics of A op B is FORALL A EXISTS B, the
above trace represents a vacuous solution and hence does meet the constraint.

3.7 The ends Allen Operator: A ends B

There is just one matching pattern needed for the ends operation:

tml_B.act_B
tml_A.act_A

Whenever there is a match

<tml>: <current_action> −−> <next_action>

act_A tml_B act_Btml_A ends
action act_B has to be terminated along with action act_A. The net result is:

tml_A_state = act_A; %% = <current_action>

tml_B_state = act_B

-->

tml_A_state’ = <next_action>;

tml_B_state’ IN act_NB1, act_NB2, ..., act_NBn;

where act_NB1, act_NB2, . . . , act_NBn are all of the allowed successor actions of act_B. So,
whenever act_A is terminated act_B is also terminated and a successor action is initiated.
If there is no successor state for act_B, then the guard is falsified with the addition of

AND FALSE

If the guard is falsified, then act_A is never allowed to terminate.

3.8 The equals Allen Operator: A equals B

The equals operator

tml_A.act_A
tml_B.act_B

is implemented as the combination of starts and ends. In other words, the Allen operation
A equals B is internally translated into A starts B and A ends B.

20

3.9 The before Allen Operator: A before B

The remaining three operators – before, after, and overlaps – require that additional
variables be introduced in the SAL model in order to enforce the desired behavior. For
example, to ensure that action act_1 occurs before act_2, a variable must be used to record
the fact that act_1 has occurred some time in the past. One extra variable is needed for
each before constraint, because the variable that enforces act_1 before act_2 does not
help in establishing act_3 before act_4.

The model generator has a mechanism for creating unique variable names, so that no
name collision is possible when dealing with multiple constraints. The operator names and
the actions’ names and parameters that are involved are part of this identifier.

There are two matching patterns required for the before operation:

tml_B.act_Btml_A.act_A

For example, the before constraint

tml_A.act_A before tml_B.act_B

a Boolean variable tml_A_act_A_before_tml_B_act_B is declared and initialized as FALSE.
Then, whenever there is a match:

<tml>: <current_action> −−> <next_action>

act_A tml_B act_Btml_A before

the fact that tml_A.act_A has occurred is recorded:

tml_A_state = act_A; %% = <current_action>

-->

tml_A_state’ = <next_action>;

tml_A_act_A_before_tml_B_act_B’ = true

Also, action act_B cannot be executed unless action act_A has executed in the past. So
whenever there is a match:

<tml>: <current_action> −−> <next_action>

act_Btml_A act_A tml_Bbefore

the following code is generated:

tml_B_state = <current_action>

AND tml_A_act_A_before_tml_B_act_B

-->

tml_B_state’ = act_B;

21

Another semantics issue is raised here. The mechanism for recording the occurrence of
act_A can be modified so that it is matched repeatedly (by resetting the history variable)
or just once (without resets). These two interpretations correspond to two distinct views
of the Allen operator semantics. There is no clear indication as to which approach is to be
preferred. The current implementation accepts a timeline where action act_B never occurs.
This is a weaker constraint than requiring that for each act_A, there should necessarily be
a matching occurrence of act_B. The current implementation is also strict. In other words,
if A meets B, then A before B is not true.

3.10 The after Allen Operator: A after B

The after operator

tml_A.act_A tml_B.act_B

is the dual of the before operator, i.e. the code generated for the constraint act_A before act_B
is identical to that for act_B after act_A. Hence, the code generation is very similar to
the above: an additional history variable is needed to record the occurrence of act_A, when
leaving the state act_A, this fact is recorded in the history variable. Any transition into
act_B is then guarded by the condition that the history variable is true.

3.11 The overlaps Allen Operator: A overlaps B

The constraint act_A overlaps act_B

tml_A.act_A tml_A.act_A

tml_B.act_Btml_B.act_B
or

can be satisfied by two scenarios:

• act_A occurs first, then the system needs to traverse the following sequence of states
and no other: act_B starts, act_A ends, and afterwards act_B ends.

