
RAPID PROTOTYPING IN PVS∗

César A. Muñoz†

ABSTRACT

PVSio is a conservative extension to the PVS prelude library that provides basic in-
put/output capabilities to the PVS ground evaluator. It supports rapid prototyping
in PVS by enhancing the specification language with built-in constructs for string
manipulation, floating point arithmetic, and input/output operations.

1 INTRODUCTION

PVS [6] is a verification system based on a typed classical higher-order logic enriched with
predicate subtyping and dependent records [7]. The system is widely known by its expressive
specification language and its powerful theorem prover. The ground evaluator, which was
originally announced as an experimental feature in PVS Release 2.3 [10], is a less known
feature of PVS that allows for the animation of functional specifications: it extracts efficient
Common Lisp code for a large set of PVS constructs [8].

The ground evaluator is a fundamental mechanism for rapid prototyping in PVS. How-
ever, it does not provide typical features of programming languages such as input/output
functionality or floating-point arithmetic. For instance, a ground expression like sqrt(2),
where sqrt is defined as in the NASA reals library [1], is not handled by the ground evaluator.
This lack of capabilities greatly limits the usefulness of the evaluator.

Another experimental feature of PVS, even less known than the ground evaluator, is called
semantic attachments [4]. Semantic attachments are user-defined Common Lisp functions
that the ground evaluator calls during the evaluation of PVS expressions. For instance,
given an appropriate semantic attachment, the expression sqrt(2) can be evaluated as the
Common Lisp expression (sqrt 2). Semantic attachments must be handled with care.
Indeed, the ground evaluator does not enforce type correctness of semantic attachments nor
does it check that semantic attachments respect the intended semantics of the corresponding
PVS expressions. Hence, semantic attachments may break the ground evaluator. However,
since neither the ground evaluator nor the semantic attachments are integrated into the
logical framework of PVS, the soundness of the theorem prover is not compromised.

PVSio is a prelude library extension implemented on top of semantic attachments that
relieves PVS users from all the burden and technical details of Common Lisp programming of
semantic attachments. PVSio enhances the specification language with built-in constructs
for string manipulation, floating-point arithmetic, and input/output operations. From a
logical point of view, PVSio is a conservative extension to the PVS prelude library.

∗This work was supported by the National Aeronautics and Space Administration under NASA Cooper-
ative Agreement NCC-1-02043.

†Senior Staff Scientist, National Institute of Aerospace (NIA), 144 Research Drive, Hampton, VA 23666.
Email: munoz@nianet.org, Web: http://research.nianet.org/~munoz.

1

munoz@nianet.org
http://research.nianet.org/~munoz


2 GROUND EVALUATOR

The PVS ground evaluator consists of a PVS to Common Lisp translator, an interactive read-
eval-print interface, and a proof rule. The translation itself and the fragment of PVS that
is suitable for ground evaluation are described in [10]. Roughly speaking, the unexecutable
constructs of PVS are: uninterpreted symbols, non-bounded quantifications, and higher-
order relations. However, evaluations are non-strict, that is, unexecutable terms may still
occur in executable expressions as long as they are not required in the overall evaluation.
The ground evaluator assumes that Type Correctness Conditions (TCCs) associated with
executable expressions have been properly discharged. Unsound evaluations may result from
unproven TCCs. For rapid prototyping, it is a working conjecture that ground evaluations
are sound with respect to valid TCCs.

The interactive interface of the PVS ground evaluator is invoked with the Emacs com-
mand M-x pvs-ground-evaluator. It consists of a read-eval-print loop where user inputs
are prompted by <GndEval>. Control commands such as quit, help, quiet, etc., may be
typed after the prompt1. PVS expressions are supplied to the evaluator enclosed in double
quotes ("). This notation is unfortunate since it requires PVS strings to be escaped when
they are provided to the interactive evaluator interface. For instance, the PVS string "Hello

World" has to be written \"Hello World\" within the read-eval-print loop.
The ground evaluator is also available through the proof rule EVAL in the theorem prover.

The proof command (EVAL e) translates the ground expression e into Common Lisp, evalu-
ates it, and displays the result. In contrast to expressions in the interactive environment, e is
not enclosed in double quotes and, consequently, PVS strings may be used without escaping
them. From a logical point of view, EVAL behaves like SKIP when it terminates. Henceforth,
for presentation purposes, we will always refer to the interactive interface of the PVS ground
evaluator. However, both interfaces provide similar functionality.

Assume the following definition of sqrt newton from the theory sqrt approx of the PVS
NASA Langley reals library: [1]

sqrt_newton(a:nonneg_real,n:nat) : RECURSIVE posreal =

IF n = 0 THEN a+1

ELSE (1/2) * (sqrt_newton(a,n-1) + (a / sqrt_newton(a,n-1)))

ENDIF

MEASURE (n+1)

It has been formally verified that sqrt newton satisfies among others the following prop-
erties:

1.
√

a < sqrt newton(a, n), and

2. sqrt newton(a, n + 1) < sqrt newton(a, n).

It can also be shown that when n goes to infinity, sqrt newton(a, n) converges to
√

a. The
function sqrt newton can be animated in PVS:2

1See [10] for a description of the commands available at the interactive interface of the PVS ground
evaluator.

