
 199

Causal Determination in Road Accidents:  
An Application of the Halpern/Pearl Notion of' 'Actual Cause' 

 
Gary A. Davis, University of Minnesota, Minneapolis, MN, U.S.A. 

Tait Swenson, URS Corporation, Minneapolis, MN, U.S.A. 
 

Keywords: road accidents, causation, counterfactuals 
 

Abstract 
 
Determining whether or not an event was a cause of a road accident often involves determining the 
truth of a counterfactual conditional, in which what happened is compared to what would have 
happened had the putative cause been absent. Using structural equation models, Pearl and his 
associates have recently developed a rigorous method for posing and answering causal questions, and 
this approach is especially well-suited to the analysis of road accidents. Following a general 
discussion of causal analysis, we apply these methods to a freeway rear-end collision. The results 
suggest that not only were the actions of the drivers actually involved in the collision causes of the 
accident, but so were the actions of drivers ahead of them. 
 

Introduction 
 
Although the costs and consequences of any particular road accident rarely approach those that occur 
in aircraft or rail accidents, the sheer number of road accidents occurring in a given year means that 
their total costs usually outstrip those from accidents in other modes. A road accident may be 
investigated by the police,  in order to assess the possibility of criminal liability, by an accident 
investigator retained by a party involved in civil proceedings, by a governmental agency seeking to 
identify actions which could prevent similar accidents in the future, or by researchers seeking to 
advance our understanding of how and why accidents occur. All these investigative activities share a 
common concern however, to identify those events that could be considered as causes of the accident. 
For example, the Uniform Vehicle Code [10]states that to be guilty of vehicular homicide a driver 
must have been "engaged in the violation of any state law or municipal ordinance," and that "such 
violation is the proximate cause of said death." In tort law, "The most basic element of any tort cause 
of action is some causal connection between the act or omission of the tortfeasor and the plaintiff's 
injury" [6]. A main objective of an investigation by the National Transportation Safety Board 
(NTSB) is a statement of the "probable causes" of an accident, while the objective of the Tri-Level 
study was to provide "up to date data regarding traffic accident causation" [12]. 
 

Causal Concepts 
 
Baker [1] has noted that causal attributions in road safety take a number of forms, and are often 
invoked to achieve rhetorical, rather than scientific, objectives. He has also given an often-used 
definition of  "causal factor" as a circumstance "contributing to a result without which the result 
could not have occurred." This definition is (not by accident) similar to definitions of cause used in 
other types of accident investigation. For instance, Miller [9] points out that in a definition used by 
the NTSB, a "condition or event" qualifies as a probable cause of an accident if "had the condition or 
event been prevented…the accident would not occur," while the Air Force has used "A cause is an 
act, omission, condition, or circumstance which if corrected, eliminated, or avoided would have 
prevented the mishap." These definitions in turn share content with the legal notion of "cause in fact," 
where for an event to be considered as a cause it must satisfy a "but for" test, that is, "defendant's 
conduct is not a cause of the event, if the event would have occurred without it" [6].    



 200

 
Implicit in these ideas is first, that removal of a cause should be sufficient to prevent the result, and 
second that one determines whether or not a circumstance is a cause by carrying out a counterfactual 
test, where what happened is compared to what would have happened had the circumstance been 
absent. In practice however giving a rigorous yet general specification for such tests has proved 
somewhat daunting, the main challenge being to unambiguously specify what should count as the 
counterfactual condition. Since one can, with sufficient imagination, almost always describe a 
number of different scenarios where an accident is avoided, this test condition should involve a 
change that is in some sense minimal.  Lewis [8] has given a philosophical treatment of truth 
conditions for causal assertions using a comparison between what actually happened and what 
happens in a closest possible world where certain counterfactual assertions are true. What is meant by 
"closest possible world" is left deliberately vague, which improves the generality of Lewis' treatment 
but makes it difficult to apply to practical cases.  Over the past 15 years or so however, there has been 
increased interest in causal inference as a component of artificial intelligence, and one especially 
useful approach is based on what Pearl [11] calls a "causal model."  This consists of a set of 
exogenous variables, a set of endogenous variables, and for each endogenous variable a structural 
equation describing how that variable changes in response to changes in the exogenous and/or other 
endogenous variables. Events are defined in terms of values taken on by the model's variables, and 
the closest possible world where a set of variables takes on  (counterfactual) values can be 
unambiguously defined as the outcome of a modified causal model, where the exogenous variables 
are set to the same values as in the actual condition, but where the structural equations associated 
with the counterfactual event are replaced by assignment statements.  Pearl goes on to describe how 
when the evidence about an event is not sufficient to uniquely identify the values taken on by each 
exogenous variable (i.e. to identify which possible world is the actual world) uncertainty can be 
accommodated by first placing a prior probability distribution over the causal model's exogenous 
variables and then using Bayesian updating to compute the posterior distribution given the evidence 
at hand. The probability attached to an assertion, either indicative or counterfactual, is then simply 
the posterior probability assigned to the set of possible worlds where that assertion is true. More 
recently, Halpern and Pearl [5] have extended these ideas and defined an "actual cause" as an event 
satisfying a "but for" test along with additional conditions which deal with some counterintuitive 
consequences of simple "but for" tests. 
 

