
Software Intensive Systems Safety Analysis

Alan C. Tribble & Steven P. Miller
Rockwell Collins

ABSTRACT

Two important elements in the avionics suite of modern
aircraft are: the Flight Control System (FCS) and the
Flight Management System (FMS). The FCS provides the
capability to stabilize and control the aircraft, while the
FMS is responsible for fight planning and navigation.

A clear trend in the aerospace industry is to place
greater reliance on software systems, and many FCS and
FMS subsystems are implemented primarily in software.
For example, within the FCS is the Flight Guidance System
(FGS) that generates roll and pitch guidance commands.
Similarly, within the FMS is the Vertical Navigation
(VNAV) function that acts Like a third crew member in the
cockpit, ordering mode change requests and resetting
target altitude values to enable the aircraft to track the
vertical flight plan.

We have developed formal, executable models of the
requirements for the mode logic of a FGS and for portions
of the VNAV functionality. We have also conducted a
comprehensive software safety analysis on the FGS mode
logic model, and are completing the analysis of the VNAV
model. This analysis uses as its starting point several
"traditional" safety analysis techniques such as a
Functional Hazard Assessment (FHA), a Fault Tree
Analysis (FTA), and a Failure Mode Effects Analysis
(FMEA). However, we are also using formal methods
techniques known as model checking and theorem proving
to verify the presence of safety properties in the model.
This paper summarizes the (now completed) safety

analysis that was performed on the FGS model, and
highlights the similarities and differences with the (still
on-going) safety analysis of the FMS model. In particular,
we summarize progress made to date in the use of formal
methods to verify the presence of the required safety
properties in the models themselves.

AuUlon' Cumd Addresses:
A.C. Tribblc and S.P. Millcr. Rackwsll Collim, 4w Coilins Road. NE C&t Rapids. IA
52498. USA.

INTRODUCTION

Tbe Problem Domain
One of the challenges to investigating the feasibility and

cost effectiveness of new software safety analysis techniques is
developing a realistic model of a system that reflects the
complexity of an actual product. The aviation domain provides
several excellent candidates and the avionics system of a
typical regional jet aircraft was chosen because of its safety
critical nature and its inherent complexity. As Figure 1 shows,
the avionics architecture is comprised of many individual
systems. The gray boxes indicate those systems that are mainly
non-electronic, (i.e., little software) in nature. The white boxes
indicate those systems that are electronic, and often have high
software content like the Flight Management System (FMS)
and the Flight Control System (FCS). The FMS is decomposed
into discrete and continuous elements called the mode logic,
the control laws, and the flight plan. The FMS mode logic is a
set of discrete algorithms that determine when the FGS should
change modes of operation. The control laws are continuous
trajectory calculations that compare the measured state of the
aircraft (position, speed, attitude, altitude), to the desired state
and generate guidance commands to minimize the difference
between the two. Finally, the flight plan is defined by the flight
crew and specifies the desired trajectory of the aircraft, based
on adherence to constraints on altitude and position. The FCS
also contains mode logic and flight control laws, known as the
Flight Guidance System (FGS), in addition to the Flight
Director (FD), Auto-Pilot (AP), and Auto-Throttle (AT). Other
elements, not shown, may include a yaw damper and auto-trim.

The FGS is a software function that generates roll and pitch
values used to control the aircraft, and was selected as the
example for OUT analysis. The FGS is decomposed into discrete
and continuous elements called the mode logic and the flight
control laws, respectively. The flight control laws compare the
measured state of the aircraft (position, speed, attitude,
altitude, to the desired state and generate guidance commands
to minimize the difference between the two. The mode logic
selects the appropriate flight control laws for use anytime the
system is active. In contrast, the FMS is responsible for a more
diverse set of functions ranging from flight planning to
navigation.

Accident Model
Although thorough knowledge of the nature of accidents is

not necessary to appreciate the value of our results, a high level
understanding is helpful to see how this same approach could

IEEE A&E SYSTEMS MAGAZINE, OCTOBER ZOM 21

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 13, 2009 at 14:06 from IEEE Xplore. Restrictions apply.

THROTTLES

ENGiNES

i b i SURFACES

Fig. 1. The high level architecture of an avionics system

be applied in a larger context. Underlying our analysis is an
assumption about the nature of accidents as shown in Figure 2.
The definitions used in this accident model are in general
agreement with IEEE standards [l, 21. In brief, an error may be
manifested as a fault, a fault may result in a failure, a failure
may place the system in a hazardous condition, and a
hazardous condition may result in an accident I .

