Real Applications

Real Applications

Formal Methods for the Next Generation of Air Traffic
Management Systems

César A. Munoz

NASA Langley Research Center
Cesar.A.Munoz@nasa.gov

]

Cesar.A.Munoz@nasa.gov

Real Applications

Outline

The Airspace System

2D Conflict Detection and Resolution (CDR2D)
Real Numbers in PVS

Formal Development of CDR2D

Real Number Proving Tools
Basic Manipulations via Manip
Simplifications via Field
Interval Arithmetic via Interval
Solving Polynomial Inequalities via Bernstein

Concluding Remarks

Real Applications
L The Airspace System

The Airspace System

» 24h of air traffic in the
» 24h of air traffic in the

Real Applications
LThe Airspace System

Next Generation Air Transportation System (NextGen)

» FAA and industry forecast a 1.5 — 2.5 times increase of air
traffic operations over the next two decades.

» By 2016, develop and demonstrate future concepts,
capabilities, and technologies that will enable major increases
in air traffic management ... while maintaining safety, to meet
capacity and mobility requirement of NextGen.

Real Applications
I—The Airspace System

Enabling Technology

» Hardware Systems:

» Global Positioning System (GPS).
» Automatic Dependent Surveillance-Broadcast (ADS-B).
» Increase in computational power.

» Operational concepts based on distributed and autonomous
systems.

Real Applications
LThe Airspace System

Distributed Air/Ground Air Traffic Management

» Today: Air traffic controllers have the primary responsibility
for en-route aircraft separation

» Future: The responsibility for separation will be air/ground
distributed.

Real Applications
|—The Airspace System

Automated Cockpit

Real Applications
|—The Airspace System

State-Based Separation Assurance Systems (SAS)

Airborne systems that maintain aircraft separated assuming only
state information (current position and velocity vector), e.g.,
Conflict Detection and Resolution (CD&R).

Real Applications
LThe Airspace System

SAS Safety Properties

» Conflict Detection:
» correctness: No false alerts.
» completeness: No missed alerts.
» Conflict Resolution:
» completeness: At least one solution.
» independence: Conflict solved when one aircraft maneuvers.

» (Implicit) coordination: Conflict solved when both aircraft
maneuver.

Real Applications
LThe Airspace System

Airborne Coordinated Conflict Resolution and Detection
Framework
ACCoRD is a mathematical framework, fully developed in PVS, for

the design and verification of state-based separation assurance
algorithms.

Real Applications
2D Conflict Detection and Resolution (CDR2D)

2D Conflict Detection and Resolution (CDR2D)

vV v vV V. vV vV VY

2D Rectangular coordinate system.

Linear trajectories.

Instantaneous velocity changes.

Perfect state information (position and velocity vector).
Perfect communication (broadcast from traffic aircraft).
Pairwise approach: ownship and intruder aircraft.
Distributed approach: No central control.

Independent decision making: aircraft do not
communicate/negotiate their resolution maneuvers.

Real Applications
2D Conflict Detection and Resolution (CDR2D)

Basic Definitions: Protected Zone

Circular area of radius D around each aircraft. The value D defines
a minimum horizontal distance between aircraft.

D

(Typically, D = 5nm)

Real Applications
2D Conflict Detection and Resolution (CDR2D)

Basic Definitions: Loss of Separation

Violation of separation minima, i.e., overlapping of protected zones.

Real Applications
2D Conflict Detection and Resolution (CDR2D)

Basic Definitions: Conflict

Predicted loss of separation within a lookahead time T.

(Typically, T = 5min)

Real Applications
2D Conflict Detection and Resolution (CDR2D)

Geometry

» Ownship current state is given by s, (postion) and v,
(velocity) in R2.

» Intruder current state is given by s; (postion) and v; (velocity)
L2
in R<.

» Projected states at time t: s, + tv, and s; + tv;.

» Relative view: s=s, —s; and v =v, — v;.

Real Applications
2D Conflict Detection and Resolution (CDR2D)

Transformation to Relative Coordinate System

In the relative coordinate system, the intruder fixed at the origin
and the ownship moves relative to the intruder.

= D—=

sz%_s

T

D —

= D

Real Applications
2D Conflict Detection and Resolution (CDR2D)

Conflict

Given a relative position s and relative velocity v, there is a
(predicted) conflict if there exists a time 0 < t < T such that the
aircraft are in loss of separation at time t:

conflict?(s,v) =3t € [0, T]: ||s+ tv| < D.

Real Applications
2D Conflict Detection and Resolution (CDR2D)

Conflict Detection Algorithms

A conflict detection algorithm is a function
cd(sy, Vo, S;,V;) :bool,

where
> S,,V, is current state of the ownship.

> s;,v; is the current state of the intruder.

Real Applications
2D Conflict Detection and Resolution (CDR2D)

Conflict Detection Correctness and Completeness

» An algorithm cd is correct if it does not have missed alerts,
ie.,

conflict?(s, — sj, Vo — Vi) = ¢cd(So,Vo,Si, V;)-
» An algorithm cd is complete if it does not have false alerts,
ie.,

cd(so, Vo, Si, Vi) = conflict?(s, — Si,Vo — Vj).

