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A critical factor in the adoption of any new aeronautical technology or concept of
operation is safety. Traditionally, safety verification is accomplished through a rigorous
process that involves human factors, low and high fidelity simulations, and flight
experiments. As this process is usually performed on final products or functional prototypes,
concept modifications resulting from this process are very expensive to implement. This
paper describes an approach to system safety that can take place at early stages of a concept
design. It is based on a set of mathematical techniques and tools known as formal methods. In
contrast to testing and simulation, formal methods provide the capability of exhaustive state
exploration analysis. We present the safety analysis and verification performed for the Small
Aircraft Transportation System (SATS) Concept of Operations (ConOps). The concept of
operations is modeled using discrete and hybrid mathematical models. These models are
then analyzed using formal methods. The objective of the analysis is to show, in a
mathematical framework, that the concept of operation complies with a set of safety
requirements. It is also shown that the ConOps has some desirable characteristic such as
liveness and absence of dead-lock. The analysis and verification is performed in the
Prototype Verification System (PVS), which is a computer based specification language and
a theorem proving assistant.

I. Introduction

The Small Aircraft Transportation System (SATS) is a program with the objective of increasing the access to
small airports, which might lack tower and radar services [1]. The SATS Concept of Operations for Higher Volume
Operation (SATS-HVO ConOps) has been developed by a team at NASA Langley in partnership with industry and
the FAA [2]. The SATS ConOps is a significant departure from conventional operations in controlled airspace. The
SATS ConOps include three elements which makes it unconventional: 1. A special designation self controlled area
(SCA) surrounding the airport where Air Traffic Control services are not provided and pilots have responsibility for
separation in IMC; 2. An automated Airport Management Module (AMM) which grants or denies entry to the SCA
and sequences aircraft; 3. On-board tools which provide Conflict Detection & Alerting and operational guidance to
the crew to comply with the ConOps rules.

The acceptability and viability of a concept of operation hinges on its safety. Proposed changes in operations or
new concepts require verification of their safety and benefits. Operations that deviate from standard operations must
demonstrate that they do not represent an increased risk to crew and passengers, people on the ground, and that they
do not have a detrimental effect to the National Airspace System (NAS).

This paper describes the method used for the safety verification of the SATS ConOps. The method is based on
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formal methods, a set of mathematical techniques and computer aided tools based on logic, formal deduction, and
exhaustive state exploration. The verification has been accomplished in two stages: 1. The development of a discrete
model of the ConOps where the SCA is represented by a list of discrete regions and the nominal operations are
represented by a state transition system. This model enables the verification of occupancy safety requirements, e.g.,
that there is always a miss approaching holding fix open for an aircraft performing a miss approach, and liveness
properties, e.g., that all aircraft eventually land or depart the SCA; 2. The extension of the discrete model with
continuous variables that represent the geometry of the SCA and the speed performance parameters of the aircraft.
This hybrid model enables the verification of spacing properties; e.g., under nominal operations, all the aircraft are
self-separated. The main contribution of this work is the formal assurance that under all possible arrival and
departure sequences, key safety properties hold for the concept of operations and that some desirable efficiency
properties are preserved.

The paper is organized as follows. Sections II gives an overview of the ConOps. Section III and IV describe the
discrete and hybrid models, respectively. Section V presents the safety properties that have been formally verified
using those models. The last section includes the summary and conclusion.

II. Concept of Operations

The concept of operation is a set of rules and procedures which support separation, orderly arrival, and increased
throughput during IMC to airports lacking radar coverage and control tower. The ConOps is implemented by means
of the Self Control Area (SCA), the Airport Management Module (AMM), on-board navigation tools, and data
communication including ADS-B (Automatic Dependent Surveillance-Broadcast) and data link. The SCA is a
special designation airspace surrounding the airport. Typically, the SCA covers a radius of 12 nautical miles and
3000 feet above ground. The approach is similar to a GPS T instrument approach [3]. Figure 1 shows a generic SCA
approach with Initial Arrival Fixes (IAF) right and left, two holding altitudes at 2000 and 3000 feet above ground
over the IAF, an intermediate fix (IF), a final approach fix (FAF), and the runway.

