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Abstract. A safety claim for a system is a statement that the system,
which is subject to hazardous conditions, satisfies a given set of prop-
erties. Following work by John Rushby and Bev Littlewood, this paper
presents a mathematical framework that can be used to state and for-
mally prove probabilistic safety claims. It also enables hazardous condi-
tions, their uncertainties, and their interactions to be integrated into the
safety claim. This framework provides a formal description of the proba-
bilistic composition of an arbitrary number of hazardous conditions and
their effects on system behavior. An example is given of a probabilis-
tic safety claim for a conflict detection algorithm for aircraft in a 2D
airspace. The motivation for developing this mathematical framework is
that it can be used in an automated theorem prover to formally verify
safety claims.

1 Introduction

In [7, 3], Rushby and Littlewood present a framework for formalizing safety
claims for systems, which is illustrated with probabilistic safety claims in an
automated theorem prover. In this paper, the mathematics behind their ideas
is formalized. The mathematical framework presented will equip the reader to
formalize a probabilistic safety claim about a system with an arbitrary number
of hazardous conditions in a precise mathematical formula that can be proved
in a theorem prover. One advantage that this adds to Rushby’s approach is that
it provides a formal way for new hazardous conditions to be considered without
changing the overall structure of the safety argument.

A safety claim is a statement that a system will behave in a desired manner
with an acceptable probability. A hazard is a state or set of conditions that,
together with other conditions in the environment, will cause a system to enter
an undesirable state. For more on terminology related to safety analyses and sys-
tem hazards, see [?]. In this paper, a potentially hazardous condition, referred to
hereafter simply as a hazardous condition, is anything that may cause a system
to behave in an unexpected or undesired manner. Examples of hazardous condi-
tions may include such things as signal noise, timing delays, or interruptions of
service. The number of hazardous conditions in a safety argument typically de-
pends on the available expertise in analyzing the system, and it is important to
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allow the safety claim to evolve as new factors are uncovered. Hazardous Condi-
tions typically have uncertainties associated with them, and they can therefore
be modeled as random variables. This paper proposes a formal mathematical
framework for modeling hazardous conditions as random variables in a way that
makes it possible to also model interactions between different hazardous con-
ditions. The underlying concepts are due to Rushby [7], but this paper gives
precise mathematical definitions of probabilistic safety claims and provides a
concrete example of such a claim. The example presented is for a state based
conflict detection system.

In general, a probabilistic safety claim can be expressed as a mathematical
formula stating that the probability of a certain event occurring is bounded in a
specific range. Since new factors affecting system behavior may become known
in the future, is desirable for the safety argument to be easily updated without
reconstructing the entire argument. The mathematical formalism presented in
this paper allows hazardous conditions to be modeled in a way that is modular
and can handle the addition of new hazardous conditions.

The interdependency between random variables, e.g., hazardous conditions, is
modeled by probabilistic kernels, which uses the fact that the set of all hazardous
conditions can be modeled via a concatenation of σ-algebras, as seen in [8]. A
σ-algebra is a set of sets where it is possible to assign probabilities to elements
in a consistent way, and is often used to model events. See Section 2.5 for more
compete discussion of probabilistic kernels.

The composition of hazardous conditions is formalized through the concate-
nations of Lebesgue integrals. This allows hazardous conditions and assumptions
to be incorporated into the formula in a modular fashion. The majority of the
complexity is encapsulated in sub-formulas specific to the assumption or haz-
ardous condition in question, while the main safety claim formula need only
be modified in a limited and systematic fashion. The mathematics behind this
formalization is presented in following sections.

2 Systems

Systems of interest are those that can modeled as well-defined functions with
inputs and outputs. In this formalization, a system is a function S with n pa-
rameters and m variables:

S : (K1 × . . .×Kn;L1 × L2 × . . .× Lm)→ T0,

where K1, . . . ,Kn and L1, . . . , Lm are the types of the n parameters and m
variables of S, respectively. The type T0 consists of the possible outputs of S,
and if ki ∈ Ki and lj ∈ Lj , then S(k1, . . . , kn; l1, . . . , lm) is an element of T0.
It will sometimes be useful to view the system S as only a function on its
m variables l1, . . . , lm, where the n parameters k1, . . . , kn are fixed, the nota-
tion Sk1,...,kn(l1, . . . , lm) is used in place of S(k1, . . . , kn; l1, . . . , lm). Because the
system S will be modeled as a random variable in order to reason about it
probabilistically, it is assumed that T0 is a measure space with σ-algebra σ(T0).



