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César A. Muñoz1? and Ramiro A. Demasi2

1 MS 130, NASA Langley Research Center
Hampton VA 23681, USA
cesar.a.munoz@nasa.gov

2 Department of Computing and Software
McMaster University

Hamilton, ON, Canada L8S 4K1
demasira@mcmaster.ca

Abstract. The Prototype Verification System (PVS) is an interactive
verification environment that combines a strongly typed specification
language with a classical higher-order logic theorem prover. The PVS
type system supports: predicate subtypes, dependent types, abstract
data types, compound types such as records, unions, and tuples, and
basic types such as numbers, Boolean values, and strings. The PVS the-
orem prover includes decision procedures for a variety of theories such as
linear arithmetic, propositional logic, and temporal logic. This paper sur-
veys advanced PVS features, including: types for specifications, implicit
induction, iterations, rapid prototyping, strategy writing, and compu-
tational reflection. These features are illustrated with simple examples
taken from NASA PVS developments.
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1 Introduction

Tool customization and extensibility are important issues in the technology
transfer of Formal Methods research. In the context of theorem provers, Lüttgen
et al. argue in [7] that only tools with a high degree of flexibility and automation
can cope with the complexity of digital systems and with the usability require-
ments imposed by non-expert users of the formal verification technology. In
that paper, the authors suggest several improvements to the Program Verifica-
tion System (PVS) [14] based on their experience with academic and real-world
uses of the system. Since the publication of that paper in 2000, PVS has seen
major enhancements to its specification language and theorem prover capabil-
ities. These enhancements implement customization and extensibility features
suggested in [7] and by other members of the PVS community. Some of these
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features have been implemented by PVS users. In particular, the Formal Meth-
ods group at NASA Langley3 has extensive experience developing and applying
PVS theorem proving technology to the verification of safety-critical aerospace
systems.

This paper gives an overview of recent and advanced features in PVS through
the analysis of a simple formal model of a National Aerospace System (NAS).
The idea is to explore this problem from the system requirements to a typical
verification task. The main activities involve writing the logical and operational
requirements using the PVS specification language, proving properties of these
specifications via the PVS theorem prover, and simulating and testing the func-
tional specifications through the PVS ground evaluator.

An overview of PVS is given in Section 2. Section 3 presents a formal model
of the NAS, which serves as a running example along this paper. Initially a
basic model is specified. This model is then improved by using advanced typing
features provided by PVS such as dependent types and predicate subtyping.
Recursion is one of the main algorithmic techniques in functional languages.
However, proofs of properties on recursive functions are often tedius and difficult.
Section 4 provides a non-tradional presentation of recursion in PVS and shows a
proof technique, called implicit induction, to construct inductive proofs by using
the type checker. Finally, section 5 shows how functional specifications can be
animated through the utility PVSio [9], which provides a user friendly interface
to the PVS ground evaluator [19].

All the PVS features presented here are either part of the current version
of the system4 or available as part of the NASA PVS Libraries.5 The material
presented in this paper is based on the lecture on “Advanced Theorem Proving
Techniques in PVS with Applications” presented at the 8th LASER Summer
School on Software Engineering, organized by the ETH Chair of Software Engi-
neering on September 4-10, 2011 in Elba Island, Italy. The lectures and the ex-
amples presented in this paper are available from http://shemesh.larc.nasa.

gov/people/cam/PVS.

2 Overview of PVS

The Prototype Verification System (PVS) is a formal methods environment that
consists of a specification language, based a on a classical higher-order logic
enriched with an expressive type system [16], and an interactive theorem prover
for this logic.

The PVS specification language is strongly typed. Types in PVS are built
from basic types such as bool (Boolean values), number (numbers), char (char-
acters), etc. The basic type bool consists of the elements TRUE and FALSE. The
type char is defined in the PVS prelude and consists of the extended 256 ASCII
characters. There are not literals of type char. However, there are literals of type

3 http://shemesh.larc.nasa.gov/fm/fm-pvs.html.
4 http://pvs.csl.sri.com.
5 http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library.
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string, which in PVS is defined as the type of finite sequences of char. PVS
automatically converts a string literal of one character, e.g., ”a”, into a char-
acter. PVS supports subtyping. For example, the types int (integer numbers),
rat (rational numbers), and real (real numbers) are axiomatically defined such
that int is a subtype of rat, rat is a subtype of real, and real is a subtype of
number. Therefore, all numerical constants, including fractions and numbers in
decimal notation, are members of number. Decimal notation is supported as a
syntactic sugar for rational numbers, e.g., the decimal number 0.52 represents
the fraction 52/100. In PVS, rational arithmetic is built-in, e.g., 1/3+1/3+1/3 is
exactly equal to 1 and this fact does not require a proof.

The type [A−>B ] represents the type of functions with domain type A and
range type B. For example, [A−>bool ] represents the type of predicates over
the type A. Predicates can be also be written as PRED[A ] or as set [A ] . Lit-
erals of type [A−>B ] are written LAMBDA(x :A) :e, where e is an expression of
type B. Literals of type A−>bool, can also be written {x :A | e}. PVS sup-
ports predicate subtyping. In particular, any predicate can be used as a type,
e.g., FLT : TYPE = {n :nat | EXISTS (a ,b ,c :posnat) : aˆn + bˆn = cˆn} is a
type declaration of all naturals numbers that satisfy Fermat’s Last Theorem.
Predicate subtyping yields a powerful type system. Consequently, type-checking
in PVS is undecidable. In particular, PVS cannot automatically check if, for
example, the number 2 has the type FLT or not. The type-checker will gener-
ate Type Correctness Conditions (TCCs) that the user can discharge using the
theorem prover. Usually, TCCs are not as hard to prove as FLT and PVS will
automatically discharge most of them.

The type [A1, . . . , An ] represents the type of n-tuples (e1, . . . , en) where ei,
with 1 ≤ i ≤ n, has the type Ai. If e is the tuple (e1, . . . , en), for 1 ≤ i ≤
n, e ‘i is exactly equal to ei. Record types are written [#a1 :A1, . . . , an :An#],
where ai, with 1 ≤ i ≤ n, is the identifier of the i-th field and has the type
Ai. If e1,. . . en are expressions of type A1,. . . ,An, respectively, then the literal
(#a1 :=e1, . . . , an :=en#) is a record of type [#a :A1, . . . , a :An#]. Furthermore, if
e is the record (#a1 :=e1, . . . , an :=en#), for 1 ≤ i ≤ n, e ‘ai is exactly equal to ei.
An alternative notation for e ‘ai is ai(e). PVS provides an overwriting operator
for records and functions. In particular, if b1, bn are expressions of type A1, An,
respectively, then e WITH [ ‘a1 :=b1 , ‘an :=bn ] is a record that is equal to e in
all fields but a1, an where it has the values b1, bn, respectively. In the case of
functions, if f is a function of type [A−>B ] and a, b are expressions of type
A,B, respectively, the expression f WITH [ (a) :=b ] is a function that is equal to
f in all points but a where it has the value b.

PVS supports dependent types, e.g., in a record type [#a1 :A1, . . . , an :An#],
the type Ai, for 1 ≤ i ≤ n, can depend on the fields aj with 1 ≤ j ≤ i. This
feature extends to the types of tuples and functions. In particular, in a function
declaration f(x:A) : B = . . . the type B can depend on the parameter x.

In addition to basic types, tuples, records, and functions, PVS also includes
abstract data types [15] and co-inductive types. Enumerations and disjoint types
are supported as special cases of abstract data types. In order to support mod-
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ularity and reuse, specifications are logically organized into parametric theories.
Theories are linked by IMPORTING clauses. Theory parameters can be instanti-
ated at the importing clause or at each particular use of a definition coming from
an imported parametric theory. Furthermore, PVS supports name overloading.
Names are often automatically disambiguated by the system using the type in-
formation. If this is not possible, the user needs to provide a qualified name that
may include the name of theory and its parameters.

In addition to declarations and definitions, theories may have logical formulas
such as type judgements, lemmas, theorems, and axioms. These formulas are
discharged by the user via an interactive proof assistant. For each formula, PVS
maintains a proof tree. Each node of the proof tree is a sequent of the form

{−1} P1

. . .
{−n} Pn

|−−−−−−−
{1} Q1

. . .
{m} Qm

where the set of formulas P1, . . . , Pn, with n ≥ 0, are called the antecedent
and the set of formulas Q1, . . . , Qm, with m ≥ 0, are called the consequent.
The logical interpretation of a sequent is that disjunction of formulas in the
consequent can be derived from the conjunction of formulas in the antecedent,
i.e., P1 ∧ . . . Pn ` Q1 ∨ . . . ∨ Qm. An empty antecedent represents the formula
TRUE and an empty consequent represents the formula FALSE.

The proof tree starts with a root node of the form A, where A is the formula,
e.g., theorem or lemma, to be proved. The proof tree is interactively constructed
by adding subtrees to leaf nodes as directed by proof commands, which are
prompted by the user. A proof command has the form (r a1 . . . an), where r
is the name of a proof rule and a1, . . . , an are its arguments. The arguments
can be either proof commands or Lisp objects. The parameters of a proof rule
are named so the corresponding arguments can be specified in a different order
to which the parameters were defined. Named arguments in a proof command
are specified with the syntax :n a, where a is the argument of the parameter
named n. For reference, the proof command (help r) prints a help message for
the proof rule r.

