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The Airspace System

» 24h of air traffic in the
» 24h of air traffic in the
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Next Generation Air Transportation System (NextGen)

» FAA and industry forecast a 1.5 — 2.5 times increase of air
traffic operations over the next two decades.

» By 2016, develop and demonstrate future concepts,
capabilities, and technologies that will enable major increases
in air traffic management ... while maintaining safety, to meet
capacity and mobility requirement of NextGen.
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Enabling Technology

» Hardware Systems:

» Global Positioning System (GPS).
» Automatic Dependent Surveillance-Broadcast (ADS-B).
» Increase in computational power.

» Operational concepts based on distributed and autonomous
systems.
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Distributed Air/Ground Air Traffic Management

» Today: Air traffic controllers have the primary responsibility
for en-route aircraft separation

» Future: The responsibility for separation will be air/ground
distributed.
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Automated Cockpit




Real Applications
|—The Airspace System

State-Based Separation Assurance Systems (SAS)

Airborne systems that maintain aircraft separated assuming only
state information (current position and velocity vector), e.g.,
Conflict Detection and Resolution (CD&R).
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SAS Safety Properties

» Conflict Detection:
» correctness: No false alerts.
» completeness: No missed alerts.
» Conflict Resolution:
» completeness: At least one solution.
» independence: Conflict solved when one aircraft maneuvers.

» (Implicit) coordination: Conflict solved when both aircraft
maneuver.
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Airborne Coordinated Conflict Resolution and Detection
Framework
ACCoRD is a mathematical framework, fully developed in PVS, for

the design and verification of state-based separation assurance
algorithms.




Real Applications
2D Conflict Detection and Resolution (CDR2D)

2D Conflict Detection and Resolution (CDR2D)

vV v vV V. vV vV VY

2D Rectangular coordinate system.

Linear trajectories.

Instantaneous velocity changes.

Perfect state information (position and velocity vector).
Perfect communication (broadcast from traffic aircraft).
Pairwise approach: ownship and intruder aircraft.
Distributed approach: No central control.

Independent decision making: aircraft do not
communicate/negotiate their resolution maneuvers.
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Basic Definitions: Protected Zone

Circular area of radius D around each aircraft. The value D defines
a minimum horizontal distance between aircraft.

D

(Typically, D = 5nm)
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Basic Definitions: Loss of Separation

Violation of separation minima, i.e., overlapping of protected zones.
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Basic Definitions: Conflict

Predicted loss of separation within a lookahead time T.

(Typically, T = 5min)
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Geometry

» Ownship current state is given by s, (postion) and v,
(velocity) in R2.

» Intruder current state is given by s; (postion) and v; (velocity)
L2
in R<.

» Projected states at time t: s, + tv, and s; + tv;.

» Relative view: s=s, —s; and v =v, — v;.
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Transformation to Relative Coordinate System

In the relative coordinate system, the intruder fixed at the origin
and the ownship moves relative to the intruder.

= D—=

sz%_s

T

D —

= D
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Conflict

Given a relative position s and relative velocity v, there is a
(predicted) conflict if there exists a time 0 < t < T such that the
aircraft are in loss of separation at time t:

conflict?(s,v) =3t € [0, T]: ||s+ tv| < D.
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Conflict Detection Algorithms

A conflict detection algorithm is a function
cd(sy, Vo, S;,V;) :bool,

where
> S,,V, is current state of the ownship.

> s;,v; is the current state of the intruder.



Real Applications
2D Conflict Detection and Resolution (CDR2D)

Conflict Detection Correctness and Completeness

» An algorithm cd is correct if it does not have missed alerts,
ie.,

conflict?(s, — sj, Vo — Vi) = ¢cd(So,Vo,Si, V;)-
» An algorithm cd is complete if it does not have false alerts,
ie.,

cd(so, Vo, Si, Vi) = conflict?(s, — Si,Vo — Vj).
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Conflict Resolution Algorithms

A conflict resolution algorithm is a function
CI'(SO, Vo, Si7 V,‘) : Q(Rz) 4

where v, € cr(s,, Vo, Sj,V;) is a resolution maneuver for the
ownship.
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Independent Conflict Resolution

An algorithm cr is independent if it provides conflict-free resolution
maneuvers assuming that only the ownship maneuvers, i.e.,