Figure 1. Generic SCA Approach.

Not shown in the generic SCA approach figure are the miss approach paths. In the generic SCA approach, the
IAFs serve as the Miss Approach Holding Fixes (MAHF). An aircraft performing a miss approach will go to the
MAHF that has been assigned to it by the AMM; either IAF-R or IAF-L. The aircraft will go the lowest available
altitude, 2000 feet AGL or 3000 feet AGL. Part of the safety verification presented in this paper is to show that an
aircraft performing a miss approach will always have a MAHF available; that is, a MAHF that is not occupied by
any other aircraft at the given altitude.

An aircraft performing an arrival approach to an airport implementing the SATS ConOps will go through the
following steps:

• The aircraft will be cleared by ATC to a navigation fix near or above the SCA.
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• In the vicinity of the SCA, the aircraft will request to the AMM entry into the SCA.
• If entry is not granted, the aircraft proceeds or stays at the navigation fix to which it has been cleared by ATC.
• When entry is granted by the AMM, the AMM will assign a type of entry (lateral or vertical), an Initial Arrival

Fix (IAF), a lead aircraft (none if SCA is empty), and a Miss Approach Holding Fix (MAHF).
• The aircraft will perform a lateral or vertical entry (and notify ATC. ATC will terminate services.)
• The aircraft will hold at the Initial Arrival Fix (IAF) or proceed to the approach.
• The aircraft starts the approach when certain conditions are met regarding location and type of the lead aircraft.
• If aircraft does not land, it proceeds to its assigned MAHF or departs the SCA.
• Aircraft lands.

Departure operations are also described by the ConOps. For simplicity, those operations are not described in this
document. A more detailed description of the concept of operations including the rules implemented by the AMM,
how the vertical and lateral entry are selected, how the IAF and MAHF are selected, the criteria for starting an
approach, and other conditions can be found in [2].

III. Discrete Model

The discrete model is a state transition system representing the concept of operations. The discrete model
represents the operational zones of the SCA, the rules of the ConOps, and the rules implemented by the Airport
Management Module. The operational zones of the SCA are shown in Figure 2.

Figure 2. Operational Zones of the SCA.
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Note that the operational zones might overlap geographically. For example, parts of the same volume might be
covered both by the miss approach zone and the lateral entry zone. The state of the system is made of the state of the
SCA and the state of the AMM. The state of the SCA and AMM are determined by the position of the aircraft, the
lead-trail relationship between aircraft, and the miss approach holding fix assignments.

The ConOps rules determine how the system transitions from one state to the next. For example, Figure 3 shows
a system state with four aircraft. Aircraft N123, N456, N789, and N101 are in the intermediate zone, hold 2000 left,
hold 3000 right, and hold 3000 left, respectively. The superscript on the aircraft identification (tail number) is its
lead aircraft. The subscript is the miss approach holding fix assignment given by the AMM. The discrete model is
an asynchronous and non-deterministic transition system; that is, a discrete state can potentially transition to a new
state in several ways. In this example, N123 could move to the final zone, or N456 can initiate its approach by
going to base-left, or N789 could move to hold 2000 right. Therefore, the system has three new possible states. No
other transitions are permitted by the ConOps rules. For example, N789 could not move to base-right because it
must wait until N456 begin its approach. There are many other transitions that are disallowed by the ConOps or
physically impossible; N101 should not move to hold 2000 left until the aircraft occupying this zone has departed
the zone and N789 could not move to the runway zone because this is physically impossible before going through
other operational zones.

Figure 3. State Transition System Example.

