odifying Test Suite
= Composition for Effective
=inE Statistical Debugging

Ross Gore
University of Virginia
rjg7v@yvirginia.edu

ofivation

MaSTRI

Efficient debugging is needed:
e * Lots of software ships with faults
* Programmers read code to fix faults

Harder for safety-critical:
 Floating-point data types and computations
* Numerical Analysis errors
« Affects millions of lives and billions of $$

el Statistical
i Debuqgain
a1l i
MaSTRI

a failing subject program, rank the likelihood
each predicate (p) reflects the fault.
fs
S
Suspiciousness(p) based on:
 Test Cases (Program Inputs)
» Execution Profiles
» Status of Test Cases
*Successful (passing) - s
Failing - f

Suspiciouness (p) =

fic Predicates

MaSTRI

X) partitioned the same
negative, x <0

Q X
ue is zero, x =0 /l\
Value is positive, x > 0 .

—00 Negative 0 Positive ~+00

Elastic Predicates / l\
\ariables (x) partitioned based L 1

on observed values
*Value is a lot higher than average, x > |
*Value matches average, X = y,
*Value is a lot lower than average

N

>~
-

©CoONOOBLWN=

double

ebugging

el Statistical

MaSTRI

mean (int x [])

{

int 1 = 0;
double sum = 0;
while (i > x.length) {
sum = sum + x[i];
i=1i+1;
}
if (x.length >= 0){ /** off by one **/
return (sum / x.length) ;
}
else {
return (0);

DIVIDE BY ZERO

8

9
(x.length = 0),, =10
(x.length = 0),, mmp11
12

13
14
15
16

evel Statistical
Debugging

—

MaSTRI

double
mean (int x [])
{
int 1 = 0;
double sum = 0;
while (i > x.length) {
sum = sum + x[i];
i=1i+1;
}
if (x.length >= 0){ /** off by one **/
return (sum / x.length);
}
else {
return (0);

redicate Summary

MaSTRI
astic predicates enable improved

effectiveness

— Floating point computations

— Numerical analysis errors

— Incurs additional space and time

* Improvements hold in the face of:
— Sparse Sampling
— Incomplete Test Suites

©CoOoONOOGORLWN==

ing Example

int
distance(int x, int y)
{
int diff = x - y;
if ('(diff > 1)){ /* off by one */
int dist = 0;
dist =y - x;
print (dist) ;
}
int dist = 0;
dist = x - y;
return dist;

MaSTRI

o Ty

10

MaSTRI

Statement | Predicate | TC 1: | TC2: | TC 3: TC 4: TC 5:
{2a2} {5a4} {571} {'41'2} {1’0} Ranks
5 diff = 0 1 0 0 0 0 12
5 diff >0 0 1 0 0 1 3
5 diff <0 0 0 1 1 0 12
6 dist = 0 1 1 1 1 1 4
6 dist >0 0 0 0 0 0 12
6 dist <0 0 0 0 0 0 12
7 dist = 0 1 0 0 0 0 12
7 dist > 0 0 0 1 1 0 12
7 dist <0 0 1 0 0 1 3
8 dist = 0 1 0 0 0 0 12
8 dist >0 0 0 1 1 0 12
8 dist <0 0 1 0 0 1 3
OUTCOME PASS | FAIL PASS FAIL e

ing Example

11

MaSTRI
Statement | Predicate | TC 1: | TC2: | TC 3: TC 4: TC 5:
{2a2} {5a4} {571} {'4:'2} {1’0} Ranks
5 diff = 0 1 0 0 0 0
5 diff >0 0 1 0 0 1
5 diff <0 0 0 1 1 0
6 dist = 0 1 1 1 1 1
6 dist >0 0 0 0 0 0
6 dist <0 0 0 0 0 0
7 dist = 0 1 0 0 0 0
7 dist >0 0 0 1 1 0
7 dist <0 0 1 0 0 1
8 dist = 0 1 0 0 0 0
8 dist >0 0 0 1 1 0
8 dist <0 0 1 0 0 1
OUTCOME PASS | FAIL PASS

o Ty

12

MaSTRI

Statement | Predicate | TC 1: | TC2: | TC 3: TC 4: TC 5:
{2a2} {5a4} {571} {'41'2} {1’0} Ranks

