
VOL. 9, NO. 2, MARCH-APRIL 1986 J. GUIDANCE 175

A Performance Evaluation of the
Software-Implemented Fault-Tolerance Computer

Daniel L. Palumbo* and Ricky W. Butlert
NASA Langley Research Center, Hampton, Virginia

The results of a performance evaluation of the Software-Implemented Fault-Tolerance (SIFT) computer
system conducted in the NASA Avionics Integration Research Laboratory are presented. The essential system
functions are described and compared to both earlier design proposals and subsequent design improvements. Us-
ing SIFT's specimen task load, the executive tasks, such as reconfiguration, clock synchronization, and interac-
tive consistency, are found to consume significant computing resources. Together with other system overhead
(e.g., voting and scheduling), the operating system overhead is in excess of 60%. The authors propose specific
design changes that reduce this overhead burden significantly.

Introduction

T HE Software-Implemented Fault-Tolerance (SIFT) com-
puter system was developed by SRI International for

NASA as an experimental vehicle for fault-tolerant systems
research. The SIFT effort began with broad, in-depth studies
stating the reliability and processing requirements for digital
computers which would control flight-critical functions1'2 in
the next generation of aircraft. Detailed design studies were
made of fault-tolerant architectures that could meet reliability
and processing requirements.3'4 Following these studies, SRI
International and the Bendix Corporation designed and built
the SIFT system, which was delivered to NASA's Avionics In-
tegration Research Laboratory in April 1982.

The basic attributes of fault-tolerant computers are:
1) Redundant hardware hardware and tasks.
2) Errors caused by hardware faults are masked by voting

the redundant outputs.
3) To increase reliability, faulty hardware is removed from

the system, i.e., reconfiguration.
Important distinctions between SIFT design concepts and

other fault-tolerant computers are:
1) The mechanisms used to achieve fault tolerance are hid-

den from the application programmer, i.e., the fault tolerance
is transparent.

2) The functions supporting fault tolerance are primarily
implemented in software (e.g., voting).

3) Different tasks can be replicated to.different levels (i.e., a
noncritical task may be simplex, whereas more critical tasks
can be replicated three-or fivefold).

4) The unit of reconfiguration is a complete computer, i.e.,
processor, memory, and buses.

5) The design is not based on a special CPU or memory
design.

6) The redundant computers are loosely synchronized.
A major objective of the SIFT design was to reduce the

hardware failure rate by implementing as much of the system
as possible in software (i.e., keeping the hardware component
count to a minimum). This software-intensive design
philosophy deliberately sacrificed performance to maximize
reliability. It was implicitly assumed that failure due to soft-
ware error would be eliminated by formal proof of
correctness.

Received Jan. 23,1985; revision received June 3, 1985. This paper is
declared a work of the U.S. Government and therefore is in the public
domain.

*Aero-Space Technologist, Fault Tolerant Systems Branch, Flight
Control Systems Division.

tAero-Space Technologist, System Valadation Methods Branch.

The SIFT design, as first described by Wensley,1'5 embodied
many desirable features, e.g., transparent fault tolerance and
preemptive scheduling. However, compromises in the design,
which stemmed from bus performance limitations4 and an at-
tempt to prove the operating system software correct,6
resulted in a final product which differs considerably from the
original intent.7 Table 1 lists some of the discrepancies be-
tween the original SIFT concept and SIFT as it was delivered
to NASA. This version of SIFT is referred to as the SIFT
baseline.

At this point, the reader is cautioned not to judge the SIFT
design prematurely. The SIFT baseline represents a design that
was actually in the middle of its design process. Since the
delivery of SIFT, development and testing have continued at
NASA Langley Research Center and several versions of the
operating system have evolved.8 Each new version represents
different strategies employed to improved the performance of
particular areas of the operating system.

The SIFT System
The SIFT architecture consists of a fully distributed con-

figuration of Bendix BDX930 processors with a point-to-point
communication link between every pair of processors. (See
Fig. 1.) Although the design can accommodate up to eight
processors, only six are in the current system; reliability
estimations have demonstrated that this is adequate to meet
the stated reliability goals of failure probability of less than
10-9 for a 10-h flight.

The assignment of tasks to processors in SIFT is predeter-
mined by a task schedule table defined by the application
designer. As processors fail, the available hardware comple-
ment changes. Consequently, a task schedule must be defined
for each configuration level the system may encounter. To ac-
complish reconfiguration, the SIFT operating system selects
the appropriate task schedule. The decision to reconfigure is
based on error information obtained when the replicated data
are voted.

The synchronization of the BDX930 computers is fun-
damental to the correct functioning of SIFT's broadcast com-
munication system. Interprocessor communication is com-
pletely asynchronous. No hand-shake signals or rendezvous
mechanisms are used. The validity of data is dependent on the
precedence established in the task schedule and the processor
synchronization.