The values k1, . . . , kn of the parameters of the system are predetermined and
their values, without any errors, are known to the system. In a real system,
the values of the input variables l1, . . . , lm are measured by the system, and
the measurements can have errors. These errors may be due to either expected
accuracy problems with instruments or faulty components in other systems from
which the instruments receive data. In either case, events that can cause such
measurement errors in the system are referred to as hazardous conditions, which
are formally modeled in this context in Section 2.2.

For a system described in this way, a probabilistic safety claim is a statement
that, given some set of possible hazardous conditions, the probability that the
value of the system S lies in a predetermined subtype Z0 of T0 is contained in
particular range [p0, p1].

2.1 Modeling Uncertainty in System Variables

As noted above, the values of the n parameters k1, . . . , kn of the system S are
known to the system without errors. The errors in the measurements of the input
variables l1, . . . , lm can be modeled as random variables

li : Ω → Li

where (Ω, σ(Ω)) is a probability space (σ(Ω) is a σ-algebra on the set Ω). Thus,
given a fixed value κ = {k1, . . . , km} for the set of parameters, the system S
becomes a random variable as well:

Sκ : (Ω, σ(Ω))→ (T0, σ(T0))

χ 7→ S(κ, l1(χ), l2(χ), . . . , lm(χ)) ∈ T0.

Thus, if Z0 is any measurable subset of T0 (i.e. an element of σ(T0)), and if the
distributions of the random variables li are known, then the probability that the
output of Sκ lies in Z0 can be computed.

2.2 Modeling Hazardous Conditions

As noted in Section 2, the errors in the variables l1, . . . , lm of the system S may be
due to either expected accuracy problems with instruments or faulty components
in other systems from which the instruments receive data. Conditions in the
environment of a system that can cause such measurement errors in the system
are referred to as hazardous conditions.

In a model of the environment of the system S, which includes the output
of possible hazardous conditions, these conditions can be modeled as random
variables

Hi : (Ω, σ(Ω))→ (Ti, σ(Ti)),

where i ≥ 1, Ti is an arbitrary type, and σ(Ti) is a σ-algebra on Ti. This mod-
eling framework allows for the computation of the probability that a hazardous
condition Hi takes values in a particular subtype of Ti.



2.3 Modeling All Possible Hazardous Conditions

It is possible that the environment of a system S has an arbitrary number of
hazardous conditions. Further, it may be the case that when developing a model
of system behavior, only a few of these possible hazardous conditions are under-
stood. Even in this case, the environment of the system can be modeled as an
infinite product

T =

∞∏
i=0

Ti,

where T0 is the type of the output values of S, and for i ≥ 1, Ti is the type
of the output of the i-th hazardous condition Hi. This is a measure space with
σ−algebra σ(T ) =

∏∞
i=0 σ(Ti). This type of model is possible even though there

are only finitely many hazardous conditions, because for i large enough, Ti can
be defined to be a singleton set, and Hi : Ω → Ti as the trivial function.

In general, for any choice κ = {k1, . . . , km} of system parameters, there is a
random variable

Sκ ×H1 ×H2 × . . . : Ω → T (1)

given by χ 7→ (S ◦ (κ× l1 × l2 × . . .× lm))(χ), ×H1(χ), H2(χ), . . . ). Thus, the
type T inherits the structure of a probability space from (Ω, σ(Ω)) and from the
random variable (1).

Definition 1 Since the random variable (1) depends on the choice κ of param-
eters for the system S, the probability distribution of T depends on κ as well.
Thus, the probability function on T induced by S and κ will be denoted Pκ.

If β is a subtype of T , then the probability Pκ[β] can be defined and possibly
computed.

2.4 Probabilistic Safety Claims

Suppose that the r hazardous conditions H1, . . . ,Hr, the corresponding types
T1, . . . , Tr, and the probability distributions of the random variables Hi are all
known. Let βi ∈ σ(Ti) be events in Ti. That is, each βi is a subtype of Ti, and
the probability that the value of Hi is an element of βi can be computed.

In general, the probability that the value of every Hi (for i = 1, . . . , n) is in
βi and that the system S takes a value in β is given by

Pκ[σ(β0, β1, . . . , βr)],

where σ(β0, β1, . . . , βr) is the concatenation of σ-algebras given by

σ(β0, β1, . . . , β2) = {ω ∈ T |ω0 ∈ β0, ω1 ∈ β1, . . . , andωn ∈ βr}.