Real Applications
2D Conflict Detection and Resolution (CDR2D)

Conflict Resolution Algorithms

A conflict resolution algorithm is a function
CI'(SO, Vo, Si7 V,‘) : Q(Rz) 4

where v, € cr(s,, Vo, Sj,V;) is a resolution maneuver for the
ownship.

Real Applications
2D Conflict Detection and Resolution (CDR2D)

Independent Conflict Resolution

An algorithm cr is independent if it provides conflict-free resolution
maneuvers assuming that only the ownship maneuvers, i.e.,

For all v, € cx(so, Vo, Si, Vi),

conflict?(s, — sj, Vo — V;) = —conflict?(s, — si, v, — v;).

Real Applications
L_2D Conflict Detection and Resolution (CDR2D)

Coordinated Conflict Resolution

Algorithms cr, and cr; are (implicitly) coordinated if they provide
conflict-free resolution maneuvers assuming that both aircraft
simultaneously maneuver, i.e.,

For all v, € cro(so, Vo, Si, Vi), Vi € cri(si, Vi, So, Vo),

conflict?(s, — sj, Vo — v;) = —conflict?(s, — si, v, — V}).

Real Applications
LReaI Numbers in PVS

Real Numbers in PVS

» Reals are defined as an uninterpreted subtype of number in
the prelude library:

real: TYPE+ FROM number

» All numeric constants are real:

» naturals: 0,1, ...
> integers: ...,-1,0,1,...
» rationals: ...,-1/10,...,3/2,...

» Decimal notation is supported: The decimal number
3.141516 is syntactic sugar for the rational number
31416/10000.

Real Applications
LReaI Numbers in PVS

PVS's real numbers are Real
(Rather than floating point numbers)

» All the standard properties: infinite, non-enumerable,
NCZCQCR,....

» Exact arithmetic: 1/3 + 1/3 + 1/3 = 1.
» The type real is unbounded:

107100
10"googol

googol : real
googolplex : real

googol_prop : LEMMA
googolplex > googol * googol

Real Applications
LReaI Numbers in PVS

Ground real Arithmetic is Built-in

» Numerical expressions can be automatically reduced by the
theorem prover (no need to prove 1+1=2), ...

» .. .except for machine physical limitations, e.g., you probably
cannot prove googol _prop with (grind).

» But, you can still prove googol_prop using analytical
methods.

Real Applications
LReal Numbers in PVS

Subtypes of real

nzreal : TYPE+
nnreal : TYPE+
npreal : TYPE+
negreal : TYPE+
posreal : TYPE+

rat : TYPE+
int : TYPE+
nat : TYPE+

= {r:
= {r:
= {r:
= {r:
= {r:

FROM
FROM
FROM

real|
real|
real|
real|
real|

real
rat
int

r /= 0} % Nonzero reals
r >= 0} %, Nonnegative reals
r <= 0} Y, Nonpositive reals

r < 0} % Negative reals
r > 0} % Positive reals

The uninterpreted type number is the only real’s supertype
predefined in PVS: no complex numbers, no hyper-reals,

no R, ...

Real Applications
LReaI Numbers in PVS

Predefined Operations

+, —, *: [real, real -> reall
/: [real, nzreal -> reall]
-: [real -> reall

sgn(x:real) : int = IF x >= 0 THEN 1 ELSE -1 ENDIF
abs(x:real) : {nny: nnreal | nny >= x} = ...

max(x,y:real): {z: real | z >= x AND z >=
min(x,y:real): {z: real | z <= x AND z <= y} = ...
“(x: real,i:{i:int | x /= 0 0OR i >= 0}): real = ...

~«
()
|

...and what about \/:f, log, exp, sin, cos, tan, 7, lim, ... ?

Real Applications
LReaI Numbers in PVS

NASA

PVS Libraries

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

» reals: Square, square root, quadratic formula, polynomials.

» analysis: Real analysis, limits, continuity, derivatives,

integrals.

» vectors and vect_analysis: Vector calculus and analysis.

» series: Power series, Taylor's theorem.

» 1lnexp and lnexp_fnd: Logarithm, exponential, and

vV v v Y

hyperbolic functions.
trig and trig_fnd: Trigonometry.
complex: Complex numbers.

float: Floating point numbers.

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

Real Applications
|—Real Numbers in PVS

To Be Or Not To Be (Fundational) ?

» Axiomatic theories trig and lnexp typechek faster.

» Fundational theories trig_fnd and lnexp_fnd have no
axioms.

Real Applications
LReaI Numbers in PVS

To Be Or Not To Be (Fundational) ?

» Axiomatic theories trig and lnexp typechek faster.

