

NASA/CR-2007-214546
NIA Report No. 2007-03

Batch Proving and Proof Scripting in PVS

Cesar A. Munoz
National Institute of Aerospace (NIA), Hampton, Virginia

February 2007

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for NASA’s
scientific and technical information. The NASA STI
Program Office provides access to the NASA STI
Database, the largest collection of aeronautical and
space science STI in the world. The Program Office is
also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are published by
NASA in the NASA STI Report Series, which
includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services that complement the STI
Program Office’s diverse offerings include creating
custom thesauri, building customized databases,
organizing and publishing research results ... even
providing videos.

For more information about the NASA STI Program
Office, see the following:

• Access the NASA STI Program Home Page at

http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at (301) 621-0134

• Phone the NASA STI Help Desk at

(301) 621-0390

• Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

NASA/CR-2007-214546
NIA Report No. 2007-03

Batch Proving and Proof Scripting in PVS

Cesar A. Munoz
National Institute of Aerospace (NIA), Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Cooperative Agreement
 NCC1-02043

February 2007

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7115 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171
(301) 621-0390 (703) 605-6000

BATCH PROVING AND PROOF SCRIPTING IN PVS∗

César A. Muñoz†

ABSTRACT

The batch execution modes of PVS are powerful, but highly technical, features of
the system that are mostly accessible to expert users. This paper presents a PVS
tool, called ProofLite, that extends the theorem prover interface with a batch proving
utility and a proof scripting notation. ProofLite enables a semi-literate proving style
where specification and proof scripts reside in the same file. The goal of ProofLite is
to provide batch proving and proof scripting capabilities to regular, non-expert, users
of PVS.

1 INTRODUCTION

The Prototype Verification System (PVS) [9] is a higher order logic theorem prover developed
and maintained by SRI International.1 PVS has been applied to verification problems in a
variety of areas, including safety critical industrial applications.

PVS is well known for its expressive specification language and its impressive theorem
prover. The specification language is based on a rich type system that supports predicate sub-
typing and dependent records [12]. The theorem prover has been optimized for large proofs,
for example basic numerical types are built-in and propositional simplification uses Binary
Decision Diagrams. Furthermore, like most theorem provers, PVS can be conservatively
extended with user-defined inference rules [10], called strategies, that tailor the deductive
power of the system to specific domains [1, 15].

Less known features of PVS are the batch execution modes. Although these modes
are quite powerful, their correct use requires a good knowledge of the PVS programming
interface. Therefore, they are mostly accessible to PVS expert users.

Another limitation of the PVS interface is that, in contrast to most theorem provers,
it does not explicitly support a proof scripting notation where proofs are written in a non-
interactive way. In PVS, proofs are interactively constructed via proof commands through a
read-and-evaluate loop. The proof commands are automatically saved by the system in text
files using an internal format. Those files are not intended to be directly edited by the user.

These two capabilities, batch proving and proof scripting, become important when PVS
is integrated into other verification tools. Assume for example that a static checker of a
programming language wants to generate proof obligations for PVS along with specialized
proof commands for each obligation. The formulas can be written into a .pvs file. The
proofs commands, on the other hand, have to be written into a .prf file using the internal
proof fomat. Finally, a PVS batch execution mode has to be used to check whether the proof
obligations are discharged or not.

∗This work was supported by the National Aeronautics and Space Administration, Langley Research
Center under the Research Cooperative Agreement No. NCC-1-02043.

†National Institute of Aerospace (NIA), 100 Exploration Way, Hampton VA, 23666. Email: munoz@
nianet.org.

1PVS is electronically available from http://pvs.csl.sri.com.

1

This paper describes a PVS tool, called ProofLite, that provides a user-friendly interface
to a PVS batch execution mode. ProofLite also supports a proof scripting notation where
formulas and proofs may reside in the same text file. The rest of this paper is structured
as follows. Section 2 gives an overview of the PVS batch modes. Section 3 briefly presents
different proof formats used by PVS. Sections 4 and 5 describe the tool and its applications.
The last section concludes this work.

2 PVS BATCH MODES

Typically, users interact with PVS through its customized Emacs interface. Even mechanical
tasks that do not involve editing, such as, rerunning all the proofs of a fully developed theory,
normally require an interaction with the PVS Emacs interface.

