Logical Proving in PVS

Aaron Dutle

NASA Langley Research Center aaron.m.dutle@nasa.gov Outline

Basics of the prover

Propositional logic

Predicate logic

prove | status-proofchain | show-prooflite
pred_ex1: LEMMA
FORALL (s,t,u: bool):
(s AND t) OR u <=> (s OR u) AND (t OR u)

p,q,r : bool
prove | status-proofchain | show-prooflite
ex1: LEMMA
((p => q) and p) => (q or r)

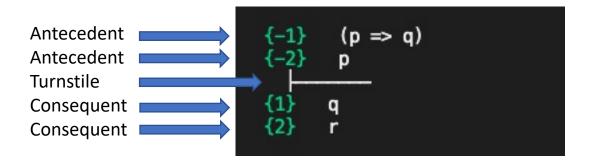
PVS prover structure

PVS uses *sequents* to represent proof goals. A sequent is composed of (numbered) *formulas*.

Read a sequent as "the conjunction (*and*) of the antecedents implies the disjunction (or) of the consequents"

The goal in the prover is to manipulate sequents using (logically sound) commands into something that is *obviously true* to PVS.

- * FALSE in the antecedent
- * TRUE in the consequent
- * Same formula in antecedent and consequent



"p => q and p implies either q or r"

Trees of sequents

The proof process generates sequences or (usually) trees of sequents.

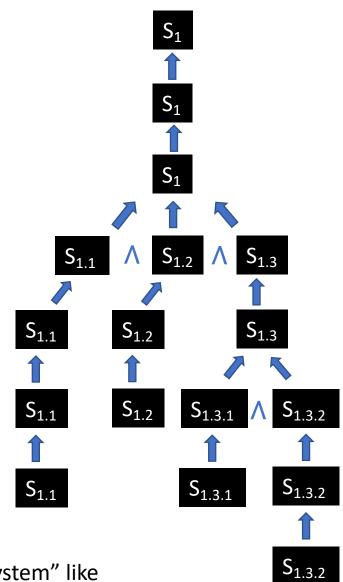
Non-branching case:

- Generates a sequence S₀, S₁,..., S_n
- Proof rules ensure that $S_{i+1} => S_i$
- Implication is transitive, so S_n => S₀

Branching case:

- Splits a sequent S_i into S_{i+1,1}, S_{i+1,2},..., S_{i+1,k}
- The branches conjunctively prove the previous step, i.e. S_{i+1,1}, S_{i+1,2},..., S_{i+1,k} => S_i
- If each leaf is valid, then the original sequent is also

Notes: PVS only adds numbering to branching steps, as on the right. A "file-system" like tree can be viewed in the proof-explorer, or a more graphical version is shown using the button in the menu bar.



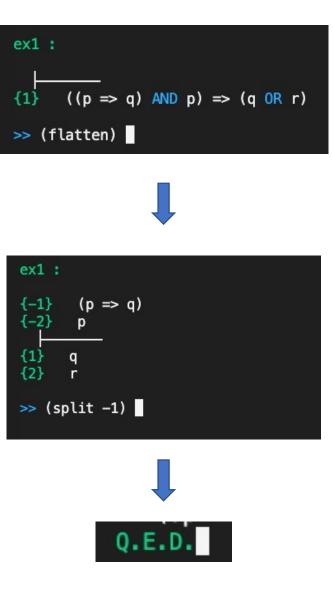
Manipulating Sequents: Basics

Proof commands are entered as Lisp S-expressions:

- Examples: (flatten), (split -1), (expand "factorial")
- Commands are *proof rules*, *control rules*, or *strategies*.
- Arguments to the rules are generally numbers or strings
- Parentheses can be omitted for single line commands

Formulas are referred to by number (or label, coming soon):

- Positive numbers in the consequent
- Negative numbers in the antecedent
- Sometimes multiple formulas: (-2 -1 3 4)
- Special ones: + (entire consequent), (entire antecedent),
 - * (all formulas)