Proof commands can either generate further branches, or complete a branch
and move the control over to the next branch in the proof tree. These commands
can be used to introduce lemmas, expand definitions, apply decision procedures,
eliminate quantifiers, and so on. For example, the primitive proof rule flatten

simplifies conjunctive antecedents and disjunctive consequents. The proof rule
assert performs several simplifications using decision procedures for equality
and linear arithmetic. PVS provides a large set of proof rules that implement
automated procedures for various domains such as binary decision diagrams, sat-
isfiability modulo theories, rewriting, and, most recently, non-linear arithmetic.
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When a proof command reduces either the antecedent of a sequent to FALSE or
the consequent to TRUE, the current branch of the proof tree is terminated and
the sequent is said to be discharged. When all the branches of the proof tree
have been discharged the original formula is successfully proved.

Proof commands are sound, but not necessarily complete, i.e., discharging all
the sequents generated by a given proof command is sufficient, but not necessary
to discharge the original sequent. Some proof commands can generate an empty
sequent. This does not mean that the original sequent is false, but rather that
the current proof tree does not lead to a proof of the original sequent. In these
cases, the proof command (undo) can be used to backtrack to the previous
sequent before the last proof command. PVS also provides a strategy language
and proof command combinator that can be used to define strategies, i.e., user-
defined proof commands [1]. Strategies conservatively extend the theorem prover.
Therefore, the soundness of the theorem prover is not compromised by defining
new strategies.

PVS packages, which are also called prelude extensions, are the mechanism
offered by PVS to modularly and conservatively extend the system with user-
defined Emacs Lisp code, Common Lisp code, proof strategies, and prelude PVS
theories. The formal methods group at NASA Langley has developed several
PVS packages that extends the functionality provided by the system with batch
proving and proof-scripting capabilities (ProofLite), animation of specifications
(PVSio), strategies for manipulation of algebraic expressions (Manip, Field),
and automated procedures for non-linear arithmetic (Interval, Bernstein). These
extensions either have been integrated into the most recent version of PVS (5.0)
or they are available as part of the PVS NASA Libraries (5.8). Examples of some
of these features are given in this paper.

3 Simple Model of a National Aerospace System in PVS

In a typical verification task, a user has a set of requirements for a system and
uses PVS to

– write logical requirements as formal specifications,

– write operational requirements as functional algorithms, and

– prove that the algorithms satisfy the specifications.

Given the different nature of real and formal worlds, the formal world will never
be able to perfectly capture all the aspects of the real world. Hence, the formal
specifications and the algorithms are intrinsically imprecise models of the actual
requirements and the computer program implementation. For this reason, the
verification of a real system will always require simulation and testing to check
the validity of the assumptions on which the formal specifications rely. This is
illustrated in Figure 1.

This paper uses a simple formal model of a National Aerospace System
(NAS). From a very abstract point of view, a NAS consists of a collection of
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Fig. 1. Real World vs. Formal World

aircraft along with some basic functionality such as adding and removing air-
craft, and more advanced functionality such as detecting and resolving conflicts
between aircraft.

3.1 Basic Model

The basic unit of a PVS specification is a theory, which is a collection of declara-
tions and definitions of mathematical objects. Theories in PVS can be paramet-
ric. Hence, a theory can be used to specify a family of systems all of which share
the same structure. A National Aerospace System can be defined as a parametric
theory with respect to the type of the aircraft identifiers, i.e., Identifier, and
the type of the aircraft state information, i.e., State. The parameters Identifier
are State are declared as an uninterpreted non-empty types. The theory NAS can
be imported in another theory with concrete types that instantiate Identifier

and State.

NAS [Identifier :TYPE+,State :TYPE+] : THEORY

BEGIN

% . . .
END NAS

Within this theory, an aircraft will be defined as a record with a field id of type
Identifier and a field state of type State:

Aircraft : TYPE = [#
id : Identifier,
state : State

#]
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A NAS can be modeled as a collection of elements of type Aircraft. There
are several ways to define such as collection in PVS, e.g., lists, sets, sequences,
and arrays. All these types are defined in the PVS prelude library as paramet-
ric types. The type ARRAY[Identifier−>Aircraft ] specifies a type of elements
of type Aircraft indexed by elements of type Identifier. PVS does not as-
sume anything about the range type of an array. In fact, there is no differ-
ence between the array type ARRAY[Identifier−>Aircraft ] and the function
type [Identifier−>Aircraft ] . It should be noted that not all arrays of type
ARRAY[Identifier−>Aircraft ] represent a NAS. It is required that the aircraft
indexed by a given identifier has this value in the field id. A type NAS of arrays
that satisfy this contract can be defined in PVS using the subtyping mechanism
as follows.

NAS : TYPE = {acs :ARRAY[Identifier−>Aircraft ] |
FORALL (id :Identifier) : acs(id) ‘id = id}

PVS is a pure functional language and so it does not have a built-in notion
of memory or state. Thus, in PVS, the concept of variable corresponds to the
mathematical concept of unspecified arbitrary value a opposed to the concept of
memory cell used in imperative programming languages. Variables of type NAS,
Aircraft, and Identifier can be declared as follows.

nas : VAR NAS

ac : VAR Aircraft

id : VAR Identifier

A function that given a NAS nas and an identifier id and returns the aircraft
indexed by that identifier in nas can be defined as follows.

find(nas,id) : Aircraft = nas(id)

From this definition, the following soundness lemma is automatically discharged
by the proof command (grind).

find_sound : LEMMA

LET ac = find(nas,id) IN ac ‘id=id

In the declaration of the function find and in the statement of the lemma
find_sound, the names nas and id corresponds to the variables previously de-
clared. By default, if variables are not quantified in the statement of a logical
formula, they are assumed to be universally quantified.

A function that adds an aircraft to a given NAS array and its soundness
lemma can be defined as follows.

add(nas,ac) : NAS =

LET id = ac ‘id IN

nas WITH [ (id) := ac ]

add_sound : LEMMA
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find(add(nas,ac) ,ac ‘id) = ac

As in the previous case, the lemma add_sound is proved by the proof command
(grind). Since the function add returns an array of type NAS, the type checker
generates the following Type Correctness Condition (TCC), which is automati-
cally discharged by the theorem prover.

add_TCC1 : OBLIGATION

FORALL (nas : NAS, ac : Aircraft, id : Identifier) :
id = ac ‘id IMPLIES

(FORALL (id_1 : Identifier) :
(nas WITH [ (id) := ac ] ) (id_1) ‘id = id_1) ;

The representation of a NAS as an array provides a direct way to access an
aircraft through its identifier and a convenient way to modify the content of a
NAS using the operator WITH. However, this basic model has several limitations.
In particular, since the type Identifier is uninterpreted, there is not a simple
mechanism to define a function that iterates over all aircraft in a NAS or that
computes the number of aircraft in a NAS.

3.2 NAS Model Based on Finite Sequences

In order to solve the limitations of the basic model presented in the previous
section, a more sophisticated model based on finite sequences is specified. More
precisely, instead of an array over an uninterpreted type, the collection of aircraft
in a NAS is modeled using a finite sequence.

Finite sequences are defined in the PVS prelude library as a dependent record
consisting of a length and an array of exactly length elements, i.e., the range of
the array is restricted to natural numbers less than the length:

finseq : TYPE = [# length : nat, seq : ARRAY[below [length ] −> T ] #]

In this definition, the type T is a type parameter. The PVS prelude library also
defines the following conversion, which automatically casts finite sequences of
type T into arrays of type T.

finseq_appl(fs) : [below [length(fs) ] −> T ] = fs ‘seq ;
CONVERSION finseq_appl ;

Because of the conversion finseq_appl, the element of type T located at position
i of a finite sequence fs, assuming that i has the type below(length(fs)), can
be simply written fs(i) as opposed to fs ‘seq(i).

A finite sequence of Aircraft is specified as finseq [Aircraft ] . Since the
array in the field seq is indexed by a finite range of natural numbers, it is simple
to specify functions that iterate on all the elements of a finite sequence. In order
to have direct access to aircraft through their identifiers, a hash table represented
by an array of type [Identifier−>Maybe [nat ] ] is used. The keys of this type of
hash tables are aircraft identifiers. The values are positions in a finite sequence
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where the aircraft are located. Since not all identifiers appear in a finite sequence
and PVS functions are total, the values of the hash table are specified using the
parametric abstract data type Maybe. The type Maybe, which models invalid and
valid values of a given type, is defined in the PVS NASA library structures as
follows.

Maybe [T :TYPE] : DATATYPE

BEGIN

None : none?

Some(some :T) : some?

END Maybe

The constructors of this inductive data type are None and Some. They represent,
respectively, an invalid and a valid element of type T. These constructors are
recognized by the functions none? and some?, respectively. The selector for the
constructor Some is some.