Curious PVS users may have noticed that the PVS command line accepts the option
“-batch”, which runs the system in batch mode [11]. This option is generally used with the
option -l that loads and executes an Emacs Lisp file. This facility is extremely powerful as
arbitrarily complex Emacs Lisp can be executed this way. In particular, any PVS command
can be invoked. Unfortunately, many PVS commands are context-dependent and only make
sense when they are invoked interactively. Therefore, the correct use of this mechanism
requires a good knowledge of the PVS programming interface.

One of the main uses of the PVS batch mode is regression testing. For instance, the fol-
lowing Emacs Lisp code will change the context to <dir>, rerun all the proofs of <file.pvs>,
and collect the output into <file.log>. It will then compare the output against the last run
and report whether there is nothing to compare, there are no significant changes, or some
difference were found since the last run.

(pvs-validate

"<file.log>"

"<dir>"

(let ((current-prefix-arg t))

(prove-pvs-file <file.pvs>)))

If this code is saved in the file <file.el>, the validation run can be performed in batch
mode with the command line:

% pvs -batch -l <file.el>

When a difference is reported, the Emacs command
M-x pvs-compare-validation-window will place the cursor at the position where the output
files differs, if the two log files are in a split window.

For real PVS hackers, a more obscure execution mode is available through the option
-raw. In this mode, the PVS Common Lisp runtime engine is executed without the Emacs
interface. Common Lisp expressions, and in particular PVS Common Lisp commands, can
be executed in batch mode via the command line option -e.

3 PVS PROOF FORMATS

In PVS, specifications and proofs reside in different types of files. Specifications are written in
.pvs text files. Proofs are interactively constructed via proof commands and automatically

2

saved by the system in .prf files. Although proof files are also text files, they are not
intended for user manipulation. The format of the .prf file is described by Sam Owre, one
the main developers of the system, in a message to the PVS mailing list on June 2003 as
follows: “. . . The format is:

(<theory-id>

(<decl-id>

<default-proof-posn>

(<id>

<description>

<create-date>

<run-date>

<script>

<status>

<refers-to>

<real-time>

<run-time>

<interactive?>

<decision-procedure-used>)

...)

...)

where <default-proof-posn> is the (0-based) position of the default proof in the list of
proofs associated with the declaration. The <create-date> is the time that the proof
was first saved, and the <run-date> is the time it was last rerun. The <real-time> and
<run-time> are the time it took the last time it was run, and <interactive?> indicates
whether that was an interactive run or not. These may not really reflect the last run, because
the prove-theory, etc. commands do not write out a new .prf file. Most of the rest of the
fields should be self-explanatory . . . ”

Furthermore, existing PVS proofs can be edited using the PVS Emacs interface. When
a proof is edited by the user, it is presented in the Emacs buffer Proof as a sequence of
commands in a proof tree. For instance, a possible proof of lemma th2:

th2 : LEMMA a <= b IMPLIES a*abs(a) <= b*abs(b)

is displayed in the buffer Proof as follows:

(""

(skeep)

(case "a >= 0")

(("1" (grind :theories "real_props"))

("2"

(grind :theories "real_props")

(mult-ineq -1 -1 :signs (- -))

(assert))))

3

Note that, in this format, any control structure provided by a proof strategy such as try,
if, branch, etc., is lost.

The buffer Proof is typically used for global editing operations, such as replacing an
identifier, for copying a proof from one formula to another, and for stepping through a proof
via the interactive theorem prover. However, given the lack of control structure information,
the proof format displayed in the buffer Proof is not suitable for proof scripting.

4 PROOFLITE

ProofLite is a PVS package.2 PVS packages, which are also called prelude extensions, are
the mechanism offered by PVS to modularly and conservatively extend the system with
user-defined Emacs Lisp code, Common Lisp code, proof strategies, and PVS theories. In
particular, the ProofLite package consists of Emacs Lisp and Common Lisp functions that
implement:

• a command line utility, called proveit,

• a proof scripting notation, and

• a set of Emacs commands for management of proof scripts.

4.1 The proveit Utility

ProofLite includes the command line utility proveit that executes the theorem prover in
batch mode on a .pvs file and reruns all its proofs.