• act_B occurs first, then the only allowed sequence is: act_A starts, act_B ends, and
then act_A ends.

Monitoring the correct succession of states can be enforced by using one additional variable
that records either one of the above initial events and then the subsequent intermediate
states that are traversed. Alternatively, we can use two Boolean variables to record which
one of the initial conditions has occurred: has act_A happened first or act_B?

There are four separate match patterns that generate code for an overlaps constraint.
More precisely we can be either entering or leaving either act_A or act_B. The first pattern
is

22

<tml>: <current_action> −−> <next_action>

act_A tml_B act_Btml_A overlaps

The code generated for the first pattern is:

tml_A_state = act_A %% = <current_action>

AND act_A_first_overlaps_act_B

-->

tml_A_state’ = <next_action>;

The second pattern is:

<tml>: <current_action> −−> <next_action>

act_Btml_A act_A tml_Boverlaps

The code generated for the second pattern is:

tml_A_state = <current_action>

-->

tml_A_state’ = act_A %% = <next_action>

act_A_first_overlaps_act_B’ = NOT act_B_first_overlaps_act_A

The third pattern is

<tml>: <current_action> −−> <next_action>

act_Btml_A act_A tml_Boverlaps

The code generated for the third pattern is:

tml_B_state = <current_action>

-->

tml_B_state’ = act_B; %% = <next_action>

act_B_first_overlaps_act_A’ = NOT act_A_first_overlaps_act_B

The fourth pattern is

<tml>: <current_action> −−> <next_action>

act_Btml_A act_A tml_Boverlaps

23

The code generated for the fourth pattern is:

tml_B_state = act_B

AND act_B_first_overlaps_act_A

-->

tml_B_state’ = <next_action>;

4 Transition Parameters

The processing of action parameters results in additional guards and variable updates. Con-
sider the following example transition

A1(xx,yy,_,ww) -> A2(_,yy,ww)

where the matching of parameter names indicates a constraint on the transition. For each
matching argument, it is necessary to generate a variable to hold the value of that matched
parameter. The translator creates a variable name by concatenating the parameter identifier
to the action name. For example, if the A1 and A2 actions were defined as follows:

A1(p1: type1, p2: type2, p3: type3, p4: type4)

A2(p1: type1, p2: type2, px: type4)

the translator will generate the following GLOBAL variables:

A1_p2: type2;

A1_p4: type4;

A2_p2: type2;

A2_px: type4;

Note that variables are only created where needed, namely where there is a match. The
transition statement equates these parameters as follows:

A1_p2 = A2_p2

A1_p4 = A2_px

These parameter matchings can be generated on the pre side, such as

A1_p2 = A2_p2’ AND A1_p4 = A2_px’

or the post side

A2_p2’ = A1_p2;

A2_px’ = A1_p4;

24

The primes indicate that these are the values of the variables after the update. The advantage
of the post form is that it directly selects the new values for the parameters after the
transition. However, in the presence of multiple constraints it is possible to have multiple
updates on the same parameter:

A1_p2’ = A2_p2;

A1_p2’ = B3_p2;

This construction is not allowed in SAL, while the pre version is allowed:

A1_p2’ = A2_p2 AND A1_p2’ = B3_p2

Although it is necessary to actually update the variables, the pre form is deployed as much
as possible to avoid illegal updates.

5 Constraint Parameters

The impact of parameters on the Allen operation constraints is very complicated. In fact,
many subtle semantics issues arise here. These will not be dealt with in detail in this
paper. Instead, we will present a few examples of how parameter processing is done, without
attempting to be complete.