2For readability, some messages have been supressed from the output.

2



<GndEval> "sqrt_newton(2,1)"

==>

11/6

<GndEval> "sqrt_newton(2,2)"

==>

193/132

<GndEval> "sqrt_newton(2,3)"

==>

72097/50952

We manually check that
√

2 < 72097/50952 < 193/132 < 11/6. We soon realize that we
cannot go too far with the evaluations:

<GndEval> "sqrt_newton(2,8)"

==>

604540277611356030096574510534826474174613505606725073236811480078532

817791953637081292805551863485709675189297381081965179971672243083538

463540494545438709624073217/

427474529799387823675525584913729551524427282542777624939553930048017

831989756724882869085917429624670788187662034448252729167799126170270

230544308203049155944825088

3 OVERVIEW TO PVSIO

For rapid prototyping we clearly need a better mechanism for exchanging information be-
tween the evaluation environment and PVS. At a minimum, one such mechanism should
allow for basic input/output capabilities such as reading and pretty printing. Semantic at-
tachments [4] provide the low level machinery needed for implementing this functionality.
However, they are difficult to use, require Common Lisp knowledge and expertise, and are
error prune.

PVSio is a PVS prelude library extension built on top of semantic attachments. It brings,
among other things, basic input/output capabilities to the PVS ground evaluator without all
the burden of semantic attachments and Common Lisp coding. For instance, after loading
the PVSio prelude library3, we can evaluate

<GndEval> "println(sqrt_newton(2,8))"

1.4142135

==>

TRUE

If we assume the following PVS definition:

3This is done with the Emacs command M-x load-prelude-library PVSio.

3



sqrt_io : void =

LET a = query_real("Enter a positive real number:") IN

assert(a >= 0,"Input Error") &

println("The approx. sqrt of "+a+" is: "+sqrt_newton(a,8))

we can also evaluate

<GndEval> "sqrt_io"

Enter a positive real number:

2

The approx. sqrt of 2 is: 1.4142135

==>

TRUE

<GndEval> "sqrt_io"

Enter a positive real number:

1.5

The approx. sqrt of 1.5 is: 1.2247449

==>

TRUE

<GndEval> "sqrt_io"

Enter a positive real number:

-10

Assert Failure: Input Error

==>

FALSE

Note that the values returned by println and sqrt io are Boolean. This is because
println and sqrt io are defined of type void, which is an alias to bool in PVSio. Hence,
sequential statements can be separated with the symbol &, which is a logical and in PVS.

The function sqrt io uses functions query real and assert. The former allows for
animation of expressions containing non-bounded variables that become dynamically bound
to user inputs. PVSio does not check for consistency of user-provided input data. To
partially overcome this potential source of problems, PVSio provides assert(b,s), where b
is a Boolean expression and s is a string. If b evaluates to FALSE, the message "Assertion

Failure: s" is printed. From a logical point of view, the whole expression is equivalent to
b.

We emphasize that for the PVS theorem prover there is nothing special about PVSio
functions. For instance, the proposition ∀(s) : query real(s) = query real(s) is triv-
ially proved in PVS. However, for the PVS ground evaluator, the value of the expression
query real(s) = query real(s), for a particular value of s, depends on the user inputs:

<GndEval> "query_real(s) = query_real(s)"
s
1

4



s
2

==>

FALSE

The example above shows that, as in the case of semantic attachments, PVSio functions
may have side-effects in the evaluation environment. Hence, we may get unexpected re-
sults. However, these effects do no permeate to the PVS logical framework. In other words,
query real(s) = query real(s) may evaluate to FALSE in the ground evaluator, but this
cannot be used to prove FALSE in the theorem prover.

Input/output functionality is not the only limitation of the ground evaluator. Assume
that we want to evaluate the ground expression sin(

√
2). Similar to sqrt newton, we may

define an executable function sin approx that converges to sine at infinity, for example
using Taylor’s series. In this case, we could animate sin approx(sqrt newton(2)) to get a
good approximation of sin(

√
2). Such approximations of real and trigonometric functions are

already defined in theories sqrt approx and trig approx of the NASA reals and trig libraries
[1]. Functions in those theories are used in [2] to automate reasoning about non-computable
functions such as squared root and trigonometric functions. However, they are not really
suitable for rapid prototyping. Even the most efficient PVS definitions of sqrt newton and
sin approx are not as efficient as native Common Lisp functions sqrt and sin. For this
reason, PVSio enhances the ground evaluator with floating point arithmetic via semantic
attachments:

<GndEval> "print(SIN(SQRT(2)))"

0.98776597

==>

TRUE

Floating point operators are fully capitalized in PVSio to emphasize that they are not
the real functions. It is well-known that floating-point arithmetic may contradict standard
mathematical results:

<GndEval> "SQ(SIN(2))+SQ(COS(2)) = 1"

==>

FALSE

4 PVSIO LIBRARY

PVSio4 is implemented as a prelude library extension that profit from the library support
provided in PVS 3.1 [11]. It consists of the following theories:

• stdlang: Language definitions.

• stdstr: String operations.

• stdio: Input/output operations.

