
1 Vectors Library

The NASA PVS library contains three distinct vectors libraries

1. 2-dimensional vectors

2. 3-dimensional vectors

3. N-dimensional vectors

One might wonder why there should be 2D and 3D versions, when an N-dimensional version
is available. The answer is that there are some notational conveniences for doing this. For
example, in the 2D version we represent a vector as

Vector: TYPE = [# x, y: real #]

whereas in the N-dimensional library a vector is

Index : TYPE = below(n)

Vector : TYPE = [Index -> real]

where n is a formal parameter (posnat) to the theory. Thus, in the two dimensional case, the
x-component of a vector v is v‘x whereas in the N-dimensional library it is v(0). Also certain
operations are greatly simplified in the 2D case. The dot product is

*(u,v): real = u‘x * v‘x + u‘y * v‘y; % dot product

in the 2-dimensional case, whereas in the N-dimensional case it is

*(u,v): real = sigma(0,n-1,LAMBDA i:u(i)*v(i)); % Dot Product

where sigma is a summation operator imported from the reals library.
In this appendix we will present the 2-dimensional version because that is what is used

in the SATS work. However, the differences in the libraries are kept to a minimum. All
operators, definitions, and lemmas are given identical names to simplify the use of these
libraries.

1.1 2D Vectors

Two names are available for a vector type are provided in the theory vectors2D.

Vector : TYPE = [# x, y: real #]

Vect2 : TYPE = Vector

The vector operators are defined as follows:

1

a : VAR real

u,v,w : VAR Vector

-(v) : Vector = (-v‘x, -v‘y);

+(u,v): Vector = (u‘x + v‘x, u‘y + v‘y);

-(u,v): Vector = (u‘x - v‘x, u‘y - v‘y);

*(u,v): real = u‘x * v‘x + u‘y * v‘y; % dot product

*(a,v): Vector = (a * v‘x, a * v‘y);

A conversion is provided so that one can create 2D vectors as follows

(xv,yv)

rather than having to write

(# x := xv, y := yv #)

There are several functions and predicates provided such as

sqv(v): nnreal = v*v

norm(v): nnreal = sqrt(sqv(v))

zero_vector?(v) : MACRO bool = (norm(v) = 0 AND

v‘x = 0 AND v‘y = 0)

nz_vector?(v) : MACRO bool = (norm(v) /= 0 AND

(v‘x /= 0 OR v‘y /= 0))

normalized?(v) : MACRO bool = (norm(v) = 1)

zero : Zero_vector = (0,0) ;

^(nzv) : Normalized = (1/norm(nzv))*nzv

parallel?(nzu,nzv): bool = ^(nzu)*^(nzv) = 1 OR

^(nzu)*^(nzv) = -1

orthogonal?(u,v): bool = u * v = 0 ;

There are several dozen lemmas available for manipulating vectors such as

2

add_assoc : LEMMA u+(v+w) = (u+v)+w

add_move_right : LEMMA u + w = v IFF u = v - w

add_cancel_left : LEMMA u + v = u + w IMPLIES v = w

neg_distr_sub : LEMMA -(v - u) = u - v

dot_eq_args_ge : LEMMA u*u >= 0

dot_distr_add_right : LEMMA (v+w)*u = v*u + w*u

dot_scal_left : LEMMA (a*u)*v = a*(u*v)

dot_scal_canon : LEMMA (a*u)*(b*v) = (a*b)*(u*v)

sqv_scal : LEMMA sqv(a*v) = sq(a)*sqv(v)

sqrt_sqv_norm : LEMMA sqrt(sqv(v)) = norm(v)

norm_eq_0 : LEMMA norm(v) = 0 IFF v = zero

cauchy_schwartz : LEMMA sq(u*v) <= sqv(u)*sqv(v)

1.2 Positions in 2D space

The theory positions2D enhances the vector space with constructs for specifying distances.
One frequently wants to use a vector to designate a location in 2D space. To make this more
explicit, the following type definition was added

Pos2D: TYPE = Vect2

though it is really just a synonym. Next it is useful to have a metric or distance function:

sq_dist(p1,p2: Pos2D): nnreal = sq(p1‘x - p2‘x) + sq(p1‘y - p2‘y)

dist(p1,p2: Pos2D) : nnreal = sqrt(sq_dist(p1,p2))

