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ABSTRACT 

Two important elements in the avionics suite of modern 
aircraft are: the Flight Control System (FCS) and the 
Flight Management System (FMS). The FCS provides the 
capability to stabilize and control the aircraft, while the 
FMS is responsible for fight planning and navigation. 

A clear trend in the aerospace industry is to place 
greater reliance on software systems, and many FCS and 
FMS subsystems are implemented primarily in software. 
For example, within the FCS is the Flight Guidance System 
(FGS) that generates roll and pitch guidance commands. 
Similarly, within the FMS is the Vertical Navigation 
(VNAV) function that acts Like a third crew member in the 
cockpit, ordering mode change requests and resetting 
target altitude values to enable the aircraft to track the 
vertical flight plan. 

We have developed formal, executable models of the 
requirements for the mode logic of a FGS and for portions 
of the VNAV functionality. We have also conducted a 
comprehensive software safety analysis on the FGS mode 
logic model, and are completing the analysis of the VNAV 
model. This analysis uses as its starting point several 
"traditional" safety analysis techniques such as a 
Functional Hazard Assessment (FHA), a Fault Tree 
Analysis (FTA), and a Failure Mode Effects Analysis 
(FMEA). However, we are also using formal methods 
techniques known as model checking and theorem proving 
to verify the presence of safety properties in the model. 
This paper summarizes the (now completed) safety 

analysis that was performed on the FGS model, and 
highlights the similarities and differences with the (still 
on-going) safety analysis of the FMS model. In particular, 
we summarize progress made to date in the use of formal 
methods to verify the presence of the required safety 
properties in the models themselves. 

AuUlon' Cumd Addresses: 
A.C. Tribblc and S.P. Millcr. Rackwsll Collim, 4w Coilins Road. NE C&t Rapids. IA 
52498. USA. 

INTRODUCTION 

Tbe Problem Domain 
One of the challenges to investigating the feasibility and 

cost effectiveness of new software safety analysis techniques is 
developing a realistic model of a system that reflects the 
complexity of an actual product. The aviation domain provides 
several excellent candidates and the avionics system of a 
typical regional jet aircraft was chosen because of its safety 
critical nature and its inherent complexity. As Figure 1 shows, 
the avionics architecture is comprised of many individual 
systems. The gray boxes indicate those systems that are mainly 
non-electronic, (i.e., little software) in nature. The white boxes 
indicate those systems that are electronic, and often have high 
software content like the Flight Management System (FMS) 
and the Flight Control System (FCS). The FMS is decomposed 
into discrete and continuous elements called the mode logic, 
the control laws, and the flight plan. The FMS mode logic is a 
set of discrete algorithms that determine when the FGS should 
change modes of operation. The control laws are continuous 
trajectory calculations that compare the measured state of the 
aircraft (position, speed, attitude, altitude), to the desired state 
and generate guidance commands to minimize the difference 
between the two. Finally, the flight plan is defined by the flight 
crew and specifies the desired trajectory of the aircraft, based 
on adherence to constraints on altitude and position. The FCS 
also contains mode logic and flight control laws, known as the 
Flight Guidance System (FGS), in addition to the Flight 
Director (FD), Auto-Pilot (AP), and Auto-Throttle (AT). Other 
elements, not shown, may include a yaw damper and auto-trim. 

The FGS is a software function that generates roll and pitch 
values used to control the aircraft, and was selected as the 
example for OUT analysis. The FGS is decomposed into discrete 
and continuous elements called the mode logic and the flight 
control laws, respectively. The flight control laws compare the 
measured state of the aircraft (position, speed, attitude, 
altitude, to the desired state and generate guidance commands 
to minimize the difference between the two. The mode logic 
selects the appropriate flight control laws for use anytime the 
system is active. In contrast, the FMS is responsible for a more 
diverse set of functions ranging from flight planning to 
navigation. 