Our safety analysis therefore focuses on defining the
hazards, failures, faults, and errors that could lead to accidents.
As shown later, our analysis will use a combination of standard
techniques, (e.g., Fault Tree Analysis and Failure Modes,
Effects, and Criticality Analysis), in combination with
non-traditional, yet very powerful, formal methods techniques.

SOFTWARE SAFETY ANALYSIS

Specifying the Requirements
A specification of the FGS mode logic, and portions of the

VNAV function, has been generated in a formal language, the
Requirements State Machine Language without Events
(RSML'). RSML' is a synchronous language developed for
specifying the behavior of process control systems [3]. RSML'
runs in the "Nimbus" environment developed by the Critical
Systems Research Group at the University of Minnesota. The
environment provides a framework for the development of
software for safety critical systems, including simulation and
visualization. In particular, the Nimbus environment includes a
graphical user interface for the simulation engine. An
advantage of RSML' is that it is executable. That is, a user may
provide inputs and watch how the state machines respond. This
makes it ideal for use in a model-based development
environment where the requirements themselves can be

_.,

Errorr

Detect10
and

Conectio

AIRCRAFT
STATE

RADIO/

SENSORS

OTHER 'n SENSORS

Accident
Hazard 4

U U

Fig. 2. The sequence of events leading to an accident

verified early in the design and development process, while the
cost of correcting them is still low. Another important
advantage is that RSML' possesses a precise formal semantics
so that the models can be formally analyzed.

The predecessor to RSML', RSML was heavily influenced
by Statecharts and uses a similar notion of explicit event
propagation. RSML was used to specify the Traffic Collision
Avoidance System U (TCAS-11) and the RSML model was
ultimately adopted by the FAA as the official specification for
TCAS-11. As its name implies, RSML' eliminates the use of
events and its semantics have been fully formally defined.
RSML' is in most respects similar to SpecTRM-RL, developed
by the Safeware Engineering Corporation, but has a slightly
different syntax and underlying philosophy.

DEFINING THE SAFETY PROPERTIES

The next step in the safety analysis process is to formally
define those properties of the software associated with safety.
Safety properties were generated via a Bi-Directional Analysis

IEEE A&E SYSTEMS MAGAZINE. W O B E R 2004

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 13, 2009 at 14:06 from IEEE Xplore. Restrictions apply.

(BDA) technique [4,5]. The starting point for the BDA-is the
list of hazards. Top-down analysis is then used to trace the
hazards down to the related errors. To close the loop, an
independent hottom-up analysis is used to trace the errors back
up to hazards.

Functional Hazard Assessment (FHA)
Safety is a system level problem and aviation safety

standards ARF’ 4754 and ARF’ 4761 specify that safety analysis
be performed both at the aircraft level and at the system level
[6,7]. The aircraft level hazards are generally few, such as loss
of control. If the loss of control hazard is examined, it can be
found that failures in a number of systems, (e.g.. hydraulic
lines, control yokes, flight control surfaces), could give rise to
it. These hazards will derive from functional failures and are
defined in a Functional Hazard Assessment (FHA).

We started with the functional requirements for the system
in question. Examining the consequences of the system failing
to provide this functionality identified the hazards associated
with the function. Each of these hazards was then assigned a
level of criticality in accordance with DO-178B and
MIL-STD-882 18, 91.

We have completed the FHA for both the FGS mode logic
and VNAV models. The FGS mode logic analysis is complete,
[lo, 111, while the VNAV analysis is still being refined [12].
As such, the majority of our discussion will focus on
describing the results from the analysis of the FGS mode logic
model. After completing this analysis, we identified four Level
C (Major) hazards. Because Level C is the most critical hazard,
the FGS is considered a Level C system. (In comparison,
VNAV is usually considered a Level B system.) The FHA for
the Level C hazards is shown in Table 1.

Fault Tree Analysis @TA)
Fault Tree Analysis (FTA) is a top-down analysis technique

used to identify the contributing elements (errodfaultd
failures) that could precipitate the system level hazards
identified [2, 131. FTA is a fed-back technique in that one
starts with the system level hazards and attempts to work
backward by identifying all possible causes of the hazards.
Although the name implies that the technique is limited only to
“faults,” it should be emphasized that FTA is a general, visual
technique used to trace higher level events (such as hazards)
down to their contributing events. These contributing events
could be failures, or errors, in addition to faults.