An introduction to concatenations of σ-algebras can be found in [8]. As more
sigma algebras are concatenated, the concatenation becomes smaller:

σ(β0) ⊇ σ(β0, β1) ⊇ σ(β0, β1, β2) ⊇ σ(β0, β1, β2, β3) ⊇ . . . ,



and the sequence of associated probabilities is decreasing:

Pκ[σ(β0)] ≥ Pκ[σ(β0, β1)] ≥ Pκ[σ(β0, β1, β2)] ≥ Pκ[σ(β0, β1, β2, β3)] ≥ . . .

With this formalism, it is possible to formally state a safety claim in a way
that can be specified in an automated theorem prover. Let p0 and p1 be any two
probabilities, and let β0 and α0 be two subtypes of T0.

Definition 2 A probabilistic safety claim on the system S is a statement of the
following form: If lmeas1 , . . . , lmeasm are measured values for the variables of the
system S such that the system output value S(κ′; lmeas1 , . . . , lmeasm ) is an element
of α0, then the probability that the system S, with parameter set κ, takes values
in β0 is between p0 and p1. i.e.

Pκ[σ(β0)] ∈ [p0, p1]. (2)

It should be noted that the hypothesis that S(κ; lmeas1 , . . . , lmeasm ) is an element
of α0 is not needed to formally state a safety claim in a theorem prover. How-
ever, such a hypothesis will often be required to prove such a safety claim,
because the expected values of the random variables l1, . . . , lm are often equal to
lmeas1 , . . . , lmeasm , respectively. Thus, the computation of the probability (2) often
depends on these measured values.

Another important property of this definition is that the set of system pa-
rameters κ′ is different than the set κ. In practice, the parameter set κ′ may be
chosen so that if S(κ; lmeas1 , . . . , lmeasm ) is an element of φ0, then the probability
Pκ[σ(β0)] is more likely to be between p0 and p1. An example of this is given
below in Section 3.2, where the radius of the protected zone around an aircraft
and the lookahead time for conflict detection are artificially increased to ensure
that if a conflict detection probe returns False, then the probability that the
two aircraft are actually in conflict (using the correct radius and lookahead time)
is reduced.

It is also important to note that neither the infinite product T nor con-
catenations of sigma algebras are required to make a safety claim on a system.
However, as illustrated in Section 2.4, both of these concepts are necessary when
developing a formal proof of such a safety claim.

An example of such a safety claim, for a conflict detection probe, is presented
in Section 3.

2.5 Dependence of System Variables on Hazardous Conditions

In general, the hazardous conditions Hi for the system S may have an impact
on the accuracy of the variables of S, which are modeled as random variables
l1, . . . , lm, as in Section 2.1. It is possible to model the dependence of the random
variables li on the random variables Hi using probabilistic kernels. This section
provides a brief introduction to probabilistic kernels, and the construction follows
that in [8].



Probabilistic Kernels Suppose that the distribution of the random variable
Sκ : Ω → T0 (the output of the system S) depends on the value of H1 : Ω → T1.
That is, if ω1 ∈ T1, then there is an associated random variable Ω → T0 × T1
given by

χ 7→ (Sκ(χ), ω1), (3)

for χ ∈ Ω and the distribution of this random variable depends on the choice of
ω1. If this is the case, then there is an induced probability function

p : T1 × σ(T0)→ [0, 1].

Since this function depends on the parameter κ of the system S, it will be written
as pκ. Given ω1 ∈ T1 and β0 ∈ T0, the corresponding output of pκ is written
pκ(ω1;β0), which is the probability that the random variable (3) takes a value
in β0 × {ω1}. If β0 and β1 are elements of σ(T0) and σ(T1), respectively, then
the probability Pκ[σ(β0, β1)], defined in Section 2.4, is given by the Lebesgue
integral

Pκ[σ(β0, β1)] =

∫
ω1∈β1

∫
ω0∈β0

pκ(ω1; dω0)p(dω1).

It is important to note that there is no assumption of independence required for
this equation. In order to compute this integral, it is necessary to know how the
random variable Sκ depends on the random variable H1.

Probabilistic Kernels with Several Variables The construction of this
probabilistic kernel can be generalized to handle multiple hazardous conditions
as follows. Suppose as above that the random variable Sκ : Ω → T0 depends on
the random variables H1, . . . ,Hr. Suppose further that for all i = 1, . . . , r, the
random variable Hi : Ω → Ti depends on the values of the random variables
Hi+1, . . . ,Hr. That is, Sκ depends on H1, . . . ,Hr; H1 depends on H2, . . . ,Hr;
H2 depends on H3, . . . ,Hr; etc. As above, this means that if i ≥ 0, then for
ωi+1 ∈ Ti+1, . . . , ωr ∈ Tr, the distribution of the random variable Ω → Ti×. . . Tr,
given by

