
 129

ATTEST: an Automated-Test-Tool Evaluation and Selection Technology

Mr Daniel Rowley; Monash University; Clayton, Victoria, Australia
Dr Sita Ramakrishnan; Monash University; Clayton, Victoria, Australia

Keywords: Forensic Software Engineering, Technology Evaluation and Selection

Abstract

A significant part of software testing process improvement effort pertains to defect prevention,
software testing technology change management and software testing process change
management. ATTEST is an automated-test-tool evaluation and selection technology developed
by the School of Computer Science & Software Engineering (CSSE) at Monash University in
Australia to help SMEs (small- to medium-sized enterprises) improve their management of
software testing technology change. Although ATTEST has software-process-improvement-
oriented application, it can also be used to help forensic software engineers more easily identify
candidate equipment for software-intensive incident and accident investigations. The problem
with traditional automated-test-tool (or more generally, computer-aided software engineering
(CASE) tools) evaluation and selection techniques is that they provide limited
visibility/measurement into the selection (acquisition and/or equipping) of automated-test-tools
(or CASE tools). In forensic investigations of software-intensive accidents and incidents, it is
important that forensic software engineers correctly identify, measure, and collect the data needed
to draw valid conclusions regarding technology adoption. Without an automated-test-tool
evaluation and selection process that supports completeness and consistency between evaluations
and selections, it becomes difficult for forensic software engineers to justify and evidence their
software testing technology change management decisions. While most applications of ATTEST
are oriented toward the prevention of software failures (or software-intensive incidents and
accidents), we aim to demonstrate that ATTEST also has response-orientated application.

Background

The ATTEST: an Automated-Test-Tool Evaluation and Selection Technology project has been
partly funded by the School of CSSE at Monash University to assist with software testing
technology adoption in organisations (especially focusing on small- to medium-sized enterprises
(SMEs)). This project is an add-on project to the TestIT project funded by the Department of
Communication, IT & Arts (DCITA) (URL: http://www.dcita.gov.au/Article/0,,0_1-2_1-
4_16089,00.html). One of the aims of that project [12] has been to set up a facility for an
independent validation and conformance process for existing commercial software testing tools to
address industry's current concerns as articulated by small to medium enterprises (SMEs) and
software accreditation bodies such as NATA (National Association of Testing Authorities),
Australia. An overview of our work is available at
http://honeyant.csse.monash.edu.au/index.html.

The Taxonomy of Computer-Aided Forensic Software Engineering

Forensic software engineering is the utilisation and application of software engineering
principles, knowledge, expertise and experience for the purposes of the law (negotiation and
mediation) or other dispute resolution processes. In particular, forensic software engineering
focuses on research and investigation to determine the relevant data and facts following a
software-intensive incident or accident. Rowley and Ramakrishnan [2] argue that forensic
software engineering is much like independent verification and validation (IV&V). The IEEE

 130

Standard Glossary of Software Engineering Terminology [8] defines independent verification and
validation (IV&V) as "verification and validation performed by an organisation that is
technically, managerially, and financially independent of the development organisation". The
IEEE Standard Glossary of Software Engineering Terminology also defines verification and
validation (V&V) as the "process of determining whether the requirements for a system or
component are complete and correct, the products of each development phase fulfil the
requirements or conditions imposed by the previous phase, and the final system or component
complies with specified requirements". According to Rowley and Ramakrishnan [2], forensic
software engineering is an outcome of not considering (or mitigating) the likelihood and
consequences of software failure whereas IV&V is an upshot of considering (or mitigating) the
likelihood and consequences of software failure. Moreover, forensic software engineering
involves strict financial, managerial, and technical independence from both clients and suppliers
of software-intensive systems. However, despite these differences, forensic software engineering
and IV&V both require software testing technologies (techniques and tools) to investigate and
report on the correctness of software-intensive systems.

