
Using the Prover II:
Intermediate Commands & Predicate Logic

Paul S. Miner1

NASA Langley Formal Methods Group

p.s.miner@nasa.gov

28 November 2007

1Based heavily on previous versions due to Ben Di Vito and Lee Pike



Outline

Proofs & Quantifiers
Introduction
Skolemization
Instantiation
Examples

Intermediate Proof Commands
Structural Rules
Decision Procedures



Quantification

I Quantified formulas are declared by quantifying free variables
in the formula.

I For example,
lem1: LEMMA FORALL (x: int, y: int): x * y = y * x

x, y, z: VAR int

lem2: LEMMA EXISTS z: x + z = 0

I Free variables in formulas are implicitly assumed to be
universally quantified.

Example:
lem3: LEMMA x * y = y * x

is treated by the prover as
|-

{1} FORALL (x: int, y: int): x + y = y + x

I Skolemization and Instantiation are used to eliminate
quantifiers.



Skolemization

I Skolemization is the process of introducing a fresh (i.e.,
unused in the sequent) constant (a skolem constant) to
represent an arbitrary value in the domain.

I Universal quantifiers in the consequent are skolemized.

I Existential quantifiers in the antecedent are skolemized.
I The intuition can be seen in how quantifiers are treated in

informal proofs:
I Prove that for all natural numbers n, P(n) implies Q(n). Let a

be an arbitrary natural number and show that P(a) implies
Q(a) . . .

I Suppose there exists a natural number n such that P(n) holds;
let a be an arbitrary natural number such that P(a) . . .



Instantiation

I Instantiation is the process of replacing a quantified variable
with a previously-declared constant.

I Universal quantifiers in the antecedent are instantiated.

I Existential quantifiers in the consequent are instantiated.
I Examples:

I Suppose for all n, P(n) holds, and prove . . .. We know P(3)
. . ..

I Suppose Q(3). Prove there exists an n such that P(n). We
will show that if Q(3), then P(5) . . .



Universal vs. Existential Variables

Top-level quantifier
Location FORALL EXISTS

Antecedent use (inst) use (skolem)

Consequent use (skolem) use (inst)

Embedded quantifiers must be brought to the outermost level for
quantifier rules to apply.

I There are several variants each for skolem and inst.

I skolem variants provide more automation than inst variants.



Skolem Constants

Skolem constants are generated using explicit prover commands.

I There is a skolem command and several variants.
I Easiest to start with is the following:

I Syntax: (skolem! &optional (fnums *) ...)

I Generates Skolem constants for formulas given in fnums

I Only top-level quantifiers may be skolemized.
I Command is usually invoked without arguments, causing it to

apply to the whole sequent.
I The Emacs command M-x show-skolem-constants shows the

currently active constants in a separate emacs buffer.



More Skolemization Rules

Some commands are available that combine low-level operations to
increase degree of automation.

I A common sequence is skolem! followed by flatten.
I The following command does them both:

I Syntax: (skosimp* &optional preds?)

I Repeatedly applies skolem! followed by flatten until no more
simplification occurs

I Often used at the start of a proof to get to the point where
you really want to start



Instantiating Quantifiers

Eliminating quantifiers by instantiation requires substituting
suitable terms for them in the current sequent.

I Basic command for doing this:
I Syntax: (inst fnum &rest terms)

I This command offers a way to instantiate variables in a
formula with terms of the right type.

I Typechecking is performed on the terms.
I As a result, additional proof goals may be generated to make

sure the terms can be used in substitution.

I Example:
I Given that formula 3 is (EXISTS i: i > 1), instantiating with

the substitution of 2 for i produces the formula
2 > 1.
(inst 3 "2")



Instantiate & Copy

I Syntax: (inst-cp fnum &rest terms)

I Works just like inst, but saves a copy of the formula in
quantified form

I This is useful if you want to use a lemma twice.

I One instance may need one term for the instantiation of a
variable, while another instance may need a different term, so
. . .

I . . . inst-cp allows you to have it both ways.



Find my Constant

I Syntax: (inst? &optional (fnums *) ...)

I Similar to inst, but tries to automatically find the terms for
substitution

I This is useful in most proof situations.

I There are usually expressions lying around in the sequent that
are the terms you want to substitute.

I inst? is pretty good at finding them.

I The larger the sequent, however, the more candidate terms
exist to choose from, causing the success rate to drop.



PVS Theory for Examples

We will be using a simple PVS theory to illustrate basic prover
commands:

%%% Examples and exercises for basic prover commands

pred_basic: THEORY

BEGIN

arb: TYPE+ % Arbitrary nonempty type

arb_pred: TYPE = [arb -> bool] % Predicate type for arb

a,b,c: arb % Constants of type arb

x,y,z: VAR arb % Variables of type arb

P,Q,R: arb_pred % Predicate names

.

.

.



Sample Quantified Formulas

.

.

.

quant_0: LEMMA (FORALL x: P(x)) => P(a)

quant_1: LEMMA (FORALL x: P(x)) => (EXISTS y: P(y))

quant_2: LEMMA (EXISTS x: P(x)) OR (EXISTS x: Q(x))

IFF (EXISTS x: P(x) OR Q(x))

l,m,n: VAR int

distrib: LEMMA l * (m + n) = (l * m) + (l * n)

END pred_basic



Skolem Constants (Cont’d)

Starting proof of formula distrib from theory prover basic:

distrib :

|-------

{1} FORALL (l: int, m: int, n: int):

l * (m + n) = (l * m) + (l * n)

Rule? (skolem!)

Skolemizing,

this simplifies to:

distrib :

|-------

{1} l!1 * (m!1 + n!1) = (l!1 * m!1) + (l!1 * n!1)

The variables l, m, n have been replaced with the skolem constants
l!1, m!1, n!1.