χ 7→ (Hi(χ), ωi+1, . . . , ωr), (4)

depends on the values of ωi+1, . . . , ωr (by abuse of notation, H0 = Sκ in this
equation). Further, there is an induced probability function

p : Tr × · · · × Ti+1 × σ(Ti)→ [0, 1]

given by (ωr, . . . , ωi+1;βi) 7→ p(ωr, . . . , ωi+1;βi), which is the probability that
the random variable (4) takes a value in βi×{ω1}× · · ·×{ωr}. This probability
is written with a subscript of κ if i = 0 to indicate the dependence on the system
parameter κ. If βi is an element of the σ−algebra σ(Ti) for i = 0, . . . , r, then the
probability Pκ[σ(β0, . . . , βr)] (cf. Section 2.4) is given by the Lebesgue integral∫

ωr∈βr

· · ·
∫
ω0∈β0

pκ(ωr, . . . , ω1; dω0)p(ωr, . . . , ω1; dω1) · · · p(ωr; dωr−1)p(dωr).

An example of such an integral is given in Section 3.2, where this integral is
explicitly computed to prove a safety claim for a conflict detection system.



3 A Proved Safety Claim for Conflict Detection

This section illustrates the framework presented in the previous sections with
an example of a safety claim for a conflict detection probe in a 2D airspace.
This is an algorithm that detects conflicts between two aircraft, referred to here
as the ownship and the intruder. Its variables include the state information of
the aircraft, which consists of their current positions and velocities, which are
represented by points and vectors in R2, respectively.

Aircraft trajectories are represented by a point moving at constant linear
speed, i.e., if the current state of an aircraft is given by the position s and the
velocity vector v, then its predicted position at time t is s + tv. In this paper,
the vectors so,vo, si, and vi represent the ownship’s position and velocity and
the intruder’s position and velocity, respectively. The formalization presented
here usually considers a relative view where the intruder is fixed at the origin
of the coordinate system. The vectors s and v will denote the relative position
so − si and the relative velocity vo − vi, respectively.

In the airspace, it is required that aircraft maintain a certain horizontal
separation, specified by a minimum horizontal distance D. Typically, D is 5
nautical miles. A conflict detection probe detects conflicts between the aircraft
over some given lookahead time T , usually less than five minutes. A conflict
between the ownship and the intruder aircraft occurs when there is a time t ∈
[0, T ] at which the horizontal distance between the aircraft is projected to be
less than D, i.e.,

‖(so + tvo)− (si + tvi)‖ < D.

Since (so+tvo)−(si+tvi) = (so−si)+t (vo−vi), the predicate that characterizes
conflicts can be defined in terms of the relative vectors s = so−si and v = vo−vi,
i.e., the relative position and velocity vectors, respectively, of the ownship with
respect to the intruder. The predicate horizontal conflict?, parametric on the
lookahead time T and the horizontal distance D, is formally defined as follows.

horizontal conflict?(D,T, s,v) ≡ ∃ t ∈ [0, T ] : ‖s + tv‖ < D.

A conflict detection probe is an algorithm that computes whether the predi-
cate horizontal conflict? holds for the current states of two aircraft. One example
of such an algorithm is cd2d, developed at NASA Langley [4]. Formally, a conflict
detection probe is defined as a function

cd : R+ × R+;R2 × R2 −→ {True, False}.

It is designed so that cd(D,T ; s,v) ⇐⇒ horizontal conflict?(D,T, s,v). for all
D,T ∈ R+ and s,v ∈ R2. Such a conflict detection probe is a system, as de-
scribed above. The distance D and time T are parameters of cd because their val-
ues are typically known to the aircraft without error. For instance, the airspace
may have a 5 nautical mile minimum horizontal separation, and a standards
document may define the lookahead time T to be 3 minutes.



3.1 GPS and ADS-B Hazardous Conditions

If the ownship is using the conflict probe cd to detect conflicts, it must depend
on broadcast signals from the intruder to determine the intruder’s position and
velocity vectors. In this example, the aircraft use Automatic Dependent Surveil-
lance Broadcast (ADS-B)[6] messages to communicate their positions and ve-
locities, and it is assumed that ADS-B messages with state information are sent
by each aircraft once per second. When the ownship uses the algorithm cd, it
is possible that several consecutive position and velocity updates from the in-
truder have been dropped due to signal attenuation, which results in greater
uncertainty in the values of si and vi. Thus, ADS-B message loss due to signal
attenuation can be modeled as a hazardous condition:

H2,adsb : Ω → T2,adsb T2,adsb = {0, 1, 2, 3, . . . }.