4The PVSio package is freely available at http://research.nianet.org/~munoz/PVSio.

5

http://research.nianet.org/~munoz/PVSio


Table 1: Theory stdlang

Name Type Value Description

void TYPE bool Type of procedures and statements
skip void TRUE Empty statement
exit void FALSE Exit statement

assert(b:bool,mssg:string) void If NOT b then displays mssg & exit. Otherwise, skip
assert(b:bool,s:void) void If NOT b then s & exit. Otherwise, skip
assert(b:bool) void assert(b,skip)

fail(s:void) void s & exit

try(s1:void,s2:void) void s1 OR s2

catch(s:void) void s1 OR skip

seq[T:TYPE](s:void,t:T) T Performs s, returns t

• stdmath: Floating point arithmetic.

• stdpvs: Basic reflection.

• stdindent: Definition of indentations.

• stdtokenizer: Definition of tokenizers.

Since PVSio is a prelude extension, the user does not need to import any of these
theories. In a fresh context, the library PVSio is loaded with the Emacs command M-x

load-prelude-library PVSio.
The rest of this section describes PVSio theories in some detail. However, note that

PVSio is still under development. New theories and functions are expected to be added in
the future.

4.1 Theory stdlang: Language definitions

Table 1 summarizes the definitions in theory stdlang.5 Type void intends to serve as the
type of procedures and statements, as opposed to functions and expressions. Constants
skip and exit, both of them of type void, represent the empty and the exit statements,
respectively. Since void is equivalent to bool, the symbol & (logical and) serves as separator
of sequential statements. Furthermore, quantifiers FORALL and EXISTS, over a finite domain,
serve as iterators. PVSio does not provide assignments as statements.

Theory stdlang also defines control structures such as assert, try, fail, catch, and
seq. As we saw in Section 3, assert provides a mechanism for simple runtime verification
of Boolean conditions. Operations fail, try, and catch complement the functionality
of assert with basic handling of exceptional cases. Finally, seq allows for sequencing of
statements, possibly having side-effects, and PVS expressions. Type T is usually inferred by
PVS, but in some cases it has to be provided by the user.

5 For technical reasons, assert(b:bool,mssg:string) is defined in theory stdio, and seq is defined in
theory stdproc.

6



Table 2: Theory stdstr

Name Type Description

empty string Empty string
space string Space
newline string New line
tab string Tab
quote string Double quote
spaces(n:nat) string n spaces
upcase(s:string) string Uppercase of s
downcase(s:string) string Lowercase of s
capitalize(s:string) string Capitalization of s
substr(s:string,i,j:nat) string Substring of s from i to j-1

find(s1,s2:string) int Index of leftmost occurrence of s2 in s1 (or -1)
fill(n,s:string) string n times string s

str2real(s:string) rat Rational denoted by s (s is in decimal notation)
str2int(s:string) int Integer denoted by s

str2bool(s1,s2:string) bool downcase(s1) = downcase(s2)

number?(s:string) bool Tests if string s represents a numerical value
int?(s:string) bool Tests if string s represents an integer value
concat(s1,s2:string) bool Concatenation of s1 and s2

#(s:string) rat str2real(s)

tostr(e) string String representation of e
e1 + e2 string concat(e1,e2)

Note that most functions in stdlang are limited to statements, i.e., expressions of type
void. PVSio does not waive PVS type checking. For example, if the domain of a function is
real, it cannot return exit. Furthermore, stdlang operations do not extend to Common
Lisp exceptions. Currently, PVSio does not provide a mechanism for handling Common Lisp
exceptions.

4.2 Theory stdstr: String operations

Table 2 summarizes the definitions in theory stdstr. Note that PVS does not support dec-
imal notation of real numbers. PVSio alleviates this limitation with the function str2real

(also denoted with the symbol #). It takes the string representation of a number in deci-
mal notation and returns its value as a rational number. For instance, the string #("1.5")

evaluates to the PVS number 3/2.
The symbols tostr and + are overloaded for basic values, that is, e, e1, e2 may be of type

real, bool, or string. Since tostr is a PVS conversion, basic values are automatically
coerced to string values when necessary. Indeed, the symbol + behaves pretty much as +

in Java. The practice of having conversions from user-defined types to string is strongly
advised to fully exploit the functionality provided by stdstr.

7



Examples:

<GndEval> "#(\"1.5\") + #(\"2.3\") - 1"

==>

14/5

<GndEval> "1+tab+12+tab+123+tab+1234+tab+12345+tab"

==>

"1 12 123 1234 12345 "

<GndEval> "\"Boolean: \"+(1=1)"
==>

"Boolean: TRUE"

4.3 Theory stdio: Input/Output operations

Table 3 summarizes the definitions in theory stdio. This theory implements classical I/O
functionality as reading from standard input, printing to standard output, and reading and
writing to character streams. As said before, PVSio does not check for consistency of input
data. Hence, the user is responsible for providing the appropriate kind of data, otherwise
the ground evaluator will break.

Input operations are based on Common Lisp reading conventions, which are fairly com-
plex (see [9], Section Input/Output). For the sake of simplicity, we assume the following
lexical rules:

• Integer: Sequence of numerical characters.