The ConOps operational rules are encoded into 24 transitions. The sixteen transitions corresponding to arrival
operations are:
• Vertical entry (left, right): Initial transition to hold at 3000 feet.
• Lateral entry (left, right): Initial transition to lateral entry.
• Descend (left, right): Transition from hold at 3000 feet to hold at 2000 feet.
• Approach initiation (left, right): Transition from hold at 2000 feet to

base segment.
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• Merging (left,right): Transition from base segment to intermediate segment.
• Final approach: Transition from intermediate segment to final segment.
• Landing: Transition from final segment to runway.
• Missed approach initiation (left, right): Move from final segment to missed approach zone.
• Lowest available altitude (left, right). Transition from missed approach zone to hold at 2000 feet or 3000 feet.

Using the transition system, an exhaustive state exploration analysis is performed to determine if the ConOps
meets all of the Safety requirements. Including departure operations, there is a total of 54280 reachable states for the
system. A custom depth-first search algorithm has been developed to perform the state exploration analysis [4]. This
search algorithm has been shown to be correct using the PVS proof assistant [5].

IV. Hybrid Model

The discrete model does not support verification of geometric spacing properties. For example, Figure 4 shows
two states in which aircraft N2B is in the base right zone and N1A is in intermediate zone. For the discrete model,
these two states are identical although the aircraft in state 2 are geometrically much closer than in state 1.

Figure 4. Indistinguishable Discrete States Showing Different Separation Distances.

The term spacing refers to linear separation of an aircraft with respect to the lead aircraft. If both aircraft are not
flying the same approach, spacing is usually computed relative to the merging point of their linear trajectories. For
instance, in a symmetric SCA, if the trail and lead aircraft are on opposite initial approach fixes their spacing is 0,
although their Euclidean distance is twice the length of the base segments. Note that, independently of the initial
Euclidean distance, if both aircraft start the approach at roughly the same time and speed, they will have a conflict at
the merging point.

In the ConOps, self-spacing is mainly achieved via the approach initiation procedure, i.e., the procedure that
describes when an aircraft that is holding at 2000 feet is allowed to initiate the approach and transition to the base
segment. This procedure shall guarantee that aircraft on final approach are separated all the way to the completion
of the landing operation, even if they have to perform a missed approach. Therefore, under nominal operations, the
second case in Figure 4 shall never occur.

The approach initiation procedure states that an aircraft may initiate the approach if (a) it is the first aircraft in
the landing sequence or (b) it meets a safety threshold with respect to the lead aircraft, which is already on approach
(base, intermediate, or final segments) [2]. There are several ways a pilot can check whether the safety threshold is
satisfied or not. In the most conservative case, the pilot delays the approach initiation until it is spaced So nautical
miles with respect to the lead aircraft. The value So is a configurable parameter that depends on the geometry of the
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SCA and the speed performance parameters of the aircraft.
Since distances of SCA and performance of the aircraft are not considered in the discrete model, the discrete

transition rule representing the approach initiation procedure uses a weaker condition (b) where an aircraft can
initiate the approach as soon as the lead aircraft is already on the final approach. In order to verify spacing
properties, a more accurate model of the approach initiation procedure is required. To this end, the discrete model of
the SATS HVO concept is extended with continuous variables that encode the geometry of the SCA and the aircraft
speed performances. In particular, the SCA is described by the lengths of the base, intermediate, and final segments,
and the length of the missed approach zone. For each aircraft, we consider the time when the aircraft initiates the
approach and the distance from its IAF at any given moment in time. Finally, we assume that the ground speed of
all aircraft is in a range defined by a minimum and maximum speed.

Via those continuous variables, the hybrid approach initiation rule takes into account the initial separation
threshold So between the trail and the lead aircraft. Therefore, in the hybrid model, the states in Figure 4 are
different. It can be proved that the aircraft in the first state satisfy the spacing requirement while the aircraft in the
second state do not.