The random variable H2,adsb returns the number of consecutive ADS-B messages
from the intruder that were not received by the ownship, since the last received
message from the intruder. At a given instant of time when a conflict detection
probe is used, τ will be used to represent this number of consecutive dropped
messages. The number τ is easy for the ownship to compute, since it just has to
know when the last ADS-B update from the intruder was received. The number
τ is an integer, and τs will be used to represent the time period τ seconds.

In addition, if the conflict detection probe cd is being used by the ownship,
then the position and velocity vectors so, si, vo, and vi will be estimated using
instruments such as GPS. These instruments can be faulty or have expected
errors. For instance, there may be some error in the position predicted by a
GPS device. The effects of uncertainty in positions and velocities of aircraft on
conflict detection have been studied before [2].

Error in GPS is modeled as a hazardous condition as follows. The vectors
smi and vmi represent the intruder’s reported position and velocity vectors, re-
spectively, from the last ADS-B signal that was received by the ownship, and
the vectors smo and vmo represent the ownship’s measured position and velocity
at that time. The relative vectors sm and vm are defined by sm = smo − smi
and vm = vmo − vmi . The true positions of the ownship and the intruder at the
time when the vectors sm and vm were measured (τ seconds ago) are given by
so − τsvo and si − τsvi, respectively. It is clear that if the measured vectors
smo ,v

m
o , s

m
i , and vmi have no error, then sm = s − τsv and vm = v. In this

case, if cd(D,T + τs; s
m,vm) = False, then cd(D,T ; s,v) = False as well.

Thus, the symbol eee (called GPS error) denotes the fact that one of the following
inequalities is satisfied.

(i) ||(so − τsvo)− smo || ≥ ao ||(si − τsvi)− smi || ≥ ai (iii)

(ii) ||vo − vmo || ≥ bo ||vi − vmi || ≥ bi (iv)

Here, the distances ao and ai and the speeds bo and bi are predetermined parame-
ters. For instance, one set of these parameters that is used in the proof of a safety
claim in Section 3.3 is ao, ai = 30 m and bo, bi = 0.3 m/s, which correspond to



certain navigation accuracy categories (NACP 9 and NACV 4, respectively), as
specified by RTCA, Inc. in DO-242A for precision in ADS-B messages [6]. This
specification is for 95 percent confidence intervals on the position and velocity
vectors of aircraft, within the given ranges. Other choices for ao, ai, bo, and bi
may be considered, and thus in the next few sections they are simply treated as
variables.

With this construction, GPS error is modeled as a hazardous condition

H1,gps : Ω → T1,gps (where T1,gps = {eee,¬eee}).

The return type T2,adsb of the second hazardous condition H2,adsb represents
the number of seconds since the last ADS-B update from the intruder aircraft.
If d is any non-negative integer, it is possible to formally define the probability
that the most recent ADS-B message that was sent by the intruder and detect-
ed/decoded by the ownship occurred within the last d seconds.

As noted above, inaccuracies in the measurements of the positions so and si
and the velocities vo and vi imply that the conflict detection probe cd can be
modeled as a random variable:

cdD,T : Ω → T0 = {True, False}
χ 7→ cd(D,T ; s(χ),v(χ))

This random variable depends on the hazardous conditions H1,gps and H2,adsb.

3.2 Probabilistic Kernels in Conflict Detection

It is clear that the random variable SD,T , which takes values in {False, True},
depends on the hazardous conditions H1,gps and H2,adsb. Thus, as in Section 2.5,
if β2 ⊂ T2,adsb, β1 ⊂ T1,gps, and β0 ⊂ T0 = {False, True}, then the probability
that H2,adsb and H1,gps take values in β2 and β1, respectively, and that cdD,T
takes a value in β0, is given by

PD,T [σ(β0, β1, β2)] =

∫
ω2∈β2

∫
ω1∈β1

∫
ω0∈β0

pD,T (ω1, ω2; dω0)p(ω2; dω1)p(dω2).

As a simple example of this, if i ∈ T2,adsb, then the probability that the random
variable (conflict probe) cdD,T returns True, that there is no error in GPS, and
that the last ADS-B signal from the intruder aircraft was exactly i seconds ago
is given by

PD,T [σ({True}, {¬eee}, {i})]

=

∫
ω2∈{i}

∫
ω1∈{¬eee}

∫
ω0∈{True}

pD,T (ω1, ω2; dω0)p(ω2; dω1)p(dω2)

=

∫
ω1∈{¬eee}

∫
ω0∈{True}

pD,T (ω1, i; dω0)p(i; dω1)p({i})

=

∫
ω0∈{True}

pD,T (¬eee, i; dω0)p(i; {¬eee})p({i})

= pD,T (¬eee, i; {True})p(i; {¬eee})p({i})



The random variables cdD,T , H1,gps, and H2,adsb are all discrete, so the
probability that cdD,T returns True, which is given by PD,T [σ({True})], can be
computed as an infinite sum as follows.