• Real: Sequence of numerical characters and dot symbol (.).

• Word: Sequence of alpha-numerical characters and symbols in !?@#$%^& */+-=|{}[]<>
separated by space, newline, or tab.

• Line: Sequence of symbols terminated by newline.

Symbols in (),.:;\~‘’" have special meaning in Common Lisp and they are not handled
correctly by PVSio.

Character streams are defined by an uninterpreted type Stream. Input and output
streams, IStream and OStream, respectively, are defined as subtypes of Stream. A stream
is typically associated with a file. In this case they are called file streams. PVSio also allows
string streams, that is, streams associated with strings. Except for the functions flength,
that only applies to file streams, and the function sget, that only applies to output string
streams, both kinds of streams are handled indistinctly by PVSio.

An input stream can be created in two modes: input (which is the default) and string.
For instance, open in(input,s) opens an input file stream associated to the file named
s. PVSio assumes that the file does exist. The existence of such a file can be tested with
fexists(s). The operation open in(string,s) opens an input string stream that reads
information from string s.

8



Table 3: Theory stdio

Name Type Description

Standard Input
query int(s:string) int Prompts s, reads and returns an integer
query real(s:string) rat Prompts s, reads a decimal and returns it as rat
query word(s:string) string Prompts s, reads and returns a string word
query line(s:string) string Prompts s, reads and returns a string line
query bool(s1,s2:string) bool str2bool(query word(s1),s2)

read int int query int(empty)

read real rat query real(empty)

read word string query word(empty)

read line string query line(empty)

read bool(s:string) bool query bool(empty,s)

Standard Output
print(s:string) void Prints string s

println(s:string) void Prints string s+newline

I/O Character Streams
Stream TYPE+ Uninterpreted type of character streams
IStream ⊆ Stream Uninterpreted type of input character streams
OStream ⊆ Stream Uninterpreted type of output character streams
Mode TYPE {input,new,append,overwrite,string}
stdin IStream Standard input stream
stdout OStream Standard output stream
open in(m:Mode,s:string) IStream Opens an input stream
open in(s:string) IStream open in(input,s)

open out(m:Mode,s:string) OStream Opens an output stream
open out(s:string) OStream open out(new,s)

sget(f:OStream) string String from output string stream f

close(f:Stream) void Closes f
eof?(f:Stream) bool Tests the end of stream f

flength(f:Stream) nat Length of file stream f

fexists(s:string) bool Tests if there exists a file with name s

Input from Character Streams
scan int(f:IStream) int Reads an integer from f and returns it
scan real(f:IStream) rat Reads a decimal from f and returns it as rat
scan word(f:IStream) string Reads a string word from f and returns it
scan line(f:IStream) string Reads a string line from f and returns it
scan bool(f:IStream,s:string) bool str2bool(scan word(f),answer)

Output to Character Streams
print(f:OStream,s:string) void Writes string s to f

println(f:OStream,s:string) void Writes string s+newline to f

echo(f:OStream,s:string) void Writes string s to f and to stdout

echoln(f:OStream,s:string) void Writes string s+newline to f and to stdout

9



An output stream can be created in several modes: new (which is the default), append,
overwrite, and string. All the modes in {new,append,overwrite} open output file
streams. They differ in the action they perform should a file with the same name already ex-
ist. The mode new supersedes any file with the same name, the mode append writes at the end
of the old file, and the mode overwrite writes at the beginning of the old file overriding the
content of the file as output operations are performed. The operation open out(string,s)
opens an output string stream (the value of s is ignored). If f is an output string stream,
the content of the string that is being written is obtained with sget(f).

Examples:

<GndEval> "read_line"

Hello World

==>

"Hello World"

<GndEval> "read_int + read_real"

10

10.5

==>

41/2

<GndEval> "LET i=query_int(\"Give me a nat:\") IN print(1+spaces(i)+1)"

Give me a nat:

4

1 1

==>

TRUE

<GndEval> "println(\"Hello World\")"
Hello World

==>

TRUE

<GndEval> "print(1=0) & println(123) & println(1/2)"

FALSE123

0.500000

==>

TRUE

4.4 Theory stdmath: Floating point arithmetic

Table 4 summarizes the definitions in theory stdmath. Names are fully capitalized to em-
phasize that they are floating point operations (not the real ones). The constant NaN is
returned by functions in stdmath when the result is not well-defined, e.g., SQRT(-1) = NaN.
However, since NaN is not a ground expression, it cannot be evaluated by the PVS ground
evaluator. NaN may still be part of an executable expression when its value is not required
in the overall evaluation.

