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Strategy Writing in PVS

PVS Strategies

I A conservative mechanism to extend theorem prover
capabilities by defining new proof commands, i.e.,

I User defined strategies do not compromise the soundness of
the theorem prover.
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PVS Strategy Language

I Atomic (blackbox) proof rules are called rules in PVS.

I Non-atomic (glassbox) proof rules are called strategies in PVS.

Henceforth, we use strategy to refer both glassbox strategies and
atomic rules.
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PVS Strategy Language

Basic Steps

I Any proof command, e.g., (ground), (case ...), etc.

I (skip) does nothing.

I (skip-msg message) prints message.

I (fail) fails the current goal and reaches the next
backtracking point.

I (label label fnums) labels formulas fnums with string
label.

I (unlabel fnums) unlabels formulas fnums.
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PVS Strategy Language

Combinators

I Sequencing: (then step1 ...stepn).

I Branching: (branch step (step1 ...stepn)).

I Binding local variables:
(let ((var1 lisp1) ...(varn lispn)) step).

I Conditional: (if lisp step1 step2).

I Loop: (repeat step).

I Backtracking: (try step step1 step2).
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PVS Strategy Language

Sequencing

I (then step1 ...stepn):
Sequentially applies stepi to all the subgoals generated by
the previous step.

I (then@ step1 ...stepn):
Sequentially applies stepi to the first subgoal generated by
the previous step.
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PVS Strategy Language

Branching

I (branch step (step1 ...stepn)):
Applies step and then applies stepi to the i ’th subgoal
generated by step . If there are more subgoals than steps, it
applies stepn to the subgoals following the n’th one.

I (spread step (step1 ...stepn)):
Like branch, but applies skip to the subgoals following the
n’th one.
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PVS Strategy Language

Binding Local Variables

I (let ((var1 lisp1) ...(varn lispn)) step):
Allows local variables to be bound to Lisp forms (vari is
bound to lispi).

I Lisp code may access the proof context using the PVS
Application Programming Interface (API).
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PVS Strategy Language

Conditional and Loops

I (if lisp step1 step2):
If lisp evaluates to NIL then applies step2. Otherwise, it
applies step1.

I (repeat step):
Iterates step (while it does something) on the the first
subgoal generated at each iteration.

I (repeat* step):
Like repeat, but carries out the repetition of step along all
the subgoals generated at each iteration.∗

∗Note that repeat and repeat* are potential sources of infinite loops.
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PVS Strategy Language

Backtracking

I Backtracking is achieved via (try step step1 step2).

I Informal (but naive) explanation: Tries step, if it does
nothing, applies step2 to the new subgoals. Otherwise,
applies step1.

I The behavior of try is far more complex:
I What is the meaning of “does nothing”?
I How does the backtracking feature work?
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PVS Strategy Language

To Do or Not to Do

step does nothing usually means that no subgoals are generated
(but this is not enough).

step does nothing when

I it behaves as skip.

I the proof context before and after step is exactly the same.

I PVS says so:

Rule? step

No change on: step
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PVS Strategy Language

The Semantics of try

step ⇒ (fail)
(try step step1 step2) ⇒ (fail)

step ⇒ (skip)
(try step step1 step2) ⇒ step2

step1 ⇒ (fail)
(try step step1 step2) ⇒ (skip)

otherwise
(try step step1 step2) ⇒ step1

stepi ⇒ (fail)
( ...stepi ...) ⇒ (fail)

Furthermore, fail does not propagate outside blackbox rules.
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PVS Strategy Language

Example

What does (try (grind) (fail) (skip)) do ?

I if (grind) ⇒ (skip), then (skip)

I if (grind) 6⇒ (skip), then (skip)

I if (grind) finishes the proof, then Q.E.D.

It either completes the proof with (grind), or does nothing.
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Writing your Own Strategies

I New strategies are defined in a file named pvs-strategies
in the current context. PVS automatically loads this file when
the theorem prover is invoked.

I Strategies may be defined in an arbitrary file
my own strategies. In this case, the file can be loaded with
the command (load "my own strategies") in the file
pvs-strategies.

I The IMPORTING clause loads the file pvs-strategies if it is
defined in the imported library.
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Writing your Own Strategies

Caveats

I PVS only loads pvs-strategies when this file has been
updated. If we modify my own strategies, we also have to
touch pvs-strategies, so that PVS automatically loads the
modifications.

I Beware of name clashes: Loading a strategy definition file
overwrites previous strategies with the same name.
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Writing your Own Strategies

Strategy Definition

I A strategy definition has the form:

(defstep name (parameters)
step
help-string format-string)

I E.g., “Hello World” in PVS:

(defstep hello-world ()
(skip-msg "Hello World")
"Prints ’Hello World’ and does nothing else"
"Printing ’Hello World’")
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Writing your Own Strategies

“Hello World” in PVS

In the theorem prover:

Rule? (hello-world)
Printing ’Hello World’
Hello World
No change on: (hello-world)

Rule? (help hello-world)
(hello-world/$) :

Prints ’Hello World’ and does nothing else
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Writing your Own Strategies

Blackbox vs. Glassbox

I defstep generates a (blackbox) rule name and a (glassbox)
strategy name$.