According to Van Wyk and Forno [1], forensic evidence collection processes must be
comprehensive, objective, and precise. Automated-test-tools have long been recognised as an
effective way to not only improve software development variables such as productivity and
product quality but also address the essential difficulty of forensic software analysis: gathering
evidence of software failures and faults through clouds of complexity, conformity, changeability,
and invisibility. According to Brooks [10], the most difficult work of software engineering is not
coding or testing but the essential parts of software engineering. Brook argues that software
development is difficult because of the essential complexity, conformity, changeability, and
invisibility of software-intensive systems. Moreover, Bruckhaus et al. [3] argue that tools can
help improve development processes by facilitating activities that were not practiced before or by
supporting activities that are usually carried out with little or no tool support. Schach [6] argues
that the simplest form of CASE (computer-aided (or -assisted) software engineering) is the
software tool, a product that assists in just one aspect of software production. According to
Schach, CASE tools that help the developer during the earlier phases of the process are
sometimes termed upperCASE or front-end tools, whereas those that assist with implementation,
integration, and maintenance are termed lowerCASE or back-end tools. A CASE workbench is a
collection of tools that together support one or two activities, where an activity is a related
collection of tasks. Unlike the workbench, which supports one or two activities, an environment
supports, at the very least, a large portion of a software process [9].

Our approach to CASE tool evaluation and selection focuses on the V-model which demonstrates
how testing activities are related to analysis and design. According to Moriguchi [7], the V-model
of software development (see Figure 1.1) is the result of a re-examination of the life cycle model
from the point of view of quality assurance. Moriguchi describes the design processes of the V-
model as "conversion processes that define [a software solution] in more detail, finally reaching a
level of detail that the computer can execute as computer program instructions". We argue that
the V-model provides an appropriate process framework for software-intensive incident or
accident investigation. Because the V-model details interrelationships between testing and design
activities, it is practical for measuring whether or not a developer undertook all reasonable steps
to assure software correctness (or more generally, software quality). Furthermore, the V-model
can generally be applied to any software development lifecycle and fits into international standard
requirements such as ISO 9000.

 131

By traversing the V-model in a reverse
direction (see Figure 1.2) a forensic
software engineer is able to appraise the
“all reasonable steps”-ness of software
product and process documentation.
Process documentation that demonstrates
“all reasonable steps” to assure software
quality is the best defence in software-
intensive litigations [14, 15, 16]. Because
the V-model mandates that test planning be
a part of requirements, specification, design
and coding effort, acceptance, system,
integration and unit test plans are expected
to be compliant with design. In many legal
cases, the job of a forensic software
engineer is to determine whether or not a
software engineer (or team of software
engineers) undertook all reasonable steps to

ensure that the delivered software product complied with quality requirements. While it could be
argued that measuring the compliance of test documentation at different levels of design is
tedious work, it is the only way to be sure beyond a reasonable doubt that the developers were or
were not negligent with quality assurance (or more specifically, test design and execution).
Moreover, if it is not an issue of whether or not the developers were negligent but only whether or
not (and how) the software fails, extensive testing still needs to be undertaken to determine the
conditions which can cause and caused the software product to miscarry.

While it is obvious that it is difficult (or impossible) to test software fully, automated test tools
can help ensure that much of the guesswork/uncertainty and human error is reduced. Furthermore,
by viewing or appraising development documentation in the context of the V-model, forensic
software engineers are able to better plan and execute their work so that relevant evidence is not
excluded. Although relevant, evidence may be excluded if its probative value is substantially
outweighed by the danger of unfair prejudice, confusion of the issues, or misleading the jury, or
by considerations of undue delay, waste of time, or needless preparation of cumulative evidence.
Although using the V-model as a guide for forensic software engineering appears to be a
methodical (or breadth-first) heavy-weight analytical approach, it is easy to see that it also
accommodates a light-weight inquisitive (or depth-first) style of investigation. That is to say, the
tactic does not necessitate that all test results be derived during failure analysis. In some cases, it
may be appropriate (or timely) to abandon comb-like search operations (or testing) to concentrate
on the validation of a particular hypothesis or casual theory.