Manipulating Sequents: Help

Help with commands:

- Begin typing a command, and VSCode shows • abbreviated help below the prover
- From the prompt, type (help command_name) ٠
- Provides the syntax of the command, and a ۲ description

Reading the syntax:

just <arg> with nil as default

- Shows the command, required, and optional inputs ۲
- Optional arguments have the forms (<arg> <dflt>) or ۲

>> help split

(split &optional (fnum *) depth):

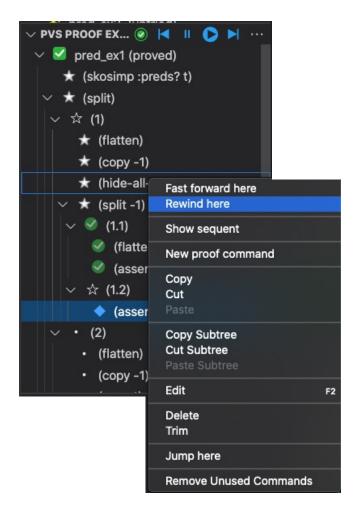
Conjunctively splits formula FNUM. If FNUM is -, + or *, then the first conjunctive sequent formula is chosen from the antecedent, succedent, or the entire sequent. Splitting eliminates any top-level conjunction, i.e., positive AND, IFF, or IF-THEN-ELSE, and negative OR, IMPLIES, or IF-THEN-ELSE.

Command syntax	Some instances
(copy fnum)	(copy 2) (copy -3)
<pre>(skeep &optional (fnum + -) preds?)</pre>	(skeep) (skeep -3) (skeep + t)
(induct var &optional (fnum 1) name)	<pre>(induct "n") (induct "n" 2) (induct "n" :name</pre>
(hide &rest fnums)	(hide 2) (hide -) (hide -3 -4 1 2) (hide -2 +)

Manipulating Sequents: Navigating

There are commands to control the place in the proof.

- Exiting the prover: (quit) brings a Save Proof prompt. Note: Yes saves and quits, No discards and quits, Cancel returns to the proof
- Switching Branches: (postpone) moves to the next open branch
- Undo/Redo: In Proof Explorer, right-click to fastforward or rewind steps. Alternative: (undo) move you backward through proof steps, (undo n) moves back n steps (undo undo) cancels ONE undo step.
- Whether using (undo) or rewind, undoing a branch step undoes ALL of the siblings to the head (but Proof Explorer can replay them)



Navigate a proof with the buttons at top, or right-click to get to rewind or fast-forward to a chosen step.

Manipulating Sequents: Two Propositional Rules

Sequent flattening:

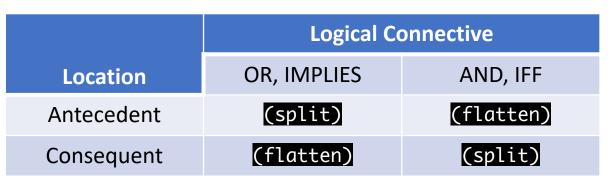
- Syntax: (flatten &rest fnums)
- Usually applied to the whole sequent, although formula numbers can be specified

Sequent splitting:

- Syntax: (split &optional (fnum *) depth)
- Splits the goal into two (or more) subgoals
- These goals become branches in the proof tree
- Note: complete steps common to all branches prior to splitting

Related Commands: (case "branch") (splash)

What should I use?