Example of Instantiation

quant_0 :

|-------

{1} (FORALL x: P(x)) => P(a)

Rule? (flatten)

Applying disjunctive simplification to flatten sequent,

this simplifies to:

quant_0 :

{-1} (FORALL x: P(x))

|-------

{1} P(a)

Rule? (inst -1 "a")

Instantiating the top quantifier in -1 with the terms: a,

Q.E.D.



Another Example of Instantiation

Try getting the prover to automatically find the instantiation.

quant_1 :

|-------

{1} ((FORALL x: P(x) => Q(x)) AND P(a)) => Q(a)

Rule? (flatten)

Applying disjunctive simplification to flatten sequent,

this simplifies to:

quant_1 :

{-1} (FORALL x: P(x) => Q(x))

{-2} P(a)

|-------

{1} Q(a)

Looks like the constant “a” is what we want.



Another Instantiation Example (Cont’d)

Rule? (inst?)

Found substitution:

x gets a,

Instantiating quantified variables,

this simplifies to:

quant_1 :

{-1} P(a) => Q(a)

[-2] P(a)

|-------

[1] Q(a)

Rule? (prop)

Applying propositional simplification,

Q.E.D.

The prover made the right pick!



Can the Prover Always Find an Instantiation?

quant_2 :

|-------

{1} (FORALL x: P(x)) => (EXISTS y: P(y))

Rule? (skosimp*)

Repeatedly Skolemizing and flattening,

this simplifies to:

quant_2 :

{-1} (FORALL x: P(x))

|-------

{1} (EXISTS y: P(y))

What will INST? do here?



Find an Instantiation? (Cont’d)

Rule? (inst?)

Couldn’t find a suitable instantiation for any

quantified formula. Please provide partial instantiation.

No change on: (INST?)

quant_2 :

{-1} (FORALL x: P(x))

|-------

{1} (EXISTS y: P(y))

The prover gives up — it can’t do the “creative” work of finding a
viable term if it’s not present in the sequent.



Find an Instantiation? (Cont’d)

Rule? (inst + "a")

Instantiating the top quantifier in + with the terms:

a,

this simplifies to:

quant_2 :

[-1] (FORALL x: P(x))

|-------

{1} P(a)

Rule? (inst?)

Found substitution:

x gets a,

Instantiating quantified variables,

Q.E.D.

Need to supply your own term in this case.



Hiding Formulas

Two commands tell the prover to temporarily forget information
and then recall it later.
The first tells the prover which items to ignore

I Syntax: (hide &rest fnums).

I Causes the designated formulas to be hidden away.

I Those formulas will not be used in making deductions.

I This is useful if you have a complicated sequent and some of
the formulas look irrelevant.

I Also useful if a formula has already served its purpose.

I Saves processing time during proof steps.



Revealing Formulas

The second command allows you to bring hidden formulas back

I Syntax: (reveal &rest fnums)

I Restores the designated formulas to the current sequent

I Makes the deletion of information through the hide command
safe

I The Emacs command M-x show-hidden-formulas tells you what is
hidden and what their current formula numbers are.



Decision Procedures

PVS uses decision procedures to supplement logical reasoning.

I Terminating algorithms that can decide whether a logical
formula is valid or invalid

I These constitute automated theorem-proving, so they usually
provide no derivations.

Example: a truth table for propositional logic
I PVS integrates a number of decision procedures including

I Theory of equality with uninterpreted functions
I Linear arithmetic over natural numbers and reals
I PVS-specific language features such as function overrides

Various prover rules apply decision procedures in combination with
other reasoning techniques.

I Important feature for achieving automation

I At the cost of visibility into intermediate steps



Deductive Hammers: Small To Large

The prover has a hierarchy of increasingly muscular simplification
rules.
PROP Repeated application of flatten and split

BDDSIMP Propositional simplification using
Binary Decision Diagrams (BDDs)

ASSERT Applies type-appropriate decision procedures
and auto-rewrites

GROUND Propositional simplification plus decision procedures
SMASH Repeatedly tries BDDSIMP, ASSERT, and LIFT-IF

GRIND All of the above plus definition expansion and INST?



Automated Deduction Tips

I Typically, these simplification rules are invoked without
arguments.

I Examples: (assert), (ground), (grind)

I Caution: GRIND is fairly aggressive
I Can take a while to complete
I Might leave you in a strange place when it’s done
I Might need to be interrupted to abort runaway behavior



Using Type Information

The prover needs to be asked to reveal information about typed
expressions

I A command for importing type predicate constraints:
I Syntax: (typepred &rest exprs)

I Causes type constraints for expressions to be added to sequent
I Subtype predicates are often recalled this way



Type-Predicate Example

bounded1 :

|-------

{1} FORALL (a: {x: real | abs(x) < 1}):
a * a < 1

Rule? (skosimp*)

Repeatedly Skolemizing and flattening,

this simplifies to:

bounded1 :

|-------

{1} a!1 * a!1 < 1

Rule? (typepred "a!1")

Adding type constraints for a!1,

this simplifies to:

bounded1 :

{-1} abs(a!1) < 1

|-------

[1] a!1 * a!1 < 1



Summary

I A constant companion:
skolem universals in the consequent & existentials in the
antecedent.

I For one and all:
inst universals in the antecedent & existentials in the
consequent.

I Hide ’n Seek: hide & reveal

I Automatic for the provers:
prop, assert, ground, grind.

I Hey formula, what’s your type?
typepred & typepred!


	Proofs & Quantifiers
	Introduction
	Skolemization
	Instantiation
	Examples

	Intermediate Proof Commands
	Structural Rules
	Decision Procedures