For all v, € cx(so, Vo, Si, Vi),

conflict?(s, — sj, Vo — V;) = —conflict?(s, — si, v, — v;).
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Coordinated Conflict Resolution

Algorithms cr, and cr; are (implicitly) coordinated if they provide
conflict-free resolution maneuvers assuming that both aircraft
simultaneously maneuver, i.e.,

For all v, € cro(so, Vo, Si, Vi), Vi € cri(si, Vi, So, Vo),

conflict?(s, — sj, Vo — v;) = —conflict?(s, — si, v, — V}).
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Real Numbers in PVS

» Reals are defined as an uninterpreted subtype of number in
the prelude library:

real: TYPE+ FROM number

» All numeric constants are real:

» naturals: 0,1, ...
> integers: ...,-1,0,1,...
» rationals: ...,-1/10,...,3/2,...

» Decimal notation is supported: The decimal number
3.141516 is syntactic sugar for the rational number
31416/10000.
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PVS's real numbers are Real
(Rather than floating point numbers)

» All the standard properties: infinite, non-enumerable,
NCZCQCR,....

» Exact arithmetic: 1/3 + 1/3 + 1/3 = 1.
» The type real is unbounded:

107100
10"googol

googol : real
googolplex : real

googol_prop : LEMMA
googolplex > googol * googol
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Ground real Arithmetic is Built-in

» Numerical expressions can be automatically reduced by the
theorem prover (no need to prove 1+1=2), ...

» .. .except for machine physical limitations, e.g., you probably
cannot prove googol _prop with (grind).

» But, you can still prove googol_prop using analytical
methods.



Real Applications
LReal Numbers in PVS

Subtypes of real

nzreal : TYPE+
nnreal : TYPE+
npreal : TYPE+
negreal : TYPE+
posreal : TYPE+

rat : TYPE+
int : TYPE+
nat : TYPE+

= {r:
= {r:
= {r:
= {r:
= {r:

FROM
FROM
FROM

real|
real|
real|
real|
real|

real
rat
int

r /= 0} % Nonzero reals
r >= 0} %, Nonnegative reals
r <= 0} Y, Nonpositive reals

r < 0} % Negative reals
r > 0} % Positive reals

The uninterpreted type number is the only real’s supertype
predefined in PVS: no complex numbers, no hyper-reals,

no R, ...
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Predefined Operations

+, —, *: [real, real -> reall
/: [real, nzreal -> reall]
-: [real -> reall

sgn(x:real) : int = IF x >= 0 THEN 1 ELSE -1 ENDIF
abs(x:real) : {nny: nnreal | nny >= x} = ...

max(x,y:real): {z: real | z >= x AND z >=
min(x,y:real): {z: real | z <= x AND z <= y} = ...
“(x: real,i:{i:int | x /= 0 0OR i >= 0}): real = ...

~«
()
|

...and what about \/:f, log, exp, sin, cos, tan, 7, lim, ... ?
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NASA

PVS Libraries

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

» reals: Square, square root, quadratic formula, polynomials.

» analysis: Real analysis, limits, continuity, derivatives,

integrals.

» vectors and vect_analysis: Vector calculus and analysis.

» series: Power series, Taylor's theorem.

» 1lnexp and lnexp_fnd: Logarithm, exponential, and

vV v v Y

hyperbolic functions.
trig and trig_fnd: Trigonometry.
complex: Complex numbers.

float: Floating point numbers.


http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html
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To Be Or Not To Be (Fundational) ?

» Axiomatic theories trig and lnexp typechek faster.

» Fundational theories trig_fnd and lnexp_fnd have no
axioms.
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To Be Or Not To Be (Fundational) ?

» Axiomatic theories trig and lnexp typechek faster.