For instance, assume that all the formulas in thms.pvs have been proved.

thms : THEORY

BEGIN

a,b : VAR real

nza : VAR nzreal

th1 : LEMMA a*a >= 0

th2 : LEMMA a <= b IMPLIES a*abs(a) <= b*abs(b)

th3 : LEMMA a*a >= 0

th4 : LEMMA (nza/2)*(2/nza) = 1

th3a : LEMMA a*a >= 0

th4a : LEMMA (nza/2)*(2/nza) = 1

th_5_6 : LEMMA EXISTS (a) : 5 < a AND a < 6

th_6_7 : LEMMA EXISTS (a) : 6 < a AND a < 7

th_8 : LEMMA EXISTS (a,b) : a+b = 8

th_9 : LEMMA EXISTS (a,b) : a+b = 9

END thms

The invocation

% proveit thms

2ProofLite is freely available from http://research.nianet.org/~munoz/ProofLite.

4

reruns all the proofs in thms.pvs, writes the output into thms.out, and prints the following
summary information:

Processing thms.pvs. Writing output to file thms.out.

Proof summary for theory thms

th1...................................proved - complete

th2...................................proved - complete

th3...................................proved - complete

th4...................................proved - complete

th3a..................................proved - complete

th4a..................................proved - complete

th_5_6................................proved - complete

th_6_7................................proved - complete

th_8..................................proved - complete

th_9..................................proved - complete

Theory totals: 10 formulas, 10 attempted, 10 succeeded (2.63 s)

Grand Totals: 10 proofs, 10 attempted, 10 succeeded (2.63 s)

The utility proveit supports several options, e.g,

• The option -clean removes .pvscontext and other binary files. This option is useful
when the system has died abruptly and the context is left in an inconsistent state.

• The option -importchain reruns the proofs of all imported theories as well.

• The option -prooftraces outputs the proof traces, which are needed for regres-
sion testing. Unfortunately, this option does not provide all the functionality of
pvs-validate yet. This extension is planned for a future release.

• The option -package loads a PVS strategy package such as Manip [16], Field [8],
PVSio [5] or Interval [7]. For instance, if the proofs in thms.pvs use strategies defined
in Field, the invocation has the form:

% proveit -package Field thms

• The option -help prints the complete set of options supported by the utility.

4.2 ProofLite Scripts

ProofLite scripts are proof scripts written in specially formatted comments that reside in
regular .pvs files. The simplest type of ProofLite script has the form

%|- <id> : PROOF <step> QED

where <id> is the name of an existing formula and <step> is a proof command supported
by the PVS strategy language [13].

For instance, the proof of th1 can be written in the file thms.pvs using the ProofLite
script:

5

%|- th1 : PROOF (grind) QED

ProofLite scripts can extend to multiple lines. In this case, each line is preceded by the
special comment “%|-”. For instance, the proof of lemma th2 can be written:

%|- th2 : PROOF

%|- (then

%|- (skeep)

%|- (spread (case "a >= 0")

%|- ((grind :theories "real_props")

%|- (then (grind :theories "real_props")

%|- (mult-ineq -1 -1 :signs (- -))

%|- (assert)))))

%|- QED

Normally, ProofLite scripts are just comments to the PVS system. Indeed, unless ex-
plicitly requested by the user, ProofLite scripts are not installed as proofs. The ProofLite
utility proveit automatically installs proof scripts into their respective formulas when pro-
cessing a .pvs file. To prevent accidental overriding of proofs, by default, proveit does not
install proof scripts in formulas that have an existing proof. To override existing proofs,
the proveit option -force must be used. Installation of ProofLite scripts can also be done
through the interactive PVS Emacs interface as described in Section 4.3.