Application to Freeway Rear-ending Collisions 
 
Over the past several years we have been applying Pearl's approach to the analysis of road accidents, 
with an emphasis on determining the degree to which excess speed could be considered a causal 
factor. Descriptions of some of this work can be found in [3,4]. In this paper though we would like to 
describe some preliminary results from an ongoing study of freeway rear-ending accidents. Although 
such accidents  do not usually result in fatal or even very severe injuries, they are responsible for a 
substantial fraction of the unpredictable delays many of us now regard as unavoidable aspects of 
urban life. Frequently, such accidents occur when a platoon of vehicles successively brake and the 
braking deceleration of at least one vehicle is not sufficient to prevent it from colliding with the 
vehicle ahead. Reducing the frequency of such collisions, for example by improving the competency 
of drivers or deploying in-vehicle collision avoidance technology, could then be one way to reduce 
travel delay without resorting to expensive additions to highway capacity. In Minnesota, as is many 
other places,  it is recommended that drivers maintain following headways of at least 2.0 seconds, and 
responsibility for a rear-end collision is generally attributed to the following vehicle actually involved 
in the collision. If however the actions of drivers earlier in the sequence also contribute to the 
collision, this method of giving feedback will leave these earlier drivers unaware of their 
contribution, and so be of limited effectiveness. But how can we assess the causal contributions, if 
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any, of these other drivers?  
 
These concerns are not new, and Brill [2] has described a relatively simple kinematic model of 
successive braking which applies to the problem at hand.  Imagine a platoon of vehicles, indexed in 
order from first to last, by k=1,..,n,  and let v1,v2,...vn denote their speeds. At time t=0 the lead driver 
brakes to a stop, with deceleration a1, and after a reaction time r2 driver 2 also brakes to stop, with 
deceleration a2, and so forth. A rear-end collision between vehicles k and k+1 will be avoided as long 
as the distance needed by driver k+1 to stop does not exceed the available stopping distance. That is, 
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where xk+1 is the distance separating vehicle k's rear bumper from vehicle k+1's front bumper. Letting 
xk+1=vk+1hk+1 express this distance in terms of driver k+1's speed and following headway, driver k+1 
will stop before colliding if his or her deceleration satisfies 
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Relation 2 has some interesting implications. Other things equal, the minimum deceleration required 
of driver k+1 increases as the deceleration used by driver k increases, since k+1's available stopping 
distance decreases as ak increases. Also, other things equal, the minimum deceleration required by 
driver k+1 increases as the difference between k+1's following headway and reaction time (hk+1-rk+1) 
decreases. Together these features imply, as Brill pointed out, that if each driver in the platoon is a 
little slow in reacting, so that his or her reaction time is longer than the following headway, the 
minimum required deceleration will tend to increase for each succeeding vehicle. If the platoon is 
long enough a collision can become inevitable. In this case, it would appear reasonable to attribute 
the accident to the actions of each driver in the platoon, rather than to an egregious lapse by the last 
driver. 
 
To illustrate how Halpern and Pearl's notion of actual cause might be applied to a freeway rear-end 
crash consider Figure 1, which displays Brill's sequential braking model (in this case involving a 
three-vehicle platoon) as a directed acyclic graph. The nodes of the graph represent the model's 
variables while the arrows indicate the presence and direction of causal dependencies. Those nodes 
without arrows pointing toward them  (such as v1) represent exogenous variables, while the others 
(such as a20) represent endogenous variables. To complete the model we need to specify, for each 
endogenous variable, a structural equation. The variables a20 and a30 are the minimal decelerations 
needed, for vehicles 2 and 3 respectively, to stop before colliding with the vehicle ahead, and these 
are determined from the right-hand side of relation 2. We assume that the actual decelerations are 
then determined as 

 
ak = min(ak0 + uk, a)        (3) 

 
where a is a maximum achievable deceleration, and uk is an exogenous term which accounts for the 
difference between observed and minimum deceleration. Finally, the variable y is a collision 
indicator, and is assumed to be determined via 
 

y =  0, if a30 [ a        (4) 
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1, if a30 > a. 
 

