Rigorous Polynomial Approximation
Using Taylor Models in Coq

Érik Martin-Dorel
ENS de Lyon, LIP lab., AriC team
46 allée d’Italie, 69364 LYON CEDEX 07, France
erik.martin-dorel@ens-lyon.org
http://perso.ens-lyon.fr/erik.martin-dorel/

joint work with Nicolas Brisebarre, Mioara Joldeș, Micaela Mayero,
Jean-Michel Muller, Ioana Pașca, Laurence Rideau & Laurent Théry

NFM 2012
Norfolk, Virginia, USA
3-5 April 2012
Outline

1. Introduction and Motivations
2. Presentation of Taylor Models
3. Formalization of Taylor Models in Coq
4. Benchmarks and Timings
5. Conclusion and Future Work
Outline

1. Introduction and Motivations
2. Presentation of Taylor Models
3. Formalization of Taylor Models in Coq
4. Benchmarks and Timings
5. Conclusion and Future Work
Introduction and Motivations

Context and Motivations

- **Polynomial approximation**
 - A common way to represent real functions on machines
 - Only solution for platforms where only $+, -, \times$ are available
 - Used by most computer algebra systems

- **Bounds for approximation errors**
 - Not always available or guaranteed to be accurate in numerical software
 - Yet they may be crucial to ensure the reliability of systems
 - A key part of the TaMaDi project formalization effort for computing the “worst-case accuracy” for all elementary functions
Rigorous Polynomial Approximation

In the setting of rigorous polynomial approximation (RPA):
Approximate the function while fully controlling the error

- May use floating-point arithmetic as support for efficient computation
- Systematically compute interval enclosures instead of mere approximations
Goal

Implement rigorous polynomial approximation in a formal setting, implying:

- Use techniques from *symbolic/numeric computation*: amenable to formal methods
- **Genericity**: implementation extensible and applicable to a large class of problems
- **Efficiency**: evaluate the computational capabilities of the formal proof assistant before starting proving anything
- **Formal verification**: ensure the provided error bound is (tight and) not underestimated
Floating-Point (FP) Arithmetic

Reals numbers can be approximated in machines by floating-point numbers, which are rational numbers of the form

\[x = M \times 2^{e-p+1} \quad \text{with} \quad 2^{p-1} \leq |M| < 2^p \]

- the integer \(p \geq 1 \) is the precision of the considered FP format
- the integer \(M \) is the integral significand of \(x \)
- the integer \(e \) is the exponent of \(x \)
Interval Arithmetic (IA)

- Interval = pair of floating-point (FP) numbers
- E.g., \(\pi \in [3.1415, 3.1416] \)
- Operations on intervals (satisfying enclosure property), e.g.:
 \([2, 4] - [0, 1] = [1, 4]\) (we have \(\forall x \in [2, 4], \forall y \in [0, 1], x - y \in [1, 4] \))
- Tool for bounding the range of functions
- A naive use of IA cannot be successful
- Dependency problem: for \(F(x) := x - x \) and \(X = [1, 5] \), the IA evaluation gives \(F(X) = [-4, 4] \) while the image of \(X \) by \(F \) is \([0, 0]\)
- Moreover, IA is not directly applicable to bound the approximation error \(e := p - f \) given that the values of \(f \) and \(p \) will be very near
Outline

1. Introduction and Motivations
2. Presentation of Taylor Models
3. Formalization of Taylor Models in COQ
4. Benchmarks and Timings
5. Conclusion and Future Work
Taylor Models

Definition

An order-n Taylor Model (TM) for a function $f : D \subset \mathbb{R} \rightarrow \mathbb{R}$ over I is a pair (T, Δ) where T is a degree-n polynomial and Δ is an interval, such that $\forall x \in I, f(x) - T(x) \in \Delta$.

The polynomial T is typically a Taylor expansion of f at $x_0 \in I$ and the interval remainder Δ provides an enclosure of the approximation error.

Our Approach

As regards T: small interval coefficients with floating-point bounds \Rightarrow rounding errors are directly handled by the interval arithmetic \Rightarrow the true coefficients of the Taylor expansion lie inside these intervals.
Taylor-Lagrange Remainder

Theorem (Taylor-Lagrange)

If \(f \) is \(n + 1 \) times derivable on \(I \), then \(\forall x \in I, \exists \xi \) between \(x_0 \) and \(x \) s.t.:

\[
f(x) = \left(\sum_{i=0}^{n} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i \right) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.
\]

- **Taylor expansion**
- \(\Delta(x, \xi) \)

Outline

For \(T \): Compute interval enclosures of \(\frac{f^{(i)}(x_0)}{i!}, \ i = 0, \ldots, n \).