For convenience, we will restrict our attention to two timelines A and B with actions
A1, A2, ... and B1, B2, ... For simplicity, we will not address the processing of the action
durations in the following subsections. Also for simplicity we will assume that all actions
have the following parameter identifiers: x: animals, y: animals, z: animals. For example:

A1(x: animals, y: animals, z: animals)

A2(x: animals, y: animals)

B4(x: animals, y: animals)

5.1 Example 1 – Parameter Matching

Suppose we have the following transitions with matching parameters:

A1(xx) -> A2(_,xx)

B1(aa,_) -> B2(_,aa)

A.A1(aaa) WITH meets B.B2(fish,aaa)

When processing the A1(xx) -> A2(_,xx) transition, we must first handle the matching
parameter as follows:

A_state = A1

-->

A_state’ = A2;

A2_y’ = A1_x;

25

Next, we need to make sure that the meets constraint is satisfied. Therefore, the B2 action
must be initiated as well.

A_state = A1

AND B_state = B1

-->

A_state’ = A2;

B_state’ = B2;

A2_y’ = A1_x;

Notice the presence of the guard AND B_state = B1, which insures that the appropriate pre-
decessor state of B2 is executing. Next, we need to make sure that the parameter matchings
of the meets constraint are satisfied:

A_state = A1

AND B_state = B1

AND B2_x’ = fish

AND B2_y’ = A1_x

-->

A_state’ = A2;

B_state’ = B2;

A2_y’ = A1_x;

These guards are indented for easy recognition. Finally, we must make sure that the
B1(aa,_) -> B2(_,aa) transition rules are observed:

A_state = A1

AND B_state = B1

AND B2_x’ = fish

AND B2_y’ = A1_x

-->

A_state’ = A2;

B_state’ = B2;

B2_y’ = B1_x;

A2_y’ = A1_x;

The A.A1(aaa) WITH meets B.B2(fish,aaa) constraint must also be considered when
processing the transition from B1 -> B2. Clearly, the system should be able to make this
transition when the action on the A timeline is A1. But what if the current action on the A

timeline is not A1? Although we can envision solutions where B1 proceeds to B2 and the A

timeline remains in state A1 awaiting a future B2 to meet, why not take advantage of this
situation and transition A1 to A2 along with the B1 to B2 transition (and thus satisfy this
Allen op constraint immediately)?

B1_to_B2: %% B1 -> B2

26

B_state = B1

AND (A_state = A1 => (TRUE

AND A1_x’ = A2_y’

AND B2_x’ = fish

AND B2_y’ = A1_x))

-->

B_state’ = B2;

IF A_state = A1 THEN

A2_y’ = A1_x;

A_state’ = A2;

ENDIF

B2_y’ = B1_x;

B2_x’ IN {x: animals | true};

Notice that the guard contains the following conditional (A_state = A1 => If
this conditional is true, then the constraints associated with the transition from A1 to A2

are enforced by some further equalities after the conditional and with some variable updates
inside an IF-THEN-ELSE. Note that if the Allen operation contains some constant parameters
in the first action (e.g. A.A1(fish) WITH meets B.B2 , this is handled by adding a term to
the conditional as follows (A_state = A1 AND A1_x = fish) =>

5.2 Example 2 – Constant Parameters

A1(xx,_,_) -> A2(_,xx) -> A3

B0 -> B1 -> B2(dog,_,_)

A.A2 starts B.B2(_,cat,donkey)

when processing A1 -> A2, the following will be generated:

A_state = A1

AND B_state = B1

AND B2_y’ = cat AND B2_z’ = donkey

-->

A_state’ = A2;

B_state’ = B2;

B2_x’ = dog;

B2_y’ IN {x: animals | true}

B2_z’ IN {x: animals | true}

A2_y’ = A1_x;

A2_x’ IN {x: animals | true}

27

The guard AND B2_y’ = cat AND B2_z’ = donkey insures that the constant parameters of
B.B2 in the Allen operation are properly set. The variable update B2_x’ = dog insures that
the B timeline transition constraints are met. The last two variable updates insure that the
A timeline constraints are met. Note that the A2_x’ IN {x: animals | true} update occurs
because of the "_" in the first parameter position of the A2 action. Also note that although
the B2_y and B2_z parameters could be updated as follows:

B2_y’ = cat;

B2_z’ = donkey;

If the following additional constraint were present

B1(mm) -> B2(dog,mm,_)

we would obtain two different updates of B2_y:

B2_y’ = cat;

B2_y’ = B1_x;

which is not allowed in SAL.