 
 

Figure 1 - Directed Acyclic Graph Representation of Three-Vehicle Platoon Collision Model. 
 
 
For example, suppose v1=v2=v3=12.2 meters/sec, that the maximum achievable deceleration is a= 6.1 
meters/sec2, and that driver 1 brakes to a stop with a1=1.5  meters/sec2.  Suppose also that h2=2 
seconds but  r2=4 seconds, so that by relation 2 driver 2's minimum deceleration is a20=3.0  
meters/sec2. Driver 2 then decelerates at 3.2 meters/sec2 (which means that u2=0.2 meters/sec2), but 
suppose driver 3 is tailgating a bit, with h3=1.5 seconds, and reacts after r3=2.5 seconds. The 
minimum deceleration for driver 3 is then a30=6.7 meters/sec2, which exceeds the maximum 
deceleration  a=6.1 meters/sec2, and a rear-end collision between vehicle 2 and vehicle 3 occurs. 
Driver 3's tailgating can be considered an actual cause of this collision, since if we counterfactually 
set h2=2.0 seconds but fix v2, a2 and v3 at their actual values, the minimum deceleration needed by 
driver 3 falls to a30=4.3 meters/sec2, and the collision is avoided. But driver 2's long reaction time is 
also an actual cause of the collision, since setting r2=2.5 seconds, but keeping u2=0.2 meters/ sec, 
leads to a30=2.7 meters/sec2. 
 

An Actual Collision 
 
Do similar things happen in reality? As part of an ongoing study, permanently mounted video 
cameras were installed on  high-rise buildings adjacent to an urban freeway in Minnesota. The 
cameras were connected to a computer that recorded the weekday traffic movements from the early 
morning rush hour to the early evening.  Video records were saved  in one-hour segments on the 
computer's hard drive.  Accident reports filed with the State Patrol along with incident reports 
recorded by the Minnesota Dept. of Transportation's Traffic Management Center were then used to 
determine which video segments might contain accident footage.  
 
The computer program VideoPoint was used to extract the screen coordinates of vehicles from a 
frame of the recorded video by clicking on a discernable point on the object of interest.  The program 
then advances the movie one frame and the process is repeated, so by successively clicking on the 



 203

same point of a vehicle's image it was possible to record the sequence of coordinates representing the 
vehicle's trajectory. Standard photogrammetry transformations were then used to convert the screen 
coordinates to the corresponding real-world coordinates. Figure 2 shows the trajectories of a platoon 
of seven vehicles involved in sequential braking maneuvers, recorded during an afternoon peak 
period, where the seventh vehicle was observed colliding with the sixth. 
 
To assess the possible causal contributions of the drivers in this platoon, it was first necessary to 
determine values for the individual speeds, decelerations, reaction times and following headways. 
During the time before a vehicle began braking it was assumed that the vehicle traveled at a constant 
speed, and visual examination of the position-time diagram shown in Figure 2 supports this 
assumption.  Each vehicle speed was then determined by fitting a linear regression line to the initial 
portion of its trajectory data and determining the slope of this best fitting line.  
 
When braking began, it was assumed that each driver decelerated with the intention to stop.  It was 
also assumed that the deceleration was constant over the braking period. This allowed a fairly 
straightforward determination of the decelerations, headways, and reactions times from the 
trajectories shown in Figure 2.  The motion of each vehicle can be described using a two-part 
relation, where the first part gives the vehicle's trajectory  before braking and the second part 
describes the distance traveled during braking. That is,  
 

zk(t) =   vkt, t [ t0k       (5) 
vkt - 0.5 ak(t-t0k)2, t > t0k. 

 
where t0k is the time at which driver k began braking. Determining t0k, and the deceleration ak was 
accomplished by minimizing the sum of squared errors between the measured position value and the 
position value estimated using equation 5.  
  