Figure 1.3(a) represents a CASE tool that assists with part of the requirements phase (acceptance
test planning). Figure 1.3(b) represents a workbench of tools that assist with acceptance test,
system test, and integration test planning whereas Figure 1.3(c) depicts an environment that
supports all aspects of all phases of the V-model (test planning and test execution). We argue that
the forensic software engineering process involves four distinct testing activities: acceptance
testing, system testing, integration testing, and unit testing, and four distinct review activities:
code review, design review, specification review, and requirements review. When forensic
software verification process activities indicate discrepancies between design and test results
(poor test coverage), the arrested test specifications need to be corrected and executed or new test
specifications need to be designed, written, tested, and executed - in other words, the forensic
software validation process begins. In general, the order in which testing activities and review

 132

activities are performed is dependent upon the quantity and quantity of process and product
documentation that is made available to the forensic investigator. Nevertheless, we argue that
forensic software engineering investigation lifecycles are typified by eight distinct activities.
Figure 1.4(a) represents a CASE tool that assists with part of the requirements review phase.
Figure 1.4(b) represents a workbench of tools that assist with requirements review, specification,
and design review whereas Figure 1.4(c) depicts an environment that supports all aspects of all
phases of the forensic V-model (design review and test execution).

Traditional scorecard systems are
traditionally and typically paper-form-based
and rely heavily on human effort to
construct, validate, maintain and analyse.
Furthermore, use of a paper-based system
makes it difficult to justify the evaluation
and selection of software testing tools when
the authenticity of forensic evidence
(software failures and faults) is questioned
or scrutinised. ATTEST facilitates the
mapping of automated-test-tool
requirements to automated-test-tool
characteristics using a mixture of scorecard
evaluation techniques: the evaluation-
scorecard technique [13] and the preferred-
scorecard technique [13]. The evaluation-
scorecard technique and the preferred-
scorecard technique have proven to be

useful for evaluating and equipping (already-acquired) automated-test-tools however they provide
comparatively-minimal insight into whether or not an automated-test-tool acquisition is optimal.

The evaluation scorecard technique involves specifying weighted requirements for an automated-
test-tool selection against all characteristics of a technology. On the other hand, the preferred
scorecard differs from the evaluation scorecard technique by considering only high-weight
requirements (or in other words, highly-preferred characteristics). Both techniques rank

 133

scorecards by their sum of weight-score products however comparative results between both
techniques indicate that, in some cases, a CASE tool can obtain two very different rankings using
both techniques and the same evaluation scores. The problem with the evaluation-scorecard
technique is that it considers all non-zero-weighted characteristics to be essential requirements. In
some cases, a CASE tool covering a great number of low-weight requirements can attain a higher
ranking than a CASE tool that covers a smaller number of high-weight requirements.

As mentioned earlier, the preferred-scorecard technique only considers high-weight requirements.
Another disadvantage of both techniques is that they do not (visibly) separate the specification of
requirements from the evaluation of a technology. Moreover, neither technique can distinguish
between mandatory (or essential) and optional (or favourable but not essential) requirements. The
reason why it is beneficial to distinguish between mandatory and optional requirements is that it
allows a forensic engineer (or technology change management groups (TCMGs)) to distinguish
between two or more automated-test-tools that cover mandatory requirements equally-well. In
some cases (such as the acquisition of new forensic equipment), it may be appropriate to have
insight into which automated-test-tools offer additional functionality above that required. In other
words, in some situations, it may be appropriate to be cautious about which automated-test-tool
characteristics could be required at later dates. On the other hand, in some cases (such as the
identification of which already-acquired automated-test-tool to equip), it may not be necessary to
separate automated-test-tools that offer additional (but unneeded) features from those that do not.

In light of the advantages and disadvantages of the evaluation-scorecard and preferred-scorecard
techniques, we propose a new scorecard-technique that allows forensic software engineers (or
TCMGs) to specify whether or not a CASE tool requirement is mandatory or optional.
Furthermore, our new technique enforces the separation of specification of requirements from the
evaluation of a technology; doing so enables requirements specifications and technology
evaluations to be reused. Although the evaluation-scorecard and preferred-scorecard techniques
both offer a measure of requirement-coverage quality (sum of weight-score products), neither
technique explicitly offer a measure of the quantity of requirement-coverage (the percentage of
non-zero-weight requirements with non-zero scores). While a trivial computation, a
requirements-coverage metric allows forensic software engineers to clearly identify automated-
test-tool candidates that satisfy all requirements regardless of rating. In some situations, it may be
necessary to select an automated-test-tool based on the quantity and not the quality of the

 134

requirements coverage. Alternatively, it may be appropriate to select an automated-test-tool based
not only on the quantity but also the quality of the requirements coverage.

