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Basics of the prover

Propositional logic 

Predicate logic 

Outline



PVS uses sequents to represent proof goals. A 
sequent is composed of (numbered) formulas.

Read a sequent as “the conjunction (and) of the 
antecedents implies the disjunction (or) of the 
consequents”

The goal in the prover is to manipulate sequents
using (logically sound) commands into 
something that is obviously true to PVS. 

* FALSE in the antecedent
* TRUE in the consequent
* Same formula in antecedent and 

consequent

PVS prover structure

Antecedent
Antecedent
Turnstile
Consequent
Consequent

“p => q  and p implies either q or r”



The proof process generates sequences or 
(usually) trees of sequents. 

Trees of sequents

Non-branching case: 
• Generates a sequence S0, S1,…, Sn
• Proof rules ensure that Si+1 => Si
• Implication is transitive, so Sn => S0

Branching case:
• Splits a sequent Si into Si+1,1, Si+1,2,…, Si+1,k
• The branches conjunctively prove the previous 

step, i.e. Si+1,1, Si+1,2,…, Si+1,k => Si
• If each leaf is valid, then the original sequent is 

also
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Notes: PVS only adds numbering to branching steps, as on the right. A “file-system” like 
tree can be viewed in the proof-explorer, or a more graphical version is shown using the          
button          in the menu bar.



Manipulating Sequents: Basics  

Proof commands are entered as Lisp S-expressions:

• Examples: (flatten), (split -1), (expand “factorial”)

• Commands are proof rules, control rules, or strategies. 

• Arguments to the rules are generally numbers or strings

• Parentheses can be omitted for single line commands

Formulas are referred to by number (or label, coming soon):

• Positive numbers in the consequent

• Negative numbers in the antecedent 

• Sometimes multiple formulas: (-2 -1 3 4)

• Special ones: + (entire consequent), - (entire antecedent), 

* (all formulas)



Manipulating Sequents: Help

Help with commands:

• Begin typing a command, and VSCode shows 

abbreviated help below the prover

• From the prompt, type (help command_name)

• Provides the syntax of the command, and a 

description

Reading the syntax: 

• Shows the command, required, and optional inputs

• Optional arguments have the forms (<arg> <dflt>) or 

just <arg> with nil as default 

SyntaxCommand syntax Some instances

(copy fnum) (copy 2) (copy -3)

(skeep &optional
(fnum + -) preds?)

(skeep) (skeep -3) 
(skeep + t)

(induct var &optional
(fnum 1) name)

(induct “n”)
(induct “n” 2)
(induct “n” :name
“NAT_induction”)

(hide &rest fnums)
(hide 2) (hide -)
(hide -3 -4 1 2)
(hide -2 +)



Manipulating Sequents: Navigating

There are commands to control the place in the proof.

• Exiting the prover: (quit) brings a Save Proof 
prompt. Note: Yes saves and quits, No discards and 
quits, Cancel returns to the proof

• Switching Branches: (postpone) moves to the next 
open branch

• Undo/Redo: In Proof Explorer,  right-click to fast-
forward or rewind steps. Alternative:(undo) move 
you backward through proof steps, (undo n) moves 
back n steps (undo undo) cancels ONE undo step.

• Whether using (undo) or rewind, undoing a branch 
step undoes ALL of the siblings to the head (but 
Proof Explorer can replay them)

Navigate a proof with the buttons at 
top, or right-click to get to rewind or 
fast-forward to a chosen step. 



Manipulating Sequents: 
Two Propositional Rules 

Sequent flattening:
• Syntax: (flatten &rest fnums)
• Usually applied to the whole sequent, although 

formula numbers can be specified

Sequent splitting:
• Syntax: (split &optional (fnum *) depth)
• Splits the goal into two (or more) subgoals
• These goals become branches in the proof tree
• Note: complete steps common to all branches 

prior to splitting
• Related Commands: (case “branch”) (splash)

Location

Logical Connective

OR, IMPLIES AND, IFF

Antecedent (split) (flatten)

Consequent (flatten) (split)

What should I use?