PD,T [σ({True})]

=

∫
ω2∈{0,1,2,... }

∫
ω1∈{eee,¬eee}

∫
ω0∈{True}

pD,T (ω1, ω2; dω0)p(ω2; dω1)p(dω2)

=

∞∑
i=0

∫
ω1∈{eee,¬eee}

∫
ω0∈{True}

pD,T (ω1, i; dω0)p(i; dω1)p(i)

=

∞∑
i=0

(∫
ω0∈{True}

pD,T (eee, i; dω0)p(i; {eee})p({i})

+

∫
ω0∈{True}

p(¬eee, i; dω0)p(i; {¬eee})p({i})
)

=

∞∑
i=0

(pD,T (eee, i; {True})p(i; {eee})p({i})

+ pD,T (¬eee, i; {True})p(i; {¬eee})p({i}))

(5)

Distribution of the ADS-B Hazardous Condition Under the assumption
that there is no ADS-B signal interference due to multiple intruder aircraft, the
distribution of the hazardous condition H2,adsb follows a Poisson distribution, as
discussed in [1]. In that paper, the probability that a given ADS-B message from
the intruder aircraft will not be detected and decoded by the ownship, which is

equal to p({0}), is (approximately) given by p({0}) = 1 −
(
r
r0

)k
with r ≤ r0,

where k = 6.4314 and r0 = 96.6 nmi [1]. The number r is the current distance
between the two aircraft. Thus, if it is known that the ownship and the intruder
are no greater than 60 nmi apart, a reasonable distance for most commercial
aircraft given short lookahead times such as 3 minutes, then p({0}) ≥ η, where

η = 0.953.

The key assumption that can be used to deduce that H2,adsb follows a Poisson
distribution is that whether any particular ADS-B message from the intruder
aircraft is received by the ownship is independent from whether any other, dif-
ferent, ADS-B message from the intruder is received. Under this assumption,

p({i}) = η(1− η)i for i ≥ 0.

This is because the last i messages (sent 0, 1, . . . and i−1 seconds ago) have been
dropped, which has a probability of (1− η)i of occurring, and the message sent
exactly i-seconds ago was not dropped, which has a probability of η of occurring.
The equation above can be used to replace p({i}) in Equation (5).

Probability of GPS Error A key assumption in this example is that proba-
bilities pso, psi, pvo and pvi are known that satisfy the following properties.



– At any given time, the probability, that the distance between the ownship’s
predicted position (by GPS) and its actual position is at least ao, is bounded
above by pso.

– At any given time, the probability, that the difference (speed) between the
ownship’s predicted velocity (by GPS) and its actual velocity is at least bo,
is bounded above by pvo.

– At any given time, the probability, that the distance between the intruder’s
predicted position (by GPS) and its actual position is at least ai, is bounded
above by psi.

– At any given time, the probability, that the difference (speed) between the
intruder’s predicted velocity (by GPS) and its actual velocity is at least bi,
is bounded above by pvi.

Specific examples of such numbers can be found in the RTCA, Inc. document
DO-242A [6], which provides examples for the analyses in Section 3.3.

At a given instant of time, the actual positions of the ownship and the in-
truder τ seconds ago were given by so − τsvo and si − τsvi, respectively. The
positions at that time, as predicted by GPS, are by definition given by smo and
smi , respectively. Thus, the following four equations hold.

P [||(so − τmvo)− smo || ≥ ao] ≤ pso P [||(si − τmvi)− smi || ≥ ai] ≤ psi
P [||vo − vmo || ≥ bo] ≤ pvo P [||vi − vmi || ≥ bi] ≤ pvi

By the definition of the error eee in Section 3.1, p(i; {eee}) ≤ pso + pvo + psi + pvi.
Set perror = pso + pvo + psi + pvi. Equation (5) implies that if d is any integer
(a specific number of seconds), then

PD,T [σ({True})]

=

∞∑
i=0

(pD,T (eee, i; {True})p(i; {eee})p({i})

+ pD,T (¬eee, i; {True})p(i; {¬eee})p({i}))

≤
∞∑
i=0

(
Perror η(1− η)i + pD,T (¬eee, i; {True})p(i; {¬eee})p({i})