» Fundational theories trig_fnd and lnexp_fnd have no
axioms.
» Be careful what you wish for:

{1} sin(pi / 2) > 1/ 2

Rule? (grind)

Integral rewrites Integrallreal] (0, 1, atan_deriv_fn)
to integral(0, 1, atan_deriv_fn)

atan_value rewrites atan_value(1)
to integral(0, 1, atan_deriv_fn)

atan rewrites atan(1)

Real Applications
LFormaI Development of CDR2D

Formal Development of CDR2D

CDR2D[D:posreal] : THEORY

BEGIN IMPORTING vectors@vectors_2D
% 2D Positions
Position : TYPE = Vect2
p,s,so,si : VAR Position

% 2D Relative Velocities
Velocity : TYPE = Vect2
v : VAR Velocity

% 2D Absolute Velocities (cannot be zero)
AbsVelocity : TYPE = Nz_vect2
vo,vop,vi,vip : VAR AbsVelocity

END CDR2D

Real Applications
LFormaI Development of CDR2D

Formal Development of CDR2D

CDR2D[D:posreal] : THEORY

BEGIN IMPORTING vectors@vectors_2D
% 2D Positions
Position : TYPE = Vect2
p,s,so,si : VAR Position

% 2D Relative Velocities
Velocity : TYPE = Vect2
v : VAR Velocity

% 2D Absolute Velocities (cannot be zero)
AbsVelocity : TYPE = Nz_vect2
vo,vop,vi,vip : VAR AbsVelocity

END CDR2D

Real Applications
LFormaI Development of CDR2D

Relative Protected Zone

ProtectedZone : set[Position] = {p | sq(p) < sq(D)}

Sets in PVS are charaterictic funtions, e.g., the definition above is
equivalent to

ProtectedZone(p) : bool = sq(p) < sq(D)

Real Applications
LFormaI Development of CDR2D

Relative Protected Zone

ProtectedZone : set[Position] = {p | sq(p) < sq(D)}

Sets in PVS are charaterictic funtions, e.g., the definition above is
equivalent to

ProtectedZone(p) : bool = sq(p) < sq(D)

Real Applications
LFormaI Development of CDR2D

Conflict, Conflict Detection, and Conflict Resolution

conflict?(s,v): bool =
EXISTS(t:nnreall|t <= T): ProtectedZone(s+t*v)

% Type of CD algorithms
CD : TYPE =
PRED[[Position,AbsVelocity,Position,AbsVelocityl]

% Type of CR algorithms
CR : TYPE = [[Position,AbsVelocity,Position,AbsVelocity]
-> set[AbsVelocity]]

Note: PRED[T] is the same as [T->bool].

Real Applications
LFormaI Development of CDR2D

CD Correctness and Completeness

cd : VAR CD

correct?(cd) : bool =
FORALL(so,vo,si,vi):
conflict?(so-si,vo-vi) IMPLIES cd(so,vo,si,vi)

complete?(cd) : bool =
FORALL(so,vo,si,vi):
cd(so,vo,si,vi) IMPLIES conflict?(so-si,vo-vi)

Real Applications
LFormaI Development of CDR2D

CR Independence and Coordination

cr : VAR CR

independent?(cr) : bool =
FORALL(so,vo0,si,vi,vop)
conflict?(so-si,vo-vi) AND
member (vop,cr(so,vo,si,vi)) IMPLIES
NOT conflict?(so-si,vop-vi)

coordinated?(cr) : bool =
FORALL(so,vo,si,vi,vop,vip)
conflict?(so-si,vo-vi) AND
member (vop,cr(so,vo,si,vi)) IMPLIES
member (vip,cr(si,vi,si,vi)) IMPLIES
NOT conflict?(so-si,vop-vip)

Real Applications
LFormaI Development of CDR2D

A CD Algorithm

cd2d_ever?(s,v): MACRO bool =
IF s*v < O THEN
sq(s*v)-sqv(v)*(sqv(s)-sq(D)) > O
ELSE sqv(s) < sq(D)
ENDIF

cd2d_ever(so,vo,si,vi): bool =
cd2d_ever?(so-si,vo-vi)

cd2d_ever_incomplete : THEOREM
NOT complete?(cd2d_ever)

cd2d_ever_correct : THEOREM
correct?(cd2d_ever)

Real Applications
LFormal Development of CDR2D

Exercise 1

1. Define a type of aircraft with an identifier, a 2D position, and
a 2D velocity:
AircraftXY : TYPE = ...
2. Define a constant ac of type AircraftXY:
ac : AircraftXy = ...
3. Define a predicate cdnas that holds if there is a traffic aircraft
that is in conflict ever, e.g., cd2d_ever, with the ownship.

cdnas (ownid:Identifier,nas: (exists?(ownid))) : bool =

Real Applications
LFormal Development of CDR2D

Flat Earth?

IMPORTING vectorsQECEF,
vectors@vect3_basis,
vectors@trackAngles_2D

% Radius of the earth
R : posreal = 6353000 % [m]

geo2sxy(lat_ref,lon_ref:real) (lat,lon:real) : Position =
LET midlat = (lat_ref+lat)/2,
midlon = (lon_ref+lon)/2,
refxyz = spherical2xyz(R,midlat,midlon),
pxyz = spherical2xyz(R,lat,lon) IN
sphere_to_2D_plane (refxyz) (pxyz)

gstrk2vxy(gs:posreal,trk:real): AbsVelocity =
v_from(trk,gs)

Real Applications
|—Fc;rmal Development of CDR2D

Proving cd2d_ever Incompleteness

cd2d_ever_incomplete : THEOREM
NOT complete?(cd2d_ever)

Real Applications
|—Fc;rmal Development of CDR2D

Proving cd2d_ever Incompleteness

cd2d_ever_incomplete :

Rule? (expand "complete?")