For \(\Delta \): Compute enclosure of \(\Delta(x, \xi) \):

Compute enclosure of \(\frac{f^{(n+1)}(\xi)}{(n+1)!} \) and deduce \(\Delta := \frac{f^{(n+1)}(I)}{(n+1)!} (I - x_0)^{n+1} \).
Taylor-Lagrange Remainder

Theorem (Taylor-Lagrange)

If f is $n + 1$ times derivable on I, then $\forall x \in I$, $\exists \xi$ between x_0 and x s.t.:

$$f(x) = \left(\sum_{i=0}^{n} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i \right) + \frac{f^{(n+1)}(\xi)}{(n + 1)!} (x - x_0)^{n+1}.$$

Taylor expansion + $\Delta(x, \xi)$

Outline

For T: Compute interval enclosures of $\frac{f^{(i)}(x_0)}{i!}$, $i = 0, \ldots, n$.

For Δ: Compute enclosure of $\Delta(x, \xi)$:

Compute enclosure of $\frac{f^{(n+1)}(\xi)}{(n + 1)!}$ and deduce $\Delta := \frac{f^{(n+1)}(I)}{(n + 1)!} (I - x_0)^{n+1}$.

Composite functions \Rightarrow enclosure for Δ can be **largely overestimated**
Methodology of Taylor Models

Define arithmetic operations on Taylor Models:

- $\text{TM}_{\text{add}}, \text{TM}_{\text{mul}}, \text{TM}_{\text{comp}}, \text{and } \text{TM}_{\text{div}}$
- E.g., $\text{TM}_{\text{add}} : \left((P_1, \Delta_1), (P_2, \Delta_2) \right) \mapsto (P_1 + P_2, \Delta_1 + \Delta_2)$.

A two-fold approach:

- **Apply these operations recursively** on the structure of the function
- **Use Taylor-Lagrange remainder for atoms** (i.e., for base functions)
Methodology of Taylor Models

Define arithmetic operations on Taylor Models:

- TM_{add}, TM_{mul}, TM_{comp}, and TM_{div}
- E.g., $\text{TM}_{\text{add}} : \left((P_1, \Delta_1), (P_2, \Delta_2) \right) \mapsto (P_1 + P_2, \Delta_1 + \Delta_2)$.

A two-fold approach:

- Apply these operations recursively on the structure of the function
- Use Taylor-Lagrange remainder for atoms (i.e., for base functions)

\Rightarrow Need to consider a relevant class for base functions, so that:

- We can easily compute their successive derivatives
- The interval remainder computed for these atoms is thin enough
Definition

A D-finite function is a solution of a homogeneous linear ordinary differential equation with polynomial coefficients:

$$a_r(x)y^{(r)}(x) + \cdots + a_1(x)y'(x) + a_0(x)y(x) = 0, \quad \text{for } a_k \in \mathbb{K}[X]$$

Example (exp)

The function $y = \exp$ is fully determined by $\{y' - y = 0, \ y(0) = 1\}$

Most common functions are D-finite ($\sin, \cos, \arcsin, \arccos, \sinh, \cosh, \arcsinh, \arccosh, Si, Ci, Shi, Chi, \arctan, \exp, \ln, Ei, \text{erf}, Ai, Bi, \ldots$). \tan is not.
Taylor Series of D-finite Functions

Theorem

A function represented by a Taylor series $f(x) = \sum_{n=0}^{\infty} u_n (x - x_0)^n$ is D-finite if and only if the sequence (u_n) of its Taylor coefficients satisfies a linear recurrence with polynomial coefficients.

\[\text{recurrence relation} \quad \Rightarrow \quad \text{fast numerical computation} \quad \text{of Taylor coefficients} \]

Example (\exp)

Taylor series: $\exp(x) = \sum_{n=0}^{\infty} \frac{\exp(x_0)}{n!} (x - x_0)^n$

Recurrence: $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{n+1}$ \quad Initial condition: $u_0 = \exp(x_0)$
Outline

1. Introduction and Motivations
2. Presentation of Taylor Models
3. Formalization of Taylor Models in Coq
4. Benchmarks and Timings
5. Conclusion and Future Work
Tools and Libraries Involved in our Formalization

