
Logical Proving in PVS

Aaron Dutle

NASA Langley Research Center
aaron.m.dutle@nasa.gov

Basics of the prover

Propositional logic

Predicate logic

Outline

PVS uses sequents to represent proof goals. A
sequent is composed of (numbered) formulas.

Read a sequent as “the conjunction (and) of the
antecedents implies the disjunction (or) of the
consequents”

The goal in the prover is to manipulate sequents
using (logically sound) commands into
something that is obviously true to PVS.

* FALSE in the antecedent
* TRUE in the consequent
* Same formula in antecedent and

consequent

PVS prover structure

Antecedent
Antecedent
Turnstile
Consequent
Consequent

“p => q and p implies either q or r”

The proof process generates sequences or
(usually) trees of sequents.

Trees of sequents

Non-branching case:
• Generates a sequence S0, S1,…, Sn
• Proof rules ensure that Si+1 => Si
• Implication is transitive, so Sn => S0

Branching case:
• Splits a sequent Si into Si+1,1, Si+1,2,…, Si+1,k
• The branches conjunctively prove the previous

step, i.e. Si+1,1, Si+1,2,…, Si+1,k => Si
• If each leaf is valid, then the original sequent is

also

S1

S1

S1

S1.1 S1.2 S1.3

S1.1

S1.1

S1.2

S1.2

S1.3

S1.3.1 S1.3.2

S1.1 S1.3.1 S1.3.2

S1.3.2

⋀ ⋀

⋀

Notes: PVS only adds numbering to branching steps, as on the right. A “file-system” like
tree can be viewed in the proof-explorer, or a more graphical version is shown using the
button in the menu bar.

Manipulating Sequents: Basics

Proof commands are entered as Lisp S-expressions:

• Examples: (flatten), (split -1), (expand “factorial”)

• Commands are proof rules, control rules, or strategies.

• Arguments to the rules are generally numbers or strings

• Parentheses can be omitted for single line commands

Formulas are referred to by number (or label, coming soon):

• Positive numbers in the consequent

• Negative numbers in the antecedent

• Sometimes multiple formulas: (-2 -1 3 4)

• Special ones: + (entire consequent), - (entire antecedent),

* (all formulas)

Manipulating Sequents: Help

Help with commands:

• Begin typing a command, and VSCode shows

abbreviated help below the prover

• From the prompt, type (help command_name)

• Provides the syntax of the command, and a

description

Reading the syntax:

• Shows the command, required, and optional inputs

• Optional arguments have the forms (<arg> <dflt>) or

just <arg> with nil as default

SyntaxCommand syntax Some instances

(copy fnum) (copy 2) (copy -3)

(skeep &optional
(fnum + -) preds?)

(skeep) (skeep -3)
(skeep + t)

(induct var &optional
(fnum 1) name)

(induct “n”)
(induct “n” 2)
(induct “n” :name
“NAT_induction”)

(hide &rest fnums)
(hide 2) (hide -)
(hide -3 -4 1 2)
(hide -2 +)

Manipulating Sequents: Navigating

There are commands to control the place in the proof.

• Exiting the prover: (quit) brings a Save Proof
prompt. Note: Yes saves and quits, No discards and
quits, Cancel returns to the proof

• Switching Branches: (postpone) moves to the next
open branch

• Undo/Redo: In Proof Explorer, right-click to fast-
forward or rewind steps. Alternative:(undo) move
you backward through proof steps, (undo n) moves
back n steps (undo undo) cancels ONE undo step.

• Whether using (undo) or rewind, undoing a branch
step undoes ALL of the siblings to the head (but
Proof Explorer can replay them)

Navigate a proof with the buttons at
top, or right-click to get to rewind or
fast-forward to a chosen step.

Manipulating Sequents:
Two Propositional Rules

Sequent flattening:
• Syntax: (flatten &rest fnums)
• Usually applied to the whole sequent, although

formula numbers can be specified

Sequent splitting:
• Syntax: (split &optional (fnum *) depth)
• Splits the goal into two (or more) subgoals
• These goals become branches in the proof tree
• Note: complete steps common to all branches

prior to splitting
• Related Commands: (case “branch”) (splash)

Location

Logical Connective

OR, IMPLIES AND, IFF

Antecedent (split) (flatten)

Consequent (flatten) (split)

What should I use?