» Fundational theories trig_fnd and lnexp_fnd have no
axioms.
» Be careful what you wish for:

{1} sin(pi / 2) > 1/ 2

Rule? (grind)

Integral rewrites Integrallreal] (0, 1, atan_deriv_fn)
to integral(0, 1, atan_deriv_fn)

atan_value rewrites atan_value(1)
to integral(0, 1, atan_deriv_fn)

atan rewrites atan(1)
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Formal Development of CDR2D

CDR2D[D:posreal] : THEORY

BEGIN IMPORTING vectors@vectors_2D
% 2D Positions
Position : TYPE = Vect2
p,s,so,si : VAR Position

% 2D Relative Velocities
Velocity : TYPE = Vect2
v : VAR Velocity

% 2D Absolute Velocities (cannot be zero)
AbsVelocity : TYPE = Nz_vect2
vo,vop,vi,vip : VAR AbsVelocity

END CDR2D
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Formal Development of CDR2D

CDR2D[D:posreal] : THEORY

BEGIN IMPORTING vectors@vectors_2D
% 2D Positions
Position : TYPE = Vect2
p,s,so,si : VAR Position

% 2D Relative Velocities
Velocity : TYPE = Vect2
v : VAR Velocity

% 2D Absolute Velocities (cannot be zero)
AbsVelocity : TYPE = Nz_vect2
vo,vop,vi,vip : VAR AbsVelocity

END CDR2D
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Relative Protected Zone

ProtectedZone : set[Position] = {p | sq(p) < sq(D)}

Sets in PVS are charaterictic funtions, e.g., the definition above is
equivalent to

ProtectedZone(p) : bool = sq(p) < sq(D)
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Relative Protected Zone

ProtectedZone : set[Position] = {p | sq(p) < sq(D)}

Sets in PVS are charaterictic funtions, e.g., the definition above is
equivalent to

ProtectedZone(p) : bool = sq(p) < sq(D)
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Conflict, Conflict Detection, and Conflict Resolution

conflict?(s,v): bool =
EXISTS(t:nnreall|t <= T): ProtectedZone(s+t*v)

% Type of CD algorithms
CD : TYPE =
PRED[[Position,AbsVelocity,Position,AbsVelocityl]

% Type of CR algorithms
CR : TYPE = [[Position,AbsVelocity,Position,AbsVelocity]
-> set[AbsVelocity]]

Note: PRED[T] is the same as [T->bool].
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CD Correctness and Completeness

cd : VAR CD

correct?(cd) : bool =
FORALL(so,vo,si,vi):
conflict?(so-si,vo-vi) IMPLIES cd(so,vo,si,vi)

complete?(cd) : bool =
FORALL(so,vo,si,vi):
cd(so,vo,si,vi) IMPLIES conflict?(so-si,vo-vi)
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CR Independence and Coordination

cr : VAR CR

independent?(cr) : bool =
FORALL(so,vo0,si,vi,vop)
conflict?(so-si,vo-vi) AND
member (vop,cr(so,vo,si,vi)) IMPLIES
NOT conflict?(so-si,vop-vi)

coordinated?(cr) : bool =
FORALL(so,vo,si,vi,vop,vip)
conflict?(so-si,vo-vi) AND
member (vop,cr(so,vo,si,vi)) IMPLIES
member (vip,cr(si,vi,si,vi)) IMPLIES
NOT conflict?(so-si,vop-vip)
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A CD Algorithm

cd2d_ever?(s,v): MACRO bool =
IF s*v < O THEN
sq(s*v)-sqv(v)*(sqv(s)-sq(D)) > O
ELSE sqv(s) < sq(D)
ENDIF

cd2d_ever(so,vo,si,vi): bool =
cd2d_ever?(so-si,vo-vi)

cd2d_ever_incomplete : THEOREM
NOT complete?(cd2d_ever)

cd2d_ever_correct : THEOREM
correct?(cd2d_ever)
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Exercise 1

1. Define a type of aircraft with an identifier, a 2D position, and
a 2D velocity:
AircraftXY : TYPE = ...
2. Define a constant ac of type AircraftXY:
ac : AircraftXy = ...
3. Define a predicate cdnas that holds if there is a traffic aircraft
that is in conflict ever, e.g., cd2d_ever, with the ownship.

cdnas (ownid:Identifier,nas: (exists?(ownid))) : bool =
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Flat Earth?