ATTEST: an Automated-Test-Tool Evaluation and Selection Technology

ATTEST is an object-oriented software tool designed to facilitate the evaluation and selection of
automated-test-tools that can assist in validating and verifying software products at different
levels of design. Brown and Wallnau [4] argue that much of the informality in interpreting any
evaluation's results is due to the absence of well-defined goals before starting the evaluation;
controlled rigorous techniques for data gathering during the evaluation; and a conceptual
framework for analysing the resultant data in the context of existing technologies. In consider of
this, we identified two ways to improve the formality in interpreting CASE tool evaluations: by
improving the specification of requirements (or definition of goals) and by improving the control
and rigor of evaluation data collection. In regard to the controlled, rigorous collection of
evaluation data, it is impossible for us (through ATTEST) to provide guidelines on measurement
for every feature of all technologies. Instead, we are able to ensure (through design) that
evaluators are presented with all the criteria to assess an automated-test-tool against. ATTEST
supports the specification of requirements by presenting selectors with all the criteria (or
characteristic or features) that can be expected from a particular type of automated-test-tool.

According to Freedman [5], an entity relationship model is a data model that describes attributes
of database entities and the relationships among them. Figure 2 depicts an entity relationship
model that describes the relational-database entities and entity relationships needed for product-
oriented evaluation of CASE tools (products that assists in just one aspect of the production of
software). As shown in Figure 1, ATTEST operates on three types of document (or data set):
specifications, scorecards, and scoreboards. A specification describes a type of technology (using
characteristics) or a set of requirements (using requirements) whereas a scorecard describes the
quality of a technology implementation (using scored characteristics). A scoreboard provides sets
of measurements for a set of technology implementations (technology scorecards). ATTEST uses
folders to collate related specifications, scorecards, and scoreboards. ATTEST can be set up to
contain a folder for each distinct software engineering process, activity or task in any software
development lifecycle. A technology specification defines the characteristics of a software testing
technology (or automated-test-tool) type. A technology specification is a collection of
characteristics where each characteristic has a name and a description. On the other hand, a
technology scorecard defines the quality of an automated-test-tool in terms of characteristics; in
other words, a technology scorecard is an evaluation of an automated-test-tool. A technology
scorecard is a collection of scored characteristics where each scored characteristic is a
characteristic with a score (between 0 and 100); a characteristic with a high score is a high-
quality characteristic whereas a characteristic with a low score is a low-quality characteristic. A
technology specification is used to provide evaluators with criteria to assess an automated-test-
tool against whereas a technology scorecard is used to enter the results of an automated-test-tool
evaluation. A technology scoreboard is a table that lists characteristic coverage metrics pertaining
to automated-test-tools: rating, percentage-of-characteristics-covered, and percentage-of-
characteristics-not-covered. A rating is a metric that quantifies the quality of an automated-test-
tool in terms of characteristic coverage. A percentage-of-characteristics-covered metric describes
the quantity of characteristics covered by an automated-test-tool whereas a percentage-of-
characteristics-not-covered metric describes the quantity of characteristics not covered by an
automated-test-tool. A technology scoreboard is useful for providing evaluators with an overview
of the quality of automated-test-tools in a set of automated-test-tools.

 135

While technology scoreboards can provide some insight into which automated-test-tools offer
high-quality functionality (characteristic coverage) and/or a high-quantity of functionality, a
requirements scoreboard enables forensic engineers to identify those automated-test-tools that
provide high-quality coverage of requisite functionality. In some situations, a forensic software
engineer may only require a subset of automated-test-tool functionality. In light of this, ATTEST
also operates on requirements specifications. A requirements specification describes the
requirements of a particular automated-test-tool type. A requirements specification is a collection
of requirements where each requirement is a characteristic with a weight (between 1 and 100) and
a flag. The weight quantifies the relative importance of the requirement to other requirements
whereas the flag indicates whether or not the requirement is mandatory or favourable (optional).
A requirement with a weight of zero is not considered to be a requirement (regardless of the
typing). The problem with technology scoreboards is that they provide no insight into which
automated-test-tools best cover any subset of characteristics. By specifying whether or not a
requirement is requisite (mandatory) or favourable (optional), two subsets of requirements can be
identified: mandatory requirements and optional requirements. In general, for each subset of
requirements, three metrics can be computed (on each automated-test-tool (technology
scorecard)): rating, percentage-of-requirements-covered, and percentage-of-requirements-not-
covered.