A new type that represents a NAS can be modeled by a record with the fields
acs of type finseq [Aircraft ] and hash of typeARRAY[Identifier−>Maybe [nat ] ] .
As in the previous case, not all elements of this record type represent a NAS. In
PVS, it is convenient to first define a base record type, e.g.,

PreNAS : TYPE = [# acs : finseq [Aircraft ] ,
hash : ARRAY[Identifier−>Maybe [nat ] ]

#]

Next, a predicate on this type that characterizes the valid elements of the base
type is defined, e.g.,

nas?(nas :PreNAS) : bool =

(FORALL(i :below(length(nas‘acs))) :
LET ac = nas‘acs(i) IN

nas‘hash(ac ‘id) = Some(i))
AND

(FORALL(id :Identifier) :
LET hi = nas‘hash(id) IN

(some?(hi) IMPLIES

some(hi) < length(nas‘acs) AND

nas‘acs(some(hi)) ‘id = id))

The predicate nas? on elements nas of type PreNAS holds when (a) all the iden-
tifiers of aircraft in the finite sequence appear in hash table and (b) all the valid
values in the hash table point to a valid position in the finite sequence and the
aircraft in this position has as identifier the key in the hash table.

Finally, the type NAS is a defined as the subtype of PreNAS that satisfies
the predicate nas?. This subtype can be specified as {x :PreNAS | nas?(x)}.
However, these kinds of predicate subtype definitions are so common that PVS
provides an alternative and less verbose notation. If p is a predicate over a type
T , the type (p) specifies the type of elements of type T that satisfy p, e.g.,
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NAS : TYPE = (nas?)

Given an element nas of type NAS and an identifier id of type Identifier,
the dependent type IdNAS(nas) is declared as the subtype of Identifier that
consists of all the identifiers of aircraft in nas. The function find has as inputs
a nas of type NAS and an identifier id of type IdNAS(nas). It returns the aircraft
associated to this identifier in nas.

id_nas?(nas :NAS)(id :Identifier) : bool = some?(nas‘hash(id))
IdNAS(nas) : TYPE = (id_nas?(nas))

find(nas :NAS,id :IdNAS(nas)) : Aircraft =

LET hi = nas‘hash(id) IN

nas‘acs(some(hi))

3.3 Proving Properties

Given the previous definition of the type NAS, it can be proved that if two aircraft
in a NAS have the same identifier, then they are equal. This property can be
specified in PVS as follows.

nas_sound : LEMMA

FORALL (i ,j :below(length(nas‘acs))) :
nas‘acs(i) ‘id = nas‘acs(j) ‘id IMPLIES

i = j

In the theorem prover, the lemma nas_sound yields the following sequent.

|−−−−−−−
{1} FORALL (nas : NAS, i , j : below(length(nas‘acs))) :

finseq_appl(nas‘acs)(i) ‘id = finseq_appl(nas‘acs)(j) ‘id
IMPLIES i = j

The proof command (skeep :preds? t) reduces the universal quantification
by introducing new arbitrary constants. These constants are called Skolem con-
stants. The symbol :preds? is the name of a parameter of the proof rule skeep

and the argument t is the Lisp symbol that represents true. This parameter,
which by default has the value nil, i.e., false, tells the proof command whether
or not to introduce in the sequent the types of the Skolem constants.

{−1} nas?(nas)
{−2} i < length(nas‘acs)
{−3} j < length(nas‘acs)
{−4} finseq_appl(nas‘acs)(i) ‘id = finseq_appl(nas‘acs)(j) ‘id
|−−−−−−−

{1} i = j
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The proof rule skeep uses as names of the Skolem constants those of the quan-
tified variables. In this case, the Skolem constants are named nas, i, and j. All
the formulas in the antecedent of the current sequent, but formula−4, come from
the type information of the Skolem constants.

The proof command (expand∗ ”nas?” ”finseq_appl”) expands the defini-
tion of the predicate nas? and the conversion finseq_appl.

{−1} (FORALL (i : below(length(nas‘acs))) :
nas‘hash(nas‘acs‘seq(i) ‘id) = Some(i)) AND

(FORALL (id : Identifier) :
(some?(nas‘hash(id)) IMPLIES some(nas‘hash(id)) <

length(nas‘acs) AND

nas‘acs‘seq(some(nas‘hash(id))) ‘id = id))
[−2] i < length(nas‘acs)
[−3] j < length(nas‘acs)
{−4} nas‘acs‘seq(i) ‘id = nas‘acs‘seq(j) ‘id
|−−−−−−−

[1 ] i = j

The conjunction in formula−1 is simplified with the proof command (flatten).

{−1} FORALL (i : below(length(nas‘acs))) :
nas‘hash(nas‘acs‘seq(i) ‘id) = Some(i)

{−2} FORALL (id : Identifier) :
(some?(nas‘hash(id)) IMPLIES some(nas‘hash(id)) <

length(nas‘acs) AND

nas‘acs‘seq(some(nas‘hash(id))) ‘id = id)
[−3] i < length(nas‘acs)
[−4] j < length(nas‘acs)
[−5] nas‘acs‘seq(i) ‘id = nas‘acs‘seq(j) ‘id
|−−−−−−−

[1 ] i = j

Formula −2 is not required in the proof so it can be hidden. However, two
instances of formula −1 are needed, so it has to be copied. This can be achieve
with the proof commands (hide −2) and then (copy −1).

{−1} FORALL (i : below(length(nas‘acs))) :
nas‘hash(finseq_appl(nas‘acs)(i) ‘id) = Some(i)

[−2] FORALL (i : below(length(nas‘acs))) :
nas‘hash(finseq_appl(nas‘acs)(i) ‘id) = Some(i)

[−3] i < length(nas‘acs)
[−4] j < length(nas‘acs)
[−5] finseq_appl(nas‘acs)(i) ‘id = finseq_appl(nas‘acs)(j) ‘id
|−−−−−−−

[1 ] i = j
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Formulas −1 and −2 are instantiated with the variables i and j, respectively.
This is achieved with the proof commands (inst −1 ”i”) and (inst −2 ”j”).

[−1] nas‘hash(nas‘acs‘seq(i) ‘id) = Some(i)
{−2} nas‘hash(nas‘acs‘seq(j) ‘id) = Some(j)
[−3] i < length(nas‘acs)
[−4] j < length(nas‘acs)
[−5] nas‘acs‘seq(i) ‘id = nas‘acs‘seq(j) ‘id
|−−−−−−−

[1 ] i = j

Formula −5 and −1 are replaced in the sequent with the proof command
(replaces (−5 −1)).

{−1} Some(i) = Some(j)
{−2} i < length(nas‘acs)
{−3} j < length(nas‘acs)
|−−−−−−−

{1} i = j

This sequent is discharged by decomposing the equality in formula −1 with the
proof command (decompose−equality −1).

3.4 Other Operations

Functions that return an empty NAS and that update a NAS by either adding
or modifying the information of a given aircraft, and their soundness theorems
can be defined as follows.

empty : NAS = (# acs := empty_seq,
hash := LAMBDA(id) :None

#)

empty_sound : LEMMA

LET hi = empty‘hash(ac ‘id) IN

none?(hi)

update(nas,ac) : NAS =

LET hi = nas‘hash(ac ‘id) IN

IF none?(hi) THEN

nas WITH [ ‘acs := add(ac ,nas‘acs) ,
‘hash(ac ‘id) := Some(length(nas‘acs)) ]

ELSE

nas WITH [ ‘acs‘seq(some(hi)) := ac ]
ENDIF

update_sound : LEMMA
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LET unas = update(nas,ac) ,
hi = unas‘hash(ac ‘id) IN

some?(hi) AND unas‘acs(some(hi)) = ac

The lemmas empty_sound and update_sound are automatically discharged by
the proof command (grind). The definition of the functions empty and update

generate TCCs that guarantee that they return records that satisfy the predicate
nas?. The function empty generates one TCC that is automatically discharged
by the type checker. The later definition generates 4 TCCs, two of which are
automatically discharged by the type checker. The other two TCCs require a
few simple manual steps similar to those in the proof of lemma nas_sound given
in Section 3.3.

4 Recursion, Induction, and Iteration

In functional specification languages such as PVS, repetitive processes are typi-
cally modeled using recursion. In PVS, the recursive definition of a function f of
type [ [T1, . . . , Tn ]−>T ] is jointly specified with a measure function M of type
[ [T1, . . . , Tn ]−>A ] and a order relation ≺ over the type A:

f (x1 :T1 ,. . . ,xn :Tn ) : RECURSIVE T =

. . . f(e1, . . . , en) . . .
MEASURE M BY ≺

The type checker ensures that the definition of f is total by generating TCCs
that asserts the following termination conditions.

– The order relation ≺ is well-founded, i.e., it does not admit infinite descend-
ing sequences . . . ≺ am ≺ . . . ≺ ao of elements of type A.

– The measure function M strictly decreases at each recursive call, e.g.,

M(e1, . . . , en) ≺M(x1, . . . , xn).

