Strategy Writing in PVS

César A. Muñoz

NASA Langley Research Center

Cesar.A.Munoz@nasa.gov

PVS Strategies

- A conservative mechanism to extend theorem prover capabilities by defining new proof commands, i.e.,
- User defined strategies do not compromise the soundness of the theorem prover.

Outline

PVS Strategy Language

Writing your Own Strategies

PVS Strategies and Lisp

An Example

PVS Strategy Language

- Atomic (blackbox) proof rules are called rules in PVS.
- Non-atomic (glassbox) proof rules are called strategies in PVS.

Henceforth, we use strategy to refer both glassbox strategies and atomic rules.

Basic Steps

- Any proof command, e.g., (ground), (case ...), etc.
- (skip) does nothing.
- (skip-msg message) prints message.
- (fail) fails the current goal and reaches the next backtracking point.
- (label label fnums) labels formulas fnums with string label.
- (unlabel fnums) unlabels formulas fnums.

Combinators

- Sequencing: (then step1 ...stepn).
- Branching: (branch step (step1 ...stepn)).
- Binding local variables:
(let ((var1 lisp1) ...(varn lispn)) step).
- Conditional: (if lisp step1 step2).
- Loop: (repeat step).
- Backtracking: (try step step1 step2).

Sequencing

- (then step1 ...stepn):

Sequentially applies stepi to all the subgoals generated by the previous step.

- (then@ step1 ...stepn):

Sequentially applies stepi to the first subgoal generated by the previous step.

Branching

- (branch step (step1 ...stepn)):

Applies step and then applies stepi to the i 'th subgoal generated by step. If there are more subgoals than steps, it applies stepn to the subgoals following the n 'th one.

- (spread step (step1 ...stepn)):

Like branch, but applies skip to the subgoals following the n'th one.

Binding Local Variables

- (let ((var1 lisp1) ...(varn lispn)) step): Allows local variables to be bound to Lisp forms (vari is bound to lispi).
- Lisp code may access the proof context using the PVS Application Programming Interface (API).

Conditional and Loops

- (if lisp step1 step2):

If lisp evaluates to NIL then applies step2. Otherwise, it applies step1.

- (repeat step):

Iterates step (while it does something) on the the first subgoal generated at each iteration.

- (repeat* step):

Like repeat, but carries out the repetition of step along all the subgoals generated at each iteration.*

[^0]
Backtracking

- Backtracking is achieved via (try step step1 step2).
- Informal (but naive) explanation: Tries step, if it does nothing, applies step2 to the new subgoals. Otherwise, applies step1.
- The behavior of try is far more complex:
- What is the meaning of "does nothing"?
- How does the backtracking feature work?

To Do or Not to Do

step does nothing usually means that no subgoals are generated (but this is not enough).
step does nothing when

- it behaves as skip.
- the proof context before and after step is exactly the same.
- PVS says so:

Rule? step
No change on: step

The Semantics of try

$$
\begin{gathered}
\frac{\text { step } \Rightarrow(\text { fail })}{(\text { try step step1 step2) } \Rightarrow(\text { fail })} \\
\frac{\text { step } \Rightarrow \text { (skip) }}{(\text { try step step1 step2) } \Rightarrow \text { step2 }} \\
\frac{\text { step1 } \Rightarrow(\text { fail })}{(\text { try step step1 step2) } \Rightarrow(\text { skip })} \\
\frac{\text { otherwise }}{(\text { try step step1 step2) } \Rightarrow \text { step1 }} \\
\frac{\text { stepi } \Rightarrow(f a i l)}{(. . . s t e p i ~ . . .) ~} \Rightarrow(f a i l)
\end{gathered}
$$

Furthermore, fail does not propagate outside blackbox rules.

Example

What does (try (grind) (fail) (skip)) do ?

- if (grind) \Rightarrow (skip), then (skip)
- if (grind) \nRightarrow (skip), then (skip)
- if (grind) finishes the proof, then Q.E.D.

It either completes the proof with (grind), or does nothing.

Writing your Own Strategies

- New strategies are defined in a file named pvs-strategies in the current context. PVS automatically loads this file when the theorem prover is invoked.
- Strategies may be defined in an arbitrary file my_own_strategies. In this case, the file can be loaded with the command (load "my_own_strategies") in the file pvs-strategies.
- The IMPORTING clause loads the file pvs-strategies if it is defined in the imported library.

Caveats

- PVS only loads pvs-strategies when this file has been updated. If we modify my_own_strategies, we also have to touch pvs-strategies, so that PVS automatically loads the modifications.
- Beware of name clashes: Loading a strategy definition file overwrites previous strategies with the same name.

Strategy Definition

- A strategy definition has the form:
(defstep name (parameters) step
help-string format-string)
- E.g., "Hello World" in PVS:
(defstep hello-world ()
(skip-msg "Hello World")
"Prints 'Hello World' and does nothing else" "Printing 'Hello World'")

"Hello World" in PVS

In the theorem prover:
Rule? (hello-world)
Printing 'Hello World'
Hello World
No change on: (hello-world)
Rule? (help hello-world)
(hello-world/\$) :
Prints 'Hello World' and does nothing else

Blackbox vs. Glassbox

- defstep generates a (blackbox) rule name and a (glassbox) strategy name\$.
- defhelper: Same as defstep but for internal use only excluded from standard user interface.
- defstrat: Defines a glassbox strategy name. Does not take the format-string argument.

