
Strategy Writing in PVS

Strategy Writing in PVS

César A. Muñoz

NASA Langley Research Center
Cesar.A.Munoz@nasa.gov

Strategy Writing in PVS

PVS Strategies

I A conservative mechanism to extend theorem prover
capabilities by defining new proof commands, i.e.,

I User defined strategies do not compromise the soundness of
the theorem prover.

Strategy Writing in PVS

Outline

PVS Strategy Language

Writing your Own Strategies

PVS Strategies and Lisp

An Example

Strategy Writing in PVS

PVS Strategy Language

PVS Strategy Language

I Atomic (blackbox) proof rules are called rules in PVS.

I Non-atomic (glassbox) proof rules are called strategies in PVS.

Henceforth, we use strategy to refer both glassbox strategies and
atomic rules.

Strategy Writing in PVS

PVS Strategy Language

Basic Steps

I Any proof command, e.g., (ground), (case ...), etc.

I (skip) does nothing.

I (skip-msg message) prints message.

I (fail) fails the current goal and reaches the next
backtracking point.

I (label label fnums) labels formulas fnums with string
label.

I (unlabel fnums) unlabels formulas fnums.

Strategy Writing in PVS

PVS Strategy Language

Combinators

I Sequencing: (then step1 ...stepn).

I Branching: (branch step (step1 ...stepn)).

I Binding local variables:
(let ((var1 lisp1) ...(varn lispn)) step).

I Conditional: (if lisp step1 step2).

I Loop: (repeat step).

I Backtracking: (try step step1 step2).

Strategy Writing in PVS

PVS Strategy Language

Sequencing

I (then step1 ...stepn):
Sequentially applies stepi to all the subgoals generated by
the previous step.

I (then@ step1 ...stepn):
Sequentially applies stepi to the first subgoal generated by
the previous step.

Strategy Writing in PVS

PVS Strategy Language

Branching

I (branch step (step1 ...stepn)):
Applies step and then applies stepi to the i ’th subgoal
generated by step . If there are more subgoals than steps, it
applies stepn to the subgoals following the n’th one.

I (spread step (step1 ...stepn)):
Like branch, but applies skip to the subgoals following the
n’th one.

Strategy Writing in PVS

PVS Strategy Language

Binding Local Variables

I (let ((var1 lisp1) ...(varn lispn)) step):
Allows local variables to be bound to Lisp forms (vari is
bound to lispi).

I Lisp code may access the proof context using the PVS
Application Programming Interface (API).

Strategy Writing in PVS

PVS Strategy Language

Conditional and Loops

I (if lisp step1 step2):
If lisp evaluates to NIL then applies step2. Otherwise, it
applies step1.

I (repeat step):
Iterates step (while it does something) on the the first
subgoal generated at each iteration.

I (repeat* step):
Like repeat, but carries out the repetition of step along all
the subgoals generated at each iteration.∗

∗Note that repeat and repeat* are potential sources of infinite loops.

Strategy Writing in PVS

PVS Strategy Language

Backtracking

I Backtracking is achieved via (try step step1 step2).

I Informal (but naive) explanation: Tries step, if it does
nothing, applies step2 to the new subgoals. Otherwise,
applies step1.

I The behavior of try is far more complex:
I What is the meaning of “does nothing”?
I How does the backtracking feature work?

Strategy Writing in PVS

PVS Strategy Language

To Do or Not to Do

step does nothing usually means that no subgoals are generated
(but this is not enough).

step does nothing when

I it behaves as skip.

I the proof context before and after step is exactly the same.

I PVS says so:

Rule? step

No change on: step

Strategy Writing in PVS

PVS Strategy Language

The Semantics of try

step ⇒ (fail)
(try step step1 step2) ⇒ (fail)

step ⇒ (skip)
(try step step1 step2) ⇒ step2

step1 ⇒ (fail)
(try step step1 step2) ⇒ (skip)

otherwise
(try step step1 step2) ⇒ step1

stepi ⇒ (fail)
(...stepi ...) ⇒ (fail)

Furthermore, fail does not propagate outside blackbox rules.

Strategy Writing in PVS

PVS Strategy Language

Example

What does (try (grind) (fail) (skip)) do ?

I if (grind) ⇒ (skip), then (skip)

I if (grind) 6⇒ (skip), then (skip)

I if (grind) finishes the proof, then Q.E.D.

It either completes the proof with (grind), or does nothing.

Strategy Writing in PVS

Writing your Own Strategies

Writing your Own Strategies

I New strategies are defined in a file named pvs-strategies
in the current context. PVS automatically loads this file when
the theorem prover is invoked.

I Strategies may be defined in an arbitrary file
my own strategies. In this case, the file can be loaded with
the command (load "my own strategies") in the file
pvs-strategies.

I The IMPORTING clause loads the file pvs-strategies if it is
defined in the imported library.

Strategy Writing in PVS

Writing your Own Strategies

Caveats

I PVS only loads pvs-strategies when this file has been
updated. If we modify my own strategies, we also have to
touch pvs-strategies, so that PVS automatically loads the
modifications.

I Beware of name clashes: Loading a strategy definition file
overwrites previous strategies with the same name.

Strategy Writing in PVS

Writing your Own Strategies

Strategy Definition

I A strategy definition has the form:

(defstep name (parameters)
step
help-string format-string)

I E.g., “Hello World” in PVS:

(defstep hello-world ()
(skip-msg "Hello World")
"Prints ’Hello World’ and does nothing else"
"Printing ’Hello World’")

Strategy Writing in PVS

Writing your Own Strategies

“Hello World” in PVS

In the theorem prover:

Rule? (hello-world)
Printing ’Hello World’
Hello World
No change on: (hello-world)

Rule? (help hello-world)
(hello-world/$) :

Prints ’Hello World’ and does nothing else

Strategy Writing in PVS

Writing your Own Strategies

Blackbox vs. Glassbox

I defstep generates a (blackbox) rule name and a (glassbox)
strategy name$.