Remember: a sequent is the AND of the 
antecedents implies the OR of the consequent
• If the connective matches the side, use flatten
• If the connective opposes the side, use split
From logic class: 
• P => Q   is also  (NOT P)  OR  Q
• P <=> Q  is also  (P => Q)  AND  (Q => P)



A Short Proof
From this basic theory, prove prop_0 with just 

split and flatten



A Short Proof

• IMPLIES (=>) is the outermost connective, and in the consequent

• (flatten) transforms the original sequent to the second 

• (split) then creates 2 (obviously true) branches to finish the proof



Two views of “A Short Proof”

The completed proof in “Proof Explorer”

The completed proof from “Show Proof Tree”



Other important commands

(prop)
• “Black-box” rule for propositional logic
• Will complete most propositional-only proofs in 

one step

(iff &rest fnums)
• Example Syntax: (iff 2)
• Converts equalities on Booleans to IFF so that 

propositional reasoning applies 
• Example: (a<b) = (c=>d) becomes (a<b) IFF (c=>d)

(expand name &optional (fnum *))
• Example Syntax: (expand “factorial” 1)
• Rewrites a defined function or constant using the 

definition

(lemma name &optional subst)
• Example Syntax: (lemma “floor_plus_int”)
• Adds an antecedent with the lemma 
• Free variables bound with FORALL 
• Related Commands: use and forward-chain

(rewrite name &opt (fnums *) (target-fnums *) (dir lr))

Where to get the 
inputs to the 
lemma 

Where to 
apply the 
actual rewrite

Which 
direction to 
rewrite in

(rewrite “floor_plus_int” -2 :target-fnums 3 :dir rl)
• Example Syntax:

• Matches constants from formula -2
• Puts them in “floor_plus_int”
• Rewrites things in formula 3
• Using the equality reading left-to-right 



Three more commands

(replace fnum &optional (fnums *) (dir lr) …)
• Example Syntax: (replace -1 3)
• Replaces using an equality formula inside 

target formulas, with the direction specified

(case &rest formulas)
• Example Syntax: (case “n<0”)
• Separates the proof into two cases: “formula” 

is true in the first, and ”formula” is false in the 
second. 

• Allows for the user to decide where a split 
should occur. 

• Multiple formulas be input for more branching

(lift-if &optional fnums)
• Example Syntax: (lift-if -2)
• IF – THEN – ELSE expressions must be on the 

outermost part of a formula to use (split)
• This command lifts such expressions one level
• Example:   

… f(IF a THEN b ELSE c ENDIF) …
becomes 
… IF a THEN f(b) ELSE f(c) ENDIF …

• Alternative: Use (case “a”)



Put them to work

Try the commands out on some 

Exercises!



Quantified Formulas
Formulas are often declared that use quantifiers over free variables
• Examples: 

• Note that free (previously declared) variables in formulas are treated as 
universally quantified,  so 

inside the prover

• Skolemization and Instantiation are used to eliminate quantifiers



Skolemization

Suppose you have a property P, and you want to show all real numbers possess it.

• In the PVS prover, this looks like

• In math, a proof would start with “Let x be an arbitrary real number…”

• In the PVS logic, this is called Skolemization



Skolemization

Similarly, suppose you have a property Q, and you know some real number 
possesses it.

• In the PVS prover, you would see

• In math, a proof would start with “Let x be an arbitrary real number with 
property Q…”

• This is still Skolemization!!!



Skolemization

Skolemize: 
• Universal quantifiers in the consequent
• Existential quantifiers in the antecedent
• For example: both formulas here

Skolemization introduces a fresh (not previously 
used in the proof) constant, called a skolem
constant, representing a fixed but arbitrary 
representative.

Skolem image from http://www.oslobilder.no/OMU/OB.F06426c, in public domain.

Thoralf Skolem (1887-1963), Norwegian mathematician 
who worked in mathematical logic and set theory. 

http://www.oslobilder.no/OMU/OB.F06426c


Instantiation
Instantiation is the dual process to skolemization

Suppose you have a property P, and you know that all real numbers possess it.

• In the PVS prover, this looks like

• Since it’s true for all real numbers, you can choose your favorite one

• This is Instantiation



Instantiation

Similarly, suppose you have a to prove the existence of a real number with 
property Q, and somehow, you’ve discovered one.  