)
= Perror +

∞∑
i=0

pD,T (¬eee, i; {True})p(i; {¬eee})p({i})

≤ Perror +

∞∑
i=0

pD,T (¬eee, i; {True})η(1− η)i

≤ Perror +

∞∑
i=d+1

η(1− η)i +

d∑
i=0

pD,T (¬eee, i; {True})η(1− η)i

= Perror + (1− η)d+1 +

d∑
i=0

pD,T (¬eee, i; {True})η(1− η)i

(6)



The number d, which is an element of T2,adsb can chosen so that the finite sum is
a good approximation to the infinite sum (since (1− η)d+1 is quite small). This
equation is true for any choice of d.

An Upper Bound on the Probability of Failure Equation (6) implies
that if pD,T (¬eee, i; {True}) = 0 for i ∈ {0, . . . , d}, then the probability that
cd(D,T ; s,v) = True, which is given by PD,T [σ({True})], is bounded above by
Perror+(1−η)d+1. As noted in Section 2.4, to mitigate the effect of measurement
errors on the conflict detection probe cd, a positive distance ψ and a positive time
λ can be artificially added to the distance D and the time T when they are used
as parameters in cd. The important question here is how large do ψ and λ need
to be so that if cd(D+ψ, T + λ; sm,vm) = False, then pD,T (¬eee, i; {True}) = 0
for i ∈ {0, . . . , d}. This question is answered by the following lemma. It refers
to the distances ao and ai and the speeds bo and bi that define the probabilities
pso, pvo, psi, pvi (cf. Section 3.1).

Lemma 1. If λ = d seconds, ψ = ao + ai + (T +λ)(bo + bi), and cd(D+ψ, T +
λ; sm,vm) = False, then pD,T (¬eee, i; {True}) = 0 for i ∈ {0, . . . , d}.

Proof. Suppose that ¬eee holds, and recall from Section 3.1 that τ denotes the
number of seconds since the ownship successfully received position and velocity
updates from the intruder aircraft’s ADS-B device. Suppose that τ = i, where
i ≤ d. Then in order to show that pD,T (¬eee, i; {True}) = 0, it suffices to prove
that cd(D,T ; s,v) = False. Since τ ≤ d, it follows from the hypotheses of the
lemma that cd(D + ψ, T + τs; s

m,vm) = False. Further, since ¬eee holds, the
equations ||(so − (i sec)vo) − smo || < ao and ||(si − (i sec)vi) − smi || < ai and
||vo − vmo || < bo and ||vi − vmi || < bi are all satisfied.

By contradiction, suppose that cd(D,T ; s,v) = True, and choose t∗ ∈ [0, T ]
such that ||s + t∗v|| < D. Then t∗ + τs ∈ [0, T + λ] and since s = so − si and
v = vo − vi, it follows that

||sm + (t∗ + τs)v
m||

= ||(smo − smi ) + (t∗ + (i sec))(vmo − vmi )||
= ||(smo − smi ) + (t∗ + (i sec))(vmo − vmi )− (s + t∗v) + (s + t∗v)||
= ||(smo − (so − (i sec)vo))− (smi − (si − (i sec)vi)) + (t∗ + (i sec))(vmo − vo)

− (t∗ + (i sec))(vmi − vi) + (s + t∗v)||
≤ ||smo − (so − (i sec)vo)||+ ||smi − (si − (i sec)vi)||+ (t∗ + (i sec))||vmo − vo||

+ (t∗ + (i sec))||vmi − vi||+ ||s + t∗v)||
< ao + ai + (t∗ + λ)bo + (t∗ + λ)bi +D

≤ a+ (t∗ + (i sec))b+D

≤ ψ +D.

This is a contradiction, since cd(D + ψ, T + λ; sm,vm) = False and λ = d
seconds. This completes the proof. ut



3.3 The Safety Claim for Conflict Detection

The safety claim that can be proved by using Lemma 1 is stated below. It has
not been formally proved in a theorem prover, but the formal mathematics has
been developed in this paper that enables a standard mathematical proof. It
follows trivially from that Lemma and from Equation 6 in Section 3.2.

Proved Safety Claim for the Conflict Probe cd: Let λ = d seconds, ψ =
ao+ai+(T+λ)(bo+bi). Suppose that cd(D+ψ, T+λ; sm,vm) = False and that
the ownship and the intruder aircraft are no greater than 60 nmi apart. Then
the probability that the aircraft are in conflict, i.e. that cd(D,T ; s,v) = True, is
no greater than pso + pvo + psi + pvi + (1− η)d+1.