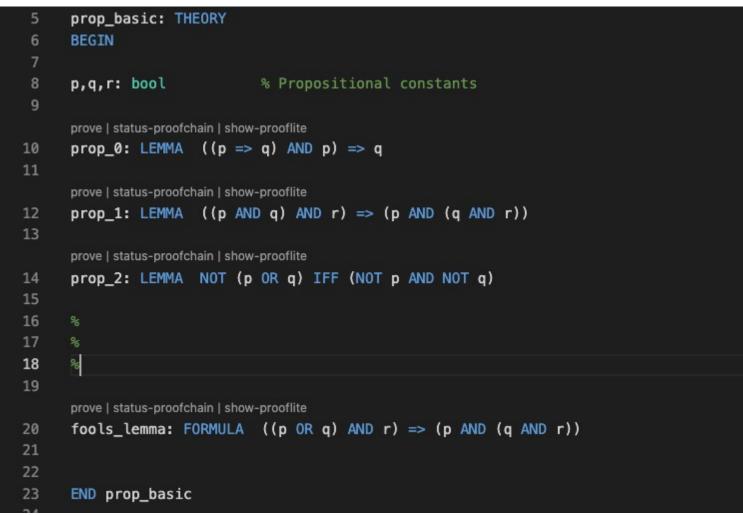


Remember: a sequent is the AND of the antecedents implies the OR of the consequent

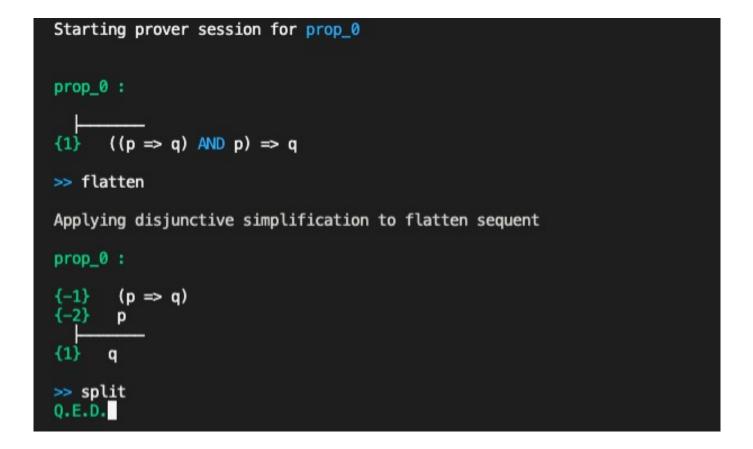
- If the connective matches the side, use flatten
- If the connective opposes the side, use split From logic class:
- P => Q is also (NOT P) OR Q
- P <=> Q is also (P => Q) AND (Q => P)

A Short Proof

From this basic theory, prove prop_0 with just split and flatten



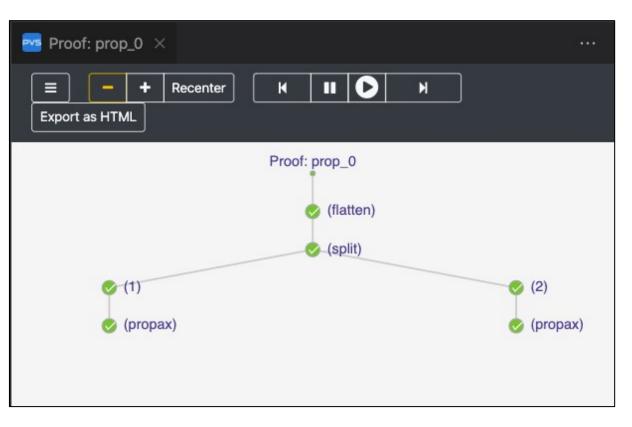
A Short Proof



- IMPLIES (=>) is the outermost connective, and in the consequent
- (flatten) transforms the original sequent to the second
- (split) then creates 2 (obviously true) branches to finish the proof