• In the PVS prover, this looks like

• To finish this proof, you simply need to supply the witness to formula 1.

• Again, Instantiation does the trick.



Instantiation

Instantiate: 
• Existential quantifiers in the consequent
• Universal quantifiers in the antecedent
• For example: both formulas here

Instantiation replaces a quantified variable with 
some previously declared constant. 

Note: Instantiation doesn’t have to involve 
numerical or externally declared constants, 
skolem constants are great.

In the example above, three commands:
• (skolem -2 “x”)
• (inst -1 “x”)
• (inst 1 “2 * x”)

will complete the proof.



Skolemization and Instantiation Commands

(skeep)
• Example Syntax: (skeep -1)
• Skolemize and “keep” variable names (when possible) 
• Applies (flatten) after skolemizing, usually helpful

(skolem fnum names)
• The basic skolemization command
• Uses constants “names” in the quantified formula 

“fnum” 

(skolem! &opt fnum)
• Skolemizes a formula, optionally specified
• A variable x becomes x!1 or x!2

(skosimp*)
• Applies (skolem!) then (flatten)

(inst fnum &rest terms)
• Example Syntax: (inst -1 “pi/2”)
• The basic instantiation command

(inst? &opt fnum)
• If fnum is given, PVS tries to choose an appropriate 

instantiation for it
• If no fnum, PVS chooses a formula and an instantiation

(inst-cp fnum &rest terms)
• Works like (inst), but keeps a copy of the quantified 

formula

Note: Be careful when instantiating. PVS will 
typecheck any instantiations, and may stop 
instantiation, or produce TCC branches. 
• Example: If you have                                       and 

instantiate it with “0.5”  you’ll get an (unprovable) 
TCC branch asking to prove that 0.5 is a nat. 

Note: When specifying names, use “_” to leave a variable 
uninstantiated (useful when only some values change).



Commands to make the sequent look good

(hide &rest fnums)
• Example Syntax: (hide -1 -2 +)
• Removes formulas from the sequent
• Removed formulas are NOT used for 

deduction, or affected by commands
• Useful if the sequent is complicated
• Alternate: (hide-all-but &opt (fnums *))

(reveal &rest fnums)
• Example Syntax: (reveal 2)
• Brings hidden formulas back to the current 

sequent
• Need to know the right number (or label)! 

Get it with (show-hidden-formulas)

(label name fnums)
• Example Syntax: (label “ind_hyp” -3)
• Allows labelling of formulas with strings
• Hide a labeled formula early in a proof, and 

reveal it at the end when you need it
• Note:  hide and reveal both accept labels!



Commands to make life easier

(prop)
• Repeated flatten and split
(bddsimp)
• Propositional simplification with Binary Decision 

Diagrams (BDDs)
(assert)
• Applies type-specific decision procedures and auto-

rewrites
(ground)
• Propositional simplification plus decision procedures
(smash)
• Repeatedly tries bddsimp, assert, and lift-if
(grind)
• All of the above, plus definition expansion and inst?

The prover has a collection of (increasingly aggressive) simplification commands. 

Note: (grind) can take a long time, get stuck in a loop, or leave the sequent unfamiliar. 
Sometimes it needs to be interrupted or undone to get back to normal.  



What’s your type? 

(typepred &rest exprs)
• Example Syntax: (typepred “a”)
• Causes type constraints for expressions to 

be added to the sequent
• Subtype predicates are often recalled this 

way
• Alternate: When skolemizing, use the 

:preds? T option at the end of (skeep)

The prover can be asked to reveal information 
about the TYPE of an expression. 

An example using typepred



Put them to work

Try the commands out on some 

Exercises!



• PVS website: https://pvs.csl.sri.com/
• PVS prover guide: https://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

(locally at <pvs_folder>/doc/prover/prover.pdf)
• PVS google group: https://groups.google.com/g/pvs-group

27

Getting more help

https://pvs.csl.sri.com/doc/pvs-prover-guide.pdf
https://groups.google.com/g/pvs-group


Further help

Try the commands out on some 

Exercises!