In an actual aircraft program, the FTA would start with the
system level hazards; for example, Loss of Control, and
include all aircraft systems that could potentially contribute to
such a hazard. For our purposes, the FTA will start with the
hazards identified in the FHA. For example, the FTA
associated with the hazard “Incorrect Guidance” is shown in
Figure 3. Note that because safety is a system level property,
the FTA must include elements that input information to the
FGS, such as the Flight Control Laws (FCL), and elements that
the FGS outputs information to, such as the AP or FD. By
performing a FTA on each of the four hazards listed in Table 1,
we obtained a listing of twenty-three (23) possible events that

*I Values Received Fl ---
Sends Incorrect Sends Incorrect

Guidance Valuer Guidance Valuer

Error in FCL FCL Generates
Selection Logic

0

Fig. 3. A top level view of the fault tree analysis
for the hazard -incorrect guidance

could contribute to hazardous conditions. Of these, eight (8)
were relevant to the FGS mode logic.

Failure Mode Effects Analysis (FMEA)
To check the results from the top-down ITA, we conducted

a bottom-up Failure Mode Effects Analysis (FMEA). FMEA is
a feed-forward technique in that the starting points for the
analysis are possible errors which are then traced forward to
see if they have any impact on system safety (i.e., if they lead to
potential hazards) [2, 131. As with the FTA, the term FMEA
should not imply that the results are limited to “failures.”
FMEA is a general analysis method that flows errors (or faults
or failures) forward to hazardous conditions.

The output of a FMEA is a tabular presentation that lists: 1)
failure mode (error); 2) effects (hazard); and 3) analysis
(interpretation). The starting point for the FMEA was the list of
errors derived from Table 1. Many of these errors are
associated with hardware or are dependent on malfunctions in
other systems and were considered out of scope for this
software safety analysis. In this instance, the FMEA did not
uncover any new failures but rather confirmed the results
generated by the ITA. This is one of the advantages of BDA;
tracing through the accident process in both directions gives
higher confidence in the final results.

IEEE A&E SYSTEMS MAGAZINE, OCTOBER 2004 23

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 13, 2009 at 14:06 from IEEE Xplore. Restrictions apply.

Table 1. The Functional Hazard Assessment IdenWied Four Level C Hazards

Incorrect
Mode

Indication

Failure Operational
(Hazard) Phase

Incorrect Approach
Guidance

Approach

Incorrect
Indication of

Flight
Guidance
Transfer

State.

All

I
Incorrect AP
Engagement
Indication

Approach

Aircraft Manifestation

Gradual departure from references until
detected by flight crew during check of primary
flight data resulting in manual disconnect and

manual flying.

Gradual departure from references until
detected by flight crew during check of primary
flight data resulting in manual disconnect and

manual flying.

Incorrect “Pilot Flying” side indicated.
Possible gradual departure from references

until detected by flight crew during check of
primary flight data resulting in manual

disconnect and manual flying.

If engaged, engagement noticed by resistance
to control column / wheel inputs. If

disengaged, departure from references noticed
during check of primary flight data. Result is

manual disconnect and manual flying.

Safety Properties
The eight categories of software errors that were in scope

were further examined, to identify the specific properties of the
software that could produce the higher level events. For
example, in the final model it was seen that there were
forty-one (41) separate functional properties associated with
the “Error in Annunciation Logic” category. Nine (9) of these
“functional” requirements are truly “safety” properties in that
violating them may place the system in a hazardous condition.
Special emphasis should be placed on verifying these
properties that relate to safety.

As shown in Table 2, the FGS mode logic model contained
293 distinct functional requirements, or functional properties.
The safety analysis showed that 155 of these “functional”
properties were truly “safety” properties that could result in
one of the four Level C (Major) hazards identified. We believe
that the analysis to this point is unique in that this level of detail
is not usually conducted on Level C (or Level B) systems.
However, we have also taken our analysis to an even high er^
level by expanding it to include Formal Methods techniques as
discussed in the next section.

FORMAL METHODS APPROACH

The term Formal Methods refers to a variety of
mathematical modeling techniques applicable to computer

Comment

No Difference to the AP
Between Loss of

Guidance and Incorrect
Guidance.

Assumes guidance values
are correct.

Departure from references
occurs only if pilot flying
and pilot not flying have

selected different
navigation sources.

Assumes AP disconnect
remains operational

system (software and hardware) design. In much the same way
that aeronautical engineers make use of computational fluid
dynamics (CFD) to predict how a particular airframe design
will behave in flight, computer scientists may use formal
methods to predict the behavior of software or hardware. Two
of the most popular formal verification tools are: model
checkers and theorem provers [14, 151.

Theorem proving is a technique where both the system and
its desired properties are expressed as formulas in
mathematical logic. Proving a theorem is simply the process of
verifying the existence of a mathematical property from the
specifications of the system. Although in principle all proofs
could be done manually, it is more effective to use machine
based theorem provers to tackle larger, more realistic
problems, such as the FGS mode logic or VNAV.