A missed alert is a conflict that is not detected. Artificially increasing the
distance D and the lookahead time T in the conflict probe cd will make missed
alerts less likely. The proved safety claim above gives a formula that returns
the amount that D and T must be increased, as well as an upper bound on
the probability of a missed alert if D is increased in this way, assuming that
the ownship and the intruder aircraft are within 60 nmi of each other. The in-
puts to these formulas are the distances ao and ai, the speeds bo and bi, the
probabilities pso, pvo, psi and pvi, and the number of seconds d that T is to be
increased in the conflict probe cd. Equation (6) expresses the relationships be-
tween ao, ai, bo, bi, pso, pvo, psi and pvi. Given these inputs, the associated upper
bound for the probability of a missed alert is

pmissed−alert = pso + pvo + psi + pvi + (1− η)d+1, (7)

where, as in Section 3.2, η is a lower bound for the probability that a given
ADS-B message from the intruder aircraft will not be detected and decoded by
the ownship, and in this example η = 0.953.

In the equation above, the amount ψ that D should be artificially increased
to ensure that the probability of a missed alert is less than pmissed−alert is given
by

ψ = ao + ai + (T + λ)(bo + bi), (8)

where λ = d second. It should be noted that Equations (8) and (7) imply that
if the velocity b dominates the calculation of ψ, then as ψ increases, d increases
as well, and so the probability of a missed alert decreases.

Computing Actual Probabilities DO-242A [6] specifies several system per-
formance confidence-levels that are to be included in ADS-B messages detailing
how precise and trusted the contained state information is. The relevant ones
here are the navigation accuracy categories for position and velocity (NACP and
NACV). NACP is a maximum distance for errors in position; similarly NACV is
a maximum velocity error. That is, these numbers specify the parameters a0, ai
and bo, bi, respectively. Both NACP and NACV specify that the stated values
will fall within a 95% confidence interval, which is equivalent to saying that
pso, pvo, psi and pvi are all equal to 0.05. Table 1 uses these numbers along with



Equations (7) and (8) to compute the amount the distance that D needs to be
increased, as well the associated upper bounds on the probabilities of missed
alerts for different choices of the number of seconds d.

Position Error Velocity Error Time +λ Buffer ψ pmissed−alert

< 30 m < 0.3 m/s 180+0 sec +0.09 nmi (168 m) 0.24700

< 30 m < 0.3 m/s 180+1 sec +0.09 nmi (169 m) 0.20221

< 30 m < 0.3 m/s 180+2 sec +0.09 nmi (169 m) 0.20010

< 30 m < 0.3 m/s 180+3 sec +0.09 nmi (170 m) 0.20000

< 185.2 m < 1.0 m/s 180+0 sec +0.39 nmi (730 m) 0.24700

< 185.2 m < 1.0 m/s 180+3 sec +0.40 nmi (736 m) 0.20000
Table 1. Horizontal uncertainty, lookahead, and buffer sizes. The < 30 m position
error corresponds to the NACP 9 error category (NACP 11 is the most accurate) and
the < 0.3 m/s velocity error corresponds to the NACV 4 (most accurate) error category.
The velocity error dominates in calculating ψ these cases. When the position error is
< 185.2 m (NACP 7) and the velocity error is < 1.0 m/s (NACV 3) the position error
dominates the calculation of ψ for lookahead times less than 186 seconds.

It should be noted that the upper bounds on the probabilities of missed
alerts in this table are quite high, but that this is not due to imprecision in the
presented methods. This is mostly due to the fact that the confidence intervals
specified in DO-242A are for 95% confidence and provide little knowledge of what
is happening the other 5% of the time. It is quite possible that these formulas
could calculate the probability of missed alerts to be less than 4 × 10−9, if
1− (10−9)-confidence intervals were available for the positions and velocities of
the aircraft.

4 Conclusion and Future Work

This paper has built on Rushby and Littlewood’s framework [7, 3] for formalizing
safety claims, specifically providing a mathematical basis for dealing with certain
probabilistic safety claims. The mathematics behind this is based on the notion
of probabilistic kernels, which were illustrated in a safety claim for a conflict
detection system for aircraft. The framework presented allows for an arbitrary
number of potentially hazardous conditions. Future work in this area will include
formalizing the mathematics presented here in a theorem prover such as PVS [5].

An additional area for future work would be to incorporate a degree of as-
sumption checking into the framework. This may include formally capturing
the assumptions of independence between hazardous conditions, which could
be formed into a verification condition that can be automatically checked for
inconsistencies by a satisfiability checker (a SAT-solver).
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