
Integrating Statechart
Components in Polyglot

Daniel Balasubramanian, Gabor Karsai
ISIS / Vanderbilt University

Corina Pasareanu, Thomas Pressburger, Michael Lowry
NASA Ames Research Center

Jason Biatek, Michael W. Whalen
University of Minnesota

Supported by NASA Cooperative Agreement NNX09AV58A

Motivation

Orion Orion (software framework)

Integrated system

UML
Statecharts

Stateflow
Statecharts

Rhapsody
Statecharts

Integrated system
can’t be analyzed at
the model level in
any of the original
environments…

Ares

Polyglot: a Statechart Analysis
Framework

Rhapsody

IMPORT

Simulink/Stateflow

Pluggable Semantics

Generic Execution Environment

UML Rhapsody

State machine model in Java

EXPORT

Java Pathfinder

Stateflow

Data interface

Modeling /
Intermediate Representation

(1) (2)

(3)

(4)

(5)

What about communicating, asynchronous components?

Stateflow model UML Statemachine model

Extension 1: Connectors

• A connector framework provides generic
communication mechanism.
– Basic mechanism is FIFO, non-lossy. Library includes lossy and non-

FIFO connectors.

public interface Connector {
 boolean recvFrom(Component to, Component from, Object[] res);
 boolean sendTo(Component from, Component to, Object arg);
}

Communication
through connectors

Stateflow model UML Statemachine model

Extension 2: scheduling

• A generic scheduling framework sequences
component execution and property checking.

– Basic version is non-deterministic. Integrated with JPF for
exploration.

class BasicScheduler extends Scheduler {
 public void run {
 // non-deterministically choose component
 // check properties (next)
} Java Pathfinder

Guides
execution

Stateflow model UML Statemachine model

Extension 3: properties

• Observer automata used to check properties

Observer automaton

inputs

public class Observer {
 void run() {
 // determine state of observed components
 // check property
 // report violation
 } }

Plexil integration

• PLan EXecution
Interchange Language

• Reactive, synchronous, and
deterministic language for
commanding and
monitoring space systems

Example usage

PLEXIL to Java translation

• Plexil uses implicit state machine nodes and a 3-valued logic (True,
False, and Unknown), interacting with the outside world using
lookups

• Initially, JPF took over 13 hours to verify a relatively simple plan
– Choice points for lookups were being created on demand in the

middle of a step, causing JPF to capture irrelevant state information
– By precomputing values between steps, that time dropped to just 8

minutes, with further optimizations possible

• JPF verification uncovered a problem when If(Unknown) occurred,
where the Then and Else branches would not start (since the
expression was not true or false) causing the plan to become
unresponsive

• Regression testing against the reference PLEXIL implementation
also revealed a possible infinite loop in a state machine

Ongoing work

• More efficient analysis of Plexil plans

• Efficient symbolic execution of Statecharts in
Polyglot

– Custom symbolic execution engine, multithreading

Questions?