5.3 Example 3 – Constant Parameters

A1(mm) -> A2(_,mm) -> A3

B0 -> B1 -> B2 -> B3

A.A2(dog,ww) WITH contains B.B2(ww,_)

When processing A2 -> A3, the following is generated:

A_state = A2

AND (A2_x = dog

=> (NOT (B_state = B2

AND B2_x = A2_y))

AND B2_while_A2)

-->

A_state’ = A3;

The first thing to note is that the guard has an implication (=>). Thus, the requirement that
A2 contains B2 is only enforced when the first parameter of A2 is dog. Therefore if an A2 is
executing with a first parameter that is not equal to dog, there is no constraint that it must
contain B2. If the first parameter of A2 is equal to dog, then the transition is not allowed to
occur as long as B_state = B2 AND B2_x = A2_y is true.

If the A timeline transitions were modified to:

28

A1(mm) -> A2(dog,mm) -> A3

then the following would be generated

A_state = A2

AND A2_x = dog

AND (A2_x = dog

=> (NOT (B_state = B2

AND B2_x = A2_y)

)

)

AND B2_while_A2

-->

A_state’ = A3;

This is logically equivalent to

A_state = A2 AND A2_x = dog

AND (NOT (B_state = B2 AND B2_x = A2_y)

AND B2_while_A2

-->

A_state’ = A3;

but the translator does not perform this optimization.
The B1 -> B2 transition is

B_state = B1

-->

B_state’ = B2;

IF A_state = A2 AND A2_x = dog AND B2_x’ = A2_y THEN

B2_while_A2’ = true;

ENDIF;

B2_x’ IN {x: animals | true};

Another issue that arises is whether the contains operation should be strict containment or
whether equal starting or end times should be allowed. The mechanisms described previously
for contains, have allowed equal start or end times.

5.4 Example 4 – Constant Parameters

A0(xx) -> A1(xx,_) -> A2(_,xx) -> A1(_,xx)

A2(dog,_) -> A3

B0 -> B1 -> B0

B1 -> B2 -> B3

A.A2(dog,qq) meets B.B2(qq)

29

When generating a transition from A2 to A1 we get:

A_state = A2

AND (A2_x = dog => (B_state = B1

AND B2_x’ = A2_y))

-->

A_state’ = A1;

A1_y’ = A2_y;

A1_x’ IN {x: animals | true}

IF A2_x = dog THEN

B_state’ = B2;

B_start’ = time;

ENDIF;

This IF THEN ENDIF construct is not supported in SAL. Therefore, it is translated into the
following in a third pass of the translator.

B_state’ = IF A2_x = dog THEN B2 ELSE B_state ENDIF;

The IF THEN ENDIF version is available in an auxiliary *.sl1 output file. This file is often
easier on human eyes than the final *.sal file.

When generating a transition from B1 to B2 we get:

B_state = B1

AND ((A_state = A2 AND A2_x = dog) =>

((A_state’ = A1 => A2_y’ = A1_y’)

AND (A_state’ = A3 => A2_x = dog)

AND B2_x’ = A2_y

))

-->

B_state’ = B2;

IF A_state = A2 AND A2_x = dog THEN

IF A_state’ = A1 THEN

A1_y’ = A2_y;

ENDIF

A_state’ IN {A1, A3};

ENDIF

B2_x’ IN {x: animals | true};

6 Processing IF THEN ELSE expressions

The specification of an action allows a WITH clause with an “if then else” expression. In each
branch, there can be different constraints. But let’s start with a simple case:

30

A2(x,y: animals):

WITH

if x = gorilla then

starts B.B2(fish,x,y)

else

starts B.B2(cat,horse,fish)

endif

Now suppose the transitions are constrained as follows:

A1(xx,_,_) -> A2(xx,_) -> A1 -> A3

B0 -> B1 -> B2

Then the following is generated for the A1 to A2 transition

A_state = A1

AND (A2_x = gorilla

=> (B_state = B1 AND B2_x’ = fish

AND B2_y’ = A2_x’

AND B2_z’ = A2_y’)

)

AND (NOT A2_x = gorilla

=> (B_state = B1

AND B2_x’ = cat AND B2_y’ = horse AND B2_z’ = fish)

-->

A_state’ = A2;

start’ = time;

B_state’ = B2

A2_x’ = A1_x;

A2_y’ IN {x: animals | true}

Nested “if then else” expressions are a bit more tricky to handle. Consider the following
example:

A1(x,y: animals)

WITH

if x = cat then

contains B.B1(_,dog)

else

if y = dog then

contains B.B2(cat,_,fish)

else

meets B.B2(_,horse,cat)

endif

31

endif

A2(x,y: animals)

with the following transitions

A0 -> A1(dog,y) -> A2(_,y)

B0 -> B1(aa,_) -> B2(dog,aa,aa)

The transition from A1 to A2 is generated (omitting timing) as follows:

A_state = A1

AND A1_x = dog

AND (A1_x = cat

=> (NOT (B_state = B1 AND B1_y = dog))

)

AND (A1_y = dog AND NOT A1_x = cat

=> (NOT (B_state = B2 AND B2_x = cat AND B2_z = fish))

)

AND (NOT A1_y = dog AND NOT A1_x = cat

=> (B_state = B1 AND

(A1_y = dog AND NOT A1_x = cat

=> (A_state = A1 AND B2_x’ = cat AND B2_z’ = fish)

)

AND B1_x = B2_y’

AND B1_x = B2_z’

AND B2_y’ = horse AND B2_z’ = cat

)

)

-->

A_state’ = A2;

A_start’ = time;

IF NOT A1_y = dog AND NOT A1_x = cat THEN

B_state’ = B2;

B2_x’ = dog;

B2_y’ = B1_x;

B2_z’ = B1_x;

ENDIF;

A2_y’ = A1_y;

32

7 Semantic Subtleties

In the development of the translator, several subtle issues associated with the exact meaning
of the Allen operations were discovered. In this section, we will explore some of these.

7.1 Non-scheduled Actions and Vacuous Solutions

Suppose we have two timelines A and B with the following actions and allowed sequences:

A0 -> (A1 | A2)

A1 -> A2

B0 -> B1 -> B2

B0 -> B2

The two transitions from B0 represent alternatives and are equivalent to B0 -> (B1 | B2) in
APPL. Now consider the following Allen operation:

A1 WITH ends B1

The following time sequences clearly satisfy the ends constraint:

A0 | A1 | A2 |

--

B0 | B1 | B2 |

--

Now suppose that A1 never executes. Is the Allen operation satisfied in this case? Based upon
preliminary experimentation, it appears that the EUROPA 2 planner allows such “vacuous”
solutions.

Now suppose that B1 is not executing at the time A1 is executing as in the following
timeline sequence:

A1 | A2 |

--

B0 | B2 |

--

Does this satisfy the constraint? Based upon preliminary experimentation, the EUROPA 2
planner requires that the B1 action be explicitly scheduled and must end with A1. In fact, if
there are multiple A1s, each must end its own B1.

Therefore, given an Allen operation A op B, we can express the meaning as follows:

FORALL A: EXISTS B: A op B

33

7.2 Multiple Invocations with After Constraints

Consider the following Allen Operation

A1 before B2

Does the following timeline meet this condition?

| A1 | A2 |

| B1 | B2 | B3 | B2 |

or must there be an A1 before every B2?

--

| A1 | A2 | A1 | A2 |

--

| B1 | B2 | B3 | B2 |

--

Based upon our experimentation with EUROPA 2, the first timeline appears to be adequate.
This is consistent with the FORALL-EXISTS semantics given above.