A rating is a metric that quantifies the quality of an automated-test-tool in terms of requirements
coverage. A percentage-of-requirements-covered metric describes the quantity of requirements
satisfied by an automated-test-tool whereas a percentage-of-requirements-not-covered metric
describes the quantity of requirements not satisfied by an automated-test-tool. ATTEST offers
two sets of metrics: one set for each subset of requirements (or type of requirement). The set of
metrics for mandatory requirements provide insight into which automated-test-tools offer a high-
quality and/or high-quantity coverage of requisite automated-test-tool characteristics. On the
other hand, the set of metrics for favourable (optional) requirements provide insight into which
automated-test-tools offer high-quality and/or high-quantity coverage of favourable (optional)
automated-test-tool characteristics. Alike a technology scoreboard, a requirements scoreboard is a
table that lists automated-test-tools according to a number of metrics: rating, mandatory rating,
optional rating, percentage-of-requirements-covered, percentage-of-requirements-not-covered,
percentage-of-mandatory-requirements-covered, percentage-of-mandatory-requirements-not-
covered, percentage-of-optional-requirements-covered, and percentage-of-optional-requirements-
not-covered.

The benefit of producing a complete specification of a technology (automated-test-tool type) is
that it helps forensic software engineers ensure that their specification of requirements is
complete and consistent. Although computerisation cannot validate the weighting or typing of
automated-test-tool requirements, ATTEST can help ensure that forensic engineers only qualify
true automated-test-tool characteristics. The benefit of producing a complete evaluation of an
automated-test-tool is that prevents the need for re-evaluation at a later stage (where time may be
limited). In regard to requirements specification, ATTEST ensures that selectors are presented
with all the criteria (or characteristic or features) that can be expected from a particular type of
automated-test-tool.

In terms of maintainability, ATTEST is able to accommodate changes to the specifications of
technologies. In some cases, a technology specification may contain an erroneous characteristic
(or characteristics) or may omit a characteristic (or characteristics). More significantly, a
technology type may evolve over time. At present, ATTEST cascades all additions of
characteristics to and updates and deletions of characteristics from technology specifications to
technology scorecards. However, modifications to a technology specification often cause one or

 136

more technology scorecards to become outdated (and needy of attention). As the design and
development of ATTEST continues, we aim to remain focused on ensuring that the technology
solves this and other problems faced by technology evolution.

Because ATTEST was designed to be general enough to accommodate any software development
or software analysis lifecycle model, it is not appropriate to discuss how different CASE tools

 137

support different software development (or forensic software analysis) activity. In fact, many text
books describe how CASE tools fit into different parts of the software development lifecycle.
Another project within the School of CSSE has elucidated how automated-test-tools support
activity in the V-model of software development. Later this year we intend to release a beta
version of ATTEST that includes a set of technology specifications that can be used to evaluate
automated-test-tools in two contexts: software testing process improvement and software failure
investigation and reporting. While it is possible to distribute evaluations of automated-test-tools
(given the input/output architecture of ATTEST), we face two problems: not only does the nature
of most evaluations tend to be subjective rather than objective (and therefore difficult to validate),
some automated-test-tool vendors prohibit the evaluation of their products through stipulations in
usage agreements. Nevertheless, forensic software engineering laboratories should perform their
own evaluation of equipment as it would help ensure that their selection decisions reflect their
understanding of the capabilities and performances of their automated-test-tools.

To realise the function of ATTEST, consider the evaluation of three automated-test-tools (Tool
A, Tool B, and Tool C) of type Y that support an activity X (see Table 1.1).

Each evaluation of a tool scores four characteristics that
describe Y. While it is relatively trivial to calculate the
rating of and the percentage of characteristics covered by
each tool in this example (see Table 1.2 and Figure 3.1),
it becomes much more difficult when there are tens or
hundreds of characteristics to consider.