Many lemmas are available, including

dist_refl : LEMMA dist(p,p) = 0

dist_sym : LEMMA dist(p1,p2) = dist(p2,p1)

dist_eq_0 : LEMMA dist(p1,p2) = 0 IFF p1 = p2

dist_norm : LEMMA dist(u,v) = norm(u-v)

sq_dist_le : LEMMA sq_dist(v1,v2) <= sq_dist(p1,p2) IMPLIES

dist(v1,v2) <= dist(p1,p2)

dist_ge_x : LEMMA dist(p1,p2) >= abs(p1‘x - p2‘x)

dist_ge_y : LEMMA dist(p1,p2) >= abs(p1‘y - p2‘y)

dist_triangle: LEMMA sq(dist(p2,p0)) = sq(dist(p1,p0)) + sq(dist(p1,p2))

- 2*(p1-p0)*(p1-p2)

The following predicates are available:

on_circle?(p,r): bool = dist(p,zero) = r

on_line?(p1,p2,p): bool =

3

EXISTS (x : real) : p = p1 + x * (p2 - p1)

on_segment?(p1,p2,p): bool =

EXISTS (x : { y: nnreal | y <= 1}) : p = p1 + x * (p2 - p1)

1.3 2D Lines

The theory lines2D provides convenient formalizations for lines in 2-dimensional space. The
traditional way to defines a line L is by specifying two distinct points, ~p0 and ~p1, on it. A
line L can also be defined by a point and a direction. Let ~p0 be a point on the line L and
let ~dv be a nonzero vector specifying the direction of the line. This is equivalent to the two
point definition, since we could just put ~dv = (~p1 − ~p0). We can also add dynamics to our
line. If we assume a particle is moving in a line with a constant velocity, then we can define
this linear motion using the location of the point at time zero, a velocity vector and a time
parameter t:

~p0 + t ∗ ~vel

which provides the location of the particle at time t.
In the library, lines are defined as a tuple:

% Basic | Dynamic

%------------------|-----------------

Line : TYPE = [# p: Vect2, % point on the line| position at time 0

v: Nz_vect2 #] % direction vector | velocity vector

Line2D: TYPE = Line

This enables one to represent a line using a point and a direction vector

p(L) + v(L) or L‘p + L‘v

or using a point and a velocity vector

p(L) + t v(L) or L‘p + t * L‘v

The following alternate field names are provided

p0 (L: Line): MACRO Vect2 = p(L) % alternate field names

vel(L: Line): MACRO Vect2 = v(L)

For example

L‘p0 + t * L‘vel

This can be appreviated using the following macro:

4

loc(L: Line)(tt: real): MACRO Vect2 = p(L) + tt*v(L)

Two functions are provided to calculate the velocity vector for different situations:

vel from tm: generates velocity vector from two points and transport time
vel from spd: generates velocity vector from two points and speed

These are defined as follows

vel_from_tm(p1,p2,t): { v | p2 = p1 + t*v } = 1/t*(p2 - p1)

vel_from_spd(p1,p2,s): Vect2 = IF p1 = p2 then zero

ELSE s/dist(p1,p2)*(p2-p1)

ENDIF

Other useful lemmas include

vel_from_tm_rew : LEMMA vel_from_tm(p1,p2,t) = 1/t*(p2 - p1)

vel_from_tm_eq_args : LEMMA vel_from_tm(p,p,t) = zero

vel_from_spd_lem : LEMMA p1 /= p2 IMPLIES

vel_from_spd(p1,p2,ps) = vel_from_tm(p1,p2,dist(p1,p2)/ps)

vel_from_spd_norm : LEMMA p1 /= p2 IMPLIES

vel_from_spd(p1,p2,s) = s*normalize(p2-p1)

Some predicates on lines are also provided:

L,L1,L2: VAR Line

on_line?(p,L): bool = EXISTS (x : real) : p = p(L) + x * v(L)

on_segment?(p,L): bool =

EXISTS (x : { y: nnreal | y <= 1}) : p = p(L) + x * v(L)

orthogonal?(L1,L2): bool = ^(v(L1))*^(v(L2)) = 0

parallel?(L1,L2) : bool = ^(v(L1))*^(v(L2)) = 1 OR ^(v(L1))*^(v(L2)) = -1

1.4 Intersecting Lines

The theory intersections2D provides some efficient methods for determining whether two lines
intersect or not and the point of intersection if they do so. The theory is built around a
function named cross:

cross(p, q) = px ∗ qy − qx ∗ py

The following simple property hold for cross:

cross(p, q) = −cross(q, p)