Accident Model 
Although thorough knowledge of the nature of accidents is 

not necessary to appreciate the value of our results, a high level 
understanding is helpful to see how this same approach could 
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Fig. 1. The high level architecture of an avionics system 

be applied in a larger context. Underlying our analysis is an 
assumption about the nature of accidents as shown in Figure 2. 
The definitions used in this accident model are in general 
agreement with IEEE standards [l, 21. In brief, an error may be 
manifested as a fault, a fault may result in a failure, a failure 
may place the system in a hazardous condition, and a 
hazardous condition may result in an accident I .  

Our safety analysis therefore focuses on defining the 
hazards, failures, faults, and errors that could lead to accidents. 
As shown later, our analysis will use a combination of standard 
techniques, (e.g., Fault Tree Analysis and Failure Modes, 
Effects, and Criticality Analysis), in combination with 
non-traditional, yet very powerful, formal methods techniques. 

SOFTWARE SAFETY ANALYSIS 

Specifying the Requirements 
A specification of the FGS mode logic, and portions of the 

VNAV function, has been generated in a formal language, the 
Requirements State Machine Language without Events 
(RSML'). RSML' is a synchronous language developed for 
specifying the behavior of process control systems [3]. RSML' 
runs in the "Nimbus" environment developed by the Critical 
Systems Research Group at the University of Minnesota. The 
environment provides a framework for the development of 
software for safety critical systems, including simulation and 
visualization. In particular, the Nimbus environment includes a 
graphical user interface for the simulation engine. An 
advantage of RSML' is that it is executable. That is, a user may 
provide inputs and watch how the state machines respond. This 
makes it ideal for use in a model-based development 
environment where the requirements themselves can be 
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Fig. 2. The sequence of events leading to an accident 

verified early in the design and development process, while the 
cost of correcting them is still low. Another important 
advantage is that RSML' possesses a precise formal semantics 
so that the models can be formally analyzed. 

The predecessor to RSML', RSML was heavily influenced 
by Statecharts and uses a similar notion of explicit event 
propagation. RSML was used to specify the Traffic Collision 
Avoidance System U (TCAS-11) and the RSML model was 
ultimately adopted by the FAA as the official specification for 
TCAS-11. As its name implies, RSML' eliminates the use of 
events and its semantics have been fully formally defined. 
RSML' is in most respects similar to SpecTRM-RL, developed 
by the Safeware Engineering Corporation, but has a slightly 
different syntax and underlying philosophy. 

DEFINING THE SAFETY PROPERTIES 

The next step in the safety analysis process is to formally 
define those properties of the software associated with safety. 
Safety properties were generated via a Bi-Directional Analysis 
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(BDA) technique [4,5]. The starting point for the BDA-is the 
list of hazards. Top-down analysis is then used to trace the 
hazards down to the related errors. To close the loop, an 
independent hottom-up analysis is used to trace the errors back 
up to hazards. 

Functional Hazard Assessment (FHA) 
Safety is a system level problem and aviation safety 

standards ARF’ 4754 and ARF’ 4761 specify that safety analysis 
be performed both at the aircraft level and at the system level 
[6,7]. The aircraft level hazards are generally few, such as loss 
of control. If the loss of control hazard is examined, it can be 
found that failures in a number of systems, (e.g.. hydraulic 
lines, control yokes, flight control surfaces), could give rise to 
it. These hazards will derive from functional failures and are 
defined in a Functional Hazard Assessment (FHA). 

We started with the functional requirements for the system 
in question. Examining the consequences of the system failing 
to provide this functionality identified the hazards associated 
with the function. Each of these hazards was then assigned a 
level of criticality in accordance with DO-178B and 
MIL-STD-882 18, 91. 

We have completed the FHA for both the FGS mode logic 
and VNAV models. The FGS mode logic analysis is complete, 
[lo, 111, while the VNAV analysis is still being refined [12]. 
As such, the majority of our discussion will focus on 
describing the results from the analysis of the FGS mode logic 
model. After completing this analysis, we identified four Level 
C (Major) hazards. Because Level C is the most critical hazard, 
the FGS is considered a Level C system. (In comparison, 
VNAV is usually considered a Level B system.) The FHA for 
the Level C hazards is shown in Table 1. 