Real Applications
LFormaI Development of CDR2D

Proving cd2d_ever Incompleteness

cd2d_ever_incomplete :

Rule? (expand "complete?")
Expanding the definition of complete?, this simplifies to:
cd2d_ever_incomplete :

{-1} FORALL (so, vo, si, vi):
cd2d_ever(so,vo,si,vi) IMPLIES conflict?(so-si,vo-vi)

Rule? (inst -1 "(—D—T,O)" "(2,0)" "(D,O)" "(1,0)")

R

Real Applications
LFormaI Development of CDR2D

cd2d_ever_incomplete.1

{-1} cd2d_ever((# x:=-D - T, y:=0 #), (# x:=2, y:=0 #),
(# x:=D, y:=0 #), (# x:=1, y:=0 #))

IMPLIES
conflict?((# x:=-D - T, y:=0 #) - (# x:=D, y:=0 #),
(# x:=2, y:=0 #) - (# x:=1, y:=0 #))

Rule? (grind :exclude "sq")

R

Real Applications
LFormaI Development of CDR2D

cd2d_ever_incomplete.1

{-1} cd2d_ever((# x:=-D - T, y:=0 #), (# x:=2, y:=0 #),
(# x:=D, y:=0 #), (# x:=1, y:=0 #))
IMPLIES
conflict?((# x:=-D - T, y:=0 #) - (# x:=D, y:=0 #),
(# x:=2, y:=0 #) - (# x:=1, y:=0 #))

Rule? (grind :exclude "sq")

{-1} t!'1 >=0

{-2} t!'1<=T

{-3} sq(-D-D -T + t!1) < sq(D)

e
Real Applications

|—Fc;rmal Development of CDR2D

Rule? (rewrite "sq_neg" :dir rl)

All the other sub-goals are easily discharged by grind,
decompose-equality, and assert.

e

Real Applications
LFormaI Development of CDR2D

Rule? (rewrite "sq_neg" :dir rl)
Rewriting using sq_neg, matching in *, this simplifies to:
cd2d_ever_incomplete.1.1 :

[-1] t!'1 >=0

[-2] t!1 <=T
{-3} sq(-(-D-D-T + t!1)) < sq(D)

Rule? (rewrite "sq_1t")

All the other sub-goals are easily discharged by grind,
decompose-equality, and assert.

Real Applications
LFormal Development of CDR2D

Rule? (rewrite "sq_neg" :dir rl)
Rewriting using sq_neg, matching in *, this simplifies to:
cd2d_ever_incomplete.1.1

[-1] t!'1 >=0
[-2] t!1 <=T
{-3} sq(-(-D-D-T + t!1)) < sq(D)

Rule? (rewrite "sq_1t")
Rewriting using sq_lt, matching in *,
This completes the proof of cd2d_ever_incomplete.l.1.

All the other sub-goals are easily discharged by grind,
decompose-equality, and assert.

Real Applications
|—Fc;rmal Development of CDR2D

Proving cd2d_ever Correctness

cd2d_ever_correct : THEOREM
correct?(cd2d_ever)

Real Applications
LFormal Development of CDR2D

Proving cd2d_ever Correctness

After a few strategies, we have two sub-goals:

cd2d_ever_correct.1:
{-1} (so-si)*(vo-vi) < O
[-2] sq((so-sit+t*(vo-vi)) ‘x)+sq((so-si+t*(vo-vi)) ‘y) < sq(D)

{1} sq((so-si)*(vo-vi))+sq(D)*sqv(vo-vi) -
sqv(so-si)*sqv(vo-vi) > O

cd2d_ever_correct.2:
[-1]1 sq((so-sit+t*(vo-vi)) ‘x)+sq((so-si+t*(vo-vi)) ‘y) < sq(D)

{1} (so-si)*(vo-vi) < 0
{2} sqv(so-si) < sq(D)

How to prove these kinds of formulas?

Real Applications
LFormal Development of CDR2D

Proving cd2d_ever Correctness

After a few strategies, we have two sub-goals:

cd2d_ever_correct.1:
{-1} (so-si)*(vo-vi) < O
[-2] sq((so-sit+t*(vo-vi)) ‘x)+sq((so-si+t*(vo-vi)) ‘y) < sq(D)

{1} sq((so-si)*(vo-vi))+sq(D)*sqv(vo-vi) -
sqv(so-si)*sqv(vo-vi) > O

cd2d_ever_correct.2:
[-1]1 sq((so-sit+t*(vo-vi)) ‘x)+sq((so-si+t*(vo-vi)) ‘y) < sq(D)

{1} (so-si)*(vo-vi) < 0
{2} sqv(so-si) < sq(D)

How to prove these kinds of formulas? Very carefully :-).