Remember: a sequent is the AND of the
antecedents implies the OR of the consequent
• If the connective matches the side, use flatten
• If the connective opposes the side, use split
From logic class:
• P => Q is also (NOT P) OR Q
• P <=> Q is also (P => Q) AND (Q => P)

A Short Proof
From this basic theory, prove prop_0 with just

split and flatten

A Short Proof

• IMPLIES (=>) is the outermost connective, and in the consequent

• (flatten) transforms the original sequent to the second

• (split) then creates 2 (obviously true) branches to finish the proof

Two views of “A Short Proof”

The completed proof in “Proof Explorer”

The completed proof from “Show Proof Tree”

Other important commands

(prop)
• “Black-box” rule for propositional logic
• Will complete most propositional-only proofs in

one step

(iff &rest fnums)
• Example Syntax: (iff 2)
• Converts equalities on Booleans to IFF so that

propositional reasoning applies
• Example: (a<b) = (c=>d) becomes (a<b) IFF (c=>d)

(expand name &optional (fnum *))
• Example Syntax: (expand “factorial” 1)
• Rewrites a defined function or constant using the

definition

(lemma name &optional subst)
• Example Syntax: (lemma “floor_plus_int”)
• Adds an antecedent with the lemma
• Free variables bound with FORALL
• Related Commands: use and forward-chain

(rewrite name &opt (fnums *) (target-fnums *) (dir lr))

Where to get the
inputs to the
lemma

Where to
apply the
actual rewrite

Which
direction to
rewrite in

(rewrite “floor_plus_int” -2 :target-fnums 3 :dir rl)
• Example Syntax:

• Matches constants from formula -2
• Puts them in “floor_plus_int”
• Rewrites things in formula 3
• Using the equality reading left-to-right

Three more commands

(replace fnum &optional (fnums *) (dir lr) …)
• Example Syntax: (replace -1 3)
• Replaces using an equality formula inside

target formulas, with the direction specified

(case &rest formulas)
• Example Syntax: (case “n<0”)
• Separates the proof into two cases: “formula”

is true in the first, and ”formula” is false in the
second.

• Allows for the user to decide where a split
should occur.

• Multiple formulas be input for more branching

(lift-if &optional fnums)
• Example Syntax: (lift-if -2)
• IF – THEN – ELSE expressions must be on the

outermost part of a formula to use (split)
• This command lifts such expressions one level
• Example:

… f(IF a THEN b ELSE c ENDIF) …
becomes
… IF a THEN f(b) ELSE f(c) ENDIF …

• Alternative: Use (case “a”)

Put them to work

Try the commands out on some

Exercises!

Quantified Formulas
Formulas are often declared that use quantifiers over free variables
• Examples:

• Note that free (previously declared) variables in formulas are treated as
universally quantified, so

inside the prover

• Skolemization and Instantiation are used to eliminate quantifiers

Skolemization

Suppose you have a property P, and you want to show all real numbers possess it.

• In the PVS prover, this looks like

• In math, a proof would start with “Let x be an arbitrary real number…”

• In the PVS logic, this is called Skolemization

Skolemization

Similarly, suppose you have a property Q, and you know some real number
possesses it.

• In the PVS prover, you would see

• In math, a proof would start with “Let x be an arbitrary real number with
property Q…”

• This is still Skolemization!!!

Skolemization

Skolemize:
• Universal quantifiers in the consequent
• Existential quantifiers in the antecedent
• For example: both formulas here

Skolemization introduces a fresh (not previously
used in the proof) constant, called a skolem
constant, representing a fixed but arbitrary
representative.

Skolem image from http://www.oslobilder.no/OMU/OB.F06426c, in public domain.

Thoralf Skolem (1887-1963), Norwegian mathematician
who worked in mathematical logic and set theory.

http://www.oslobilder.no/OMU/OB.F06426c

Instantiation
Instantiation is the dual process to skolemization

Suppose you have a property P, and you know that all real numbers possess it.