10



Table 4: Theory stdmath

Name Type Description
NaN number Uninterpreted number
SQ(x:real) nnreal x2

SQRT(x:real) nnreal ≈
√
x

SIN(x:real) real ≈ sin x
COS(x:real) real ≈ cos x
TAN(x:real) real ≈ tan x
ASIN(x:real) real ≈ sin−1 x

ACOS(x:real) real ≈ cos−1 x

ATAN(y,x:real) real ≈ tan−1 x/y

PI real ≈ π
NPI(n:int) real ≈ nπ
RANDOM real Pseudo-random number in the real interval [0, 1)
NRANDOM(n:posnat) nat Pseudo random number in the natural interval [0, n)
BRANDOM bool Pseudo random Boolean
RAD2DEG(x:real) real ≈ 180x/π
DEG2RAD(x:real) real ≈ xπ/180
TRUNC(x:real) int Truncation of x
ROUND(x:real) int Rounding of x
DIV(n:nat,m:posnat) nat Euclidean division of n by m

MOD(n:nat,m:posnat) nat Remainder of Euclidean division of n by m

11



Table 5: Theory stdpvs

Name Type Description
str2PVS[T](s:string) T Translates a string to a PVS expression
PVS2str(type:string,t:T) string Translates a PVS expression to a string

4.5 Theory stdpvs: Reflection

PVSio provides very basic capabilities for reflection through the theory stdpvs (Table 5).
Strings are translated back and forth to PVS via str2PVS and PVS2str. For example,
assuming the following definitions in PVS

REC : TYPE = [# x : real, y: real #]

rec : REC = (# x := 5, y:= 6 #)

we get

<GndEval> "str2PVS[REC](\"rec\")"
==>

(# x := 5, y := 6 #)

<GndEval> "PVS2str(\"REC\",rec)"
==>

"(# x := 5, y := 6 #)"

Note that the type of the expression is given as a theory parameter in str2PVS, whereas it
is given as a string in PVS2str. Full reflection in PVSio is limited by the fact that the PVS
ground evaluator ignores all type information from PVS expressions when translating them
to Common Lisp. Therefore, there is no a simple way to reconstruct a PVS type from the
Common Lisp translation of a PVS ground expression.

4.6 Theory stdindent: Indentations

Theory stdindent (Table 6) defines indentations. An indentation is composed of a built-in
stack of integers, a predefined number of spaces, and a prefix. Indentations are suitable for
printing block-formatted text, such as source code, or linearization of tree-structures. The
use of indentation is best illustrated with some examples.6

Assume the definitions

chello : void =

LET i = create_indent(2) IN

prindentln(i,"void main() {") & open_block(i) &

prindentln(i,"while(1) {") & open_block(i,3) &

prindentln(i,"println("+quote+"Hello World"+quote+");") & close_block(i) &

6 These examples are available as part of the standard distribution of PVSio.

12



Table 6: Theory stdindent

Name Type Description

Indent TYPE+ Uninterpreted type for indentations
create indent(n:nat,s:string) Indent Indentation of n spaces and prefix s

create indent(n:nat) Indent Indentation of n spaces without prefix
open block(i:Indent,n:nat) void Opens block of n spaces
open block(i:Indent) void Opens block with default spaces
close block(i:Indent) void Closes block
get indent(i:Indent) nat Default number of spaces
set indent(i:Indent,n:nat) void Sets the default number of spaces to n

get prefix(i:Indent) string Default prefix
set prefix(i:Indent,s:string) void Sets the default prefix to s

indent(i:Indent,s:string) string Indented s

prindent(i:Indent,s:string) void Prints indented s

prindentln(i:Indent,s:string) void Prints indented s + newline

prindent(f:OStream,i:Indent,s:string) void Writes indented s to f

prindentln(f:OStream,i:Indent,s:string) void Writes indented s + newline to f

prindentln(i,"}") & close_block(i) &

prindentln(i,"}")

stair : void =

LET i = create_indent(3,"=>") IN

(FORALL(n:subrange(1,3)): prindentln(i,n) & open_block(i)) &

set_indent(i,1) &

(FORALL(n:subrange(4,6)): prindentln(i,n) & open_block(i)) &

set_prefix(i,"<=") &

(FORALL(n:subrange(0,6)): prindentln(i,n) & close_block(i))

Then,

<GndEval> "chello"

void main() {
while(1) {

println("Hello World");

}
}
==>

TRUE

<GndEval> "stair"

=>1

=> 2

13



=> 3

=> 4

=> 5

=> 6

<= 0

<= 1

<= 2

<= 3

<= 4

<= 5

<=6

==>

TRUE

4.7 Theory stdtokenizer: Tokenizers

Theory stdtokenizer (Tables 7 and 8) is the most elaborate theory of PVSio. By itself,
stdtokenizer is a good example of what can be achieved with the PVSio package. Indeed,
the entire theory is written as a PVSio application.

A tokenizer is a list of tokens, i.e., string words, with basic parsing capabilities. The
structure of the type Tokenizer is not relevant here. As structured programming mandates,
users should access the internal structure only through the public interface. Tokenizers can
be created from files through file2tokenizer(s), where s is the name of the file, or from
strings through str2tokenizer(s), where s is the string containing the tokens. Once a
tokenizer is created, go next and several accept-functions process the tokens one by one.
Errors are indicated by error?(t) and error(t). User-defined errors are allowed through
set error(t,code), where negative codes are reserved for this purpose. Standard error codes
are listed in Table 9.

Error messages are available through Messenger objects, which are functions from int

to string. Standard error messages for tokenizer t are retrieved with function std mssg(t).
The statement print error(t) prints an error message for t from the standard messenger.
Furthermore, standard errors messages can be overridden by using mssg * (code,s). If mssg
is a messenger, print error(t,mssg) prints an error message for t from mssg.