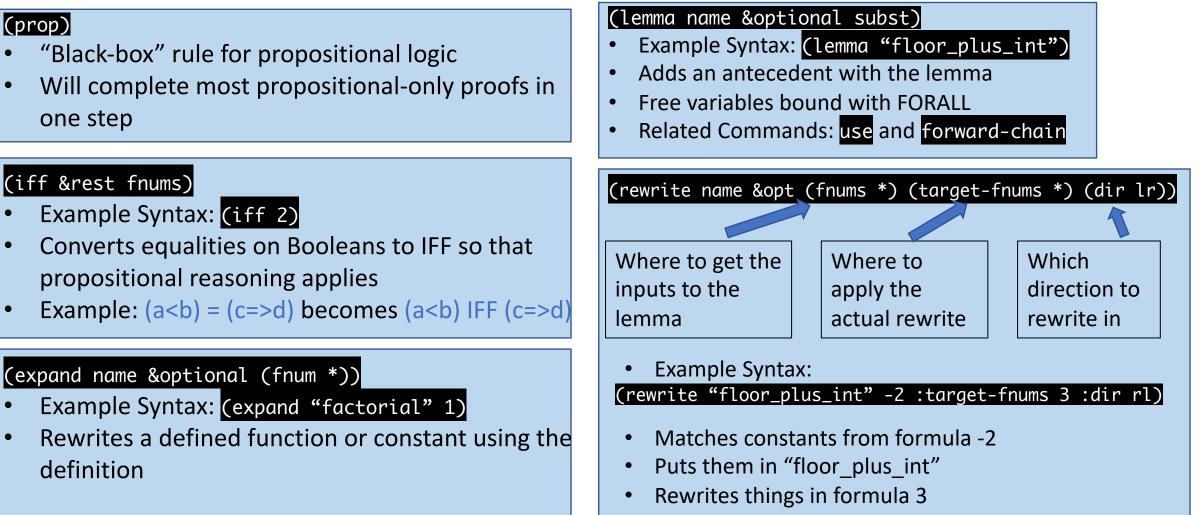
Two views of "A Short Proof"

The completed proof in "Proof Explorer"



The completed proof from "Show Proof Tree"

Other important commands



• Using the equality reading left-to-right

Three more commands

(replace fnum &optional (fnums *) (dir lr) …)

- Example Syntax: (replace -1 3)
- Replaces using an equality formula inside target formulas, with the direction specified

(case &rest formulas)

- Example Syntax: (case "n<0")
- Separates the proof into two cases: "formula" is true in the first, and "formula" is false in the second.
- Allows for the user to decide where a split should occur.
- Multiple formulas be input for more branching

(lift-if &optional fnums)

- Example Syntax: (lift-if -2)
- IF THEN ELSE expressions must be on the outermost part of a formula to use (split)
- This command lifts such expressions one level
- Example: ... f(IF a THEN b ELSE c ENDIF) ...

becomes

. IF a THEN f(b) ELSE f(c) ENDIF …

• Alternative: Use (case "a")

Put them to work

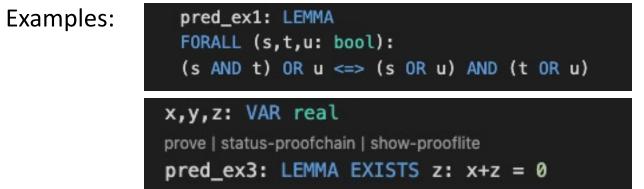
Try the commands out on some

Exercises!

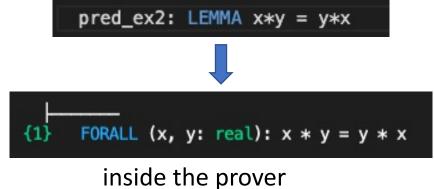
Quantified Formulas

•

Formulas are often declared that use quantifiers over free variables



• Note that free (previously declared) variables in formulas are treated as universally quantified, so



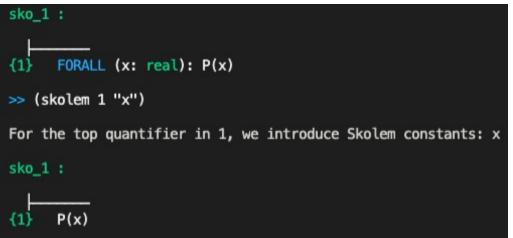
• Skolemization and Instantiation are used to eliminate quantifiers

Skolemization

Suppose you have a property P, and you want to show all real numbers possess it.