Proof script sharing is supported by ProofLite. For instance, the following ProofLite
script associates the same proof script to lemmas th3 and th4:

%|- th3 : PROOF

%|- th4 : PROOF

%|- (grind)

%|- QED

The proof sharing mechanism is generalized to name-matching formulas, where the char-
acter “*” in the script identifier stands for an arbitrary sequence of one or more characters.
In the following example, all formulas in thms.pvs whose names match the string “th*a”,
e.g., th3a and th4a, share the same proof command:

%|- th*a : PROOF (then (skeep) (grind-reals)) QED

Proof scripts are not restricted to user-defined formulas. The following ProofLite script
associates the same proof command to all Type Correctness Conditions (TCCs) in a theory:

%|- *_TCC* : PROOF <step> QED

Name-matching lemmas can be used to create proof macros. In a ProofLite script
%|- <id> : PROOF <step> QED, the proof command <step> may contain the special symbols
$n, where n ≥ 0. The symbol $0 refers to the name of the lemma that matches <id>. The
symbol $n, where n ≥ 1, refers to n-th matching string, from left to right, in the lemma’s
name. Consider the ProofLite script

6

%|- th_*_* : PROOF

%|- (then (skip-msg "Proving Lemma: $0")

%|- (inst 1 "$1 + ($2 - $1)/2")

%|- (grind))

%|- QED

The string th_*_* matches the name th_5_6. Therefore, the symbols $0, $1, and $2 refer
to th_5_6, 5, and 6, respectively. In this case, the proof command associated with lemma
th_5_6 is

(then (skip-msg "Proving Lemma: th_5_6")

(inst 1 "5 + (6 - 5)/2")

(grind))

Moreover, the string th_*_* matches the name th_6_7. Therefore, the proof command
associated with lemma th_6_7 is

(then (skip-msg "Proving Lemma: th_6_7")

(inst 1 "6 + (7 - 6)/2")

(grind))

Proof macros are particularly useful when PVS specifications are automatically generated
and proof lemmas follow a particular naming convention. However, the parameters enabled
by this mechanism are limited to substrings of valid identifiers. ProofLite supports a more
general parameterization mechanism. Parametric ProofLite scripts have the form:

%|- <id>[e1;...;en]: PROOF

%|- <step>

%|- QED

In <step>, the symbol #n is substituted by en. Consider the ProofLite script

%|- th_8[2;6] : PROOF

%|- th_9[4;5] : PROOF

%|- (then (skip-msg "Proving Lemma: $0")

%|- (inst 1 "#1" "#2")

%|- (grind))

%|- QED

In this case, the proof command associated with lemma th_8 is

(then (skip-msg "Proving Lemma: th_8")

(inst 1 "2" "6")

(grind))

Moreover, the proof command associated with lemma th_9 is

(then (skip-msg "Proving Lemma: th_9")

(inst 1 "4" "5")

(grind))

7

4.3 Proof Script Management Through the PVS Emacs Interface

In general, a PVS package is loaded into the interactive PVS Emacs interface through the
Emacs command M-x load-prelude-library, which will prompt the user for a package
name, e.g., ProofLite. This has to be done only the first time that the package is used in
a working context or after the .pvscontext file has been removed.

Once ProofLite has been loaded into the PVS Emacs interface, a ProofLite script can
be installed as the default proof of a formula by placing the cursor on the script and is-
suing the Emacs command M-x install-prooflite-script. If the ProofLite is shared
by several formulas, all proofs are simultaneously installed. However, this command does
not install a proof in formulas that already have a default proof. The Emacs commands
M-x install-prooflite-script! forces the installation of a proof script regardless of the
existence of a previous proof.

All ProofLite scripts in theory can be installed for the first time through the Emacs
command M-x install-prooflite-scripts-theory. Alternatively, the Emacs command
M-x install-prooflite-scripts-theory! installs all ProofLite scripts and overwrites any
default proof.

The default proof of a formula can be converted into a ProofLite script by placing the
cursor on the formula and issuing the Emacs command M-x insert-prooflite-script.
The script is automatically inserted in the .pvs file after the formula. The Emacs command
M-x display-prooflite-script prompts the user for a formula name and, then, puts the
ProofLite script of the formula’s default proof in the Emacs buffer ProofLite. Afterward,
the script can be modified and manually inserted anywhere in the .pvs file.

Key abbreviations for all these commands are listed in the following table.

Emacs Command Key Abbreviation

M-x install-prooflite-script C-c ip

M-x install-prooflite-script! C-c !p

M-x install-prooflite-scripts-theory C-c it

M-x install-prooflite-scripts-theory! C-c !t

M-x insert-prooflite-script C-c 2p

M-x display-prooflite-script C-c dp

5 APPLICATIONS

ProofLite has been extensively and successfully used in verification projects at the National
Institute of Aerospace and NASA Langley.