IMPORTING vectorsQECEF,
vectors@vect3_basis,
vectors@trackAngles_2D

% Radius of the earth
R : posreal = 6353000 % [m]

geo2sxy(lat_ref,lon_ref:real) (lat,lon:real) : Position =
LET midlat = (lat_ref+lat)/2,
midlon = (lon_ref+lon)/2,
refxyz = spherical2xyz(R,midlat,midlon),
pxyz = spherical2xyz(R,lat,lon) IN
sphere_to_2D_plane (refxyz) (pxyz)

gstrk2vxy(gs:posreal,trk:real): AbsVelocity =
v_from(trk,gs)
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Proving cd2d_ever Incompleteness

cd2d_ever_incomplete : THEOREM
NOT complete?(cd2d_ever)
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Proving cd2d_ever Incompleteness

cd2d_ever_incomplete :

Rule? (expand "complete?")
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Proving cd2d_ever Incompleteness

cd2d_ever_incomplete :

Rule? (expand "complete?")
Expanding the definition of complete?, this simplifies to:
cd2d_ever_incomplete :

{-1} FORALL (so, vo, si, vi):
cd2d_ever(so,vo,si,vi) IMPLIES conflict?(so-si,vo-vi)

Rule? (inst -1 "(—D—T,O)" "(2,0)" "(D,O)" "(1,0)")



R
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cd2d_ever_incomplete.1

{-1} cd2d_ever((# x:=-D - T, y:=0 #), (# x:=2, y:=0 #),
(# x:=D, y:=0 #), (# x:=1, y:=0 #))

IMPLIES
conflict?((# x:=-D - T, y:=0 #) - (# x:=D, y:=0 #),
(# x:=2, y:=0 #) - (# x:=1, y:=0 #))

Rule? (grind :exclude "sq")



R
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cd2d_ever_incomplete.1

{-1} cd2d_ever((# x:=-D - T, y:=0 #), (# x:=2, y:=0 #),
(# x:=D, y:=0 #), (# x:=1, y:=0 #))
IMPLIES
conflict?((# x:=-D - T, y:=0 #) - (# x:=D, y:=0 #),
(# x:=2, y:=0 #) - (# x:=1, y:=0 #))

Rule? (grind :exclude "sq")

{-1} t!'1 >=0

{-2} t!'1<=T

{-3} sq(-D-D -T + t!1) < sq(D)
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Rule? (rewrite "sq_neg" :dir rl)

All the other sub-goals are easily discharged by grind,
decompose-equality, and assert.



e
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Rule? (rewrite "sq_neg" :dir rl)
Rewriting using sq_neg, matching in *, this simplifies to:
cd2d_ever_incomplete.1.1 :

[-1] t!'1 >=0

[-2] t!1 <=T
{-3} sq(-(-D-D-T + t!1)) < sq(D)

Rule? (rewrite "sq_1t")

All the other sub-goals are easily discharged by grind,
decompose-equality, and assert.
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Rule? (rewrite "sq_neg" :dir rl)
Rewriting using sq_neg, matching in *, this simplifies to:
cd2d_ever_incomplete.1.1

[-1] t!'1 >=0
[-2] t!1 <=T
{-3} sq(-(-D-D-T + t!1)) < sq(D)

Rule? (rewrite "sq_1t")
Rewriting using sq_lt, matching in *,
This completes the proof of cd2d_ever_incomplete.l.1.

All the other sub-goals are easily discharged by grind,
decompose-equality, and assert.
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Proving cd2d_ever Correctness

cd2d_ever_correct : THEOREM
correct?(cd2d_ever)
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Proving cd2d_ever Correctness

After a few strategies, we have two sub-goals:

cd2d_ever_correct.1:
{-1} (so-si)*(vo-vi) < O
[-2] sq((so-sit+t*(vo-vi)) ‘x)+sq((so-si+t*(vo-vi)) ‘y) < sq(D)

{1}  sq((so-si)*(vo-vi))+sq(D)*sqv(vo-vi) -
sqv(so-si)*sqv(vo-vi) > O

cd2d_ever_correct.2:
[-1]1 sq((so-sit+t*(vo-vi)) ‘x)+sq((so-si+t*(vo-vi)) ‘y) < sq(D)

{1} (so-si)*(vo-vi) < 0
{2} sqv(so-si) < sq(D)

How to prove these kinds of formulas?
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Proving cd2d_ever Correctness

After a few strategies, we have two sub-goals:

cd2d_ever_correct.1:
{-1} (so-si)*(vo-vi) < O
[-2] sq((so-sit+t*(vo-vi)) ‘x)+sq((so-si+t*(vo-vi)) ‘y) < sq(D)

{1}  sq((so-si)*(vo-vi))+sq(D)*sqv(vo-vi) -
sqv(so-si)*sqv(vo-vi) > O

cd2d_ever_correct.2:
[-1]1 sq((so-sit+t*(vo-vi)) ‘x)+sq((so-si+t*(vo-vi)) ‘y) < sq(D)

{1} (so-si)*(vo-vi) < 0
{2} sqv(so-si) < sq(D)

How to prove these kinds of formulas? Very carefully :-).
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Real Number Proving Tools

» Basic algebraic manipulations via Manip.
» Simplifications via Field.
» Interval arithmetic via Interval.