7.3 Terminal States

Suppose we have the following Allen operation:

A1 meets B2

If A1 never transitions to A2 (i.e. it is still active at HorizonEnd), is the following an
acceptable solution?

---|

A1(horse) |

---|

Idle | B1(horse,_) | B2(dog,horse) |

---|

EUROPA 2 accepts this as a valid plan. It should be noted that this is a violation of the
FORALL-EXISTS semantics. Therefore, the user of the Allen operators needs to remem-
ber that the FORALL-EXISTS semantics does not apply at the beginning and end of the
timelines.

34

7.4 Parameters

The presence of parameters significantly complicates the semantics of the Allen operators.
There are three categories to consider:

• constant parameters, e.g. A1(horse)

• matching parameters, e.g. A1(mmm) meets B4(mmm)

• wild card parameters, e.g. A1(_)

and combinations of these.

7.4.1 Constant Parameters

Suppose we have the following Allen operation:

A1(cat) WITH ends B1

Does the following timeline satisfy this specification?

---|

A1(horse) | A2 |

---|

Idle | B1(horse) | B2(dog,horse) |

---|

In other words, is this an allowable vacuous solution? In EUROPA 2, the answer is yes. The
constant parameter can be thought of as a name extension, e.g. A1_cat. The semantics is
thus:

FORALL A_cat: EXISTS B: A_cat op B

Therefore, given two actions

A(p1,p2,...,pn: type)

B(q1,q2,...,qm: type)

and the following Allen operation

A(a1,a2,...,an) op B(b1,b2,...,bm)

where all of the arguments are constant parameters, the meaning is as follows:

FORALL A: p1 = a1 AND p2 = a2 AND ... AND pn = an

-> EXISTS B, b1, b2, ..., bm:

A[p1,...,pn](a1,a2,...,an) op B[p1,...,pn](b1,b2,...,bm)

35

7.4.2 Matching and Wild Card Parameters

Matching parameters do not restrict the domain of application of the Allen operation. In-
stead they constrain the allowed values of an acceptable plan. Therefore given two actions

A(p1,p2,...,pn: type)

B(q1,q2,...,qm: type)

and the following Allen operation

A(xx,_,yy_, ...) op B(_,yy,_,_,xx, ...)

where the xx and yy are matching parameters. The meaning is as follows:

FORALL A: EXISTS B, xx, yy:

A(xx,_,yy_, ...) op B(_,yy,_,_,xx, ...)

7.5 Loss of Allen Op Symmetry

When the definitions of the Allen Operations are presented graphically as in Figure 1, one
would expect that there would be a symmetry between many of the Allen ops. For example,
A contains B if and only if B is contained_by A. While this is true of any single pair of
action intervals, the symmetry does not hold when used to describe a domain model. The
reason is that there is an implicit quantification over many instances of these actions. For
example, consider the following specification:

A1 meets B2

The following plan satisfies this specification:

--

A1 | A2

--

Idle | B1 | B2 | B1 | B2

--

But, this plan is not satisfied if the above Allen operation is replaced by its dual:

B2 met_by A1

This observation is consistent with the FORALL-EXISTS semantics discussed previously.

36

A BA meets B

A met_by B
B A

A contains B
B

A

A

B

A
B

A
B

A starts B

A contained_by B

A ends B

A equals B A
B

A before B

A after B

A B

B A

A
B

A overlaps B

Figure 1: Graphical Definition of Allen Operations

37

8 Observations and Conclusions

The goal of this work was to develop a capability to translate planning problems specified in
the APPL language into the input language of the SAL model checker. This capability was
intended to be used in conjunction with another translator from the APPL language to the
input language of the EUROPA planning system. Together these translators should enable
the formal verification of key properties of a plan specification, especially the specification
of a generic domain model.

During the development of this translator, our understanding of plan specification using
Allen Operations has greatly increased. We believe we are now in the position to make some
observations about the advantages and disadvantages of specifying planning problems using
a language built around Allen Operations.