The term 'space headway' is used to describe the distance between two successive vehicle front ends 
at the instant the leading vehicle begins braking.  These values were determined from the Figure 2 
trajectories using the braking times estimated as described above, as depicted in Figure 3. Space 
headways were then converted to separation distances by subtracting a value of 4.6 meters for the 
effective length of the vehicle, and these were in turn converted into separation headways (hk) by 
dividing by the speed of the following vehicle. Finally, reaction times were defined as the difference 
in time between when the leading vehicle began to brake and the time when the following vehicle 
began to brake, and Figure 4 illustrates how these were determined from the vehicle trajectories. The 
results of the data extraction are displayed in Table 1.   
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Figure 2 - Trajectories of Vehicles Involved in Actual Collision 

x-axis is in seconds, y-axis is in feet. 
 
 
 
 
 
 
 

 
 

Figure 3 - Example of Space Headway Determination 
x-axis is in seconds, y-axis is in feet. 
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Figure 4 - Example of Reaction Time Determination 
x-axis is in seconds, y-axis is in feet. 

 
 

 
'Actual Cause' Analysis 

 
The entries in Table 1 tell an interesting story. Driver 1 braked to a stop with a deceleration of 2.1 
meters/sec2, and about 1.5 seconds later driver 2 braked with a deceleration of about 1.8 meters/sec2. 
It was possible for driver 2 to decelerate less rapidly than driver 1 because 2's following headway, at 
1.7 seconds, was longer than 2's reaction time. Driver 3 on the other hand needed almost 4 seconds to 
react, and although 3's following headway was roughly equal to the recommended minimum of 2.0 
seconds, 3's minimum deceleration jumped to about 3.7 meters/sec2, with an actual deceleration of 
4.1 meters/sec2. Drivers 4 and 5 also had reaction times longer than their following headways, though 
the differences were not as extreme as 3's, so the minimum and actual braking decelerations 
continued to increase. Driver 6 was a bit more on the ball, but was traveling a bit faster than driver 5, 
and so the minimum deceleration increased again. When we come to driver 7, whose reaction time 
was about 0.5 seconds longer than his/her headway, the minimum deceleration jumped to 6.7 
meters/sec2, which exceeds the 5.8 meters/sec2 observed to have been used by driver 7. 
 

Table 1 - Values of Vehicle and Driver Variables for Seven-Vehicle Platoon. 
 

                                       Variable Values 
Vehicle vk (m/s) hk (sec) rk (sec) ak (m/s2) ak0 (m/s2) uk (m/s2) 
1 14.97 -- -- 2.08 -- -- 
2 14.29 1.69 1.46 1.82 1.77 0.05 
3 13.24 2.0 3.97 3.24 2.62 0.62 
4 13.07 1.95 2.25 4.11 3.69 0.42 
5 12.30 1.22 1.38 4.27 4.04 0.23 
6 13.16 1.15 1.01 4.55 4.43 0.12 
7 12.91 1.28 1.79 5.82 6.68 -- 
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So who was responsible for this collision? Starting with driver 7, it is straightforward to verify that if 
7 had had a following headway of 2.0 seconds, using the measured values for his/her speed and 
reaction time and driver 6's speed and deceleration, then 7's minimum deceleration drops to about 3.8 
meters/sec2. Since this is substantially lower than 7's observed deceleration of 5.8 meters/sec2, we can 
conclude that driver 7's failure to observe the recommended following rule was an actual cause of the 
collision. But now let's look at driver 3. His or her reaction time was clearly long compared to what 
other drivers in the platoon appeared capable of, and we can ask whether or not this long reaction 
time might also have been an actual cause. Setting 3's reaction time to the counterfactual value of 2.5 
seconds, leaving all observed speeds and headways, and all other observed reaction times alone, and 
then computing the actual decelerations for drivers 4, 5, and 6 by adding the observed differences uk 
to the new computed minimums, produces a counterfactual minimum deceleration for driver 7 of 
about 3.9 meters/sec2. Since this is also substantially lower than driver 7's observed deceleration, we 
can say that driver 3's long reaction time was also an actual cause. Next, looking at Table 1, we can 
see that both driver 4 and driver 5 also had observed reaction times that were longer than their 
headways, and we can ask whether or not these might also be considered causes of the collision. 
Separately setting the reaction times of drivers 3, 4 and 5 to their observed headways produced 
minimum decelerations for driver 7 of 3.5 meters/sec2, 5.5 meters/sec2, and 5.9 meters/sec2, 
respectively. Finally, if drivers 3, 4,and 5 all had reaction times equal to their observed headways, the 
minimum deceleration for driver 7 would fall to 3.0 meters/sec2. 
 