» Solving polynomial inequalities via Bernstein.
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Basic Manipulations via Manip

» Manip is a package for algebraic manipulations of real-valued
expressions.

> http:
//shemesh.larc.nasa.gov/people/bld/manip.html.

» The package consists of:

» Strategies.

Extended notations for formulas and expressions.
Emacs extensions.

Support functions for strategy developers.

» Manip is pre-installed in PVS 5.0.

vvVvyy


http://shemesh.larc.nasa.gov/people/bld/manip.html
http://shemesh.larc.nasa.gov/people/bld/manip.html
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Examples
Manip

{-1} x+y <=2z

Rule?
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Examples
Manip

{-1} x+y <=2z

Rule? (mult-by -1 "100")
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Examples
Manip

Rule? (mult-by -1 "100")

Multiplying both sides of selected formulas by given term,
this simplifies to:
mp :
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Examples
Manip
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Examples
Manip

Rule? (flip-ineq -1)
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Examples
Manip

Rule? (flip-ineq -1)

Negating and moving the inequalities in formulas -1,
this simplifies to:

mp :

{1} (x +y) * 100 > z * 100
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A Few Manip Strategies

| Strategy | Description |
(swap-rel fnums) Swap sides and reverse relations
(swap! expr-loc) Xoy=yox
(group! expr-loc LR) | (xoy)oz = xo(yoz)
(flip-ineq fnums) Negate and move inequalities
(split-ineq fnum) Split < (>) into < (>) and =
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More Strategies

Strategy

Description

(mult-by fnums term)

Multiply formula by term

(div-by fnums term)

Divide formula by term

(move-terms fnum L|R tnums)

Move additive terms left and right

(isolate fnum L|R tnum)

Isolate additive terms

(cross-mult fnums)

Perform cross-multiplications

(factor fnums)

Factorize formulas

(factor! expr-loc)

Factorize terms

(mult-eq fnum fnum)

Multiply equalities

(mult-ineq fnum fnum)

Multiply inequalities
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Extended Formula Notation

» Standard

» *: All formulas.
» —: All formulas in the antecedent.
» +: All formulas in the consequent.

» Extended (Manip strategies only)
» (~ nil...nk): All formulas but ni,...,nk
» (-~ nil...nk): All antecedent formulas but n1,...,nk
» (+~ nl...nk): All consequent formulas but ni,...,nk
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Extended Expression Notation

» Term indexes:

v

L,R: Left- or right-hand side of a formula.

n: n-th term from left to right in a formula.

-n: n-th term from right to left in a formula.

*: All terms in a formula.

(" nl1...nk): All terms in a formula but n1,...,nk.

vV vy VvYy

» Location references:

» (! fnum LR il...in): Term in formula fnum, Left- or
Right-hand side, at recursive path location il...ik.
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Simplifications via Field

» Field is a package for simplifications in the closed field of real
numbers.
» http://shemesh.larc.nasa.gov/people/cam/Field.
» The package consists of:
» The strategies grind-reals and field.

> Several extra-tegies.
» Field is pre-installed in PVS 5.0.


http://shemesh.larc.nasa.gov/people/cam/Field
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grind-reals

{-1} x*xy>=0
{-2} x>0

{13 y»>=o0
Rule?
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L Simplifications via Field

grind-reals

{-1} x*xy>=0
{-2} x>0

{1y y»>=0
Rule? (grind-reals)
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grind-reals

{-1} X *xy>0
{-2y x>0

{1y y»>=0
Rule? (grind-reals)
Rewriting with pos_times_ge

Applying GRIND-REALS,
Q.E.D.
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field

{-1} vox > 0

{-2} s *x s -D*D >D

{-3} s * vix * voy - s * viy * vox /= 0

{-4} ((s * s - DxD) * voy - D * vox * sqrt(s*s - DxD))/
(s * (vix * voy - vox * viy)) * s * vox /= 0