Reference [2] presents a tool for mechanical verification of numerical bounds using interval
arithmetic. The formal verification is performed in PVS. However, all the technical burden
of proving properties in a proof assistant system is hidden from the user. In this case, a C++
module computes bounds of numerical expressions and, then, generates proof obligations,
in the form of PVS formulas, along with ProofLite scripts that discharge the obligations.
Formulas and proof scripts are written in a series of .pvs files that are processed in batch
mode via the command line utility proveit. The tool was used to formally check that a
polynomial approximation, taken from a critical aeronautical application, is close to about
one unit in the last place of the exact transcendental function, i.e., the relative error is

8

bounded by 1.36 × 10-6. The C++ module generated about 30000 PVS lemmas, with their
respective proof scripts, that were mechanically checked on a high performance cluster.

Reference [6] reports on the formal verification of an operational concept for air traffic
management in a self controlled airspace. The operational concept is modeled as a hybrid
non-deterministic asynchronous state transition system. A tool, implemented in PVSio [5]
and formally verified in PVS, explicitly computes the set of reachable states of the sys-
tem. From this set, PVS lemmas, and their respective ProofLite scripts, are generated.
All together, the lemmas guarantee that under nominal operations the minimum separation
between two aircraft is higher than a given safety threshold. In total, 117 lemmas were
generated and mechanically verified in batch mode via the ProofLite utility proveit.

6 CONCLUSION

ProofLite is a PVS package for batch proving and proof scripting that can be used by
regular PVS users. The basic capabilities provided by the package are commonly found in
comparable theorem provers such as Coq [14], HOL [4], and ACL2 [3].

The ProofLite scripting notation supports several forms of proof sharing and proof reuse.
Modern theorem provers provide mechanisms to conservatively extend the proof search and
automation power of their systems via user-defined strategies. Proof scripting provides a
higher level of abstraction that is appropriate for certain kind of problems and domains.

Future versions of ProofLite will fully support regression testing and will continue to
explore new ways of sharing and reusing proofs.

Acknowledgment

During a summer visit to NIA in August 2005, Florent Kirchner rewrote most of the new
(and faster) code of the proveit utility.

REFERENCES

[1] M. Archer. TAME: Using PVS strategies for special-purpose theorem proving. Ann.
Math. Artif. Intell, 29(1-4):139–181, 2000.

[2] M. Dumas, G. Melquiond, and C. Muñoz. Guaranteed proofs using interval arithmetic.
In Proceedings of the 17th IEEE Symposium on Computer Arithmetic, ARITH-17, Cape
Cod, Massachusetts, 2005.

[3] Matt Kaufmann and J Strother Moore. ACL2: An industrial strength version of
nqthm. In Compass’96: Eleventh Annual Conference on Computer Assurance, page 23,
Gaithersburg, Maryland, 1996. National Institute of Standards and Technology.

[4] M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving Envi-
ronment for Higher Order Logic. Cambridge University Press, 1993.

[5] C. Muñoz. Rapid prototyping in PVS. Report NIA Report No. 2003-03, NASA/CR-
2003-212418, NIA-NASA Langley, National Institute of Aerospace, Hampton, VA, May
2003.

9

[6] C. Muñoz and G. Dowek. Hybrid verification of an air traffic operational concept. In
Proceedings of IEEE ISoLA Workshop on Leveraging Applications of Formal Methods,
Verification, and Validation, Columbia, Maryland, 2005.

[7] C. Muñoz and D. Lester. Real number calculations and theorem proving. In J. Hurd
and T. Melham, editors, Proceedings of the 18th International Conference on Theo-
rem Proving in Higher Order Logics, TPHOLs 2005, volume 3603 of Lecture Notes in
Computer Science, pages 195–210, Oxford, UK, 2005. Springer-Verlag.

[8] C. Muñoz and M. Mayero. Real automation in the field. Technical Report NASA/CR-
2001-211271 Interim ICASE Report No. 39, ICASE-NASA Langley, ICASE Mail Stop
132C, NASA Langley Research Center, Hampton VA 23681-2199, USA, December 2001.