The first observation is that it is easy to construct plan specifications that have no
solution. For example, consider the following constraints

A meets B

C met_by A

These constraints require that A must be followed by both B and C, which is impossible. This
might be obvious if the constraints are relatively close to each other in a plan specification,
but what if they are several pages apart? Would this contradiction be detected? What might
be intended by the above specification is that in some situations one constraint must hold
and in another situation the other must hold. This can be accomplished using an if-then-else
structure as follows

if (condition_1) then

A meets B

else

C met_by A

endif

Of course, this requires bringing these previously separate specifications together in one
place. This, in turn, may make the local specifications less clear.

The second observation is that the FORALL-EXISTS semantics is somewhat non-intuitive.
When one first encounters the Allen operations, one would naturally expect that A meets B

and B met_by A are duals. In other words, they specify the same thing. But as shown in
Section 7, this is not the case. Therefore, one must be very careful when using Allen ops to
keep in mind the FORALL-EXIST meaning and not rely on the English language meaning.
Also, the fact that a constraint can be satisfied vacuously can be non-intuitive. If you have

A(dog) meets C

you can easily fall into the trap of thinking that a solution plan will have an A(dog) action
that is followed by a C action. However, it is perfectly acceptable for the planner to deliver a
solution with A(cat) and never schedule an A(dog). Furthermore, there are some exceptions

38

to this FORALL-EXISTS semantics, which complicate our understanding. In particular, at
the beginning and end of the planning horizon, the EXISTS <constraint> clause need not
apply. A good example of this is

At meets Going

Going meets At

The last Going or At on a timeline need not satisfy this constraint. Similarly the first Going
or At on a timeline need not satisfy the following constraint:

At met_by Going

Going met_by At

The third observation is that the use of multiple Allen Operations can have complex
interactions. For example:

A starts B2

B2 met_by B1

Here we declare that every time an A starts, a B2 must also start. But the second constraint
requires that B2 be immediately preceded by B1. So the second constraint interacts with the
first one as a kind of guard: A cannot be scheduled unless B1 is already executing, and as
soon as A starts, B1 must terminate. Note that the declaration

A starts B2

B1 meets B2

which looks very similar, has a very different kind of interaction. Here, A is free to initiate
at any time and if B1 is executing at the time that A starts, then the planner could either
satisfy the second constraint at this point (by terminating B1 and starting B2) or by letting
B1 continue until a second B2 executes. All of these possibilities must be considered when
writing a domain specification.

The fourth observation is that Allen Operations do not provide a good means of desig-
nating a precise sequence of actions. Consider the following APPL construct:

A1 -> A2 -> A3 -> A4

This declaration provides a concise way of saying exactly what sequence of actions can occur.
This can be partially accomplished by the following Allen Operations:

A1 meets A2

A2 meets A3

A3 meets A4

However, one problem remains. The fact that there can be no successor to A4 is not specified.
Furthermore, merely making A4 a goal state does not accomplish this because

39

A1 -> A2 -> A3 -> A4 -> A3 -> A4

is a solution to the above Allen op specification. In EUROPA one can designate this terminal
state by stating that the A4 must always be at the end of the timeline. But note that this is
not a solution that uses Allen ops alone.

The fifth observation is that Allen Operations do not provide a good means of designating
a restricted sequence of actions, because they can have non-local interactions and can be
spread throughout a specification. Consider the following APPL construct:

A1 -> (A2 | A3 | A4) -> A5

The following Allen ops can accomplish this

if x = 1 then

A1 meets A2

elsif x = 2 then

A1 meets A3

else

A1 meets A4

endif

A2 meets A5

A3 meets A5

A4 meets A5

Now suppose we specify, in a different place, that the timeline must begin with A0 and that
A1 is met_by A0:

A1 met_by A0

Together, one might expect that this specifies that exactly one of the following sequences
must occur:

A0 -> A1 -> A2 -> A5

A0 -> A1 -> A3 -> A5

A0 -> A1 -> A4 -> A5

But this specification does not rule out

A0 -> A3 -> A5

A0 -> A4 -> A5

A0 -> A5

40

Of course, the addition of A0 meets A1 would solve the problem, but this demonstrates how
careful one must be when using Allen ops to specify a restricted sequence of operations.