State exploration of a hybrid system is technically difficult due to the presence of continuous behavior which
yields an infinite transition system. An encoding technique was developed in [7] where continuous variables are
symbolically represented by discrete variables. As a result, the hybrid model is rewritten as a discrete one that can
be finitely explored.

V. Safety Properties

Using the discrete model described in Section III, the ConOps was shown to have the following properties:

• There are no more than two aircraft assigned to a MAHF (left or right).
• The number of aircraft inside the SCA at an IAF (left or right) is less than or equal to two.
• There is at most one aircraft at hold 2000 (left or right) and at hold 3000 (left or right).
• There are no more than two aircraft at the miss approach zone (left or right).
• When an aircraft is in the lateral entry (left or right) there are no aircraft in hold 3000, hold 2000 or miss

approach zone (left or right), respectively.
• There is at most one aircraft on the runway.
• Consecutive departure operations are separated.
• Aircraft land in order according to the leader relation.
• Aircraft eventually land or depart the SCA.
• There are no operational deadlocks.

The first seven properties deal with limits on the number of aircraft occupying a zone and with always having an
available altitude at a MAHF for an aircraft which is executing a missed approach. It is clear that any operation
should minimize the risk of collision by not permitting two aircraft at the same altitude in one holding fix. The
safety aspect of the last 3 properties are less obvious. Aircraft landing order precludes overtaking in the SCA and
provides orderly arrival. An aircraft eventually landing or departing means that an aircraft will not be preempted by
higher priority aircraft which could lead to an indefinite hold. An operational deadlock is a situation in which one or
more aircraft cannot transition any further. Figure 5 is an example of an operational deadlock. In this state, aircraft
N456 has aircraft N123 as its lead. Aircraft N456 must wait for N123 to start its approach before it can start its own
approach. However, N123 must descend to hold 2000 before it can start its approach and hold 2000 is occupied by
N456. The possibility of this condition occurring depends on how the AMM defines the lead-trail relationship when
an aircraft returns to the IAF after executing a miss approach. Based on the AMM assignment rules and the
operational rules in the SCA, it can be shown that the transition system cannot reach any deadlock state such as this
one.
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Figure 5. State Transition Deadlock Example.

The verification of spacing properties requires the hybrid system described in Section IV. The exhaustive
exploration of the hybrid system has shown that the ConOps satisfies the following properties:

• Under nominal operations, all trail and lead aircraft on final approach, i.e., base, intermediate, and final
segments, are separated St nautical miles.

• Under nominal operations, all trail and lead aircraft on missed approach are separated Smaz nautical miles.

The constants St and Smaz depend on the geometry of the SCA, the minimum and maximum speed of the aircraft,
and the safety threshold used in the approach initiation rule. The actual formulas are described in reference [7]. For
a symmetric SCA, where the base segments are 5 nautical miles, the combined intermediate and final segment is 10
nautical miles, the missed approach zone is 13 nautical, the minimum and maximum speed are 90 knots and 120
knots, respectively, and the safety threshold So is 6 nautical miles, the value of St is 3 nautical miles and the value of
Smaz is 4.66 nautical miles. Therefore, the ConOps guarantees a minimum separation of 3 nautical miles for two
aircraft, independently of these aircraft being in final approach or missed approach.

VI. Summary and Conclusion

The safety verification and analysis presented in this paper was performed in parallel with the ConOps
development. The verification process influenced the ConOps through discussions and recommendations [6]. The
authors believe that the verification performed in parallel with the development of the ConOps resulted in a more
robust product and a more efficient development process.

Verification by exhaustive search and theorem proving have the added advantage over simulation and testing
that it covers all possible system states. Simulation and testing only covers a fraction of the system state space. Two
models were used in the verification of the SATS-HVO ConOps: a discrete model which captured the operations at
a high level, and; a hybrid model which addressed the separation assurance inside and between the zones in the
discrete model. The verification and analysis was able to demonstrate that the ConOps had the required safety
properties.
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