By default, if a order relation is not provided in the definition, PVS assumes
that the order relation is the strict order< over the type nat of natural numbers.
The PVS prelude includes the following axiom that asserts that the order < is
well-founded.

wf_nat : AXIOM well_founded?(LAMBDA(i ,j :nat) : i < j)

Other well-founded orders known to PVS are the order < over the type ord of
ordinal numbers, the lexicographical order lex2 for pairs of natural numbers,
and a generic structural order << for inductively defined abstract data types. If
instead of a function, M is specified as an expression of type A, PVS assumes
the measure function LAMBDA(x1 :T1, . . . , xn :Tn ) :M .
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4.1 Tail Recursion

Some operations on a National Airspace System require computing upper (and
lower) bounds of values such as altitude, ground speed, vertical speed, etc. for all
aircraft in the airspace. Using the formal theory presented in Section 3.2, this sec-
tion defines a higher-order function maxf(nas :NAS,f : [Aircraft−>real ] ) : real,
where the parameter f is a function that computes the value of interest for a
given aircraft. The requirement that maxf computes an upper bound of f(a),
for all aircraft a in nas, is specified by the following lemma.

maxf_sound : LEMMA

FORALL (nas :NAS,i :below(length(nas‘acs)) ,f : [Aircraft−>real ] ) :
f(nas‘acs(i)) <= maxf(nas,f)

In order to satisfy its requirement, the definition of maxf must iterate f on
all aircraft in nas. This repetitive process is encoded using a recursive definition.
In a typical recursive definition of a function over natural numbers or terms of
an abstract data type, the function is first defined on the base case and then
the inductive case is defined by recursively calling the function on terms that
are smaller than the original term. For data structures such as arrays and finite
sequences, tail recursion is often more convenient. A tail recursive definition is
a recursive definition where recursive calls are always the last statements in the
definition. In a typical tail recursive definition of a function, a counter over a
finite range and an accumulator are used as parameters. The accumulator is
initiated with the value of the function that corresponds to the initial value of
the counter. At every recursive step, the accumulator, as its name indicates,
has the accumulated value of the function up to the counter. When the counter
reaches its limits, the value of the accumulator is returned.

The function maxf is defined using the tail recursive function maxf_it as
follows.

1 maxf_it(nas :NAS,f : [Aircraft−>real ] ,
2 i :upto(length(nas‘acs)) ,max :real) : RECURSIVE real =

3 IF i = length(nas‘acs) THEN max

4 ELSIF i=0 OR max < f(nas‘acs(i)) THEN

5 maxf_it(nas,f ,i+1,f(nas‘acs(i)))
6 ELSE

7 maxf_it(nas,f ,i+1,max)
8 ENDIF

9 MEASURE length(nas‘acs)−i
10

11 maxf(nas :NAS,f : [Aircraft−>real ] ) : real =

12 maxf_it(nas,f,0 ,0)

The parameter i of the tail recursive function maxf_it is a counter that goes
from 0 up to length(nas‘acs), while the parameter max is an accumulator for
the function. At line 3, if the counter has reached its limit, the accumulator
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is returned and the tail recursive function terminates. The recursive calls are
made at lines 5 and 7. In both cases, they are the last function calls in the
definition of the function maxf_it. The recursive call at line 5 corresponds to
the case when the value of the accumulator is updated. The measure function
is given at line 9 through the expression length(nas‘acs)−i. Since the counter
is incremented by one at each recursive call, the measure strictly decreases at
each call. The type checker generates 7 TCCs for the definition of the function
maxf_it, including two TCCs that correspond to termination conditions. All of
them are automatically discharged by the type checker. The function maxf is
defined at lines 11 and 12. It calls the function maxf_it, where the counter and
the accumulator are both initiated with the value 0.

4.2 Induction

Generally, proofs of properties involving recursive functions are done by induc-
tion. PVS provides several proof rules to construct inductive proofs. Simple in-
ductions on natural numbers and abstract data types are automatically handled
by the proof rule induct−and−simplify and its variants induct−and−rewrite and
induct−and−rewrite!. The most general proof rule induct is used to manually
prove an inductive property, when the more automated proof rules fail.

Given a variable in a universally quantified formula in the consequent, the
proof rule induct applies an induction schema on this variable. The induction
schema is inferred by the theorem prover from the type of the variable, but it
can also be specified by the user through the proof rule’s parameter name. The
PVS prelude library provides the following weak and strong induction schemas
for natural numbers.

nat_induction : LEMMA

(p(0) AND (FORALL j : p(j) IMPLIES p(j+1)))
IMPLIES (FORALL i : p(i))

NAT_induction : LEMMA

(FORALL j : (FORALL k : k < j IMPLIES p(k)) IMPLIES p(j))
IMPLIES (FORALL i : p(i))

Similar lemmas are provided for many subtypes of natural numbers. For
instance, weak and strong induction schemas for ranges of natural numbers are
specified as follows.

subrange_inductions [i : int, j : upfrom(i ) ] : THEORY

BEGIN

k , m : VAR subrange(i , j)
p : VAR pred [subrange(i , j) ]

subrange_induction : LEMMA

(p(i) AND (FORALL k : k < j AND p(k) IMPLIES p(k + 1)))
IMPLIES (FORALL k : p(k))
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SUBRANGE_induction : LEMMA

(FORALL k : (FORALL m : m < k IMPLIES p(m)) IMPLIES p(k))
IMPLIES (FORALL k : p(k))

END subrange_inductions

The fact that the measure function of a recursive function guarantees ter-
mination hints that an inductive proof on a recursive function follows the same
direction as its measure function, i.e., the base case of the induction is when
the measure has the value 0 and from there the inductive step is constructed.
Therefore, properties on a recursive function are usually proved by induction on
a variable that keeps the value of the function’s measure function at each recur-
sive call. When such as variable does not exist in the statement of the property,
the statement has to be generalized to introduce this new variable. Finding this
generalization is not always obvious. This is particularly true for statements on
tail recursive functions since, in this case, the measure function and the counter
used in the tail recursion go in opposite directions.

To prove lemma maxf_sound, the following parametric predicate on real num-
bers and lemma are defined.

maxf_below?(nas :NAS,f : [Aircraft−>real ] ,i :upto(length(nas‘acs)))
(max :real) : bool =

FORALL(j :below(i)) : f(nas‘acs(j)) <= max

maxf_sound_ind : LEMMA

FORALL (m :nat,nas :NAS,i :upto(length(nas‘acs)) ,f : [Aircraft−>real ] ,
max :real) :

i = length(nas‘acs)−m AND

maxf_below?(nas,f ,i)(max) IMPLIES

maxf_below?(nas,f ,length(nas‘acs))(maxf_it(nas,f ,i ,max))

Given parameters nas, f, and i of the specified types, maxf_below?(nas,f ,i)
holds for a real number max if max is an upper bound of f(nas‘acs(j)), for all
j < i. Lemma maxf_sound_ind, which generalizes maxf_sound with a variable
m that is equal to length(nas‘acs)−i, is automatically discharged by the proof
command (induct−and−simplify ”m”).

The proof of lemma maxf_sound consists of (skeep), which introduces Skolem
constants, (lemma ”maxf_sound_ind”), which introduces lemma maxf_sound_ind
to the sequent as formula−1, (inst −1 ”length(nas‘acs)” ”nas” ”0” ”f” ”0”),
which instantiates formula −1 with the given values, and (grind), which applies
several decision procedures and discharges the lemma.

4.3 Implicit Induction

Finding an inductive property for a nontrivial measure function is often a tedious
exercise even for PVS expert users. Fortunately, the PVS type system provides an
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elegant and relatively simple mechanism to make inductive proofs on recursive
definitions without explicitly using an induction schema. The key idea is to
encode the property to be proved in the domain and range types of the function.
The domain type, i.e., the type of the parameters, becomes an invariant of the
function and the range type, i.e., the return type, becomes a postcondition of
the function. The type checker generates as TCCs the fact that the invariant
is satisfied at each recursive call and that the postcondition is satisfied after
the execution of the last recursive call. These TCCs correspond to the base
and inductive cases of an inductive proof of the property encoded by the types
where the induction schema is based on the syntactical structure of the recursive
definition rather than on the measure of the function.

The idea of using PVS types for specifications is well-known [18]. However,
surprisingly, most users are unaware of the implicit induction approach it pro-
vides when used on recursive definitions. For instance, a simpler proof of lemma
maxf_sound can be found by restricting the type of the parameter max and the
return type of the function maxf_it as follows.

maxf_it(nas :NAS,f : [Aircraft−>real ] ,i :upto(length(nas‘acs)) ,
max : (maxf_below?(nas,f ,i))) :

RECURSIVE (maxf_below?(nas,f ,length(nas‘acs))) = . . .

The modified type of the accumulator max states that it is an upper bound
of f(nas‘acs(j)) for j < i. Similarly, the modified return type of the func-
tion states that the computed value is an upper bound of f(nas‘acs(j)) for
j < length(nas‘acs). The body of the function remains unchanged.

The modified definition of maxf_it generates 10 TCCs. All the TCCs but
maxf_it_TCC6 are automatically discharged by the type checker.

maxf_it_TCC6 : OBLIGATION

FORALL (nas : NAS, f : [Aircraft −> real ] ,
i : upto(nas‘acs‘length) , max : (maxf_below?(nas, f , i))) :

(i = 0 OR max < f(finseq_appl(nas‘acs)(i))) AND

NOT i = nas‘acs‘length
IMPLIES

maxf_below?(nas, f , 1 + i)(f(finseq_appl(nas‘acs)(i))) ;

Since TCCs are mechanically generated by the type checker, they are verbose
and seem complicated. However, once this initial impression is overcome, their
intuitive meaning becomes clear. In this case, maxf_it_TCC6 states that the type
condition on the parameter max is satisfied by the first recursive call of the
function maxf_it. The proof of maxf_it_TCC6 proceeds as follows. The proof
command (grind) yields the following sequent.