• In the PVS prover, this looks like

- In math, a proof would start with "Let x be an arbitrary real number..."
- In the PVS logic, this is called **Skolemization**



Skolemization

Similarly, suppose you have a property **Q**, and you know some real number possesses it.

• In the PVS prover, you would see

- In math, a proof would start with "Let x be an arbitrary real number with property Q..."
- This is still **Skolemization!!!**

Skolemization

Skolemize:

- Universal quantifiers in the consequent
- Existential quantifiers in the antecedent
- For example: both formulas here

Skolemization introduces a fresh (not previously used in the proof) constant, called a **skolem constant**, representing a fixed but arbitrary representative.

Thoralf Skolem (1887-1963), Norwegian mathematician who worked in mathematical logic and set theory.

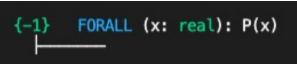
Skolem image from <u>http://www.oslobilder.no/OMU/OB.F06426c</u>, in public domain.

Instantiation

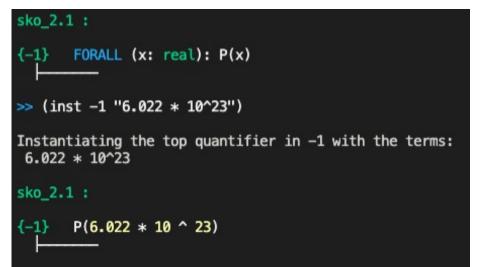
Instantiation is the dual process to skolemization

Suppose you have a property P, and you know that all real numbers possess it.

• In the PVS prover, this looks like



- Since it's true for all real numbers, you can choose your favorite one
- This is Instantiation

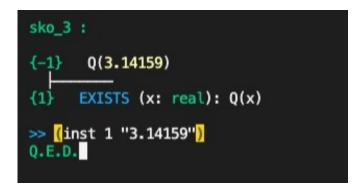


Instantiation

Similarly, suppose you have a to prove the existence of a real number with property **Q**, and somehow, you've discovered one.

• In the PVS prover, this looks like

- To finish this proof, you simply need to supply the witness to formula 1.
- Again, Instantiation does the trick.



Instantiation

Instantiate:

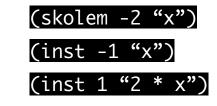
- Existential quantifiers in the consequent
- Universal quantifiers in the antecedent
- For example: both formulas here

Instantiation replaces a quantified variable with some previously declared constant.

{-1} FORALL (x: real): P(x) => Q(2 * x)
[-2] EXISTS (x: real): P(x)
[1] EXISTS (x: real): Q(x)

Note: Instantiation doesn't have to involve numerical or externally declared constants, skolem constants are great.

In the example above, three commands:



will complete the proof.

Skolemization and Instantiation Commands

(skeep)

- Example Syntax: (skeep -1)
- Skolemize and "keep" variable names (when possible)
- Applies (flatten) after skolemizing, usually helpful

(skolem fnum names)

- The basic skolemization command
- Uses constants "names" in the quantified formula "fnum"

(skolem! &opt fnum)

- Skolemizes_a formula, optionally specified
- A variable x becomes x!1 or x!2

(skosimp*)

Applies (skolem!) then (flatten)

Note: When specifying names, use "___" to leave a variable uninstantiated (useful when only some values change).

(inst fnum &rest terms)

- Example Syntax: (inst -1 "pi/2")
- The basic instantiation command

(inst? &opt fnum)

- If fnum is given, PVS tries to choose an appropriate instantiation for it
- If no fnum, PVS chooses a formula and an instantiation

(inst-cp fnum &rest terms)

Works like (inst), but keeps a copy of the quantified formula

Note: Be careful when instantiating. PVS will typecheck any instantiations, and may stop instantiation, or produce TCC branches.