There are three cases for two lines L0 and L1:

5

intersecting: cross(L0v, L1v) 6= 0
parallel: cross(L0v, L1v) = 0 AND cross(∆, L0v) 6= 0
same line: cross(L0v, L1v) = 0 AND cross(∆, L0v) = 0

where ∆ = L1p − L0p. Correspondingly, the library provides the following predicates:

intersect?(L0,L1): bool = cross(L0‘v,L1‘v) /= 0

same_line?(L0,L1): bool = LET DELTA = L1‘p - L0‘p IN

cross(L0‘v,L1‘v) = 0 AND cross(DELTA,L0‘v) = 0

Given two lines that intersect the function intersect pt returns the intersection point:

intersect_pt(L0:Line2D,L1: Line2D | cross(L0‘v,L1‘v) /= 0): Pos2D =

LET DELTA = L1‘p - L0‘p,

ss = cross(DELTA,L1‘v)/cross(L0‘v,L1‘v) IN

L0‘p + ss*L0‘v

Several key lemmas are provided:

intersection_lem : LEMMA cross(L0‘v,L1‘v) /= 0 IMPLIES

LET DELTA = L1‘p - L0‘p,

ss = cross(DELTA,L1‘v)/cross(L0‘v,L1‘v),

tt = cross(DELTA,L0‘v)/cross(L0‘v,L1‘v)

IN

L0‘p + ss*L0‘v = L1‘p + tt*L1‘v

pt_intersect : LEMMA on_line?(p,L0) AND on_line?(p,L1) AND

NOT same_line?(L0,L1) IMPLIES

intersect?(L0,L1)

intersect_pt_unique : LEMMA intersect?(L0,L1) IMPLIES

pnot /= intersect_pt(L0,L1) AND

on_line?(pnot,L0)

IMPLIES

NOT on_line?(pnot,L1)

same_line_lem : LEMMA p0 /= p1 AND

(on_line?(p0,L0) AND on_line?(p0,L1) AND

on_line?(p1,L0) AND on_line?(p1,L1))

IMPLIES same_line?(L0,L1)

not_same_line : LEMMA on_line?(p,L0) AND

NOT on_line?(p,L1)

IMPLIES

6

NOT same_line?(L0,L1)

intersect_pt_lem : LEMMA NOT same_line?(L0,L1) AND

on_line?(pnot,L0) AND

on_line?(pnot,L1)

IMPLIES

intersect_pt(L0,L1) = pnot

1.5 Closest Approach

The theory closest approach 2D provides some tools to calculate the point of closest approach
(CPA) between two points that are dynamically moving in a straight line. This is an im-
portant computation for collision detection. For example, this can be used to calculate the
time and distance of two aircaft (represented as line vectors) when they are at their closest
point.

Suppose we have two time-parametric linear equations

~p(t) = ~p0 + t~u ~q(t) = ~q0 + t~v

Minimum separation occurs at:

tcpa = − ~w0(~u − ~v)

|~u − ~v|2

where ~w0 = ~p0 − ~q0. The library provides a function time closest:

time_closest(p0,q0,u,v): real =

IF norm(u-v) = 0 THEN % parallel, eq speed

0

ELSE

-((p0-q0)*(u-v))/sq(norm(u-v))

ENDIF

The following lemma gives an alternate way to calculate the function.

time_closest_lem: LEMMA norm(u-v) /= 0 AND

a = (u-v)*(u-v) AND

b = 2*(p0-q0)*(u-v)

IMPLIES

time_closest(p0,q0,u,v) = -b/(2*a)

The lemma time cpa establishes that this time is indeed the point where the distance is at a
minimum.

time_cpa: LEMMA t_cpa = time_closest(p0,q0,u,v)

IMPLIES

is_minimum?(t_cpa,(LAMBDA t: sq_dist(p0+t*u,q0+t*v)))

7

See

http://geometryalgorithms.com/Archive/algorithm_0106/algorithm_0106.htm

for a very nice discussion.

8