{−1} j!1 < 1 + i!1

{−2} nas!1‘hash(nas!1‘acs‘seq(i!1) ‘id) = Some(i!1)
{−3} i!1 <= length(nas!1‘acs)
{−4} FORALL (j : below(i!1)) : f!1(nas!1‘acs‘seq(j)) <= max!1

{−5} max!1 < f!1(nas!1‘acs‘seq(i!1))
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|−−−−−−−
{1} i!1 = length(nas!1‘acs)
{2} f!1(nas!1‘acs‘seq(j!1)) <= f!1(nas!1‘acs‘seq(i!1))

This sequent is discharged by the proof command (inst −4 ”j!1”), followed by
(assert).

Type specifications are not only useful for recursive functions. Indeed, the
return type of the function maxf can be specified as follows.

maxf(nas :NAS,f : [Aircraft−>real ] ) :
(maxf_below?(nas,f ,length(nas‘acs))) = . . .

Using this definition, lemma maxf_sound is discharged by the proof commands
(skeep), (typepred ”maxf(nas,f)”), which introduces the most restricted type
information of the expression maxf(nas,f), and, finally, (grind).

4.4 Recursive Judgements

A disadvantage of the implicit technique described in Section 4.3 is that in order
to prove a property on a recursive function, the type declaration of the function
needs to be modified to encode the property of interest. This may be a nuisance
if the function has been already defined, for example in another theory, or if the
property to be proved is just a special case that significantly restricts the original
type of the function. To overcome this problem, PVS provides judgements.

In PVS, a judgement declares an additional type constraint to an existing
definition. Judgements are automatically used by the theorem prover, but they
can also be used as lemmas in manual proofs. Judgments generate TCCs that
must be discharged either manually or automatically. These judgements condi-
tions guarantee the correctness of the additional type declarations. Two kinds of
judgments are supported by PVS: regular judgments, which are declared with
the clause JUDGEMENT, and recursive judgements, which are declared with the
clause RECURSIVE JUDGEMENT. Recursive judgments can only be used on recur-
sive definitions. Although regular judgements can also be declared on recursive
definitions, recursive judgements are preferable since they generate TCCs that
follow the recursive structure of the definitions. In other words, recursive judg-
ments enable the use of the implicit induction approach on existing recursive
definitions without modifying the original declarations.

The type constraints specified in Section 4.3 to the functions maxf_it and
maxf can also be specified on the original declarations of the functions given in
Section 4.1 as follows.

maxf_it(nas :NAS,f : [Aircraft−>real ] ,
i :upto(length(nas‘acs)) ,max :real) : RECURSIVE real = . . .

maxf(nas :NAS,f : [Aircraft−>real ] ) : real = . . .

maxf_it_rj : RECURSIVE JUDGEMENT



Advanced Theorem Proving Techniques in PVS and Applications 19

maxf_it(nas :NAS,f : [Aircraft−>real ] ,i :upto(length(nas‘acs)) ,
max : (maxf_below?(nas,f ,i)))

HASTYPE (maxf_below?(nas,f ,length(nas‘acs)))

maxf_j : JUDGEMENT

maxf(nas :NAS,f : [Aircraft−>real ] )
HASTYPE (maxf_below?(nas,f ,length(nas‘acs)))

The recursive judgment maxf_it_rj generates 8 TCCs. All the TCCs but
maxf_it_rj_TCC8 are automatically discharged by the type checker. The state-
ment of maxf_it_rj_TCC8 is exactly the same as the statement of maxf_it_TCC6
in Section 4.3 and it is proved in the same way. The judgement maxf_j generates
the following proof obligation.

maxf_j : OBLIGATION

FORALL (f : [Aircraft −> real ] , nas : NAS) :
maxf_below?(nas, f , nas‘acs‘length)(maxf(nas, f)) ;

This obligation is easily discharged using maxf_it_rj as a lemma.
Implicit induction usually produces simpler proofs than those proofs based on

explicit induction schemas. However, users should be cautious of TCC reordering
when using types for specifications. Since TCCs are mechanically generated by
the type checker, the user cannot control the order in which they are generated.
Therefore, a simple modification to the definition of a function may change
the order in which TCCs in a theory are generated. Although most TCCs are
automatically discharged by the type checker, manual proofs of TCCs can be
lost after type checking a modified version of a theory. PVS provides mechanisms
to recover orphaned proofs, i.e., proofs that get lost due to changes in a theory.
A good practice when using types for specifications is to create explicit lemmas
with the statements of important TCCs. Once these lemmas are proven, the
important TCCs can be easily proven by using the lemmas . The proof of these
TCCs may still get lost due to TCC reordering, but those proofs only involve
one proof command.

4.5 Iterations

Tail recursions naturally represent iterations and loops of imperative program-
ming languages. The definitions of functions maxf_it and maxf in Section 4.1
correspond to the following pseudo-code of an imperative procedure that com-
putes the maximum value f(nas‘acs(i))) for all aircraft in nas‘acs.

local max : real := 0;
local i : int ;
for (i := 0; i < length(nas‘acs) ; i++) {
if (i = 0 OR max < f(nas‘acs(i))) {
max := f(nas‘acs(i)) ;
}
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}
return max ;

For this type of iterations, the theory for_iterate in the PVS NASA Library
structures provides the construct for(m ,n :int,init :T ,f :ForBody(m ,n)) :T. This
construct has the intended semantics of the following imperative loop.

local a : T := init ;
local i : int ;
for (i := m ; i <= n ; i++) {
a := f(i ,a) ;
}
return a ;

The values m and n are the first and last indices of the iteration, respectively. The
value init is the initial value of the accumulator. The function f is a function
that has as parameter the current iteration index and accumulated value, and
computes the next value of the accumulator. The return type of f and the type
of the accumulator is a type parameter T.

Using the construct for, the function maxf can be defined as follows.

IMPORTING structures@for_iterate

maxf(nas :NAS,f : [Aircraft−>real ] ) : real =

for [real](0 ,length(nas‘acs)−1 ,0 ,
LAMBDA(i :below(length(nas‘acs)) ,max :real) :

IF i=0 OR max < f(nas‘acs(i)) THEN

f(nas‘acs(i))
ELSE

max

ENDIF)

The theory for_iterate also provides the following induction schema on the
number of iterations for proving than an invariant predicate is satisfied in all
iterations.

for_induction : THEOREM

FORALL(m :int, (n :int | n >= m−1) ,init :T ,f :ForBody(m ,n) ,
inv :PRED[ [upto(n−m+1) ,T ] ] ) :

(inv(0 ,init) AND

FORALL (k :subrange(0 ,n−m) ,ak :T) : inv(k ,ak) IMPLIES

inv(k+1,f(m+k ,ak)))
IMPLIES

inv(n−m+1,for(m ,n ,init,f))

In this theorem, the predicate inv has as parameters an iteration number and
the value of the accumulator up to that iteration.
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Given the definition of the function maxf above, the proof of maxf_sound

proceeds as follows. The proof command (skeep) introduces Skolem constants.
The proof command (expand ”maxf”) expands the definition of maxf.

|−−−−−−−
{1} f(finseq_appl(nas‘acs)(i)) <=

for [real ]
(0 , length(nas‘acs) − 1, 0 ,
LAMBDA (i : below(length(nas‘acs)) , max : real) :

IF i = 0 OR max < f(finseq_appl(nas‘acs)(i))
THEN f(finseq_appl(nas‘acs)(i))

ELSE max

ENDIF)

The induction schema for the construct for is introduced with the proof
command (lemma ”for_induction [real]”). The command (inst? −) finds an
appropriate instantiation for most of the universally quantified variables in the
statement of the lemma. The only variable that is not automatically instantiated
is inv, which corresponds to the invariant predicate. The proof command

(inst −1 ”LAMBDA(n :upto(length(nas‘acs)) ,max :real) :
maxf_below?(nas,f ,n)(max)”)

instantiates this variable. The core of the rest of the proof is the following se-
quent.

|−−−−−−−
[1 ] FORALL (k : subrange(0 , length(nas‘acs) − 1) , ak : real) :

maxf_below?(nas, f , k)(ak) IMPLIES

maxf_below?(nas, f , k + 1)
(IF k = 0 OR ak < f(finseq_appl(nas‘acs)(k))

THEN f(finseq_appl(nas‘acs)(k))
ELSE ak

ENDIF)

This sequent is discharged by the proof command (grind), which simplifies the
sequent and introduces the Skolem constant j!1, followed by (inst −5 ”j!1”),
and (assert).

In addition to the construct for, the theory for_iterate provides the con-
structs for_down, iterate_left, iterate_right, and their respective induction
schemas.