A redundant system may be susceptible to certain
"malicious" process failure modes if, for example, it is
necessary to distribute simplex data throughout the system.
This situation would arise when each channel in the system is



176 D.L. PALUMBO AND R.W. BUTLER J. GUIDANCE

connected to separate replicated sensors. In order to tolerate
the failure of one of the sensors, the processors must exchange
the sensor data and select an input value. Under these cir-
cumstances, it is possible for a faulty processor to make a
good processor look bad, thus defeating the redundancy
management system. The use of an interactive consistency
algorithm9 eliminates this failure mode.

The SIFT operating system has two levels of authority. The
*'local executive" contains procedures that support schedul-
ing, voting, and communications. The "global executive"
consists of tasks that cooperate to provide synchronization,
redundancy management (fault isolation and reconfigura-
tion), and interactive consistency.

To achieve a realistic operating environment during testing,
an autoland function has been programmed on the SIFT
system. The autoland function consists of four tasks, in-
cluding pitch and lateral stability augmentation routines. A
total of IS variables is voted by the application task set. An
air frame simulation supports the tasks' execution. The ap-
plication tasks input 21 variables and output 9 variables to the
simulation. The 21 input variables must be processed by the
interactive consistency tasks.

Synchronization
The synchronization of SIFT's independent processors is

fundamental to SIFT's strategy of preagreed communication
times. A data-producing task broadcasts its data at time T.
The voter cannot access this data until T+ maximum broad-
cast time + maximum clock skew.

VOTE_TIME > BRQADCASTJTIME + £ + 6

where B is the maximum broadcast delay, and d is the max-
imum skew between the processors.

In order for this strategy to succeed, the working proc-
essors' clocks must never drift further apart than d. In SIFT,
the voter runs 91.2 jus after the start of a sub frame and

Processor 3

CPU

Memory
Datafile

t-
>5
>6

-1 P2

1
P4

1
P5

1 n
.n_L

5=18.2 jLts (see communications section below). Thus, the
processors must be synchronized to within 73 /is. SIFT utilizes
a decentralized clock synchronization algorithm implemented
as an executive task. The algorithm contains the following
steps:

1) All participating processors exchange clock values.
2) The differences (or skews) between the local and external

clocks are calculated.
3) All skews above a certain threshold are set to zero.
4) The mean of the skews is used to correct the local clock.
The performance of the algorithm has been characterized by

a mathematical theorem proven by SRI International.4 This
theorem describes the worst-case clock skew in terms of some
measurable system parameters.

Theorem. If

d>N/(N-3m)[2e+p(R + 2(N-m)S/N)] and

6>60+pJRand

6< <R and

then the algorithm satisfies for all nonfaulty p and q:

Fig. 1 SIFT system interconnect.

where
N= number of processors
m — number of faulty processors
6= maximum clock skew
e = maximum error in reading another processor's

clock
p= maximum drift rate between two good clocks
R = ̂ synchronization period
S - computation time for algorithm

60 = initial clock skew
Cp

i}(T) = real time corresponding to clock time T during
iteration / of processor p

Choosing values for the parameters that describe SIFT best,
we have

Af= total number of processors, = 6
m = number of failed processors, = 1
e = maximum clock read error, = 26 x 10~6

p =? maximum drift rate, = 22.4 x 10~6

R = major frame period, = 0. 1 s
S = length of clock task, 2 x 10 ~ 3 s

The parameters e and S were measured experimentally. S is the
execution time of the clock task and was easily obtained. The

Table 1 Comparison of baseline SIFT to 1978 IEEE description

1978 IEEE description Baseline SIFT
Priority-based periodic scheduling

(preemptive)
Arbitrary task length

Dynamic allocation of tasks to
processors

Voting is transparent to the appli-
cations designer through use of
operating system routines to obtain
results

Multiple-iteration rates supported

Static preplanned scheduling
(nonpreemptive)

All tasks must fit in a subframe time
slot

The application designer must build
schedule tables and statically assign
task replicates to processors.

The application designer must build a
vote table that corresponds to
the precalculated task schedule table

Single-iteration rates supported



MARCH-APRIL 1986 FAULT-TOLERANCE COMPUTER PERFORMANCE EVALUATION 177

90

70

50
Apparent
skew (us)

30

10

Apparent skew-

•Actual skew

Read error

10 20 30
Iteration number

40
_I

50

Fig. 2 Apparent clock skew.