Conclusion 
 
It has been observed that at night drivers sometimes 'overdrive' their headlights, in that the stopping 
distances for their chosen speeds exceed the distances they can see ahead. The above results suggest 
that in congested conditions freeway drivers on occasion overdrive their reaction times, in the sense 
that their reaction times tend to be longer than their following headways. At least for this example, 
this over-driving appears to be locally benign, because based on what the vehicle ahead is doing  and 
on an expectation that if the driver ahead does brake the deceleration will not be too extreme, then 
sufficient time to slow or stop is still available. What Brill's relation 2 shows though is that when 
each of a platoon of drivers overdrives their reaction times, this expectation of relatively gentle 
deceleration by the vehicle ahead can break down, so that in congested conditions  prevention of rear-
end collisions can require that drivers base their decisions on more than local information. Brill's 
effect can also be interpreted as resulting from the action of external costs. An over-driver will gain 
the benefits of his or her individual action (whatever those might be), while the costs of that action 
will tend to fall disproportionately on following drivers.  This suggests that over-driving in congested 
conditions will be "consumed" at levels exceeding what is socially optimal. As with other situations 
involving external costs, achieving a socially optimal decision would then require some form of 
coordination mechanism. 
 
More generally, Kletz [7] has argued that effective prevention of accidents not only requires 
identifying immediate causes, but also avoiding the accident by identifying those more distant causes 
that created the conditions making the accident possible.  But determining whether or not an event 
qualifies as a cause requires a counterfactual test, and rational discussion can break down when 
different parties implicitly compare the actual to different "closest possible worlds." When the 
underlying mechanisms governing the accident process can be expressed as structural equations, 
Pearl has shown how to unambiguously define truth conditions for causal assertions, in a form that 
can be readily applied to actual cases. 
 



 207

Acknowledgements 
 
This research was supported by the Intelligent Transportation Systems Institute at the University of 
Minnesota. 
 

References 
 
1. Baker, J.S. Causes and contributing factors in traffic accidents. in L. Fricke (ed.) Traffic Accident 

Reconstruction, Northwestern University Traffic Institute, 1990. 
2. Brill, E.  A car-following model relating reaction times and temporal headways to accident 

frequency. Transportation Science, 6, 1972, 343-353. 
3. Davis, G. Towards a unified approach to causal analysis in traffic safety using structural causal 

models. In M. Taylor (ed.) Transportation and Traffic Theory in the 21st Century, Pergamon, 
2002, 247-266. 

4. Davis, G. and Pei, J. Bayesian networks and traffic accident reconstruction. Proceedings of the 
9th International Conference on Artificial Intelligence and Law, Association for Computing 
Machinery, 2003, 171-176. 

5. Halpern, J.  and Pearl, J.  Causes and explanations: A structural model approach-Part I: Causes. 
in J. Breese and D. Koller (eds.) Uncertainty in Artificial Intelligence: Proceedings of the 
Seventeenth Conference,  Mortgan-Kaufman, 2001, 194-202. 

6. Kionka, E. Torts in a Nutshell, 2nd edition. West Publishing Co., 1992. 
7. Kletz, T. Learning from Accidents, Third Edition. Gulf Professional Publishing, 2001. 
8. Lewis, D.  Causation. Journal of Philosophy, 70, 1973, 556-567. 
9. Miller, C. Aviation accident investigation: Functional and legal perspectives. Journal of Air Law 

and Commerce, 46, 1981, 237-293. 
10. NCTLO. Uniform Vehicle Code and Model Traffic Ordinance. National Committee on Uniform 

Laws and Ordinances, 1992. 
11. Pearl, J. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000. 
12. Treat, J. Tumbas, N., McDonald, S. Shinar, D. Hume, R. Mayer, R. Stansifer, R. and Castellon, 

N. Tri-Level Study of the Causes of Traffic Accidents, Executive Summary. National Highway 
Traffic Safety Administration, 1979. 

 
Biography 

 
Gary A. Davis, Associate Professor, Dept. of Civil Engineering, University of Minnesota, 500 
Pillsbury Drive SE, Minneapolis, MN, 55455, U.S.A. telephone - +1.612.625.2598; fax-
+1.612.626.7750; email- drtrips@umn.edu. 
 
Tait Swenson, ITS Engineer, URS Corporation, 700 Third Street S, Minneapolis, MN, 55415, U.S.A. 
telephone-+1.612.370.0700; fax-+1.612.370.1378; email- tait_swenson@URSCorp.com. 
 



 208

 