[9] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In
Deepak Kapur, editor, 11th International Conference on Automated Deduction (CADE),
volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752, Saratoga, NY,
June 1992. Springer-Verlag.

[10] S. Owre and N. Shankar. Writing PVS proof strategies. In Myla Archer, Ben Di
Vito, and César Muñoz, editors, Design and Application of Strategies/Tactics in Higher
Order Logics (STRATA 2003), number CP-2003-212448 in NASA Conference Publi-
cation, pages 1–15, Hampton, VA, September 2003. NASA Langley Research Center.
The complete proccedings are available at http://research.nianet.org/fm-at-nia/
STRATA2003/.

[11] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS System Guide.
Computer Science Laboratory, SRI International, Menlo Park, CA, September 1999.

[12] Sam Owre and Natarajan Shankar. The formal semantics of PVS. Technical Report SRI-
CSL-97-2, Computer Science Laboratory, SRI International, Menlo Park, CA, August
1997.

[13] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Prover Guide.
Computer Science Laboratory, SRI International, Menlo Park, CA, September 1999.

[14] The Coq Team. The Coq proof assistant: Reference manual: Version 7.2. Technical
Report RT-0255, INRIA, Rocquencourt, France, February 2002. Available at http:

//coq.inria.fr/doc/main.html.

[15] B. Di Vito. High-automation proofs for properties of requirements models. STTT,
3(1):20–31, 2000.

[16] B. Di Vito. A PVS prover strategy package for common manipulations. Report
NASA/TM-2002-211647, NASA Langley Research Center, Hampton, VA 23681-0001,
2002.

10

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate
for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITOR'S ACRONYM(S)

11. SPONSORING/MONITORING
REPORT NUMBER

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19b. NAME OF RESPONSIBLE PERSON

a. REPORT b. ABSTRACT c. THIS PAGE
19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	REPORT DATE (DD-MM-YYYY): 01-02-2007
	REPORT TYPE: Contractor Report
	DATES COVERED (From - To):
	TITLE AND SUBTITLE: Batch Proving and Proof Scripting in PVS
	5a:
	 CONTRACT NUMBER:

	5b:
	 GRANT NUMBER: NCC1-02043

	5c:
	 PROGRAM ELEMENT NUMBER:

	5d:
	 PROJECT NUMBER: 2204

	5e:
	 TASK NUMBER:

	5f:
	 WORK UNIT NUMBER:

	AUTHOR: Munoz, Cesar A.
	PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES): NASA Langley Research Center National Institute of Aerospace (NIA)Hampton, VA 23681-2199 100 Exploration Way Hampton, VA 23666
	PERFORMING ORGANIZATION: NIA Report No. 2007-03
	SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES): National Aeronautics and Space AdministrationWashington, DC 20546-0001
	SPONSORING/MONITOR'S ACRONYM: NASA
	SPONSORING/MONITORING: NASA/CR-2007-214546
	DISTRIBUTION/AVAILABILITY STATEMENT: Unclassified - UnlimitedSubject Category 61Availability: NASA CASI (301) 621-0390
	SUPPLEMENTARY NOTES: Langley Technical Monitor: Ricky W. Butler
	ABSTRACT: The batch execution modes of PVS are powerful, but highly technical, features of the system that are mostly accessible to expert users. This paper presents a PVS tool, called ProofLite, that extends the theorem prover interface with a batch proving utility and a proof scripting notation. ProofLite enables a semi-literate proving style where specification and proof scripts reside in the same file. The goal of ProofLite is to provide batch proving and proof scripting capabilities to regular, non-expert, users of PVS.
	SUBJECT TERMS: Theorem Proving; Proof Scripting
	SECURITY CLASSIFICATION OF REPORT: U
	SECURITY CLASSIFICATION OF: ABSTRACT: U
	SECURITY CLASSIFICATION OF: THIS PAGE: U
	LIMITATION OF ABSTRACT: UU
	NUMBER OF PAGES: 15
	NAME OF RESPONSIBLE PERSON: STI Help Desk (email: help@sti.nasa.gov)
	TELEPHONE NUMBER (Include area code): (301) 621-0390