We illustrate the use of stdtokenizer with a simple example.7 Assume that we want to
parse a list of natural numbers given as a string "< n1 & ... & nk >", where 1 ≤ ni ≤ 5
for 0 ≤ i ≤ k (i = 0 being the empty list). The PVS theory parse in Figure 1 implements
that informal specification (lines have been numbered for the discussion).

• Line 4 defines the test that numbers in the list should satisfy, i.e., 1 ≤ ni ≤ 5.

• Lines 5 to 10 define error messages to be printed in case of a syntax error. We have
decided to override standard messages for EndOfTokenizer and ExpectingTestWord,
and to add new codes −1 and −2 for special error messages.

• The parser itself is implemented in lines 11 to 30 as a tail recursive function. The
parameters of that function are the current tokanizer t and the accumulated list l.

7 The example is available as part of the standard distribution of PVSio.

14



Table 7: Theory stdtokenizer: Declarations

Name Type

Tokenizer TYPE

file2tokenizer(s:string) Tokenizer

str2tokenizer(s:string) Tokenizer

tostr(t:Tokenizer) string

error(t:Tokenizer) int

error?(t:Tokenizer) bool

set error(t:Tokenizer,code:int) Tokenizer

token(t:Tokenizer) string

next token(t:Tokenizer) string

token at(t:Tokenizer,n:nat) string

val int(t:Tokenizer) int

val real(t:Tokenizer) real

eot?(t:Tokenizer) bool

line(t:Tokenizer) nat

length(t:Tokenizer) nat

pos(t:Tokenizer) upto(length(t))

go next(t:Tokenizer) Tokenizer

go back(t:Tokenizer) Tokenizer

accept word(t:Tokenizer,test:[string->bool]) Tokenizer

accept word(t:Tokenizer,s:string) Tokenizer

accept word(t:Tokenizer) Tokenizer

accept int(t:Tokenizer,test:[int->bool]) Tokenizer

accept int(t:Tokenizer) Tokenizer

accept real(t:Tokenizer,test:[real->bool]) Tokenizer

accept real(t:Tokenizer) Tokenizer

Messenger TYPE

std mssg(t:Tokenizer) Messenger

*(mssg:Messenger,(code:int,s:string)) Messenger

print error(t:Tokenizer) void

print error(t:Tokenizer,mssg:Messenger) void

15



Table 8: Theory stdtokenizer: Descriptions

Name Description

file2tokenizer(s) Creates a tokenizer from file named s
str2tokenizer(s) Creates a tokenizer from string s
tostr(t) String representation of tokenizer t
error(t) Error code of the tokenizer
error?(t) Tests if tokenizer has found a syntax error
set error?(t,code) Sets code error to code
token(t) Current token (token already processed)
next token(t) Next token (next token to process)
token at(t,n) Token at position n
val int(t) Integer value of current token or 0
val real(t) Real value of current token or 0
eot?(t) Tests for end of tokenizer
line(t) Line number of current token
length(t) Length of tokenizer
pos(t) Current position of tokenizer
go next(t) Processes next token
go back(t) Goes to previous processed token
accept word(t,test) Accepts word that satisfies test
accept word(t,s) Accepts word s
accept word(t) Accepts any non-numerical value
accept int(t,test) Accepts integer that satisfies test
accept int(t) Accepts any integer
accept real(t,test) Accepts real that satisfies test
accept real(t) Accepts any real

Messenger [int->string]

std mssg(t) Standard messenger for t
mssg * (code,s) Overrides messenger mssg with message s in code
print error(t) Prints error message from std mssg

print error(t,mssg) Prints error message from messenger mssg

16



1: parse : THEORY

2: BEGIN

3: IMPORTING list[int]

4: test15(n:int):bool = 1 <= n AND n <= 5

5: mssg15(t:Tokenizer):[int->string] =

6: std_mssg(t) *

7: (EndOfTokenizer,"Truncated list") *

8: (ExpectingTestWord,"Expecting <. Found: "+next_token(t)) *

9: (-1,"Expecting 1 <= n <= 5. Found: "+next_token(t)) *

10: (-2,"Expecting either & or >. Found: "+next_token(t))

11: parse15(t:Tokenizer,l:list) : RECURSIVE [Tokenizer,list] =

12: IF error?(t) THEN (t,null)

13: ELSIF eot?(t) THEN (set_error(t,EndOfTokenizer),null)

14: ELSIF number?(next_token(t)) THEN

15: LET t = accept_int(t,test15) IN

16: IF error?(t) THEN

17: (set_error(t,-1),null)

18: ELSIF next_token(t) = "&" THEN

19: parse15(accept_word(t,"&"),cons(val_int(t),l))

20: ELSIF next_token(t) = ">" THEN

21: (t,reverse(cons(val_int(t),l)))

22: ELSE

23: (set_error(t,-2),null)

24: ENDIF

25: ELSIF null?(l) AND next_token(t) = ">" THEN

26: (t,null)

27: ELSE

28: (set_error(t,-1),null)

