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1 Introduction

Differential dynamic logic (dL) [11, 12, 13, 14] is a formal framework to specify and reason about
hybrid programs (HPs). The core of dL is a proof calculus that contains a collection of axioms
and rules for the rigorous verification of properties of HPs. This calculus is implemented in
the KeYmaera X1 theorem prover which has been used for formal verification of several cyber-
physical systems [4, 8, 6, 2, 1, 3, 7, 9]. Recently, dL has been embedded within the theorem prover
Prototype Verification System (PVS) [10] resulting in the tool Plaidypvs2. The integration of dL
into PVS expands its expressive power; user defined functions, such as trigonometric and other
transcendental functions, can be used inside the dL framework, and meta-reasoning about HPs
can be performed, including reasoning about entire classes of HPs, specified using dependent
types in PVS.

One limitation of dL, KeYmaera X, and Plaidypvs is that they can only reason on the in-
put/output semantics of an HP. Nevertheless, it is often the case that the correctness of an HP
depends on the intermediate states that it can reach during its executions. For example, guar-
anteeing the position of an aircraft stays within a geofenced region. The differential temporal
dynamic logic (dTL2) has been introduced in [5] to extend dL with temporal logic operators
and reason about all the states reachable during the execution of an HP.

This paper presents a work in progress focusing on embedding dTL2 in PVS as an extension
of Plaidypvs. Plaidypvs is expanded with the formalization of a trace semantics for HPs, the
definition of the LTL temporal operators eventually and globally, and the implementation of
the proof calculus for dTL2. This new embedding has the same capabilities as Plaidypvs, which
allows user defined functions and meta-reasoning of properties of HPs.

2 Embedding dTL2 in PVS

HPs combine discrete programs and continuous evolutions and are defined by the syntax

α ::= x := θ | x′ := θ&P | ?P | x := ∗ &P | α;α | α ∪ α | α∗

where x and x′ are variables, θ is a real expression, and P is a Boolean expression. The
statement x := θ denotes a discrete assignment, x′ := θ&P models the continuous first order
differential equation defined by θ that satisfies P , ?P tests if P is satisfied, and x := ∗&P
assigns to x an arbitrary real value r such that P (r) holds. HPs can be combined through
sequential execution (α1;α2), nondeterministic choice (α1 ∪ α2), and nondeterministic finite
repetition (α∗

1).

1https://keymaerax.org
2Plaidypvs is part of the NASA PVS library available at https://github.com/nasa/pvslib/tree/master/dL.

https://keymaerax.org
https://github.com/nasa/pvslib/tree/master/dL
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Real and Boolean expressions are shallowly embedded in PVS. Given a state (or environ-
ment) in S which maps variables into R, a real expression has type [S → R], while a Boolean
expression has type [S → B] where B is the Boolean domain. This type of embedding is more
general and easily extendable than the deep embedding where each operator must be defined
with a dedicated datatype. Additionally, it allows interpretation of the operators directly in
the logic of PVS, facilitating the task of writing the proofs.

The semantics of an HP is defined as a set of traces. In PVS, a trace is defined as a function
σ : N× R → S. A state σ(i, r) ∈ S denotes the state in trace σ occurring at the discrete step i
and at time r. In the following, let σi denote σ(i, 0) which is defined on the interval [0, 0] and
is used to model discrete steps. The trace semantics is defined as a relation τ(α, t) that holds
when a trace t belongs to the semantics of an HP α. For instance, it holds that τ(x := θ, σ0σ1)
when σ1 = σ0[x/θ] and τ(x′ := θ&P, σ′) where σ′ is a state flow of order one solution of θ
defined on [0, r] such that for all t ∈ [0, r], σ(t) satisfies P .

There are two kinds of formulas in dTL2: state formulas (ϕ) that are interpreted over a
single state and trace formulas (π) that are interpreted over a trace:

ϕ ::= θ1 ≥ θ2 | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∀x ϕ | ∃x ϕ | [α]π | ⟨α⟩π
π ::= ϕ | ¬π | 2π | ♢π

where θ1 and θ2 are real expressions. The run quantification statement [α]P asserts that every
run of α ends by satisfying P . Similarly, ⟨α⟩P asserts that there exists a run of α where the
final state satisfies P . The operators 2, globally, and ♢, eventually, are defined in the typical
way according to LTL with the restriction that they can be nested at most twice, i.e., the
only combinations allowed are 2♢ and ♢2. While this can look like a stringent limitation, the
combination of the LTL temporal operators with the dL run quantification allows reasoning on
the reachable states of different computational paths.

Each proof rule of dTL2 presented in [5] is specified as a lemma and proven correct in
PVS. The non-temporal rules that reason on state formulas are inherited from Plaidypvs. For
instance, the rules for proving a globally statement on all the runs of an assignment and a
sequential composition are the following.

[x := θ](ϕ)

[x := θ](2ϕ)

[α1][α2](2ϕ)

[α1;α2](2ϕ)

A lemma that encodes a desired rule can be instantiated in the PVS proof environment to
prove a given property for an HP. In the future, proof strategies automating this process will
be developed.

3 Conclusions

This extended abstract presents a work in progress for the implementation of the dTL2 logic in
PVS. Upon the completion of this work, the formalization of dTL2 will be added to the Plaidypvs
tool and made available in the NASA PVS library. The combination of LTL operators with dL
allows for reasoning about the intermediate states on different computational paths of an HP,
enabling an interesting fragment of CTL∗. The dTL2 embedding in PVS is implemented as a
mixture of deep and shallow embeddings enabling user defined functions, and meta-reasoning
about HPs using dependent types in PVS. To the best of the authors’ knowledge this is the
first implementation of dTL2.
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