Real Applications
LReaI Number Proving Tools

Real Number Proving Tools

» Basic algebraic manipulations via Manip.
» Simplifications via Field.
» Interval arithmetic via Interval.

» Solving polynomial inequalities via Bernstein.

Real Applications
LReaI Number Proving Tools
LBasic Manipulations via Manip

Basic Manipulations via Manip

» Manip is a package for algebraic manipulations of real-valued
expressions.

> http:
//shemesh.larc.nasa.gov/people/bld/manip.html.

» The package consists of:

» Strategies.

Extended notations for formulas and expressions.
Emacs extensions.

Support functions for strategy developers.

» Manip is pre-installed in PVS 5.0.

vvVvyy

http://shemesh.larc.nasa.gov/people/bld/manip.html
http://shemesh.larc.nasa.gov/people/bld/manip.html

Real Applications
|—Real Number Proving Tools
|—Basic Manipulations via Manip

Examples
Manip

{-1} x+y <=2z

Rule?

Real Applications
|—Real Number Proving Tools
|—Basic Manipulations via Manip

Examples
Manip

{-1} x+y <=2z

Rule? (mult-by -1 "100")

Real Applications
|—Real Number Proving Tools
LBasic Manipulations via Manip

Examples
Manip

Rule? (mult-by -1 "100")

Multiplying both sides of selected formulas by given term,
this simplifies to:
mp :

Real Applications
|—Real Number Proving Tools
|—Basic Manipulations via Manip

Examples
Manip

Real Applications
|—Real Number Proving Tools
|—Basic Manipulations via Manip

Examples
Manip

Rule? (flip-ineq -1)

Real Applications
|—Real Number Proving Tools
LBasic Manipulations via Manip

Examples
Manip

Rule? (flip-ineq -1)

Negating and moving the inequalities in formulas -1,
this simplifies to:

mp :

{1} (x +y) * 100 > z * 100

Real Applications
LReaI Number Proving Tools
LBasic Manipulations via Manip

A Few Manip Strategies

| Strategy | Description |
(swap-rel fnums) Swap sides and reverse relations
(swap! expr-loc) Xoy=yox
(group! expr-loc LR) | (xoy)oz = xo(yoz)
(flip-ineq fnums) Negate and move inequalities
(split-ineq fnum) Split < (>) into < (>) and =

Real Applications

LReaI Number Proving Tools

LBasic Manipulations via Manip

More Strategies

Strategy

Description

(mult-by fnums term)

Multiply formula by term

(div-by fnums term)

Divide formula by term

(move-terms fnum L|R tnums)

Move additive terms left and right

(isolate fnum L|R tnum)

Isolate additive terms

(cross-mult fnums)

Perform cross-multiplications

(factor fnums)

Factorize formulas

(factor! expr-loc)

Factorize terms

(mult-eq fnum fnum)

Multiply equalities

(mult-ineq fnum fnum)

Multiply inequalities

Real Applications
LReaI Number Proving Tools
LBasic Manipulations via Manip

Extended Formula Notation

» Standard

» *: All formulas.
» —: All formulas in the antecedent.
» +: All formulas in the consequent.

» Extended (Manip strategies only)
» (~ nil...nk): All formulas but ni,...,nk
» (-~ nil...nk): All antecedent formulas but n1,...,nk
» (+~ nl...nk): All consequent formulas but ni,...,nk

Real Applications
LReaI Number Proving Tools
LBasic Manipulations via Manip

Extended Expression Notation

» Term indexes:

v

L,R: Left- or right-hand side of a formula.

n: n-th term from left to right in a formula.

-n: n-th term from right to left in a formula.

*: All terms in a formula.

(" nl1...nk): All terms in a formula but n1,...,nk.

vV vy VvYy

» Location references:

» (! fnum LR il...in): Term in formula fnum, Left- or
Right-hand side, at recursive path location il...ik.

Real Applications
LReaI Number Proving Tools
L Simplifications via Field
;

Simplifications via Field

» Field is a package for simplifications in the closed field of real
numbers.
» http://shemesh.larc.nasa.gov/people/cam/Field.
» The package consists of:
» The strategies grind-reals and field.

> Several extra-tegies.
» Field is pre-installed in PVS 5.0.

http://shemesh.larc.nasa.gov/people/cam/Field

Real Applications
|—Real Number Proving Tools
L Simplifications via Field

grind-reals

{-1} x*xy>=0
{-2} x>0

{13 y»>=o0
Rule?

Real Applications
|—Real Number Proving Tools
L Simplifications via Field

grind-reals

{-1} x*xy>=0
{-2} x>0

{1y y»>=0
Rule? (grind-reals)

Real Applications
|—Real Number Proving Tools
L Simplifications via Field

grind-reals

{-1} X *xy>0
{-2y x>0

{1y y»>=0
Rule? (grind-reals)
Rewriting with pos_times_ge

Applying GRIND-REALS,
Q.E.D.