In fact, it takes O (n)-time to compute the rating and percentage of characteristics covered by a
tool. Moreover, consider the requirements of a tool of type Y to support an activity X (see Table
1.3 and Figure 3.2). Table 1.3 specifies three requirements of a tool of type Y to support an
activity X: two heavy-weight mandatory requirements and one mid-weight optional requirement.

Calculating the ratings of and the
percentages of characteristics covered
by each tool in this example (see
Table 1.4) is somewhat laborious
given the complexity of the
computations. Although the time

complexity to compute ratings of automated-test-tools in a requirements context is also
proportional to the number of characteristics (mapped to requirements), the calculations are much
more intricate. Again, it is easy to see that the measurement process becomes more laborious as
the number of characteristics to consider increases. In other words, without computerisation,
measuring the suitability of a CASE tool selection requires substantial routine (and error-prone)
effort.

TABLE 1.1 – TECHNOLOGY SCORECARD

Characteristic Tool A Tool B Tool C
characteristic 1 98 0 100
characteristic 2 34 100 87
characteristic 3 56 50 12
characteristic 4 0 97 78

TABLE 1.2 – TECHNOLOGY SCOREBOARD

 Tool A Tool B Tool C
Rating (98 + 34 + 56 + 0)/400

= 0.4700
(0 + 100 + 50 + 97)/400
= 0.6175

(100 + 87 + 12 + 78)/400
= 0.6925

Percentage of characteristics covered ¾ = 0.7500 ¾ = 0.7500 4/4 = 1.000
Percentage of characteristics not covered ¼ = 0.2500 ¼ = 0.2500 0/4 = 0.000

TABLE 1.3 – REQUIREMENTS SPECIFICATION

Characteristic Requirement Weight Requirement Is Mandatory
characteristic 1 100 true
characteristic 2 60 false
characteristic 3 90 true
characteristic 4 0 false

 138

Not only does ATTEST expedite the measurement process, it also facilitates the interpretation
and presentation of measurement data. While it is not difficult work to replicate (or duplicate) and
reorder data, it is a tedious process that is better managed by computer technology. ATTEST
operates a SQL (Structured Query Language) interface (to an implementation of the entity
relationship model (in Figure 2)) that not only allows a forensic engineer to enter evaluation and
selection (requirements) data but also customise the presentation of report data.

TABLE 1.5 – REQUIREMENTS SCOREBOARD

Candidate Rating Mandatory

rating
Optional
rating

%RC %MRC %ORC %RNC %MRNC %ORNC

Tool A 0.6752 0.7811 0.3400 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
Tool B 0.4200 0.2368 1.0000 0.6667 0.5000 1.0000 0.3333 0.5000 0.0000
Tool C 0.6520 0.2368 0.8700 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000

Table 1.5 and Figure 3.3 display the measurement data from Table 1.4 as presented in ATTEST
by default. While Table 1.5 contains much useful information, Miller's law [11], states that at any
one time, a human being can concentrate on at most 7 ± 2 quanta of information. In light of this,
ATTEST can be controlled to display and order any subset of data columns and records (rows). In
continuance of our example, Table 1.6 and Figure 3.4 show a result of using stepwise-refinement
and SQL to display the pertinent data needed to select a tool that best covers all (100% of) the
requirements for a tool of type Y.

TABLE 1.4 – REQUIREMENTS SCOREBOARD

 Tool A Tool B Tool C
Rating (100 * 98 + 60 * 34 + 90*

56) /
(100 * 100 + 60 * 100 +
90 * 100)
= (9800 + 2040 + 5040) /
(10000 + 6000 + 9000)
= 16880 / 25000 = 0.6752

(100 * 0 + 60 * 100 + 90
* 50) /
(100 * 100 + 60 * 100 +
90 * 100)
= (0 + 6000 + 4500) /
(10000 + 6000 + 9000)
= 10500 / 25000 =
0.4200

(100 * 100 + 60 * 87 + 90
* 12) /
(100 * 100 + 60 * 100 +
90 * 100)
 = (10000 + 5220 + 1080) /
(10000 + 6000 + 9000)
= 16300 / 25000 = 0.6520