5 diff = 0 1 0 0 0 0 12

5 diff >0 0 1 0 0 1 3

5 diff <0 0 0 1 1 0 i

6 dist = 0 1 1 1 1 1 as

6 dist >0 0 0 0 0 0 -

6 dist <0 0 0 0 0 0 12

7 dist = 0 1 0 0 0 0 12

7 dist > 0 0 0 1 1 0 12

7 dist <0 0 1 0 0 1 3

8 dist = 0 1 0 0 0 0 12

8 dist >0 0 0 1 1 0 12

8 dist <0 0 1 0 0 1 3
OUTCOME PASS | FAIL | PASS PASS FAIL e

13

ding Bias

MaSTRI

Statement | Predicate | Abbreviated Name
5 diff > 0 (diff >0)5
7 dist < 0 (dist <0)7
8 dist < 0 (dist <O0)g

(diff > 0); causes (dist < 0), and (dist <0
failing test case.

This creates bias in the suspici
and (dist < 0)s.

{

©CONOOAPLWN =

6 | dist = 0 |

There is no difference between (dist = 0
Statement 6 being executed.

This creates bias in the suspici

int
distance(int x, int y)

int diff = x - y;

if ('(diff > 1)){ /* off by one */
int dist = 0;
dist =y - x;
print(dist) ;

}

int dist = 0;

dist = x - y;

return dist;

14

MaSTRI

15

onfounding Bias

MaSTRI

onfounding Biases

— Control for the most immediate cause
of a statement being executed

— Control for the immediate cause
predicate being evaluated

16

iﬁﬁ ational Studies

MaSTRI
a regression model for each predicate:

eatment Variable (T)
— T = 1if predicate is true in test case (Treatme
— T = 0 if predicate is not true in test case (C

* Outcome Variable (Y)

—Y =1 if test case fails
— Y =0 if test case Is succe

17

0 for Failure

MaSTRI

18

hing Test Cases

MaSTRI
e pattern of covariates should
exist in Treatment and Control Group

— control flow predecessor true when
predicate is not true?

— predicate evaluated when predicate is
not true?

* Test suite is given
— Likely to be unbalanced

19

uspiciousness
/ith Matching

MaSTRI

Y = a, +rpr +€,

T Is the least-squares suspici
[s,

20

Imputation

MaSTRI

Algorithm 1 Suspiciousness imputation for predicates with a complete lack of overlap problem.

IMPUTESUSP(p)

1 matchedTestCases <+ GETMATCHEDTESTCASES(p)
2 if (matchedTestCases = ()

3 then

4 ancestor < GETCFP(p)

5 suspiciousness <— IMPUTESUSP(ancestor)
6

7 SuUSpICIOuSNess < Tisp

8 return suspiciousness

D Matching

MaSTRI

22

D Matching

MaSTRI

test case Tl in the treatment group

a. find the test case A in the control group that minimiz

d, (7.C,)

2. Move Tl and le.n to the set of test cases

Y = a, +rpr +€,

23

MaSTRI

-#-Static Predicate
=&-Elastic + Static Predicate

15

10

g

O L O 3 o,
1 1 1 31 41 ‘ 51 61 71

Improvement (%)

1 2
Program Versions
-5 -

-10

24

onclusion

MaSTRI
anced covariate values in test cases

prove effectiveness
— Especially for elastic predicates

» Large cost in terms of efficiency

25

jestions / Comments

bisey B

QUESTIONS

i RS b L A SRR) RO N R T e TR

5 v_hm: ¥t s i
3 =1 M