Real Applications
LReaI Number Proving Tools
L Simplifications via Field

field

{-1} vox > 0

{-2} s *x s -D*D >D

{-3} s * vix * voy - s * viy * vox /= 0

{-4} ((s * s - DxD) * voy - D * vox * sqrt(s*s - DxD))/
(s * (vix * voy - vox * viy)) * s * vox /= 0

{-5} voy * sqrt(s * s - D*D) - D * vox /= 0

{1} (viy * sqrt(s * s - DxD) - vix * D) /
(voy * sqrt(s * s - D#D) - vox * D) =
(D#D - s * 8) / (((s * s - DxD) * voy - D * vox *
sqrt(s * s - DxD)) /
(s * (vix * voy - vox * viy)) * s * vox) +
vix / vox

Rule?

Real Applications
LReaI Number Proving Tools
L Simplifications via Field

field

{-1} vox > 0

{-2} s *x s -D*D >D

{-3} s * vix * voy - s * viy * vox /= 0

{-4} ((s * s - DxD) * voy - D * vox * sqrt(s*s - DxD))/
(s * (vix * voy - vox * viy)) * s * vox /= 0

{-5} voy * sqrt(s * s - D*D) - D * vox /= 0

{1} (viy * sqrt(s * s - DxD) - vix * D) /
(voy * sqrt(s * s - D#D) - vox * D) =
(D#D - s * 8) / (((s * s - DxD) * voy - D * vox *
sqrt(s * s - DxD)) /
(s * (vix * voy - vox * viy)) * s * vox) +
vix / vox

Rule? (field)

Real Applications
LReaI Number Proving Tools
L Simplifications via Field

field

{-1} vox > 0

{-2} s *x s -D*D >D

{-3} s * vix * voy - s * viy * vox /= 0

{-4} ((s * s - DxD) * voy - D * vox * sqrt(s*s - DxD))/
(s * (vix * voy - vox * viy)) * s * vox /= 0

{-5} voy * sqrt(s * s - D*D) - D * vox /= 0

{1} (viy * sqrt(s * s - DxD) - vix * D) /
(voy * sqrt(s * s - D#D) - vox * D) =
(D#D - s * 8) / (((s * s - DxD) * voy - D * vox *
sqrt(s * s - DxD)) /
(s * (vix * voy - vox * viy)) * s * vox) +
vix / vox

Rule? (field)
Q.E.D.

Real Applications
LReaI Number Proving Tools
L Simplifications via Field

Some Extra-tegies

| Strategy | Description
(cancel-by fnum term) Cancel a common term in a formula
(skoletin fnum) Skolemize let-in expressions
(skeep fnum) Skolemize with same variable names
(neg-formula fnum) Negate a formula
(add-formula fnum fnum) | Add two formulas

Real Applications
LReaI Number Proving Tools

LInterval Arithmetic via Interval

Interval Arithmetic via Interval
http://shemesh.larc.nasa.gov/people/cam/Interval

» Interval is a package for interval analysis.
» The package consists of:

» The library interval_arith, which presents a formalization
of interval analysis for real-valued functions including:
trigonometric functions, logarithm and exponential functions,
square root, absolute value, etc.

» The strategy numerical, which implements a provably correct
branch-and-bound interval analysis algorithm.

» Interval is part of the NASA PVS Libraries.

http://shemesh.larc.nasa.gov/people/cam/Interval

Real Applications
LReaI Number Proving Tools

LInterval Arithmetic via Interval

A Simple Problem

Prove that the turn rate of an aircraft with a bank angle of 35 is
greater than 3° per second.

IMPORTING interval_arith@strategies
g:posreal=9.8 hm/s"2]
v:posreal=250%0.514 % [m/s]

tr(phi: (Tan?)): MACRO real = g*tan(phi)/v

tr_35 : LEMMA
3*pi/180 <= tr(35*pi/180)

Real Applications
|—Real Number Proving Tools

|—Interval Arithmetic via Interval

numerical

Real Applications
|—Real Number Proving Tools

|—Interval Arithmetic via Interval

numerical

{1} 3 *pi / 180 <= g * tan(35 * pi / 180) / v

Rule? (numerical)

Real Applications
|—Real Number Proving Tools

Llnterval Arithmetic via Interval

numerical

{1} 3 *pi / 180 <= g * tan(35 * pi / 180) / v

Rule? (numerical)
Evaluating formula using numerical approximations,
Q.E.D.

Real Applications
LReaI Number Proving Tools

LInterval Arithmetic via Interval

numerical

{1} 3 *pi / 180 <= g * tan(35 * pi / 180) / v

Rule? (numerical)
Evaluating formula using numerical approximations,
Q.E.D.

Special prize: Prove this lemma in any theorem prover different
from PVS (Note: pi is the mathematical irrational number 7 and
tan is the trigonometric function tan).

Real Applications
|—Real Number Proving Tools

|—Interval Arithmetic via Interval

A Simple Property of Logarithms

G(x:reallx < 1): MACRO real = 3*x/2 - 1n(1-x)

A_and_S : LEMMA
let x = 0.5828 in
G(x) >0

Real Applications
|—Real Number Proving Tools

|—Interval Arithmetic via Interval

A Simple Property of Logarithms

{1} LET x = 0.5828 IN 3 * x / 2 - In(1 - x) > 0

Rule?