• In the PVS prover, this looks like

• Since it’s true for all real numbers, you can choose your favorite one

• This is Instantiation

Instantiation

Similarly, suppose you have a to prove the existence of a real number with
property Q, and somehow, you’ve discovered one.

• In the PVS prover, this looks like

• To finish this proof, you simply need to supply the witness to formula 1.

• Again, Instantiation does the trick.

Instantiation

Instantiate:
• Existential quantifiers in the consequent
• Universal quantifiers in the antecedent
• For example: both formulas here

Instantiation replaces a quantified variable with
some previously declared constant.

Note: Instantiation doesn’t have to involve
numerical or externally declared constants,
skolem constants are great.

In the example above, three commands:
• (skolem -2 “x”)
• (inst -1 “x”)
• (inst 1 “2 * x”)

will complete the proof.

Skolemization and Instantiation Commands

(skeep)
• Example Syntax: (skeep -1)
• Skolemize and “keep” variable names (when possible)
• Applies (flatten) after skolemizing, usually helpful

(skolem fnum names)
• The basic skolemization command
• Uses constants “names” in the quantified formula

“fnum”

(skolem! &opt fnum)
• Skolemizes a formula, optionally specified
• A variable x becomes x!1 or x!2

(skosimp*)
• Applies (skolem!) then (flatten)

(inst fnum &rest terms)
• Example Syntax: (inst -1 “pi/2”)
• The basic instantiation command

(inst? &opt fnum)
• If fnum is given, PVS tries to choose an appropriate

instantiation for it
• If no fnum, PVS chooses a formula and an instantiation

(inst-cp fnum &rest terms)
• Works like (inst), but keeps a copy of the quantified

formula

Note: Be careful when instantiating. PVS will
typecheck any instantiations, and may stop
instantiation, or produce TCC branches.
• Example: If you have and

instantiate it with “0.5” you’ll get an (unprovable)
TCC branch asking to prove that 0.5 is a nat.

Note: When specifying names, use “_” to leave a variable
uninstantiated (useful when only some values change).

Commands to make the sequent look good

(hide &rest fnums)
• Example Syntax: (hide -1 -2 +)
• Removes formulas from the sequent
• Removed formulas are NOT used for

deduction, or affected by commands
• Useful if the sequent is complicated
• Alternate: (hide-all-but &opt (fnums *))

(reveal &rest fnums)
• Example Syntax: (reveal 2)
• Brings hidden formulas back to the current

sequent
• Need to know the right number (or label)!

Get it with (show-hidden-formulas)

(label name fnums)
• Example Syntax: (label “ind_hyp” -3)
• Allows labelling of formulas with strings
• Hide a labeled formula early in a proof, and

reveal it at the end when you need it
• Note: hide and reveal both accept labels!

Commands to make life easier

(prop)
• Repeated flatten and split
(bddsimp)
• Propositional simplification with Binary Decision

Diagrams (BDDs)
(assert)
• Applies type-specific decision procedures and auto-

rewrites
(ground)
• Propositional simplification plus decision procedures
(smash)
• Repeatedly tries bddsimp, assert, and lift-if
(grind)
• All of the above, plus definition expansion and inst?

The prover has a collection of (increasingly aggressive) simplification commands.

Note: (grind) can take a long time, get stuck in a loop, or leave the sequent unfamiliar.
Sometimes it needs to be interrupted or undone to get back to normal.

What’s your type?

(typepred &rest exprs)
• Example Syntax: (typepred “a”)
• Causes type constraints for expressions to

be added to the sequent
• Subtype predicates are often recalled this

way
• Alternate: When skolemizing, use the

:preds? T option at the end of (skeep)

The prover can be asked to reveal information
about the TYPE of an expression.

An example using typepred

Put them to work

Try the commands out on some

Exercises!

• PVS website: https://pvs.csl.sri.com/
• PVS prover guide: https://pvs.csl.sri.com/doc/pvs-prover-guide.pdf

(locally at <pvs_folder>/doc/prover/prover.pdf)
• PVS google group: https://groups.google.com/g/pvs-group

27

Getting more help

https://pvs.csl.sri.com/doc/pvs-prover-guide.pdf
https://groups.google.com/g/pvs-group

Further help

Try the commands out on some

Exercises!