29: ENDIF

30: MEASURE IF error?(t) THEN 0 ELSE (length(t)-pos(t)+1) ENDIF

31: parser(s:string) : list =

32: LET t = str2tokenizer(s) IN

33: LET (t,l) = parse15(accept_word(t,"<"),null) IN

34: seq(print_error(t,mssg15(t)),l)

35: END parse

Figure 1: Example of stdtokenizer capabilites

17



Table 9: Error codes for stdtokenizer

Code Value Description
NoError 0 No error has been found
FileNotFound 1 File not found (name of the file available at next token(t))
EndOfTokenizer 2 End of tokenizer has been found
InvalidToken 3 Invalid token
ExpectingWord 4 Expecting a word
ExpectingTestWord 5 Expecting word that satisfies test
ExpectingInt 6 Expecting an integer
ExpectingTestInt 7 Expecting integer that satisfies test
ExpectingReal 8 Expecting a real
ExpectingTestReal 9 Expecting real that satisfies test

n < 0 Reserved for user-defined errors

After processing the tokens, the function returns a tokenizer and the constructed list
(which has been reversed in line 21 to return it in the right order). Line 30 gives the
measure that guarantees termination.

• Lines 31 to 34 define a simple function that tests the parser. It has as input the string
to be processed and as output the list that has been constructed. If the parser finds
a syntax error an error message is printed and the list null is returned. If instead of
reading the tokens from a string, we would like to read them from a file called s, we
simply write LET t = file2tokenizer(s) IN in line 32.

Finally, we test our parser with some examples:

<GndEval> "parser(\"< >\")"
==>

(: :)

<GndEval> "parser(\"< 5 >\")"
==>

(: 5 :)

<GndEval> "parser(\"< 2 & 4 & 3 & 1 >\")"
==>

(: 2, 4, 3, 1 :)

<GndEval> "parser(\"< 2 4 3 1 \")"
Syntax Error. Line 1: Expecting either & or >. Found: 4

==>

(: :)

18



<GndEval> "parser(\"< 20 >\")"
Syntax Error. Line 1: Expecting 1 <= n <= 5. Found: 20

==>

(: :)

The example above illustrates the functionality provided by theory stdtokenizer. How-
ever, the simplest way of parsing PVS expressions, such as lists and data types, is using
the standard PVS lexer and parser via str2PVS (see Section 4.5). In that case, syntax and
type-checking errors are reported directly by PVS, and, therefore, the user has no control
on the error handling mechanism.

5 CONCLUSION

Rapid prototyping is the ability to execute a system from the very early stages of its de-
velopment. Formal techniques address rapid prototyping by extracting code from formal
specifications. The PVS ground evaluator, for instance, extracts very efficient Common Lisp
code from PVS specifications. If we trust the implementation of the verification system (in-
cluding the theorem prover and the ground evaluator), the PVS ground evaluator produces
a correct and efficient Common Lisp implementation from the functional specification of an
algorithm,

Extraction of efficient code is not enough for rapid prototyping. Usually, formal specifi-
cations languages, such as PVS, include a large subset of executable functions that may act
as a functional programming language. However, they also miss features that are essential
in programming languages, such as input/output operations, exception handling, floating
point arithmetic, and side-effects. In general, these limitations are addressed in extraction
tools by adding some degree of informality to the system, such as realizations in Coq [12],
or semantic attachments in PVS [4]. Due to this informality, the extracted code may be
inconsistent with respect to the original specification.

With these limitations in mind, we have developed PVSio to extend the PVS formal
specification language with standard programming language features. Since PVSio is based
on semantic attachments, extracted code may not respect its original specification. However,
PVSio has been designed to minimize logical errors that may be introduced by semantic
attachments. First of all, PVSio is a conservative extension to the PVS prelude library.
There are no axioms in PVSio, therefore, FALSE cannot be proved with the help of PVSio
theories. Yet, expressions like RANDOM = RANDOM may evaluate to FALSE in the PVS ground
evaluator, while they are provable TRUE in the PVS theorem prover. However, since there is
a clean separation between the theorem prover and the ground evaluator, FALSE cannot be
proved from PVSio evaluations. Finally, PVSio has been designed to be minimally invasive.
That is, sources of problems such as side-effects are, by design, well-localized in PVSio
applications.

There are two logical weakness in PVSio applications: floating point arithmetic and input
operations. It is well-known that floating point arithmetic does not satisfy even simple real
arithmetic properties such as associativity. For that reason, functions in stdmath are not
identified with functions in the reals library. In other words, PVSio does not have axioms
such as SQ(SIN(x))+SQ(SIN(x))=1. On the negative side, there are no useful properties on
functions defined in stdmath. We expect to integrate a PVS formalization of floating point

19



arithmetic [3] with PVSio to allow reasoning about programs that use stdmath.
Side-effects produced by output operations are ignored at the logical level. For example,

print(s) is logically equivalent to TRUE in PVS. On the other hand, input operations are
problematic because their evaluations are not statically determined. This problem is clas-
sically solved by structuring the programs such that there is a phase for input and a phase
for processing data. The theory stdtokenizer is a good example of this method. Except
for the initializations of tokenizers that use input operations, all the other operations are
purely functional, i.e., they do not have side effects. Hence, we may formally reason about
a function like parse15 in PVS. Indeed, we have proved that parse15 terminates for any
tokenizer.