Mandatory rating (100 * 98 + 90 * 56) / (100
* 100 + 90 * 100)
= (9800 + 5040) / (10000 +
9000) = 14840 / 19000
= 0.7811

(100 * 0 + 90 * 50) /
(100 * 100 + 90 * 100)
= (4500) / (10000 +
9000) = 4500 / 19000
= 0.2368

(100 * 0 + 90 * 50) / (100
* 100 + 90 * 100) =
 (4500) / (10000 + 9000) =
4500 / 19000
= 0.2368

Optional rating (60 * 34) / (60 * 100) =
2040 / 6000 = 0.3400

(60 * 100) / (60 * 100) =
6000 / 6000 = 1.0000

(60 * 87) / (60 * 100) =
5220 / 6000 = 0.8700

Percentage of requirements
covered

3/3 = 1.0000 2/3 = 0.6667 3/3 = 1.0000

Percentage of mandatory
requirements covered

2/2 = 1.0000 1/2 = 0.5000 2/2 = 1.0000

Percentage of optional
requirements covered

1/1 = 1.0000 1/1 = 1.0000 1/1 = 1.0000

Percentage of requirements
not covered

0/3 = 0.0000 1/3 = 0.3333 0/3 = 0.0000

Percentage of mandatory
requirements not covered

0/2 = 0.0000 1/2 = 0.5000 0/2 = 0.0000

Percentage of optional
requirements not covered

0/1 = 0.0000 0/1 = 0.0000 0/1 = 0.0000

 139

Conclusions

At present, ATTEST
only supports the
evaluation and

selection of the simplest form of CAFSE (or more generally, CASE): the software tool. That is,
ATTEST is known to be better suited to guiding the acquisition and/or equipping of automated-
test-tools than to the acquisition or equipping of automated-test-workbenches or -environments.
Furthermore, ATTEST only supports the product-oriented evaluation of CASE tools; future
directions for ATTEST aim to not only accommodate the product-oriented evaluation of
automated-test-workbenches and -environments but also the process-oriented evaluation of
automated-test-tools, -environments and -workbenches. Product-oriented evaluation involves
selecting among a set of products that provide similar functionality whereas process-oriented
evaluation involves assessing the impact of a new technology on existing practices to understand
how it will improve performance or increase quality.

In reality, it is difficult to orthogonally classify automated-test-tools because most modern
automated-test-tools support more than one part of the software development (or forensic
software analysis) lifecycle. Tools that support more than one software engineering process or
task can only be accommodated in ATTEST by producing separate specifications of the tool for
each distinct supported process or task. Once a forensic software engineer has identified what
task (or type of test planning or test execution) needs to be performed, the engineer can use
ATTEST to identify the most appropriate automated-test-tool for that particular task. Again,
ATTEST (at this stage) cannot manage with the complexity of identifying optimal automated-
test-tool sets (or workbenches or environments) for performing multiple distinct forensic software
engineering tasks. Although ATTEST has many useful features (including SQL (structured query
language) interfaces and data exportation), it is clear that further work is needed to extend
ATTEST into a totally-effectual CASE technology evaluation and selection tool.

Brown and Wallnau [4] maintain that software technology selection, application, and introduction
requires consideration of initial technology acquisition cost; long-term effect on quality, time to
market, and cost of the organisation's products and services, when using the technology; training
and support services' impact of introducing the technology; relationship of this technology to the
organisation's future technology plans; and response of direct competitor organisations to this
new technology. Although non-technical factors such as acquisition cost are important
considerations (in general), ATTEST was designed with focus on ranking automated-test-tools
according to their satisfaction of technical (or functional) requirements. Although it is easy to
specify non-technical requirements in ATTEST by adding non-technical characteristics into tool
specifications, care must be taken to ensure that the weights of non-technical requirements are in
proportion to the weights of technical requirements. Alternatively, ATTEST is able to persist
delimited-textual shortlists of candidate automated-test-tools into plain text files that can be
manipulated by spreadsheet and work processing software. More significantly, we aim to extend
ATTEST to allow engineers to pipe shortlists of candidate automated-test-tools back into the
short listing process with new requirements specifications so that requirements (or sets of
requirements) can not only carry weight but also precedence (or an ordering of importance). The
scope of the ISO/IEC 14102:1995 (Information Technology - Guidelines for the Evaluation and
Selection of CASE Tools) International Standard is to establish processes and activities to be
performed when evaluating different CASE (computer-aided software engineering) tools and
selecting the most appropriate for a given organisation and/or project. Although ATTEST was
derived from an intention to improve the change management of software testing technologies, it
is general enough to be adapted to help evaluate and select COTS (Commercial-Off-The-Shelf)