Real Applications
|—Real Number Proving Tools

|—Interval Arithmetic via Interval

A Simple Property of Logarithms

{1} LET x = 0.5828 IN 3 * x / 2 - In(1 - x) > 0

Rule? (numerical)

Real Applications
|—Real Number Proving Tools

Llnterval Arithmetic via Interval

A Simple Property of Logarithms

{1} LET x = 0.5828 IN 3 * x / 2 - In(1 - x) > 0

Rule? (numerical)
Evaluating formula using numerical approximations,
Q.E.D.

Real Applications
LReaI Number Proving Tools

LInterval Arithmetic via Interval

A Simple Property of Logarithms

{1} LET x = 0.5828 IN 3 * x / 2 - In(1 - x) > 0

Rule? (numerical)
Evaluating formula using numerical approximations,
Q.E.D.

Special prize: Prove this lemma in any theorem prover different
from PVS (Note: 1n is natural logarithm function).

Real Applications
|—Real Number Proving Tools

|—Interval Arithmetic via Interval

Interval Arithmetic

{-1} x## [l 0, 2 |]

Real Applications
|—Real Number Proving Tools

|—Interval Arithmetic via Interval

Interval Arithmetic

{-1} x## [l 0, 2 1]
{1} sqrt(x) + sqrt(3) < pi + 0.1

Rule? (numerical :vars "x")

Real Applications
|—Real Number Proving Tools

Llnterval Arithmetic via Interval

Interval Arithmetic

{-1} x## [| 0, 2 |]
{1} sqrt(x) + sqrt(3) < pi + 0.1
Rule? (numerical :vars "x")

Evaluating formula using numerical approximations,
Q.E.D.

Real Applications
I—Real Number Proving Tools

Llnterval Arithmetic via Interval

Interval Analysis

Prove that for all x € [—1,0],
[In(1 + x) — x| — ¢ < 2x°,
where ¢ = 0.15:1

ex_ba : LEMMA
x ## [1-1/2,0]] IMPLIES
abs(1ln(1+x) - x) - epsilon <= 2*sq(x)

Thanks to Behzad Akbarpour.

Real Applications
|—Real Number Proving Tools

|—Interval Arithmetic via Interval

instint

{1} FORALL (x: real):
x ## [1-1/2,0]] IMPLIES abs(ln(1+x)-x)-0.15 <= 2*sq(x)

Rule? (skeep)

Real Applications
LReaI Number Proving Tools

Llnterval Arithmetic via Interval

instint

{1} FORALL (x: real):
x ## [1-1/2,0]] IMPLIES abs(ln(1+x)-x)-0.15 <= 2*sq(x)

Rule? (skeep)

ex_ba :

{-1y x## [l -1/2,01]

{1} abs(1n(l + x) - x) - 0.15 <= 2 * sq(x)

Rule? (numerical :vars (("x" 10)))

Real Applications
LReaI Number Proving Tools

LInterval Arithmetic via Interval

instint

{1} FORALL (x: real):
x ## [1-1/2,0]] IMPLIES abs(ln(1+x)-x)-0.15 <= 2*sq(x)

Rule? (skeep)
ex_ba :
{-1y x## [l -1/2,01]

{1} abs(1n(l + x) - x) - 0.15 <= 2 * sq(x)
Rule? (numerical :vars (("x" 10)))

Evaluating formula using numerical approximations,
Q.E.D.

Real Applications
LReaI Number Proving Tools

LSolving Polynomial Inequalities via Bernstein

Solving Polynomial Inequalities via Bernstein

http://shemesh.larc.nasa.gov/people/cam/Bernstein

» Bernstein is a package for solving multivariate polynomial
global optimization problems using Bernstein polynomials.

» The package consists of:
» The library Bernstein, which presents a formalization of an
efficient representation of multivariate polynomials.
» The strategy bernstein, which discharges simply quantified
multivariate polynomial inequalities on closed/open ranges.
» Grizzly, which is a prototype client-server tool for solving
global optimization problems.

» Bernstein is part of the NASA PVS Libraries.

http://shemesh.larc.nasa.gov/people/cam/Bernstein

Real Applications
LReaI Number Proving Tools

LSolving Polynomial Inequalities via Bernstein

Solving Polynomial Inequalities

IMPORTING Bernstein@strategy

pl : LEMMA
FORALL (x,y:real): -0.5 <= x AND x <= 1 AND
-2 <= y AND y <= 1 IMPLIES
4xx"2-(21/10) *x"4+(1/3) *x "6+ (x-3) *y—-4*xy " 2+4xy~4 > -3.4

p2 : LEMMA
EXISTS (x,y:real): -0.5 <= x AND x <= 1 AND
-2 <=y AND y <= 1 AND
4xx7~2-(21/10) *x~4+(1/3) *x"6+(x-3) *y—-4*y~2+4*y~4 < -3.39

e
Real Applications

|—Real Number Proving Tools

LSoIving Polynomial Inequalities via Bernstein

{1} FORALL (x, y: real):
-0.5 <= x AND x <=1 AND -2 <= y AND y <= 1 IMPLIES
4%x72-(21/10) *x~4+(1/3) *x"6+(x-3) xy—4*y~2+4xy~4 > -3.4