%% local a : T := init ;
%% local i : int ;
%% for (i := m ; i >= m ; i−−) {
%% a := f(i ,a) ;
%% }
%% return a ;
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for_down(n ,m :int,init :T ,f :ForBody(m ,n)) = . . .

for_down_induction : THEOREM

FORALL(n :int, (m :int | m <= n+1) ,init :T ,f :ForBody(m ,n) ,
inv :PRED[ [upto(n−m+1) ,T ] ] ) :

(inv(0 ,init) AND

FORALL (k :subrange(0 ,n−m) ,ak :T) : inv(k ,ak) IMPLIES

inv(k+1,f(n−k ,ak)))
IMPLIES

inv(n−m+1,for_down(n ,m ,init,f))

%% local a : T = f(m) ;
%% local i : int ;
%% for (i := m+1; i <= n ; i++) {
%% a := a o f(i)
%% }
%% return a ;
iterate_left(m :int,n :upfrom(m) ,f :IterateBody(m ,n) ,

o : [ [ T ,T ]−>T ] ) : T = . . .

iterate_left_induction : THEOREM

FORALL(m :int,n :upfrom(m) ,f :IterateBody(m ,n) ,o : [ [ T ,T ]−>T ] ,
inv :PRED[ [upto(n−m) ,T ] ] ) :

(inv(0 ,f(m)) AND

FORALL (k :below(n−m) ,ak :T) : inv(k ,ak) IMPLIES

inv(k+1,ak o f(m+k+1)))
IMPLIES

inv(n−m ,iterate_left(m ,n ,f ,o))

%% local a : T = f(n) ;
%% local i : int ;
%% for (i := n−1; i >= m ; i−−) {
%% a := f(i) o a

%% }
%% return a ;
iterate_right(m :int,n :upfrom(m) ,f :IterateBody(m ,n) ,

o : [ [ T ,T ]−>T ] ) : T = . . .

iterate_right_induction : THEOREM

FORALL(m :int,n :upfrom(m) ,f :IterateBody(m ,n) ,o : [ [ T ,T ]−>T ] ,
inv :PRED[ [upto(n−m) ,T ] ] ) :

(inv(0 ,f(n)) AND

FORALL (k :below(n−m) ,ak :T) : inv(k ,ak) IMPLIES

inv(k+1,f(n−k−1) o ak))
IMPLIES
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inv(n−m ,iterate_right(m ,n ,f ,o))

5 Animation and Ground Evaluation

In addition to specifying formal models and proving properties about them,
PVS also allows for the animation of functional specifications. Animation of
specifications is supported for concrete types and expressions through the utility
PVSio [9], which provides a user friendly interface to the PVS ground evalua-
tor [19].6

5.1 Animations

In order to animate the theory NAS defined in Section 3, its type parameters
Identifier and State must be instantiated. Generally, aircraft identifiers are
represented by strings. An aircraft state may contain different information de-
pending on the application. Here, it will be considered that the state of an air-
craft consists of its current position and velocity vector. Positions and velocities
can be specified in several ways, e.g., positions can be given in either Euclidean
or Geodesic coordinates, velocity vectors can be given in either rectangular or
polar coordinates. An instantiation of the theory NAS, where aircraft identifiers
are strings and aircraft states are composed of a 3-dimensional position s and a
3-dimensional velocity vector v can be specified as follows.

NAS3D : THEORY

BEGIN

IMPORTING vectors@vectors_3D

State3D : TYPE = [# s ,v : Vect3 #]
IMPORTING NAS [string,State3D ]
. . .

END NAS3D

The type Vect3, defined in the theory vectors_3D of the PVS NASA library
vectors, is a record with fields x, y, and z of type real.

After the clause IMPORTING NAS [string,State3D ] , the definitions and dec-
larations in the theory NAS are instantiated with the corresponding parameters.
For example, functions that compute upper bounds for the altitude, vertical
speed, and ground speed of all aircraft in a NAS are defined as follows.

max_z(nas :NAS) : real =

maxf(nas,LAMBDA(ac :Aircraft) :ac ‘state‘s ‘z)

max_vz(nas :NAS) : real =

maxf(nas,LAMBDA(ac :Aircraft) :ac ‘state‘v ‘z)

6 PVSio is a standard feature of PVS since PVS 5.0.
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max_gs(nas :NAS) : real =

maxf(nas,LAMBDA(ac :Aircraft) :sqrt(sq(ac ‘state‘v ‘x) +

sq(ac ‘state‘v ‘y)))

The function nas_at, with parameters nas of type NAS and t of type postnat,
computes a new NAS where the states of aircraft in nas are projected t units of
time, assuming constant velocity.

ac_at(ac :Aircraft,t :real) : Aircraft =

ac WITH [ ‘state‘s := ac ‘state‘s + t∗ac ‘state‘v ]

nas_at(nas :NAS,t :real) : NAS =

nas WITH [ ‘acs‘seq := LAMBDA(i :below(length(nas‘acs))) :
ac_at(nas‘acs‘seq(i) ,t) ]

Particular instances of aircraft and NAS can be defined as follows. In these
examples, distances are given in meters and times in seconds.

ac0 : Aircraft = (#
id := ”AC0”,
state := (# s := (−90000,0,6000), % [m ,m ,m ]

v := (400,0 ,0) #) % [m/s ,m/s ,m/s ]
#)

ac1 : Aircraft = (#
id := ”AC1”,
state := (# s := (0 ,−78000,6000), % [m ,m ,m ]

v := (0 ,300,0) #) % [m/s ,m/s ,m/s ]
#)

ac2 : Aircraft = (#
id := ”AC2”,
state := (# s := (−110000,0,5500), % [m ,m ,m ]

v := (450,0 ,1) #) % [m/s ,m/s ,m/s ]
#)

nas0 : NAS = update(update(update(empty,ac0) ,ac1) ,ac2)

PVSio can be called from the PVS editor via the command M−x PVSio or from
the command line via the utility pvsio. PVSio provides a simple read-and-eval
loop where users enter PVS expressions and the tool outputs their evaluations.
The following examples show simple animations of functions defined or imported
in NAS3D.

<PVSio> find(nas0,”AC0”);
==>

(# id := ”AC0”,
state
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:= (# s := (# x := −90000, y := 0, z := 6000 #),
v := (# x := 400, y := 0, z := 0 #) #) #)

<PVSio> find(nas_at(nas0,600) ,”AC2”);
==>

(# id := ”AC2”,
state

:= (# s := (# x := 160000, y := 0, z := 6100 #),
v := (# x := 450, y := 0, z := 1 #) #) #)

<PVSio> max_z(nas0) ;
==>

6000

<PVSio> max_z(nas_at(nas0,600));
==>

6100

<PVSio> max_vz(nas0) ;
==>

1

<PVSio> max_gs(nas0) ;
Hit uninterpreted term sqrt .sqrt during evaluation

The reason for the error message in the animation of max_gs is that it uses
the function sqrt, which is defined in the theory sqrt of the PVS NASA Li-
brary reals as an uninterpreted function that satisfies sqrt(x)∗sqrt(x)=x for
any non-negative real x. A proven TCC in the theory sqrt states that such as
function exists. However, the proof is not constructive. Therefore, the expression
max_gs(nas0) is not a ground term. Similarly, the expression nas0‘acs cannot
be evaluated, even though it is a finite sequence of ground elements of type
Aircraft. However, finite sequences are functional closures, which can only be
ground evaluated when applied to ground arguments. The PVS prelude library
provides the function finseq2list that translates finite sequences into lists,
which can be evaluated.

<PVSio> nas0‘acs ;
==>

Result not ground . Cannot convert back to PVS .

<PVSio> finseq2list(nas0‘acs) ;
==>

( : (# id := ”AC0”,
state

:= (# s := (# x := −90000, y := 0, z := 6000 #),
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v := (# x := 400, y := 0, z := 0 #) #) #),
(# id := ”AC1”,

state

:= (# s := (# x := 0, y := −78000, z := 6000 #),
v := (# x := 0, y := 300, z := 0 #) #) #),

(# id := ”AC2”,
state

:= (# s := (# x := −110000, y := 0, z := 5500 #),
v := (# x := 450, y := 0, z := 1 #) #) #) :)

By default, PVSio ignores the TCCs of the expressions that are being eval-
uated. Therefore, some ground expressions are not safely evaluated in PVSio.
Indeed, the evaluation of expressions whose type conditions are not satisfied may,
and most probably will, break the execution of PVSio. For safer executions, the
user can turn on the generation of TCCs. In this case, PVSio will request con-
firmation from the user that TCCs are satisfied, before proceeding with any
evaluation. The commands tccs and notccs turn on and off, respectively, the
generation of TCCs.

<PVSio> tccs ;
Enabled TCCs generation

<PVSio> find(nas0,”AC3”);
Typechecking ”find(nas0,\”AC3\”)” produced the following TCCs :

subtype TCC for ”AC3”: id_nas? [string, State3D ] (nas0)(”AC3”)

Evaluating in the presence of unproven TCCs may be unsound

Do you wish to proceed with evaluation?(Y or N) : N

PVSio supports evaluations of bounded quantification over integers. For ex-
ample, the function cdnas3d?, which checks if there is a conflict between two
aircraft in a NAS, can be animated in PVSio. A conflict between two aircraft is
specified as a predicted horizontal separation less than D and vertical separation
less than H, within a lookahead time T, where D, H, and T are given positive
constants.

