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What about communicating, asynchronous components? 



Stateflow model UML Statemachine model 

Extension 1: Connectors 

• A connector framework provides generic 
communication mechanism. 
– Basic mechanism is FIFO, non-lossy.  Library includes lossy and non-

FIFO connectors. 

 

public interface Connector { 
  boolean recvFrom(Component to, Component from, Object[]  res); 
  boolean sendTo(Component from, Component to, Object arg); 
} 

Communication  
through connectors 



Stateflow model UML Statemachine model 

Extension 2: scheduling 

• A generic scheduling framework sequences 
component execution and property checking. 

– Basic version is non-deterministic.  Integrated with JPF for 
exploration. 

 

class BasicScheduler extends Scheduler { 
  public void run { 
    // non-deterministically choose component 
   // check properties (next) 
} Java Pathfinder 

Guides 
execution 



Stateflow model UML Statemachine model 

Extension 3: properties 

• Observer automata used to check properties 

Observer automaton 

inputs 

public class Observer { 
  void run() { 
    // determine state of observed components 
    // check property 
    // report violation 
  } } 



Plexil integration 

• PLan EXecution 
Interchange Language 

• Reactive, synchronous, and 
deterministic language for 
commanding and 
monitoring space systems 

Example usage 



PLEXIL to Java translation 

• Plexil uses implicit state machine nodes and a 3-valued logic (True, 
False, and Unknown), interacting with the outside world using 
lookups 

• Initially, JPF took over 13 hours to verify a relatively simple plan 
– Choice points for lookups were being created on demand in the 

middle of a step, causing JPF to capture irrelevant state information 
– By precomputing values between steps, that time dropped to just 8 

minutes, with further optimizations possible 

• JPF verification uncovered a problem when If(Unknown) occurred, 
where the Then and Else branches would not start (since the 
expression was not true or false) causing the plan to become 
unresponsive 

• Regression testing against the reference PLEXIL implementation 
also revealed a possible infinite loop in a state machine 



Ongoing work 

• More efficient analysis of Plexil plans 

• Efficient symbolic execution of Statecharts in 
Polyglot 

– Custom symbolic execution engine, multithreading 



Questions? 

 