I defhelper: Same as defstep but for internal use only –
excluded from standard user interface.

I defstrat: Defines a glassbox strategy name. Does not take
the format-string argument.
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Writing your Own Strategies

Defining a Finite Loop

In pvs strategies:

(defstrat for (n step)
(if (<= n 0)

(skip)
(let ((m (- n 1)))

(then@ step (for m step))))
"Repeats step n times")
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Writing your Own Strategies

Using a Finite Loop

In the theorem prover:

ex1 :
|-------

{1} sqrt(sq(x)) + sqrt(sq(y)) + sqrt(sq(z)) <= x+y+z

Rule? (for 2 (rewrite "sqrt sq abs"))
...

|-------
{1} abs(x) + abs(y) + sqrt(sq(z)) <= x+y+z
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Writing your Own Strategies
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PVS Strategies and Lisp

I Arbitrary Lisp expressions (functions, global variables, etc.)
can be included in a strategy file.

I PVS’s data structures are based on various Common Lisp
Object System (CLOS) classes. They are available to the
strategy programmer through global variables and accessory
functions.
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PVS Strategies and Lisp

Proof Context: Global Variables

*ps* Current proof state
*goal* Goal sequent of current proof state
*label* Label of current proof state
*par-ps* Current parent proof state
*par-label* Label of current parent
*par-goal* Goal sequent of current parent
*+* Consequent sequent formulas
*-* Antecedent sequent formulas
*new-fmla-nums* Numbers of new formulas in current sequent
*current-context* Current typecheck context
*module-context* Context of current module
*current-theory* Current theory
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PVS Strategies and Lisp

PVS Context: Accessory Functions

I (select-seq (s-forms *goal*) fnums) retrieves the
sequent formulas fnums from the current context.

I (formula seq) returns the expression of the sequent formula
seq.

I (operator expr), (args1 expr), and (args2 expr)
return the operator, first argument, and second argument,
respectively, of expression expr.
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PVS Strategies and Lisp

PVS Context: Recognizers

Negation (negation? expr)
Disjunction (disjunction? expr)
Conjunction (conjunction? expr)
Implication (implication? expr)
Equality (equation? expr)
Equivalence (iff? expr)
Conditional (branch? expr)
Universal (forall-expr? expr)
Existential (exists-expr? expr)

Formulas in the antecedent are negations.
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PVS Strategies and Lisp

Gold Mining in PVS

I In the theorem prover the command LISP evaluates a Lisp
expression.

I In Lisp, show (or describe) displays the content and
structure of a CLOS expression. The generic print is also
handy.
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PVS Strategies and Lisp

Example

|-------
{1} sqrt(sq(x)) + sqrt(sq(y)) + sqrt(sq(z)) >= x+y+z

Rule? (LISP (show
(formula (car (select-seq (s-forms *goal*) 1)))))

sqrt(sq(x)) + sqrt(sq(y)) + sqrt(sq(z)) >= x + y + z is
an instance of #<STANDARD-CLASS INFIX-APPLICATION>:
The following slots have :INSTANCE allocation:
OPERATOR >=
ARGUMENT (sqrt(sq(x))+sqrt(sq(y))+sqrt(sq(z)),

x + y + z)
...
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An Example

I Assume we have a goal e1 = e2.

I Our strategy is to use an injective function f such that
f (e1) = f (e2). Then, by injectivity, f (e1) = f (e2) implies
e1 = e2.

I For instance, to prove

{-1} cos(x) > 0
|-------

{1} sqrt(1 - sq(sin(x))) = cos(x)

we square both sides formula {1}, i.e., f ≡ sq.†

†The function sq is injective for non-negative reals.
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both-sides-f

(defstep both-sides-f (f &optional (fnum 1))
(let ((eqs (get-form fnum)))

(if (equation? eqs)
(let ((case-str (format nil "~a(~a) = ~a(~a)"

f (args1 eqs)
f (args2 eqs))))

(case case-str))
(skip)))

"Applies function named F to both-sides of equality FNUM"
"Applying ~a to both-sides of ~a")

(defun get-form (fnum)
(formula (car (select-seq (s-forms *goal*) fnum))))
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An Example

Using both-sides-f

Rule? (both-sides-f "sq")
Applying sq to both-sides of 1,
this yields 3 subgoals:
ex2.1 :
{-1} sq(sqrt(1 - sq(sin(x)))) = sq(cos(x))
[-2] cos(x) > 0

|-------
[1] sqrt(1 - sq(sin(x))) = cos(x)

ex2.2 :
[-1] cos(x) > 0

|-------
{1} sq(sqrt(1 - sq(sin(x)))) = sq(cos(x))
[2] sqrt(1 - sq(sin(x))) = cos(x)