D : posreal = 10000 % [m ]
H : posreal = 250 % [m ]
T : posreal = 180 % [s ]

IMPORTING ACCoRD@cd3d [D ,H,0 ,T ]

cdnas3d?(nas :NAS) : bool =

EXISTS(k :below(length(nas‘acs)) ,
i :subrange(k+1,length(nas‘acs)−1)):

LET aco = nas‘acs(k) ‘state,
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aci = nas‘acs(i) ‘state IN

cd3d?(aco‘s−aci‘s ,aco‘v−aci‘v)

The PVS NASA Library ACCoRD provides several Air Traffic Management
algorithms, including cd3d?, a formally verified algorithm for checking conflicts
between two aircraft. The parameters of cd3d? are the relative position and
velocity vector of the aircraft. The function cdnas3d? checks if there exist indices
k and i in nas‘acs, with k < i, where the function cd3d? returns TRUE for the
aircraft nas‘acs(k) and nas‘acs(i).

<PVSio> cdnas3d?(nas0) ;
==>

FALSE

<PVSio> cdnas3d?(nas_at(nas0,50));
==>

TRUE

5.2 PVS as a Functional Programming Language

PVSio supports the evaluation of uninterpreted functions by attaching Lisp code
to PVS functions. This feature is called semantic attachments [2] and greatly
extends the functionality provided by PVSio. For instance, semantic attachments
enable the animation of real valued functions, such as trigonometric functions,
square root, exponential, etc., and the execution of imperative features, such as
input/output operations, within PVS functional specifications.

Semantic attachments are written in a file pvs−attachments in the working
directory. For example, a semantic attachment for the PVS function sqrt can
defined as follows.

(defattach |sqrt .sqrt | (x) (sqrt x))

In this definition, the first occurrence of sqrt refers to the name of the PVS
theory where the function sqrt is defined. The Lisp expression (sqrt x) repre-
sents the application of the Lisp function sqrt to the variable x. This semantic
attachment enables the animation of functions involving the uninterpreted PVS
function sqrt.

<PVSio> sqrt(2);
==>

1.4142135

<PVSio> max_gs(nas0) ;
==>

450.0



28 César A. Muñoz and Ramiro A. Demasi

Since the semantic attachment of the PVS function sqrt is the Lisp func-
tion sqrt, which implements a floating-point approximation of the square root
function, the following evaluation should not be surprising.

<PVSio> sqrt(2)∗sqrt(2)=2;
==>

FALSE

This example shows that evaluations in the presence of semantic attachments
are not necessarily sound with respect to the PVS logic.

PVSio provides a PVS library of theories supported by predefined semantic
attachments, e.g., stdmath, which provides attachments for floating point oper-
ations, stdstr, which provides attachments for string operations, stdio, which
provides attachments for input/output operations, etc. This PVSio library ex-
tends the PVS formal specification language with basic programming language
features. For example, PVS functions that pretty-print aircraft and NAS infor-
mation can be defined as follows.

NASio : THEORY

BEGIN

IMPORTING NAS3D

ac2str(ac :Aircraft) : string =

LET s = ac ‘state‘s ,
v = ac ‘state‘v IN

ac ‘id+
” (”+s ‘x+”[m] ,”+s ‘y+”[m] ,”+s ‘z+”[m])”+
” (”+v ‘x+”[m/s] ,”+v ‘y+”[m/s] ,”+v ‘z+”[m/s])”

printac(ac :Aircraft) : void =

print(ac2str(ac))

printnas(nas :NAS) : void =

FORALL(i :below(nas‘acs‘length)) :
printac(nas‘acs(i)) & print(newline)

. . .

END NASio

The operation + on strings is defined in stdstr and is attached to a Lisp function
that concatenates strings. The function print is defined in stdio and is attached
to a Lisp function that prints a string to standard output. The type void, which
is defined in the theory stdlang as an alias to the type bool, is intended to be
used as the type of procedures that do not return any particular value.
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By convention, functions that use PVSio definitions are specified on a differ-
ent theory separated from non-PVSio supported definitions. However, from the
point of view of the type checker and the theorem prover, there is nothing special
about NASio, i.e., PVSio-supported theories are considered as any other theory.
The semantic attachments that support the evaluation of PVSio functions only
exist within the PVSio interface. The following examples show animations of
functions defined in NASio.

<PVSio> printac(find(nas0,”AC0”));
AC0 (−90000[m ] ,0 [m] ,6000[m ] ) (400[m/s ] ,0 [m/s ] ,0 [m/s ] )

<PVSio> printnas(nas0) ;
AC0 (−90000[m ] ,0 [m] ,6000[m ] ) (400[m/s ] ,0 [m/s ] ,0 [m/s ] )
AC1 (0[m ] ,−78000[m] ,6000[m ] ) (0[m/s] ,300[m/s ] ,0 [m/s ] )
AC2 (−110000[m ] ,0 [m] ,5500[m ] ) (450[m/s ] ,0 [m/s ] ,1 [m/s ] )

<PVSio> printnas(nas_at(nas0,50));
AC0 (−70000[m ] ,0 [m] ,6000[m ] ) (400[m/s ] ,0 [m/s ] ,0 [m/s ] )
AC1 (0[m ] ,−63000[m] ,6000[m ] ) (0[m/s] ,300[m/s ] ,0 [m/s ] )
AC2 (−87500[m ] ,0 [m] ,5550[m ] ) (450[m/s ] ,0 [m/s ] ,1 [m/s ] )

Simple applications can be written using PVSio. For example, the procedure
cdnas3dio implements a program that

1. reads a filename file and a time t,
2. checks if a file file exists and, if this is the case, opens the file and loads it

in an element nas of type NAS,
3. computes the projection of nas at time t, and
4. prints the identifiers of the aircraft that are in conflict in the projected NAS.

readvect(t :Tokenizer) : [Vect3,Tokenizer ] =

LET t = accept_real(t) , x = val_real(t) ,
t = accept_real(t) , y = val_real(t) ,
t = accept_real(t) , z = val_real(t) ,
v : Vect3 = (x ,y ,z) IN

(v ,t)

readac(s :string) : Aircraft =

LET t = go_next(str2tokenizer(s ,empty_tokenizer)) ,
id = last_token(t) ,
(s ,t) = readvect(t) ,
(v ,t) = readvect(t) IN

(# id := id , state := (# s :=s ,v :=v #) #)

loadnas(file :string) : NAS =

fmap_line(fopenin(file) ,empty,
LAMBDA(s :string,nas :NAS) :
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update(nas,readac(s)))

cdnas3dio : void =

LET file = query_line(”Filename : ”) IN

IF fexists(file) THEN

LET t = query_real(”Time [sec ] : ”) ,
nas = nas_at(loadnas(file) ,t) IN

println(”NAS:”) &

printnas(nas) &

println(”−−−”) &

FORALL(k :below(length(nas‘acs)) ,
i :subrange(k+1,length(nas‘acs)−1)):

LET aco = nas‘acs(k) ‘state,
aci = nas‘acs(i) ‘state IN

IF cd3d?(aco‘s−aci‘s ,aco‘v−aci‘v) THEN

println(”Conflict between ”+nas‘acs(k) ‘id+” and ”+
nas‘acs(i) ‘id)

ELSE skip

ENDIF

ELSE

print(”File ”+file+” not found”)
ENDIF

The procedure cdnas3dio can be executed from the command line as a stan-
dalone application.7

$ pvsio examples@nasio :cdnas3dio
Filename :
xxxx

File xxxx not found

$ pvsio examples@nasio :cdnas3dio
Filename :
traffic .txt
Time [sec ] :
0
NAS :
AC0 (−90000[m ] ,0 [m] ,6000[m ] ) (400[m/s ] ,0 [m/s ] ,0 [m/s ] )
AC1 (0[m ] ,−78000[m] ,6000[m ] ) (0[m/s] ,300[m/s ] ,0 [m/s ] )
AC2 (−110000[m ] ,0 [m] ,5500[m ] ) (450[m/s ] ,0 [m/s ] ,1 [m/s ] )
−−−

$ pvsio examples@nasio :cdnas3dio
Filename :
traffic .txt

7 Messages generated by the Lisp runtime have been suppressed.
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Time [sec ] :
100
NAS :
AC0 (−50000[m ] ,0 [m] ,6000[m ] ) (400[m/s ] ,0 [m/s ] ,0 [m/s ] )
AC1 (0[m ] ,−48000[m] ,6000[m ] ) (0[m/s] ,300[m/s ] ,0 [m/s ] )
AC2 (−65000[m ] ,0 [m] ,5600[m ] ) (450[m/s ] ,0 [m/s ] ,1 [m/s ] )
−−−

Conflict between AC0 and AC1

Conflict between AC0 and AC2

Conflict between AC1 and AC2

The file traffic .txt contains the following information.

AC0 −90000 0 6000 400 0 0
AC1 0 −78000 6000 0 300 0
AC2 −110000 0 5500 450 0 1

5.3 Ground Evaluation in the Theorem Prover

PVSio provides a safe integration of the ground evaluator into the theorem
prover. The proof command (eval e), where e is a PVS expression, evaluates
the expression e and prints the result.

|−−−−−−−
{1} max_z(nas_at(nas0, 600)) > 6000

Rule? (eval ”max_z(nas_at(nas0, 600))”)
max_z(nas_at(nas0, 600)) = 6100

|−−−−−−−
{1} max_z(nas_at(nas0, 600)) > 6000

The proof command (eval e) never changes the current sequent, i.e., inde-
pendently of the expression e, it behaves exactly as (skip). In contrast, the
proof rule (eval−expr e) introduces the formula e = ē, where ē is the ground
evaluation of e, to the antecedent of the sequent.