The development of the APPL -> SAL translator was driven by the need to match the
APPL -> NDDL semantics. Several things made this difficult. First, we did not have a formal
semantics for NDDL, so we had to infer the meaning of NDDL by executing EUROPA on
test problems. The FORALL-EXISTS semantics and end-case exceptions were discovered as
we built the translator. Second, we discovered that the EUROPA semantics did not match
our original understanding, so there is a structural mis-match between APPL and EUROPA.
In particular, we had not originally envisioned that EUROPA employs a kind of inclusive4

approach to specifying the allowed set of actions on a timeline. In EUROPA, any action
can be followed by any other action, unless it is prohibited from doing so by a constraint
(e.g. an Allen Operation). However, APPL was designed around the idea of a state machine
where all of the transitions are enumerated. In this constructive approach, an action can
only be followed by another action if it is specifically included in the specification. In the
end, we were able to bring these two translators fairly close together with the addition of null
states, but we are not completely satisfied with our current solution. Third, the interaction
of Allen Operations was much more complex than we envisioned. These interactions led
to far more complicated code than we originally expected. Furthermore, we often had to
rework the translation scheme as we discovered how EUROPA handled these interactions.
For that reason, we do not have confidence that the translator is sound. At best, we have
produced a rapid prototype which can serve as a basis for future developments. The authors
hope that the techniques described in this paper will be useful to future developers who seek
to connect planning languages to symbolic model checkers.

References

[1] James F. Allen and George Ferguson. Actions and Events in Interval Temporal Logic.
Technical Report TR521, University of Rochester, 1994.

[2] Rick W. Butler and César A. Muñoz. An abstract plan preparation language. Report
NASA/TM-2006-214518, NASA Langley, NASA LaRC,Hampton VA 23681-2199, USA,
2006.

[3] Leonardo de Moura, Sam Owre, and Natarajan Shankar. The SAL language manual.
Technical Report SRI-CSL-01-02, CSL Technical Report, 2003.

[4] Jeremy Frank and Ari Jonsson. Constraint-based Attribute and Interval Planning. Tech-
nical report, NASA AmesResearch Center, Moffett Field, CA, 2002. to appear in the
Journal of Constraints, Special Issue on Constraints and Planning.

4In other words, everything is included except that which is explicitly ruled out by the constraints.

41

[5] Drew McDermott and AIPS’98 IPC Committee. PDDL–the planning domain
definition language. Technical report, Yale University, 1998. Available at:
www.cs.yale.edu/homes/dvm.

42

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

2. REPORT TYPE
Technical Memorandum

 4. TITLE AND SUBTITLE
Solving the AI Planning + Scheduling Problem Using Model Checking via
Automatic Translation From the Abstract Plan Preparation Language
(APPL) to the Symbolic Analysis Laboratory (SAL)

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Butler, Ricky W.; Muñoz, César A.; and Siminiceanu, Radu I.

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Langley Research Center
Hampton, VA 23681-2199

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

L-19395

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES
An electronic version can be found at http://ntrs.nasa.gov

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 61
Availability: NASA CASI (301) 621-0390

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

This paper describes a translator from a new planning language named the Abstract Plan Preparation Language (APPL) to the
Symbolic Analysis Laboratory (SAL) model checker. This translator has been developed in support of the Spacecraft
Autonomy for Vehicles and Habitats (SAVH) project sponsored by the Exploration Technology Development Program, which
is seeking to mature autonomy technology for the vehicles and operations centers of Project Constellation.

15. SUBJECT TERMS
AI Planning; Autonomy; Formal Methods; Model Checking; Software Verification

18. NUMBER
 OF
 PAGES

47
19b. TELEPHONE NUMBER (Include area code)

(301) 621-0390

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

699152.04.03.03.04

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/TM-2007-215089

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
11 - 200701-