Fault Tree Analysis @TA) 
Fault Tree Analysis (FTA) is a top-down analysis technique 

used to identify the contributing elements (errodfaultd 
failures) that could precipitate the system level hazards 
identified [2, 131. FTA is a fed-back technique in that one 
starts with the system level hazards and attempts to work 
backward by identifying all possible causes of the hazards. 
Although the name implies that the technique is limited only to 
“faults,” it should be emphasized that FTA is a general, visual 
technique used to trace higher level events (such as hazards) 
down to their contributing events. These contributing events 
could be failures, or errors, in addition to faults. 

In an actual aircraft program, the FTA would start with the 
system level hazards; for example, Loss of Control, and 
include all aircraft systems that could potentially contribute to 
such a hazard. For our purposes, the FTA will start with the 
hazards identified in the FHA. For example, the FTA 
associated with the hazard “Incorrect Guidance” is shown in 
Figure 3. Note that because safety is a system level property, 
the FTA must include elements that input information to the 
FGS, such as the Flight Control Laws (FCL), and elements that 
the FGS outputs information to, such as the AP or FD. By 
performing a FTA on each of the four hazards listed in Table 1, 
we obtained a listing of twenty-three (23) possible events that 

*I Values Received Fl --- 
Sends Incorrect Sends Incorrect 

Guidance Valuer Guidance Valuer 

Error in FCL FCL Generates 
Selection Logic 

0 

Fig. 3. A top level view of the fault tree analysis 
for the hazard -incorrect guidance 

could contribute to hazardous conditions. Of these, eight (8) 
were relevant to the FGS mode logic. 

Failure Mode Effects Analysis (FMEA) 
To check the results from the top-down ITA, we conducted 

a bottom-up Failure Mode Effects Analysis (FMEA). FMEA is 
a feed-forward technique in that the starting points for the 
analysis are possible errors which are then traced forward to 
see if they have any impact on system safety (i.e., if they lead to 
potential hazards) [2, 131. As with the FTA, the term FMEA 
should not imply that the results are limited to “failures.” 
FMEA is a general analysis method that flows errors (or faults 
or failures) forward to hazardous conditions. 

The output of a FMEA is a tabular presentation that lists: 1) 
failure mode (error); 2) effects (hazard); and 3) analysis 
(interpretation). The starting point for the FMEA was the list of 
errors derived from Table 1. Many of these errors are 
associated with hardware or are dependent on malfunctions in 
other systems and were considered out of scope for this 
software safety analysis. In this instance, the FMEA did not 
uncover any new failures but rather confirmed the results 
generated by the ITA. This is one of the advantages of BDA; 
tracing through the accident process in both directions gives 
higher confidence in the final results. 
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Table 1. The Functional Hazard Assessment IdenWied Four Level C Hazards 

Incorrect 
Mode 

Indication 

Failure Operational 
(Hazard) Phase 

Incorrect Approach 
Guidance 

Approach 

Incorrect 
Indication of 

Flight 
Guidance 
Transfer 

State. 

All 

I 
Incorrect AP 
Engagement 
Indication 

Approach 

Aircraft Manifestation 

Gradual departure from references until 
detected by flight crew during check of primary 
flight data resulting in manual disconnect and 

manual flying. 

Gradual departure from references until 
detected by flight crew during check of primary 
flight data resulting in manual disconnect and 

manual flying. 

Incorrect “Pilot Flying” side indicated. 
Possible gradual departure from references 

until detected by flight crew during check of 
primary flight data resulting in manual 

disconnect and manual flying. 

If engaged, engagement noticed by resistance 
to control column / wheel inputs. If 

disengaged, departure from references noticed 
during check of primary flight data. Result is 

manual disconnect and manual flying. 