We are using:

- The Coq/SSReflect proof assistant: an interactive theorem prover combining a higher-order logic and a richly-typed functional programming language;
- The CoqInterval library for Multiple-Precision Floating-Point Interval Arithmetic in Coq, based on:
- The Flocq library for Multiple-Precision Floating-Point Arithmetic, itself based on:
- The Reals library from the Coq Standard Library, which consists of a classical axiomatization of the real numbers
Focus on Genericity

- Aim: being as **generic** as possible in our Coq formalization
- TM: instance of Rigorous Polynomial Approximation (RPA)
- RPA: \((P, \Delta)\) where \(P\) is not necessarily a Taylor polynomial
- Genericity for the type of \(P\), the implementation of such polynomials, as well as the type of \(\Delta\)
Choice of a Modularization Mechanism

- \text{Coq} provides three mechanisms for modularization:
 - Type Classes
 - Structures
 - Modules

- Like the CoqInterval library, our formalization uses Modules,
 - less flexible than Type Classes or Structures (first-class), but with a
 - better computational behavior: Modules instantiations are performed
 statically \Rightarrow the executed code is more compact
 - ability to switch implementations
A Generic Implementation of TMs: Modular Hierarchy

BaseOps

PolyOps

RigPolyApprox

TaylorModel

FullOps

IntervalOps

TaylorRec

PolyOps

TaylorPoly
Example of Use

Definition (TM for \textit{exp})

Definition \texttt{exp_rec} (n : nat) (u : T) := tdiv u (tnat n). (*\in\textit{TaylorRec}*).

Definition \texttt{T_exp} n u := trec1 \texttt{exp_rec} (texp u) n. (*\in\textit{TaylorPoly}*).

Definition \texttt{TM_exp} n X X0 := RPA (T_exp n X0)\texttt{(Trem T_exp n X X0)}. (*\in\textit{TaylorModel}*).

Example (TM for \textit{exp} on \([1/2, 1]\))

(* Library/modules preliminary invocations & global precision setting omitted *)

Let \texttt{a} := \texttt{Float 1 (-1)}. (* = \frac{1}{2} *)

Let \texttt{b} := \texttt{Float 2 (-1)}. (* = 1 *)

Let \texttt{X} := \texttt{Ibnd a b}.

Let \texttt{c} := \texttt{I_midpoint (Ibnd a b)}. (* = \frac{a+b}{2} *)

Let \texttt{X0} := \texttt{Ibnd c c}.

Let \texttt{deg} := 10\%nat.

Let \texttt{tm} := \texttt{TM_exp deg X X0}.

\texttt{Eval native_compute in (approx tm)}. \texttt{Eval native_compute in (error tm)}.
Outline

1. Introduction and Motivations
2. Presentation of Taylor Models
3. Formalization of Taylor Models in CoQ
4. Benchmarks and Timings
5. Conclusion and Future Work
Quick Presentation of the Sollya Tool

<table>
<thead>
<tr>
<th>Sollya</th>
<th>CoqApprox</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written in C</td>
<td>Formalized in Coq</td>
</tr>
<tr>
<td>Based on the MPFI library (Multiple-Precision FP IA)</td>
<td>Based on the CoqInterval library</td>
</tr>
<tr>
<td>Contains an implementation of Taylor Models</td>
<td>Implements Taylor Models using a similar algorithm</td>
</tr>
<tr>
<td>In an imperative-programming framework</td>
<td>In a functional-programming framework</td>
</tr>
<tr>
<td>Polynomials as arrays of coefficients</td>
<td>Polynomials as lists of coefficients (linear access time)</td>
</tr>
<tr>
<td>Not formally proved</td>
<td>Formal verification in progress</td>
</tr>
</tbody>
</table>
Some Benchmarks for Base Functions

<table>
<thead>
<tr>
<th></th>
<th>Timing</th>
<th></th>
<th>Approximation error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CoQ</td>
<td>SOLLYA</td>
</tr>
<tr>
<td>arctan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prec=120, deg=8</td>
<td></td>
<td>11.45s</td>
<td>1.03s</td>
</tr>
<tr>
<td>$I=[1, 2]$</td>
<td></td>
<td>7.43×10^{-29}</td>
<td>2.93×10^{-29}</td>
</tr>
<tr>
<td>split in 256</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exp</td>
<td></td>
<td>38.10s</td>
<td>16.39s</td>
</tr>
<tr>
<td>prec=600, deg=40</td>
<td></td>
<td>6.23×10^{-182}</td>
<td>6.22×10^{-182}</td>
</tr>
<tr>
<td>$I=[\ln 2, 1]$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>split in 256</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When the interval I has been split into sub-intervals (of equal length), the timings are for the total duration of the computations while the approximation error is for the last subinterval.
Some Benchmarks for Composite Functions