Const (*global*)

QX = 103; (*datafile offset*)

Task producer;

Stobroadcast(QX,25)

End;

Task consumer;

X: = Postvote(QX);

End;

Fig. 3 Interprocess communication.

measurement of read error was not as straightforward. Figure
2 shows a plot of a processor's perception of his skew relative
to another processor in the configuration. This apparent skew
is the sum of the actual skew and the read error. Such a graph
can be obtained for every processor pair. The skew data were
taken with the clock correction part of the algorithm disabled,
leaving the two processors free to drift apart. Since, in SIFT, a
processor cannot read another processor's clock directly, the
clock synchronization task provides each processor with a
window of time (114 ps) during which its local clock is
repeatedly broadcast. Concurrently, all of the other proc-
essors are looping, waiting for a new clock value to arrive. As
the processors drift apart, the apparent skew remains constant
until data from another cycle of the broadcast loop is received.
This results in the staircase shape of Fig. 2. The height of the
staircase relates to the broadcast loop time of the algorithm,
26>s.

The difficult issue is how to decouple the read error from
the actual skew. One method is to measure the clock drifts ex-
ternally using a global time base. A second method is to make
certain assumptions about the error term and use linear regres-
sion to estimate the actual drift between two clocks. The slope
of the line is the drift rate. The vertical distance of the data
point from the regression line is the read error. Preliminary
analysis from small data samples indicates that 26 /xs is a
reasonable upper bound on the read error. Further experimen-
tation and statistical analysis are necessary before strong
statements can be made about this parameter.10

Solving for the maximum clock skew using these parameter
values we have:

Table 2 Interactive consistency overhead

= 6/3 { 5 .2x lO~ 5 + 22.4 x l O ~ 6 [0.1 + 2(5/6)2 x l O - 3 ] }

= 2[5.2xlO-5+0.23xlO-5]

= 101 ̂

Although this figure is well above the required 73 pis, the con-
dition has been remedied by moving the task scheduler before
the voter. With this modification, the voter runs 127 jus after
the start of the sub frame. If further experimentation
demonstrates that a larger bound is needed for the read error,
the vote will have to be delayed further by adding some "dead-
time" code before it. However, it is obvious that the read er-
ror is the primary component of 6 because of the software im-
plementation of the clock read function. A trivial modifica-
tion to the communication interface could provide practically
instantaneous recognition of a clock arrival. With this
capability the clock read error could be reduced to a few in-
struction cycles.

Task period,
ms

100.0
50.0
33.0
25.0

Execution
time, ms

12.9
12.9
12.9
12.9

.Overhead, %
12.9
25.8
39.1
51.6

Communications
The Broadcast Network

The internal communication architecture in SIFT is a fully
connected broadcast network. Each processor in the system
contains a IK block of memory called the "data file" which
serves as an I/O interface to the network. Each processor's
"data file" is divided into eight "mailboxes" of 128 words
each, see Fig. 1. The local processor has access to the whole
data file, but an external processor can only write into the
"mailbox" section allocated to it (i.e., determined by where
the processors are plugged into the SHIFT chassis). The local
processor uses the remaining mailbox as his output buffer.
The broadcast link operates at 4 Mbps, but due to contention
for the receiver's data file, a broadcast can take anywhere
from 8.6 to 18.2 />ts to complete. To avoid data overrun in the
receiver, the hardware limits the transfer rate to about 65K
words per second.

The SIFT operating system provides a primitive mechanism
for task-to-task communication. Data generated by a task are
made available to other tasks only after termination of the
data-producing task. There is no facility for interprocess com-
munication between concurrent processes in the system. A
task outputs a data value by calling the system service
STOBROADCAST(bufnum, value). Bufnum is a constant
that holds the location in the processor's mailbox where the
vabjs is to be stored. Input data are made available in the ar-
ray*' POSTVOTE[bufnum] (see Fig. 3). The executive
references several data structures to complete the transaction
from mailbox to POSTVOTE array. First, a list of output buf-
fer numbers the task will produce must be placed into the buf-
fer information table (BINF array). Second, the task must be
assigned a slot in the schedule table. Finally, the sub frame in
which the data is to be voted must be indicated in the vote
schedule tables. In the SIFT baseline, these tables are con-
structed manually by the application designer. Obviously com-
munication can be accommplished in this manner, however,
several disadvantages are evident:

1) There are no safety features to ensure that the application
designer does not assign two "buffer" constants the same
data-file location.



178 D.L. PALUMBO AND R.W. BUTLER J. GUIDANCE

2) There are no consistency checks to ensure that data buf-
fers actually scheduled for voting have been
STOBROADCASTed.

3) Task replication is directly visible to the application
designer—he must coordinate the vote with the task replicates.
Recently, an automated schedule generator has been
developed that simplifies this procedure mitigating most of
these objections (see section on scheduling).