Safety Properties 
The eight categories of software errors that were in scope 

were further examined, to identify the specific properties of the 
software that could produce the higher level events. For 
example, in the final model it was seen that there were 
forty-one (41) separate functional properties associated with 
the “Error in Annunciation Logic” category. Nine (9) of these 
“functional” requirements are truly “safety” properties in that 
violating them may place the system in a hazardous condition. 
Special emphasis should be placed on verifying these 
properties that relate to safety. 

As shown in Table 2, the FGS mode logic model contained 
293 distinct functional requirements, or functional properties. 
The safety analysis showed that 155 of these “functional” 
properties were truly “safety” properties that could result in 
one of the four Level C (Major) hazards identified. We believe 
that the analysis to this point is unique in that this level of detail 
is not usually conducted on Level C (or Level B) systems. 
However, we have also taken our analysis to an even high er^ 
level by expanding it to include Formal Methods techniques as 
discussed in the next section. 

FORMAL METHODS APPROACH 

The term Formal Methods refers to a variety of 
mathematical modeling techniques applicable to computer 

Comment 

No Difference to the AP 
Between Loss of 

Guidance and Incorrect 
Guidance. 

Assumes guidance values 
are correct. 

Departure from references 
occurs only if pilot flying 
and pilot not flying have 

selected different 
navigation sources. 

Assumes AP disconnect 
remains operational 

system (software and hardware) design. In much the same way 
that aeronautical engineers make use of computational fluid 
dynamics (CFD) to predict how a particular airframe design 
will behave in flight, computer scientists may use formal 
methods to predict the behavior of software or hardware. Two 
of the most popular formal verification tools are: model 
checkers and theorem provers [14, 151. 

Theorem proving is a technique where both the system and 
its desired properties are expressed as formulas in 
mathematical logic. Proving a theorem is simply the process of 
verifying the existence of a mathematical property from the 
specifications of the system. Although in principle all proofs 
could be done manually, it is more effective to use machine 
based theorem provers to tackle larger, more realistic 
problems, such as the FGS mode logic or VNAV. 

Model checking is a technique that relies on building a finite 
model of a system and checking that a desired property holds in 
the model. Checking a model is the process of performing an 
exhaustive state space search, which is guaranteed to terminate 
if the model is finite, to look for examples that do not meet the 
property desired. If a counter-example is found, it is known 
that the property does not hold. 

The use of formal methods in assessing software safety 
involves four steps. First, the software itself must be specified 
in a formal language. Second, the safety properties must also 
be defined formally. Third, both the specification and the 
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Table 2. A Total of 142 Safety Properties were Identified for the Mode Logic 

Error in Annunciation. Logic 
e 
D 
8 Error in FD Selection Logic 

Error in Pilot Flying Transfer Logic 

Error in Independent / Active Logic 

B 
0 
(Y 

E 
0 
L 

& 
Error in AP Engagement Logic 

a 
v1 Error in Mode Selection Logic 

Error in Synchronization Logic 

b 
I f  

2 
0 
'*t 

41 

13 

8 

5 

10 

166 

50 

5 I Total # of Properties I 293 141 4 10 

safety properties must be translated into formal methods tools 
capable of performing the analysis. Finally, the analysis itself 
is conducted. An overview of each of these steps, as they have 
been applied to our problem domain, is provided in the next 
section. 

Translating to Analysis Tools 
It is certainly possible to define the requirements and safety 

properties in the same language initially, but for real projects 
this will rarely be the case. The requirements model will 
probably be developed in tools such as RSML', Matlab or 
SCADE. Safety properties will probably be defined in English 
prose. Even if the properties were defined in the requirements 
modeling tool, the modeling tool itself would probably lack the 
analysis capability and would require translation to a theorem 
prover or model checker to enable the actual analysis. The 
RSML' tool has automated translators to both the NuSMV 
model checker and the PVS theorem prover [16,17]. 