<table>
<thead>
<tr>
<th></th>
<th>Timing</th>
<th>Approximation error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COQ</td>
<td>SOLLYA</td>
</tr>
<tr>
<td>(\exp \times \sin)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{prec}=200, \text{deg}=10)</td>
<td>1m22s</td>
<td>12.05s</td>
</tr>
<tr>
<td>(I=[1/2, 1])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>split in 2048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\exp \circ \sin)</td>
<td>3m24s</td>
<td>12.19s</td>
</tr>
<tr>
<td>(\text{prec}=200, \text{deg}=10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I=[1/2, 1])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>split in 2048</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- When the interval \(I\) has been split into sub-intervals (of equal length), the timings are for the total duration of the computations while the approximation error is for the last subinterval.
Outline

1. Introduction and Motivations
2. Presentation of Taylor Models
3. Formalization of Taylor Models in Coq
4. Benchmarks and Timings
5. Conclusion and Future Work
Towards Fully Formally Verified Polynomial Approximation

We can formalize the predicate saying that a TM is valid (i.e., whose error is not underestimated) using the following definition:

Definition

Let $f : I \rightarrow \mathbb{R}$ be a function, x_0 be a small interval around an expansion point x_0. Let T be a polynomial with interval coefficients a_0, \ldots, a_n and Δ an interval. We say that (T, Δ) is a Taylor model of f at x_0 on I when

$$
\begin{align*}
& x_0 \subseteq I, \\
& 0 \in \Delta, \\
& \forall \xi_0 \in x_0, \exists \alpha_0 \in a_0, \ldots, \alpha_n \in a_n, \forall x \in I, \quad f(x) - \sum_{i=0}^{n} \alpha_i (x - \xi_0)^i \in \Delta.
\end{align*}
$$
Proofs are in Progress

<table>
<thead>
<tr>
<th>Fun/Op</th>
<th>Available in CoqInterval</th>
<th>Implemented in CoqApprox</th>
<th>Proved in CoqApprox</th>
</tr>
</thead>
<tbody>
<tr>
<td>cst</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>id</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>inv</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>sqrt</td>
<td>✓</td>
<td>✓</td>
<td>□</td>
</tr>
<tr>
<td>$\frac{1}{\sqrt{\cdot}}$</td>
<td>✓</td>
<td>✓</td>
<td>□</td>
</tr>
<tr>
<td>exp</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>sin</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>cos</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>arctan</td>
<td>✓</td>
<td>✓</td>
<td>□</td>
</tr>
<tr>
<td>ln</td>
<td>□</td>
<td>✓</td>
<td>□</td>
</tr>
<tr>
<td>arcsin</td>
<td>□</td>
<td>✓</td>
<td>□</td>
</tr>
<tr>
<td>arccos</td>
<td>□</td>
<td>✓</td>
<td>□</td>
</tr>
<tr>
<td>TM_{add}</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>TM_{mul}</td>
<td>✓</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>TM_{comp}</td>
<td>✓</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>TM_{div}</td>
<td>✓</td>
<td></td>
<td>□</td>
</tr>
</tbody>
</table>
Conclusion

- An implementation of Taylor Models inside the Coq proof assistant taking advantage of the CoqInterval library for Interval Arithmetic
- **Symbolic/numeric approach** based on D-finite recurrences
- **Genericity** achieved thanks to a heavy use of Coq modules
- **Efficiency**: timings in Coq are just one order of magnitude slower than a conventional implementation in C
- Implementation carried on in a framework suitable for formal proof
Future Work

- Add more functions
- Finish the proofs
- Use persistent arrays instead of lists?
- Optimize the multiplication algorithm for composite functions
- Consider “Chebyshev Models” which should provide tighter remainders

Aim: Use our CoqApprox library in a full verification chain for TaMaDi
Thank you for your attention!

The TaMaDi project homepage: https://tamadiwiki.ens-lyon.fr/
http://tamadi.gforge.inria.fr/CoqApprox/