Defining a Finite Loop

In pvs_strategies:
(defstrat for (n step)
(if (<= n 0)
(skip)
(let ((m (- n 1)))
(then@ step (for m step))))
"Repeats step n times")

Using a Finite Loop

In the theorem prover:
ex1 :

\{1\} $\operatorname{sqrt}(s q(x))+\operatorname{sqrt}(s q(y))+\operatorname{sqrt}(s q(z))<=x+y+z$
Rule? (for 2 (rewrite "sqrt_sq_abs"))
...
|-------
\{1\} abs(x) $+\operatorname{abs}(y)+\operatorname{sqrt}(s q(z))<=x+y+z$

References

- Documentation: PVS Prover Guide, N. Shankar, S. Owre, J. Rushby, D. Stringer-Calvert, SRI International: http://www.csl.sri.com/pvs.html.
- Proceedings of STRATA 2003:
http://hdl.handle.net/2060/20030067561.
- Programming: Lisp The Language, G. L. Steele Jr., Digital Press. See, for example, http://www.supelec.fr/docs/cltl/clm/node1.html.

PVS Strategies and Lisp

- Arbitrary Lisp expressions (functions, global variables, etc.) can be included in a strategy file.
- PVS's data structures are based on various Common Lisp Object System (CLOS) classes. They are available to the strategy programmer through global variables and accessory functions.

Proof Context: Global Variables

$* \mathrm{ps} *$	Current proof state
$* g o a l *$	Goal sequent of current proof state
label	Label of current proof state
par-ps	Current parent proof state
par-label	Label of current parent
par-goal	Goal sequent of current parent
$*+*$	Consequent sequent formulas
$*-*$	Antecedent sequent formulas
new-fmla-nums	Numbers of new formulas in current sequent
current-context	Current typecheck context
module-context	Context of current module
current-theory	Current theory

PVS Context: Accessory Functions

- (select-seq (s-forms *goal*) fnums) retrieves the sequent formulas fnums from the current context.
- (formula seq) returns the expression of the sequent formula seq.
- (operator expr), (args1 expr), and (args2 expr) return the operator, first argument, and second argument, respectively, of expression expr.

PVS Context: Recognizers

Negation	(negation? expr)
Disjunction	(disjunction? expr)
Conjunction	(conjunction? expr)
Implication	(implication? expr)
Equality	(equation? expr)
Equivalence	(iff? expr)
Conditional	(branch? expr)
Universal	(forall-expr? expr)
Existential	(exists-expr? expr)

Formulas in the antecedent are negations.

Gold Mining in PVS

- In the theorem prover the command LISP evaluates a Lisp expression.
- In Lisp, show (or describe) displays the content and structure of a CLOS expression. The generic print is also handy.

Example

\{1\} $\operatorname{sqrt}(s q(x))+\operatorname{sqrt}(s q(y))+\operatorname{sqrt}(s q(z))>=x+y+z$
Rule? (LISP (show (formula (car (select-seq (s-forms *goal*) 1)))))
sqrt(sq(x)) + sqrt(sq(y)) + sqrt(sq(z)) >= x + y + z is
an instance of \#<STANDARD-CLASS INFIX-APPLICATION>:
The following slots have :INSTANCE allocation:

OPERATOR
ARGUMENT

$>=$

(sqrt (sq(x)) $+\operatorname{sqrt}(\operatorname{sq}(y))+\operatorname{sqrt}(s q(z))$) $x+y+z)$
-••

An Example

- Assume we have a goal $e_{1}=e_{2}$.
- Our strategy is to use an injective function f such that $f\left(e_{1}\right)=f\left(e_{2}\right)$. Then, by injectivity, $f\left(e_{1}\right)=f\left(e_{2}\right)$ implies $e_{1}=e_{2}$.
- For instance, to prove
$\{-1\} \cos (x)>0$
|-------
\{1\} $\operatorname{sqrt}(1-\operatorname{sq}(\sin (x)))=\cos (x)$
we square both sides formula $\{1\}$, i.e., $f \equiv$ sq. ${ }^{\dagger}$
${ }^{\dagger}$ The function sq is injective for non-negative reals.

both-sides-f

```
(defstep both-sides-f (f &optional (fnum 1))
    (let ((eqs (get-form fnum)))
    (if (equation? eqs)
        (let ((case-str (format nil "~a(~a) = ~a(~a)"
                        f (args1 eqs)
                                    f (args2 eqs))))
                (case case-str))
    (skip)))
    "Applies function named F to both-sides of equality FNUM"
    "Applying ~a to both-sides of ~a")
(defun get-form (fnum)
    (formula (car (select-seq (s-forms *goal*) fnum))))
```


Using both-sides-f

```
Rule? (both-sides-f "sq")
Applying sq to both-sides of 1,
this yields 3 subgoals:
ex2.1 :
{-1} sq(sqrt(1 - sq(sin(x)))) = sq(\operatorname{cos}(x))
[-2] cos(x) > 0
    |-------
[1] sqrt(1 - sq(sin(x))) = cos(x)
ex2.2 :
[-1] cos(x) > 0
    |-------
{1} sq(sqrt(1 - sq(sin(x)))) = sq(cos(x))
[2] sqrt(1 - sq(sin(x))) = cos(x)
```


[^0]: *Note that repeat and repeat* are potential sources of infinite loops.