Rule? (eval−expr ”max_z(nas_at(nas0, 600))”)

{−1} max_z(nas_at(nas0, 600)) = 6100
|−−−−−−−

[1 ] max_z(nas_at(nas0, 600)) > 6000

In this case, the resulting sequent is discharged by (assert).
The proof command (eval−formula n), where n is a formula number in the

sequent, ground evaluates the formula and discharges the sequent if it reduces
to FALSE in the antecedent or to TRUE in the consequent.
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|−−−−−−−
{1} max_z(nas_at(nas0, 600)) > 6000

Rule? (eval−formula 1)
Q .E .D .

A fundamental difference between the proof rule eval and the proof rules
eval−expr and eval−formula is illustrated by the following example.

Rule? (eval ”max_gs(nas0)”)
max_gs(nas0) = 450.0

|−−−−−−−
{1} max_gs(nas0) > 400

Rule? (eval−expr ”max_gs(nas0)”)
Function sqrt .sqrt is defined as a semantic attachment .
It cannot be evaluated in a formal proof .

|−−−−−−−
{1} max_gs(nas0) > 400

Rule? (eval−formula 1)
Function sqrt .sqrt is defined as a semantic attachment .
It cannot be evaluated in a formal proof .

|−−−−−−−
{1} max_gs(nas0) > 400

The evaluations performed by eval are exactly as the evaluations performed by
PVSio, i.e, they use semantic attachments if these are available. This behavior
is safe in the theorem prover since eval does not change the sequent in any
way. On the other hand, semantic attachments are always disabled in the eval-
uations performed by eval−expr and eval−formula since these attachments are
potentially unsound.

5.4 Computational Reflection

Since the proof rules eval−expr and eval−formula are sound, or at least as
sound as the rest of the PVS system, a proof technique known as computational
reflection [5] can be used in PVS to mechanically solve some kinds of problems.

Given a logical system L, e.g., PVS, a computational reflection approach to
solve problems of the form `L p, where p belongs to a family P of formulas,
consists in finding

– another family of formulas Q for which a decision procedure for `L q, with
q in Q, exists, and
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– a transformation f that maps formulas p in P into formulas in Q, such that
`L f(p) =⇒ p.

Therefore, a proof of `L p can be obtained by first discharging `L f(p) via the de-
cision procedure for Q and then using the fact that `L f(p) =⇒ p. This approach
is complete if `L f(p)⇐⇒ p. If the formulas in Q are ground, then the decision
procedure is simply the ground evaluator. Furthermore, in a proof assistant such
as PVS, which provides an expressive strategy language, the transformation func-
tion f can be a defined at the meta-theoretical level using the strategy language.
This way, a mechanical approach to solve formulas in P becomes available.

For example, assume that an air traffic manager user is interested in proving
theorems of the form conflictnas3d?(c), where c is a known constant of type
NAS and conflictnas3d? is a predicate on elements of type NAS defined as follows.

conflictnas3d?(nas :NAS) : bool =

EXISTS(k :below(length(nas‘acs)) ,
i :subrange(k+1,length(nas‘acs)−1)):

LET aco = nas‘acs(k) ‘state,
aci = nas‘acs(i) ‘state IN

conflict_3D?(aco‘s−aci‘s ,aco‘v−aci‘v)

The predicate conflict_3D?, on a position s and velocity vector v, is defined in
the theory cd3d of the PVS NASA Library ACCoRD. It specifies the existence of
a time t, less than T, where the position s + t∗v is in the interior of a cylinder
of radius D and height 2∗H centered at the origin. It is recalled that D and H are
given as parameters to the theory cd3d.

A direct proof of a formula of the form conflictnas3d?(c) requires finding
instantiations for the existentially quantified variables k and i in the definition
of conflictnas3d?, and t in the definition of conflict_3D?. Since the type of t
is nnreal, the predicate conflictnas3d? cannot be ground evaluated.

An indirect approach to prove conflictnas3d?(c) proceeds by first showing
the following general theorem.

cdnas3d : THEOREM

FORALL(nas :NAS) :
cdnas3d?(nas) IFF conflictnas3d?(nas)

Theorem cdnas3d can be easily proved since the theory cd3d provides a lemma
that states that the predicates cd3d? and conflict_3D? are equivalent. There-
fore, proving conflictnas3d?(c) is equivalent to proving the ground Boolean
expression cdnas3d?(c). The truth value of the expression cdnas3d?(c) can be
found by using the ground evaluator.

In this case, all the elements for developing a mechanical approach to prove
formulas of the form conflictnas3d?(c) by computational reflection are avail-
able. The strategy conflictnas3d, defined in the file pvs−strategies in the
working directory, implements this approach.

1 (defstep conflictnas3d ()
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2 (then (lemma ”cdnas3d”)
3 (inst? −1)
4 (assert)
5 (invoke (eval−formula $1n) (? ∗ ”cdnas3d?”)))
6 ”Decision procedure for formulas of the form conflictnas3d?(nas) ,
7 where nas is a known constant element of type NAS.”
8 ”Discharging the predicate conflictnas3d?”)

In PVS, strategies are written in a proof scripting language that consists
of proof commands, proof combinators, which provide control structure, and
Lisp functions, which provide read-only access to the internal representation of
proof sequents. The strategy conflictnas3d is defined in line 1 without any
parameters. The body of the strategy, lines 2–5, starts with the proof combina-
tor THEN that applies in sequence the proof commands given as arguments. The
first command is (lemma ”cdnas3d”), which introduces the lemma as formula −1
in the current sequent. The proof command (inst? −1) automatically instanti-
ates this formula. The resulting sequent is simplified with the proof command
(assert). The last command in the proof script is the most interesting. It uses
the proof rule invoke, which is defined in the Manip package [4], with the argu-
ments (eval−formula $1n) and (? ∗ ”cdnas3d?”). The second argument finds
a formula in the sequent that matches the string ”cdnas3d?”. The first argu-
ment applies the proof rule eval−formula to the formula number of the formula
specified by the second argument. Lines 6–7 specify the documentation string
displayed when the command (help conflictnas3d) is issued. Line 8 specifies
the string that is displayed when the strategy is used in the theorem prover.

The following examples illustrate the use of the strategy conflictnas3d.

{−1} conflictnas3d?(nas0)
|−−−−−−−

Rule? (conflictnas3d)
Discharging the predicate conflictnas3d?,
Q .E .D .

|−−−−−−−
{1} conflictnas3d?(nas_at(nas0, 50))

Rule? (conflictnas3d)
Discharging the predicate conflictnas3d?,
Q .E .D .

When a user-defined strategy such as conflictnas3d is introduced in the theo-
rem prover, another strategy named conflictnas3d$ is automatically introduced
as well. This new strategy behaves exactly as conflictnas3d, but instead of be-
ing a blackbox, it automatically expands its definition when used inside the
theorem prover. This way, proofs involving user-defined strategies can always be
expanded to strategy-free proofs only supported by basic proof rules.
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6 Conclusion

This paper illustrates the use of some advanced features in PVS through a simple
formal model of a National Aerospace System. In this model, PVS has been used
to perform a typical verification task from formal specifications to formal proofs
and testing. The main PVS features covered by this task are dependent types and
predicate subtyping for specifications, tail recursion, implicit induction, iterative
functions, rapid prototyping, computational reflection via ground evaluation, and
strategy writing.

PVS is under active maintenance and development by SRI International and
members of the PVS community such as the Formal Methods group at NASA
Langley. In this survey, several PVS enhancements and features have been omit-
ted. For instance, record and tuple type extensions, structural record subtyp-
ing, co-inductive types, sum types, and theory interpretations [17] are recent
enhancements to the specification language.8 Packages for manipulation of al-
gebraic expressions [4], simplification of real number expressions [11], and batch
proving [10] are now part of the standard distribution of PVS. Powerful auto-
mated strategies for real-valued functions [3] and multivariate polynomials [12]
are available as part of the PVS NASA Libraries. These strategies are fully writ-
ten in the PVS strategy language and do not rely on any external oracle. More
experimental extensions to the theorem prover include a random test generator
based on work done in Haskell and Isabelle [13], a strategy based on the SMT
(Satisfiability Modulo Theories) solver Yices, and simplification procedures for
propositional and temporal logic based on a BDD (Binary Decision Diagrams)
package. PVS tools under development and currently unavailable include, a gen-
erator of Java code from PVS functional specifications [6], a dimensional analysis
tool, and a package for termination analysis based on work done in ACL2s [8].

Last but not least, libraries of theories ranging from fundamental mathemat-
ical developments to general frameworks for the analysis of fault-tolerant pro-
tocols and air traffic management systems are available from repositories such
as the PVS NASA Libraries and the PVS libraries by the University of Seville9.
Despite its age, the Program Verification System continues to be a solid system.
The rich specification language, powerful theorem prover, large set of contribu-
tions, and pragmatic approach to formal verification distinguish PVS from other
proof assistnat and make it particularly well-adapted to the formal analysis of
safety-critical complex applications. For these reasons, PVS has played a major
role on several formal verifications projects at NASA Langley for more than 10
years.
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document.

8 http://pvs.csl.sri.com/pvs-release-notes/pvs-release-notes.html.
9 http://www.glc.us.es/wiki/Theories#Theories_in_PVS.
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