Model checking is a technique that relies on building a finite
model of a system and checking that a desired property holds in
the model. Checking a model is the process of performing an
exhaustive state space search, which is guaranteed to terminate
if the model is finite, to look for examples that do not meet the
property desired. If a counter-example is found, it is known
that the property does not hold.

The use of formal methods in assessing software safety
involves four steps. First, the software itself must be specified
in a formal language. Second, the safety properties must also
be defined formally. Third, both the specification and the

24 IEEEA&E SYSTEMS MAGAZINE. OCTOBER 2004

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 13, 2009 at 14:06 from IEEE Xplore. Restrictions apply.

Table 2. A Total of 142 Safety Properties were Identified for the Mode Logic

Error in Annunciation. Logic
e
D
8 Error in FD Selection Logic

Error in Pilot Flying Transfer Logic

Error in Independent / Active Logic

B
0
(Y

E
0
L

&
Error in AP Engagement Logic

a
v1 Error in Mode Selection Logic

Error in Synchronization Logic

b
I f

2
0
'*t

41

13

8

5

10

166

50

5 I Total # of Properties I 293 141 4 10

safety properties must be translated into formal methods tools
capable of performing the analysis. Finally, the analysis itself
is conducted. An overview of each of these steps, as they have
been applied to our problem domain, is provided in the next
section.

Translating to Analysis Tools
It is certainly possible to define the requirements and safety

properties in the same language initially, but for real projects
this will rarely be the case. The requirements model will
probably be developed in tools such as RSML', Matlab or
SCADE. Safety properties will probably be defined in English
prose. Even if the properties were defined in the requirements
modeling tool, the modeling tool itself would probably lack the
analysis capability and would require translation to a theorem
prover or model checker to enable the actual analysis. The
RSML' tool has automated translators to both the NuSMV
model checker and the PVS theorem prover [16,17].

We were extremely pleased to see that the FGS mode logic
model was completely analyzable with a model checker. That
is, all 293 functional (142 safety) properties were verified by
the NuSMV model checker in about two hours. This confirms
that model checking technology is advanced enough for use on
models such as the FGS mode logic, which are composed of
primarily discrete logic. Analysis of the FMS VNAV model
has not yet been completed. The FMS VNAV model utilizes
integers and reals, making it a much larger state space. For

of Properties Contributing to a
Level C (Major) Hazard
I I I

example, most altitude values are specified in feet, with
possible values ranging from -1,300.00 to + 65,000.00.
Truncating the accuracy at two decimal points would result in
6,630,000 possible numerical values for all altitude variables.
In theory, the combined state space for two altitude variables,
(such as the &-Select Altitude and the Flight Plan Target
Altitude), would be the product of the state space for either
variable, or more than 10". This is the equivalent state space of
over 40 independent Boolean variables. We are investigating
different approaches that may enable the model checker to
solve the FMS VNAV problem [12], but in the meantime we
are proceeding with the use of the PVS theorem prover.

In comparison to model checkers, which are easy to use but
limited by the state space explosion problem, two key
advantages of theorem provers are largely unaffected by the
size of the state space. Unfortunately, theorem provers are
more difficult to use and require much more manual oversight
than model checkers, which are very automated. A theorem
prover applies the rules of logic to reason about the system in
question. Theorem proving is the process of:

Specifying the system, assumptions, necessary
background theories, and desired properties, as
formulas in a single logic, then;

Proving that the property is modeled by the
system + assumptions +background.

IEEE A&E SYSTEMS MAGAZINE. OCTOBER 2004 25

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 13, 2009 at 14:06 from IEEE Xplore. Restrictions apply.

Using the processing speed and memory of modem
computing systems makes the theorem prover capable of
rigorously dealing with much larger and more complex
problems than the human mind can, but the reasoning process
is - for the most part - still guided by the human user. For
example, the theorem prover may try to prove a lemma by
induction, only to generate different subgoals that must be
proven individually before the proof can be completed. The
user must provide guidance on what rules of inference should
be used, and in what order they should be applied, for the
theorem prover to complete the task.

To date, we have succeeded in proving many properties for
both the FGS model logic and VNAV models. The results
confirm the advantage of using theorem provers for problems
of this nature, but also highlight the difficulties in transitioning
the results from the laboratory to a production environment.
We are confident that the theorem prover is capable of
discharging all properties (provided we have indeed
constructed the models correctly) and we are continuing to
investigate methods that will speed the analysis so that other
programs can benefit from our results.