{-5} voy * sqrt(s * s - D*D) - D * vox /= 0

{1} (viy * sqrt(s * s - DxD) - vix * D) /
(voy * sqrt(s * s - D#D) - vox * D) =
(D#D - s * 8) / (((s * s - DxD) * voy - D * vox *
sqrt(s * s - DxD)) /
(s * (vix * voy - vox * viy)) * s * vox) +
vix / vox

Rule?
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field

{-1} vox > 0

{-2} s *x s -D*D >D

{-3} s * vix * voy - s * viy * vox /= 0

{-4} ((s * s - DxD) * voy - D * vox * sqrt(s*s - DxD))/
(s * (vix * voy - vox * viy)) * s * vox /= 0

{-5} voy * sqrt(s * s - D*D) - D * vox /= 0

{1} (viy * sqrt(s * s - DxD) - vix * D) /
(voy * sqrt(s * s - D#D) - vox * D) =
(D#D - s * 8) / (((s * s - DxD) * voy - D * vox *
sqrt(s * s - DxD)) /
(s * (vix * voy - vox * viy)) * s * vox) +
vix / vox

Rule? (field)
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field

{-1} vox > 0

{-2} s *x s -D*D >D

{-3} s * vix * voy - s * viy * vox /= 0

{-4} ((s * s - DxD) * voy - D * vox * sqrt(s*s - DxD))/
(s * (vix * voy - vox * viy)) * s * vox /= 0

{-5} voy * sqrt(s * s - D*D) - D * vox /= 0

{1} (viy * sqrt(s * s - DxD) - vix * D) /
(voy * sqrt(s * s - D#D) - vox * D) =
(D#D - s * 8) / (((s * s - DxD) * voy - D * vox *
sqrt(s * s - DxD)) /
(s * (vix * voy - vox * viy)) * s * vox) +
vix / vox

Rule? (field)
Q.E.D.



Real Applications
LReaI Number Proving Tools
L Simplifications via Field

Some Extra-tegies

| Strategy | Description
(cancel-by fnum term) Cancel a common term in a formula
(skoletin fnum) Skolemize let-in expressions
(skeep fnum) Skolemize with same variable names
(neg-formula fnum) Negate a formula
(add-formula fnum fnum) | Add two formulas
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Interval Arithmetic via Interval
http://shemesh.larc.nasa.gov/people/cam/Interval

» Interval is a package for interval analysis.
» The package consists of:

» The library interval_arith, which presents a formalization
of interval analysis for real-valued functions including:
trigonometric functions, logarithm and exponential functions,
square root, absolute value, etc.

» The strategy numerical, which implements a provably correct
branch-and-bound interval analysis algorithm.

» Interval is part of the NASA PVS Libraries.


http://shemesh.larc.nasa.gov/people/cam/Interval

Real Applications
LReaI Number Proving Tools

LInterval Arithmetic via Interval

A Simple Problem

Prove that the turn rate of an aircraft with a bank angle of 35 is
greater than 3° per second.

IMPORTING interval_arith@strategies
g:posreal=9.8 hm/s"2]
v:posreal=250%0.514 % [m/s]

tr(phi: (Tan?)): MACRO real = g*tan(phi)/v

tr_35 : LEMMA
3*pi/180 <= tr(35*pi/180)
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numerical
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|—Interval Arithmetic via Interval

numerical

{1} 3 *pi / 180 <= g * tan(35 * pi / 180) / v

Rule? (numerical)
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Llnterval Arithmetic via Interval

numerical

{1} 3 *pi / 180 <= g * tan(35 * pi / 180) / v

Rule? (numerical)
Evaluating formula using numerical approximations,
Q.E.D.
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LInterval Arithmetic via Interval

numerical

{1} 3 *pi / 180 <= g * tan(35 * pi / 180) / v

Rule? (numerical)
Evaluating formula using numerical approximations,
Q.E.D.