Example: If you have FORALL (n: nat): P(n) and instantiate it with "0.5" you'll get an (unprovable) TCC branch asking to prove that 0.5 is a nat.

Commands to make the sequent look good

(hide &rest fnums)

- Example Syntax: (hide -1 -2 +)
- Removes formulas from the sequent
- Removed formulas are NOT used for deduction, or affected by commands
- Useful if the sequent is complicated
- Alternate: (hide-all-but &opt (fnums *))

(reveal &rest fnums)

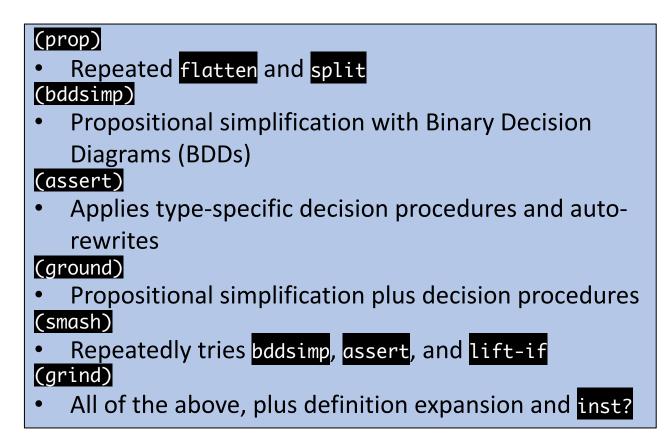
- Example Syntax: (reveal 2)
- Brings hidden formulas back to the current sequent
- Need to know the right number (or label)! Get it with (show-hidden-formulas)

(label name fnums)

- Example Syntax: (label "ind_hyp" -3)
- Allows labelling of formulas with strings
- Hide a labeled formula early in a proof, and reveal it at the end when you need it
- Note: hide and reveal both accept labels!

Commands to make life easier

The prover has a collection of (increasingly aggressive) simplification commands.



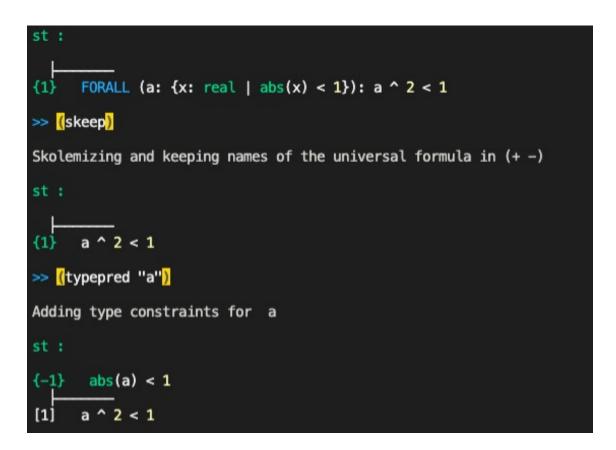
Note: (grind) can take a long time, get stuck in a loop, or leave the sequent unfamiliar. Sometimes it needs to be interrupted or undone to get back to normal.

What's your type?

The prover can be asked to reveal information about the TYPE of an expression.

(typepred &rest exprs)

- Example Syntax: (typepred "a")
- Causes type constraints for expressions to be added to the sequent
- Subtype predicates are often recalled this way
- Alternate: When skolemizing, use the :preds? T option at the end of (skeep)



An example using typepred

Put them to work

Try the commands out on some

Exercises!

Getting more help

- PVS website: <u>https://pvs.csl.sri.com/</u>
- PVS prover guide: <u>https://pvs.csl.sri.com/doc/pvs-prover-guide.pdf</u> (locally at <pvs_folder>/doc/prover/prover.pdf)
- PVS google group: <u>https://groups.google.com/g/pvs-group</u>

Further help

Try the commands out on some

Exercises!