SUMMARY AND CONCLUSIONS

We have constructed formal, executable models of two
complex, embedded software systems - the mode logic of a
Flight Guidance System and the Vertical Navigation function.
Having the ability to simulate the models helps to verify the
correctness and completeness of the requirements and is also a
starting point for further model-based development. In order to
identify the properties of the software that are related to safety,
we then conducted a thorough software safety analysis using
standard techniques such as Functional Hazard Assessment
(FHA), Fault Tree Analysis (FTA), and Failure Mode Effects
Analysis (FMEA). To verify that the model did indeed contain
the safety properties required, we then conducted an extended
software safety analysis on the design requirements using two
formal methods techniques: model checking and theorem
proving. In particular, we have used a model checker to show
that almost 300 functional (and safety) properties associated
with the FGS mode logic are mathematically verifiable
properties of the model. We have also used a theorem prover to
verify a smaller number of properties for both the FGS mode
logic and VNAV models.

We have found the use of formal requirements modeling, in
conjunction with Bi-Directional Analysis and formal methods
analysis techniques, to be a cost-effective and flexible
approach to the issue of software safety. In particular, we were
impressed with the power of model checking as applied to this
example. This lends credence to the belief that such
approaches may become an integral part of future model-based
development efforts [181.

ACKNOWLEDGEMENTS

This work was supported, in part, by the NASA Aviation
Safety Program and the NASA Langley Research Center under

contract NCC-01-001. This paper is a summary of reports
presented at the 2002 and 2003 Digital Avionics Systems
Conferences (DASC) [lo, 121.

REFERENCES

[I] IEEE Std. 610.12-1990,
Standard Glossary of Sofiare Engineering Terminology.

SopVnre Safety nnd Reliability,
[21 Hemann. D.S..

(Los Alamitor. C A IEEE Computer Society, 1999).

[31 Whaleo, M.W.,
A Formal Semanticsfor RSML, Masters Thesis,

Univmity of Minnesota, April 2000.

[41 Lutr, R. and R. Woodhouse, 1997.
Requirements Analysis Using Faward and Backward Search,

Annals ofSofrwnre Engineering, Vol. 3, pp. 459475. 1997.

[SI Lutz, R. and R. Woodhouse, 1999,
Bi-Directional Analysis for Certification of Safety-Critical Software.

Roc. of First International Software Assurance Certification
Conference, 1999.

[6] ARP4754,
Certification Considerations for Hiehlv-Inteerated or Comlex

I I -
Aim’aft Systems, SAE International, November 19%.

(71 ARP4761,
Guidelines and Methods for Conducting the Safety Assessment
Rowss on Civil Airborne System and Equipment.

SAE International. December 1996.

[SI R E A DO-178B.
Software Considerations in Airbarne Systems and Equipmeot
Certification, 1 December 1992.

[9] MIL STD 882C,
System Safety Program Requirements, 19 January 1993.

Software Safety Analysis of a Flight Guidance System.
[IO] Tribble, A.C., S.P. Miller and D.L. Lempia, 29-31 October 2002.

Rcmcdings of the 21- Digital Avionics Systrms Conference.
Irvine, CA, 29 - 31 October 2002.

[11lTribble.A.C.,S.P.MillerandD.L.Lempia,

NASA Contractors Report, [in press].
Sonware Safety Analysis of a Flight Guidance System,

[I21 Tribble, A.C. and S.P. Miller, 12-16 October 2003,
Somare Safety Analysis of a Flight Management System Vertical
Navigation Function - A Status Report,

Proceedings of the 22* Digital Avionics Systems Conference,
Indianapolis, IN, 12 - 16 October 2003.

[I31 System Safety Annlysir Handbook, 2nd Ed.,
System Safety Society, July 1997.

Model Checking, (Cambridge, MA: MIT Press, 2000).

An Elementary Tutorial on Formal Specification and Verification
Using PVS, NASA TM 108991, September 1993.

available at btrp://nnsmv.irst.itc.iV.

available at hnp:llwww.csl.sri.com/projecWpvs/.

[I41 Clarke. E.O., 0. GNmberg and D. Peled. 2000,

(151 Butler, R.W., September 1993.

1161 NuSMV A New Symbolic Model Checkcr.

I171 PVS: Prototype verification System,

[IS] Tnbble, A.C., June - July 2002.
Software Safety, IEEE Sofiore, pp. 84 - 85, June - July 2002. 1

26 IEEE A&E SYSTEMS MAGAZINE, OCTOBER 2004

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 13, 2009 at 14:06 from IEEE Xplore. Restrictions apply.