I defhelper: Same as defstep but for internal use only –
excluded from standard user interface.

I defstrat: Defines a glassbox strategy name. Does not take
the format-string argument.

Strategy Writing in PVS

Writing your Own Strategies

Defining a Finite Loop

In pvs strategies:

(defstrat for (n step)
(if (<= n 0)

(skip)
(let ((m (- n 1)))

(then@ step (for m step))))
"Repeats step n times")

Strategy Writing in PVS

Writing your Own Strategies

Using a Finite Loop

In the theorem prover:

ex1 :
|-------

{1} sqrt(sq(x)) + sqrt(sq(y)) + sqrt(sq(z)) <= x+y+z

Rule? (for 2 (rewrite "sqrt sq abs"))
...

|-------
{1} abs(x) + abs(y) + sqrt(sq(z)) <= x+y+z

Strategy Writing in PVS

Writing your Own Strategies

References

I Documentation: PVS Prover Guide, N. Shankar, S. Owre, J.
Rushby, D. Stringer-Calvert, SRI International:
http://www.csl.sri.com/pvs.html.

I Proceedings of STRATA 2003:
http://hdl.handle.net/2060/20030067561.

I Programming: Lisp The Language, G. L. Steele Jr., Digital
Press. See, for example,
http://www.supelec.fr/docs/cltl/clm/node1.html.

Strategy Writing in PVS

PVS Strategies and Lisp

PVS Strategies and Lisp

I Arbitrary Lisp expressions (functions, global variables, etc.)
can be included in a strategy file.

I PVS’s data structures are based on various Common Lisp
Object System (CLOS) classes. They are available to the
strategy programmer through global variables and accessory
functions.

Strategy Writing in PVS

PVS Strategies and Lisp

Proof Context: Global Variables

ps Current proof state
goal Goal sequent of current proof state
label Label of current proof state
par-ps Current parent proof state
par-label Label of current parent
par-goal Goal sequent of current parent
+ Consequent sequent formulas
- Antecedent sequent formulas
new-fmla-nums Numbers of new formulas in current sequent
current-context Current typecheck context
module-context Context of current module
current-theory Current theory

Strategy Writing in PVS

PVS Strategies and Lisp

PVS Context: Accessory Functions

I (select-seq (s-forms *goal*) fnums) retrieves the
sequent formulas fnums from the current context.

I (formula seq) returns the expression of the sequent formula
seq.

I (operator expr), (args1 expr), and (args2 expr)
return the operator, first argument, and second argument,
respectively, of expression expr.

Strategy Writing in PVS

PVS Strategies and Lisp

PVS Context: Recognizers

Negation (negation? expr)
Disjunction (disjunction? expr)
Conjunction (conjunction? expr)
Implication (implication? expr)
Equality (equation? expr)
Equivalence (iff? expr)
Conditional (branch? expr)
Universal (forall-expr? expr)
Existential (exists-expr? expr)

Formulas in the antecedent are negations.

Strategy Writing in PVS

PVS Strategies and Lisp

Gold Mining in PVS

I In the theorem prover the command LISP evaluates a Lisp
expression.

I In Lisp, show (or describe) displays the content and
structure of a CLOS expression. The generic print is also
handy.

Strategy Writing in PVS

PVS Strategies and Lisp

Example

|-------
{1} sqrt(sq(x)) + sqrt(sq(y)) + sqrt(sq(z)) >= x+y+z

Rule? (LISP (show
(formula (car (select-seq (s-forms *goal*) 1)))))

sqrt(sq(x)) + sqrt(sq(y)) + sqrt(sq(z)) >= x + y + z is
an instance of #<STANDARD-CLASS INFIX-APPLICATION>:
The following slots have :INSTANCE allocation:
OPERATOR >=
ARGUMENT (sqrt(sq(x))+sqrt(sq(y))+sqrt(sq(z)),

x + y + z)
...

Strategy Writing in PVS

An Example

An Example

I Assume we have a goal e1 = e2.

I Our strategy is to use an injective function f such that
f (e1) = f (e2). Then, by injectivity, f (e1) = f (e2) implies
e1 = e2.

I For instance, to prove

{-1} cos(x) > 0
|-------

{1} sqrt(1 - sq(sin(x))) = cos(x)

we square both sides formula {1}, i.e., f ≡ sq.†

†The function sq is injective for non-negative reals.

Strategy Writing in PVS

An Example

both-sides-f

(defstep both-sides-f (f &optional (fnum 1))
(let ((eqs (get-form fnum)))

(if (equation? eqs)
(let ((case-str (format nil "~a(~a) = ~a(~a)"

f (args1 eqs)
f (args2 eqs))))

(case case-str))
(skip)))

"Applies function named F to both-sides of equality FNUM"
"Applying ~a to both-sides of ~a")

(defun get-form (fnum)
(formula (car (select-seq (s-forms *goal*) fnum))))

Strategy Writing in PVS

An Example

Using both-sides-f

Rule? (both-sides-f "sq")
Applying sq to both-sides of 1,
this yields 3 subgoals:
ex2.1 :
{-1} sq(sqrt(1 - sq(sin(x)))) = sq(cos(x))
[-2] cos(x) > 0

|-------
[1] sqrt(1 - sq(sin(x))) = cos(x)

ex2.2 :
[-1] cos(x) > 0

|-------
{1} sq(sqrt(1 - sq(sin(x)))) = sq(cos(x))
[2] sqrt(1 - sq(sin(x))) = cos(x)