PVSio does not intend to be another programming language. It has been designed to serve
as a safe and efficient rapid prototyping tool for PVS. It lacks functionalities such as general
side-effects, i.e., assignments, low-level exception handling, and unbounded (and possibly
non-terminating) loops. These constructs are too invasive to be incorporated in a functional
specification language such as PVS. Functional counterparts of these constructs such as let-
in expressions, defensive programming, and recursive functions seem more appropriate for
this kind of specification language. Despite its limitations, PVSio is a powerful tool that
may handle non-trivial examples, such as a Conflict Detection and Resolution algorithm for
Air Traffic Management developed at the National Institute of Aerospace (formerly ICASE)
and NASA Langley [5]. In the future, new theories and functions are expected to be added.
We are particularly interested on supporting the interface of PVS with other environments
through PVSio.

ACKNOWLEDGMENTS

The idea for PVSio was inspired by examples of semantic attachments from [4]. We are
specially thankful to Jonh Rushby for giving us an early draft of that paper.

REFERENCES

[1] Formal Methods Groups at NASA Langley and National Institute of Aerospace. NASA
langley PVS libraries. Available at http://shemesh.larc.nasa.gov/fm/ftp/larc/

PVS2-library/pvslib.html.

[2] R. Butler, V. Carreño, G. Dowek, and C. Muñoz. Formal verification of conflict detection
algorithms. In Proceedings of the 11th Working Conference on Correct Hardware Design
and Verification Methods CHARME 2001, volume 2144 of LNCS, pages 403–417, Liv-
ingston, Scotland, UK, 2001. A long version appears as report NASA/TM-2001-210864.

[3] V. Carreño and P. Miner. Specification of the IEEE-854 floating-point standard in
HOL and PVS. In HOL95: Eighth International Workshop on Higher-Order Logic
Theorem Proving and Its Applications, Aspen Grove, UT, September 1995. Category B
proceedings. Available at http://lal.cs.byu.edu/lal/hol95/Bprocs/indexB.html.

[4] J. Crow, S. Owre, J. Rushby, N. Shankar, and D. Stringer-Calvert. Evaluating, testing,
and animating PVS specifications. Technical report, Computer Science Laboratory, SRI
International, Menlo Park, CA, March 2001. Available at http://www.csl.sri.com/

users/rushby/abstracts/attachments.

20

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS2-library/pvslib.html
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS2-library/pvslib.html
http://lal.cs.byu.edu/lal/hol95/Bprocs/indexB.html
http://www.csl.sri.com/users/rushby/abstracts/attachments
http://www.csl.sri.com/users/rushby/abstracts/attachments


[5] G. Dowek, C. Muñoz, and A. Geser. Tactical conflict detection and resolution in a 3-D
airspace. Technical Report NASA/CR-2001-210853 ICASE Report No. 2001-7, ICASE-
NASA Langley, ICASE Mail Stop 132C, NASA Langley Research Center, Hampton VA
23681-2199, USA, April 2001.

[6] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In
Deepak Kapur, editor, 11th International Conference on Automated Deduction (CADE),
volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752, Saratoga, NY,
June 1992. Springer-Verlag.

[7] Sam Owre and Natarajan Shankar. The formal semantics of PVS. Technical Report SRI-
CSL-97-2, Computer Science Laboratory, SRI International, Menlo Park, CA, August
1997.

[8] N. Shankar. Efficiently executing PVS. Project report, Computer Science Laboratory,
SRI International, Menlo Park, CA, November 1999. Available at http://www.csl.

sri.com/shankar/PVSeval.ps.gz.

[9] G. L. Steele Jr. Common Lisp: The Language. Digital Press, Bedford, MA, second
edition, 1990.

[10] PVS Development Team. PVS 2.3 experimental features – ground evaluation. Available
at http://pvs.csl.sri.com/experimental/eval.html.

[11] PVS Development Team. PVS 3.1 release note. Available at http://pvs.csl.sri.

com/pvs-release-notes.html.

[12] The Coq Team. The Coq proof assistant: Reference manual: Version 7.2. Technical
Report RT-0255, INRIA, Rocquencourt, France, February 2002. Available at http:

//coq.inria.fr/doc/main.html.

21

http://www.csl.sri.com/shankar/PVSeval.ps.gz
http://www.csl.sri.com/shankar/PVSeval.ps.gz
http://pvs.csl.sri.com/experimental/eval.html
http://pvs.csl.sri.com/pvs-release-notes.html
http://pvs.csl.sri.com/pvs-release-notes.html
http://coq.inria.fr/doc/main.html
http://coq.inria.fr/doc/main.html

	Introduction
	Ground Evaluator
	Overview to PVSio
	PVSIO Library
	Theory stdlang: Language definitions
	Theory stdstr: String operations
	Theory stdio: Input/Output operations
	Theory stdmath: Floating point arithmetic
	Theory stdpvs: Reflection
	Theory stdindent: Indentations
	Theory stdtokenizer: Tokenizers

	Conclusion
	REFERENCES