We were extremely pleased to see that the FGS mode logic 
model was completely analyzable with a model checker. That 
is, all 293 functional (142 safety) properties were verified by 
the NuSMV model checker in about two hours. This confirms 
that model checking technology is advanced enough for use on 
models such as the FGS mode logic, which are composed of 
primarily discrete logic. Analysis of the FMS VNAV model 
has not yet been completed. The FMS VNAV model utilizes 
integers and reals, making it a much larger state space. For 

# of Properties Contributing to a 
Level C (Major) Hazard 
I I I 

example, most altitude values are specified in feet, with 
possible values ranging from -1,300.00 to + 65,000.00. 
Truncating the accuracy at two decimal points would result in 
6,630,000 possible numerical values for all altitude variables. 
In theory, the combined state space for two altitude variables, 
(such as the &-Select Altitude and the Flight Plan Target 
Altitude), would be the product of the state space for either 
variable, or more than 10". This is the equivalent state space of 
over 40 independent Boolean variables. We are investigating 
different approaches that may enable the model checker to 
solve the FMS VNAV problem [12], but in the meantime we 
are proceeding with the use of the PVS theorem prover. 

In comparison to model checkers, which are easy to use but 
limited by the state space explosion problem, two key 
advantages of theorem provers are largely unaffected by the 
size of the state space. Unfortunately, theorem provers are 
more difficult to use and require much more manual oversight 
than model checkers, which are very automated. A theorem 
prover applies the rules of logic to reason about the system in 
question. Theorem proving is the process of: 

Specifying the system, assumptions, necessary 
background theories, and desired properties, as 
formulas in a single logic, then; 

Proving that the property is modeled by the 
system + assumptions +background. 
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Using the processing speed and memory of modem 
computing systems makes the theorem prover capable of 
rigorously dealing with much larger and more complex 
problems than the human mind can, but the reasoning process 
is - for the most part - still guided by the human user. For 
example, the theorem prover may try to prove a lemma by 
induction, only to generate different subgoals that must be 
proven individually before the proof can be completed. The 
user must provide guidance on what rules of inference should 
be used, and in what order they should be applied, for the 
theorem prover to complete the task. 

To date, we have succeeded in proving many properties for 
both the FGS model logic and VNAV models. The results 
confirm the advantage of using theorem provers for problems 
of this nature, but also highlight the difficulties in transitioning 
the results from the laboratory to a production environment. 
We are confident that the theorem prover is capable of 
discharging all properties (provided we have indeed 
constructed the models correctly) and we are continuing to 
investigate methods that will speed the analysis so that other 
programs can benefit from our results. 

SUMMARY AND CONCLUSIONS 

We have constructed formal, executable models of two 
complex, embedded software systems - the mode logic of a 
Flight Guidance System and the Vertical Navigation function. 
Having the ability to simulate the models helps to verify the 
correctness and completeness of the requirements and is also a 
starting point for further model-based development. In order to 
identify the properties of the software that are related to safety, 
we then conducted a thorough software safety analysis using 
standard techniques such as Functional Hazard Assessment 
(FHA), Fault Tree Analysis (FTA), and Failure Mode Effects 
Analysis (FMEA). To verify that the model did indeed contain 
the safety properties required, we then conducted an extended 
software safety analysis on the design requirements using two 
formal methods techniques: model checking and theorem 
proving. In particular, we have used a model checker to show 
that almost 300 functional (and safety) properties associated 
with the FGS mode logic are mathematically verifiable 
properties of the model. We have also used a theorem prover to 
verify a smaller number of properties for both the FGS mode 
logic and VNAV models. 

We have found the use of formal requirements modeling, in 
conjunction with Bi-Directional Analysis and formal methods 
analysis techniques, to be a cost-effective and flexible 
approach to the issue of software safety. In particular, we were 
impressed with the power of model checking as applied to this 
example. This lends credence to the belief that such 
approaches may become an integral part of future model-based 
development efforts [181. 
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