Special prize: Prove this lemma in any theorem prover different
from PVS (Note: pi is the mathematical irrational number 7 and
tan is the trigonometric function tan).
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|—Interval Arithmetic via Interval

A Simple Property of Logarithms

G(x:reallx < 1): MACRO real = 3*x/2 - 1n(1-x)

A_and_S : LEMMA
let x = 0.5828 in
G(x) >0
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|—Interval Arithmetic via Interval

A Simple Property of Logarithms

{1} LET x = 0.5828 IN 3 * x / 2 - In(1 - x) > 0

Rule?
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|—Interval Arithmetic via Interval

A Simple Property of Logarithms

{1} LET x = 0.5828 IN 3 * x / 2 - In(1 - x) > 0

Rule? (numerical)
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Llnterval Arithmetic via Interval

A Simple Property of Logarithms

{1} LET x = 0.5828 IN 3 * x / 2 - In(1 - x) > 0

Rule? (numerical)
Evaluating formula using numerical approximations,
Q.E.D.
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LInterval Arithmetic via Interval

A Simple Property of Logarithms

{1} LET x = 0.5828 IN 3 * x / 2 - In(1 - x) > 0

Rule? (numerical)
Evaluating formula using numerical approximations,
Q.E.D.

Special prize: Prove this lemma in any theorem prover different
from PVS (Note: 1n is natural logarithm function).
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Interval Arithmetic

{-1} x## [l 0, 2 |]
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|—Interval Arithmetic via Interval

Interval Arithmetic

{-1} x## [l 0, 2 1]
{1} sqrt(x) + sqrt(3) < pi + 0.1

Rule? (numerical :vars "x")
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Llnterval Arithmetic via Interval

Interval Arithmetic

{-1} x## [| 0, 2 |]
{1} sqrt(x) + sqrt(3) < pi + 0.1
Rule? (numerical :vars "x")

Evaluating formula using numerical approximations,
Q.E.D.
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Interval Analysis

Prove that for all x € [—1,0],
[In(1 + x) — x| — ¢ < 2x°,
where ¢ = 0.15:1

ex_ba : LEMMA
x ## [1-1/2,0]] IMPLIES
abs(1ln(1+x) - x) - epsilon <= 2*sq(x)

Thanks to Behzad Akbarpour.
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|—Interval Arithmetic via Interval

instint

{1} FORALL (x: real):
x ## [1-1/2,0]] IMPLIES abs(ln(1+x)-x)-0.15 <= 2*sq(x)

Rule? (skeep)
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Llnterval Arithmetic via Interval

instint

{1} FORALL (x: real):
x ## [1-1/2,0]] IMPLIES abs(ln(1+x)-x)-0.15 <= 2*sq(x)

Rule? (skeep)

ex_ba :

{-1y x## [l -1/2,01]

{1}  abs(1n(l + x) - x) - 0.15 <= 2 * sq(x)

Rule? (numerical :vars (("x" 10)))
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LInterval Arithmetic via Interval

instint

{1} FORALL (x: real):
x ## [1-1/2,0]] IMPLIES abs(ln(1+x)-x)-0.15 <= 2*sq(x)

Rule? (skeep)
ex_ba :
{-1y x## [l -1/2,01]

{1}  abs(1n(l + x) - x) - 0.15 <= 2 * sq(x)
Rule? (numerical :vars (("x" 10)))

Evaluating formula using numerical approximations,
Q.E.D.
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Solving Polynomial Inequalities via Bernstein

http://shemesh.larc.nasa.gov/people/cam/Bernstein

» Bernstein is a package for solving multivariate polynomial
global optimization problems using Bernstein polynomials.

» The package consists of:
» The library Bernstein, which presents a formalization of an
efficient representation of multivariate polynomials.
» The strategy bernstein, which discharges simply quantified
multivariate polynomial inequalities on closed/open ranges.
» Grizzly, which is a prototype client-server tool for solving
global optimization problems.

» Bernstein is part of the NASA PVS Libraries.


http://shemesh.larc.nasa.gov/people/cam/Bernstein
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Solving Polynomial Inequalities

IMPORTING Bernstein@strategy

pl : LEMMA
FORALL (x,y:real): -0.5 <= x AND x <= 1 AND
-2 <= y AND y <= 1 IMPLIES
4xx"2-(21/10) *x"4+(1/3) *x "6+ (x-3) *y—-4*xy " 2+4xy~4 > -3.4

p2 : LEMMA
EXISTS (x,y:real): -0.5 <= x AND x <= 1 AND
-2 <=y AND y <= 1 AND
4xx7~2-(21/10) *x~4+(1/3) *x"6+(x-3) *y—-4*y~2+4*y~4 < -3.39



e
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|—Real Number Proving Tools
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{1} FORALL (x, y: real):
-0.5 <= x AND x <=1 AND -2 <= y AND y <= 1 IMPLIES
4%x72-(21/10) *x~4+(1/3) *x"6+(x-3) xy—4*y~2+4xy~4 > -3.4