TABLE 1.6 – FILTERED REQUIREMENTS SCOREBOARD

Candidate Rating Mandatory rating Optional rating %RC %MRC %ORC
Tool A 0.6752 0.7811 0.3400 1.0000 1.0000 1.0000
Tool C 0.6520 0.2368 0.8700 1.0000 1.0000 1.0000

 140

software components and other types of CASE tools; another direction of ATTEST aims to
investigate the feasibility of attaining compliance with ISO/IEC 14102:1995 and other technology
evaluation and selection standards.

Using a computerised automated-test-tool evaluation and selection system is an important
consideration for forensic software engineering laboratories. Computerising the automated-test-
tool evaluation and selection process can help improve the investigation and reporting of
software-intensive incidents and accidents because it enables forensic software engineers to more
completely and consistently specify their equipment requirements. Although the mapping of
characteristics to requirements is a trivial concept, it is a central concept in the design of
automated-test-tool evaluation and selection systems that must ensure completeness and
consistency between evaluations and selections. This paper has presented and attested a database
entity relationship model that describes the database entities and entity relationships needed for
computerising the product-oriented evaluation of automated-test-tools (or more generally, CASE
tools). Through the demonstration of ATTEST, we aim to prove that regardless of orientation
(prevention or response), computerising (and making more formal) the product-oriented
evaluation of CASE tools can more easily and more quickly provide confidence in automated-
test-tool selections.

References

1. K Van Wyk and R Forno: Incident Response, First Edition, O'Reilly & Associates, July 2001
2. D Rowley and S Ramakrishnan: Forensic applications of software analysis, in S Lesavich
(ed), Proceedings of the Third International Conference: Law and Technology, Cambridge, USA,
6-7 November 2002, ACTA Press, Anaheim, USA, ISBN: 0-88986-333-4, pp 129-134
3. T Bruckhaus. et al: The Impact of Tools on Software Productivity, IEEE Software, September
1996, pp 29-38
4. A Brown and K Wallnau: A Framework for Evaluating Software Technology, IEEE Software,
September 1996, pp 39-49
5. A Freedman: The computer glossary: the complete illustrated dictionary, Eighth Edition,
AMACOM, 1998
6. S Schach: Object-oriented and Classical Software Engineering, Fifth Edition, McGraw-Hill,
2002
7. S Moriguchi: Software Excellence: A Total Quality Management Guide, Productivity Press,
1997
8. The IEEE Standard Glossary of Software Engineering Terminology
9. A Fuggetta: A Classification of CASE Technology, IEEE Computer, Volume 26, December
1993, pp 25-38
10. F Brooks: No silver bullet: Essence and accidents of software engineering (Computer, 1987);
in F. P. Brooks, Jr.: The Mythical Man-Month: Essays on Software Engineering, Addison-
Wesley, Reading, Mass., 1995, pp 177-203
11. G Miller: The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for
Processing Information, The Psychological Review, March 1956, pp 81-97
12. S Ramakrishnan and C Mingins: A Faciltity for Conformity and Compliance Testing,
Commonwealth Government Australia, Department of Communication IT and the Arts (DCITA)
two-year funded Test-IT project, June 2001
13. E Dustin, J Rashka, and J Paul: Automated Software Testing: Introduction, Management, and
Performance, Addison-Wesley, 1999
14. J Cosgrove: Software Engineering and the Law, IEEE Software, Volume 18, Number 3, 2001

 141

15. B Lawson: An Assessment Methodology for Safety Critical Systems, bud@damek.kth.se
16. T DeMarco and T Lister: Both Sides Always Lose: Litigation of Software-intensive
Contracts, Crosstalk, Volume 13, Number 2, 2000

 142