Rule?

e
Real Applications

|—Real Number Proving Tools

LSoIving Polynomial Inequalities via Bernstein

{1} FORALL (x, y: real):
-0.5 <= x AND x <=1 AND -2 <= y AND y <= 1 IMPLIES
4%x72-(21/10) *x~4+(1/3) *x"6+(x-3) xy—4*y~2+4xy~4 > -3.4

Rule? (bernstein)

e
Real Applications

LReaI Number Proving Tools

LSolving Polynomial Inequalities via Bernstein

{1} FORALL (x, y: real):
-0.5 <= x AND x <=1 AND -2 <= y AND y <= 1 IMPLIES
4%x72-(21/10) *x~4+(1/3) *x"6+(x-3) xy—4*y~2+4xy~4 > -3.4

Rule? (bernstein)
Proving polynomial inequality using Bernstein’basis,
Q.E.D.

e
Real Applications

LReaI Number Proving Tools

LSolving Polynomial Inequalities via Bernstein

{1} FORALL (x, y: real):
-0.5 <= x AND x <=1 AND -2 <= y AND y <= 1 IMPLIES
4%x72-(21/10) *x~4+(1/3) *x"6+(x-3) xy—4*y~2+4xy~4 > -3.4

Rule? (bernstein)
Proving polynomial inequality using Bernstein’basis,
Q.E.D.

Special prize: Prove this lemma in any theorem prover different
from PVS

e
Real Applications

|—Real Number Proving Tools

LSoIving Polynomial Inequalities via Bernstein

{1} EXISTS (x, y: real):
-0.5 <= x AND x <=1 AND -2 <=y AND y <= 1 AND
4%x72-(21/10) *x74+(1/3) *x"6+(x-3) xy-4*y~2+4*y~4 < -3.39

Rule?

e
Real Applications

|—Real Number Proving Tools

LSoIving Polynomial Inequalities via Bernstein

{1} EXISTS (x, y: real):
-0.5 <= x AND x <=1 AND -2 <=y AND y <= 1 AND
4%x72-(21/10) *x74+(1/3) *x"6+(x-3) xy-4*y~2+4*y~4 < -3.39

Rule? (bernstein)

R

Real Applications
LReaI Number Proving Tools
LSolving Polynomial Inequalities via Bernstein
;

{1} EXISTS (x, y: real):
-0.5 <= x AND x <=1 AND -2 <=y AND y <= 1 AND

4%x72-(21/10) *x74+(1/3) *x"6+(x-3) xy-4*y~2+4*y~4 < -3.39

Rule? (bernstein)
Proving polynomial inequality using Bernstein’s basis,

Q.E.D.

R

Real Applications

LReaI Number Proving Tools

LSolving Polynomial Inequalities via Bernstein

{1} EXISTS (x, y: real):
-0.5 <= x AND x <=1 AND -2 <=y AND y <= 1 AND
4xx72-(21/10) *x~4+(1/3) *x" 6+ (x-3) xy-4*y~2+4*xy~4 < -3.39

Rule? (bernstein)
Proving polynomial inequality using Bernstein’s basis,

Q.E.D.

Special prize: Prove this lemma in any theorem prover different
from PVS

Real Applications
LReaI Number Proving Tools

LSolving Polynomial Inequalities via Bernstein

A Final Example

cd2d_numeric_conflict: LEMMA
-10 <= s‘x AND s‘x <= -8 AND
-10 <= s‘y AND s‘y <= -8 AND
6 <= v‘x AND v‘x <= 9 AND
6 <= v‘y AND v‘y <= 9 AND
D>=4 AND D<=6
IMPLIES
cd2d_ever?(s,v)

The proof is achieved with (grind), followed by (bernstein).

Real Applications
LConcluding Remarks

Concluding Remarks

Formal Methods in NextGen:

» NextGen is a system of systems: aircraft, physical
environment, human operators.

» Formal methods for system engineering rather than for
software engineering.

» Different sources of uncertainty.

» Highly distributed safety critical systems.

Real Applications
|—Concluding Remarks

Practical Challenges

» Evolutionary vs. revolutionary concepts.
» Theoretical vs. practical solutions.

» Local vs. global solutions.

Real Applications
I—Concluding Remarks

Current Technical Challenges

Automation, automation, automation:
» Non-linear arithmetic.
» Floating point arithmetic.
» Probabilistic reasoning.
>

Numerical integration.

	The Airspace System
	2D Conflict Detection and Resolution (CDR2D)
	Real Numbers in PVS
	Formal Development of CDR2D
	Real Number Proving Tools
	Basic Manipulations via Manip
	Simplifications via Field
	Interval Arithmetic via Interval
	Solving Polynomial Inequalities via Bernstein

	Concluding Remarks