Rule?
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LSoIving Polynomial Inequalities via Bernstein

{1} FORALL (x, y: real):
-0.5 <= x AND x <=1 AND -2 <= y AND y <= 1 IMPLIES
4%x72-(21/10) *x~4+(1/3) *x"6+(x-3) xy—4*y~2+4xy~4 > -3.4

Rule? (bernstein)
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LSolving Polynomial Inequalities via Bernstein

{1} FORALL (x, y: real):
-0.5 <= x AND x <=1 AND -2 <= y AND y <= 1 IMPLIES
4%x72-(21/10) *x~4+(1/3) *x"6+(x-3) xy—4*y~2+4xy~4 > -3.4

Rule? (bernstein)
Proving polynomial inequality using Bernstein’basis,
Q.E.D.
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LSolving Polynomial Inequalities via Bernstein

{1} FORALL (x, y: real):
-0.5 <= x AND x <=1 AND -2 <= y AND y <= 1 IMPLIES
4%x72-(21/10) *x~4+(1/3) *x"6+(x-3) xy—4*y~2+4xy~4 > -3.4

Rule? (bernstein)
Proving polynomial inequality using Bernstein’basis,
Q.E.D.

Special prize: Prove this lemma in any theorem prover different
from PVS
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LSoIving Polynomial Inequalities via Bernstein

{1} EXISTS (x, y: real):
-0.5 <= x AND x <=1 AND -2 <=y AND y <= 1 AND
4%x72-(21/10) *x74+(1/3) *x"6+(x-3) xy-4*y~2+4*y~4 < -3.39

Rule?
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|—Real Number Proving Tools

LSoIving Polynomial Inequalities via Bernstein

{1} EXISTS (x, y: real):
-0.5 <= x AND x <=1 AND -2 <=y AND y <= 1 AND
4%x72-(21/10) *x74+(1/3) *x"6+(x-3) xy-4*y~2+4*y~4 < -3.39

Rule? (bernstein)



R
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LSolving Polynomial Inequalities via Bernstein
;

{1} EXISTS (x, y: real):
-0.5 <= x AND x <=1 AND -2 <=y AND y <= 1 AND

4%x72-(21/10) *x74+(1/3) *x"6+(x-3) xy-4*y~2+4*y~4 < -3.39

Rule? (bernstein)
Proving polynomial inequality using Bernstein’s basis,

Q.E.D.
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LSolving Polynomial Inequalities via Bernstein

{1} EXISTS (x, y: real):
-0.5 <= x AND x <=1 AND -2 <=y AND y <= 1 AND
4xx72-(21/10) *x~4+(1/3) *x" 6+ (x-3) xy-4*y~2+4*xy~4 < -3.39

Rule? (bernstein)
Proving polynomial inequality using Bernstein’s basis,

Q.E.D.

Special prize: Prove this lemma in any theorem prover different
from PVS
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LSolving Polynomial Inequalities via Bernstein

A Final Example

cd2d_numeric_conflict: LEMMA
-10 <= s‘x AND s‘x <= -8 AND
-10 <= s‘y AND s‘y <= -8 AND
6 <= v‘x AND v‘x <= 9 AND
6 <= v‘y AND v‘y <= 9 AND
D>=4 AND D<=6
IMPLIES
cd2d_ever?(s,v)

The proof is achieved with (grind), followed by (bernstein).
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Concluding Remarks

Formal Methods in NextGen:

» NextGen is a system of systems: aircraft, physical
environment, human operators.

» Formal methods for system engineering rather than for
software engineering.

» Different sources of uncertainty.

» Highly distributed safety critical systems.
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Practical Challenges

» Evolutionary vs. revolutionary concepts.
» Theoretical vs. practical solutions.

» Local vs. global solutions.
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Current Technical Challenges

Automation, automation, automation:
» Non-linear arithmetic.
» Floating point arithmetic.
» Probabilistic reasoning.
>

Numerical integration.
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