Interactive Consistency
Data transfer between SIFT and external devices is done via

a MIL-STD-1553A bus. Each processor is equipped with a
1553A interface, however, under task schedule control, only
three processors participate in external communications at any
time. Since all processors must receive identical input data,
SIFT utilizes a set of interactive consistency tasks to distribute
the data. These tasks receive inputs from replicated sources
such as sensors over the 1553a bus and distribute these inputs
to all processors. They ensure that all processors get identical
values even in the presence of any arbitrarily malicious
behavior by a single processor. The tasks run at the sampling
rate of the input data stream (presently about 30 Hz). Their
execution time is 12.9 ms. Since the tasks must be run at the
same frequency as the input data, the total overhead varies
with this rate (see Table 2). If input data are received every 33
ms, system overhead attributed to interactive consistency
alone is 39%.

Scheduling
Task scheduling in SIFT is nonpreemptive and based on

precalculated schedule tables. In the baseline SIFT design, a
schedule table consists of 32 3.2-ms subframes which comprise
a 100-ms major frame. Tasks are statically allocated to these
subframes. The application designer must build a schedule for
each processor at every level of configuration, allocating all of
the task's replications to the appropriate system processors.

Clearly SIFT has changed significantly from the original
description (see Table 1). Most of the changes can be at-
tributed to simplifications made to enable a formal proof of
correctness. There are several advantages to the nonpreemp-
tive approach chosen for SIFT. First, the resulting system is
simple and deterministic. Not only does this facilitate a formal
proof of correctness, but also simplifies other approaches to
validation, such as testing. Another important advantage is
that static structures can reside in read-only memory providing
greatevr immunity to transient faults. The static schedule, vote,
and task tables of SIFT could be placed in ROM minimizing
the region of vulnerability. In SIFT, only 5K words of
dynamic memory are unrecoverable and hence vulnerable to
transients.

Several disadvantages of the nonpreemptive approach are
evident.

Vote Time
(ms)

2.8

2.4

2.0

1.6

1.2

0.8

0.4

2.51

5-Way

0 1 2 3 4 5
Number of data values voted

Fig. 4 Baseline SIFT vote overhead.

1) Response to asynchronous events must be accomplished
by continually "polling" the event by an active process. Such
an approach has a built in latency time and is clearly
inefficient.

2) Variable task-execution times result in inefficient utiliza-
tion of the CPU since the schedules must be built for "worst-
case" performance.

3) There is no flexibility in the system to provide for chang-
ing external conditions such as flight phases or temporary
system overloads. Hence, the applications must be built with
an inordinate number of Boolean variables (often called mode
logic or discretes) so that the system can be responsive to phase
changes. Such Boolean logic increases the variability in task
execution time which compounds the CPU utilization problem
mentioned previously.

4) A preemptive schedule can always be constructed which is
shorter than a nonpreemptive schedule for a multiprocessor
system.

5) The schedule tables must be rebuilt whenever a new task
is added, even if it is a low-priority task.5

While the current version of the SIFT system retains a non-
preemptive scheduler with the advantages and disadvantages
as stated above, two features have been added that simplify
the scheduling process and make the task schedule more effi-
cient. First, the size of the subframe can be variable length
(any number of 1.6-ms clock ticks). A minor hardware
modification can reduce the granularity of a clock tick to tens
or hundreds of microseconds. This modification would greatly
improve the efficiency a static task schedule can attain. Sec-
ond, a schedule generator is now available which reduces the
effort necessary to specify the SIFT task and vote schedules,
and buffer information tables.11

The schedule generator does not hide the fault-tolerance
mechanisms entirely. The application designer is still responsi-
ble for the scheduling of the global executive tasks as well as
the application tasks. Although this procedure is not ideal, the
risks involved are reduced by providing a template containing
recommended global executive scheduling. The replication
levels of the application tasks, i.e., five-way, three-way, or
simplex, are the designers' only other input to the redundancy
management procedure.

Voting and Error Detection
The voter is driven by the vote schedule, which designates

the buffer numbers of the data to be voted in a subframe. For
each buffer number, the voter uses pointers in the Buffer
Table or "BT array" (assembled by the reconfiguration task
described below) to search the data file for valid data. Once
the redundant values have been fetched, they can be voted.
The voter can perform five or three-way voting which may re-
quire a search of all eight sections of the data file. Since the
search consumes most of the vote time, a three-way vote takes
only slightly less time than a five-way vote. The overhead is a
linear function of the number of data values to be voted (see
Fig. 4).

A five-way vote takes about 413 /*s in the absence of errors.
Hence, with four data values, the vote overhead would take
over 50% of the 3.2-ms subframe. If an error occurs, an error
count associated with the processor that produced the bad
data is incremented. This function adds 15 jus to each vote.
The application designer must consider this potential extra
delay to ensure his tasks do not exceed the subframe
boundary.

In the current version of SIFT, the voter has been modified
to vote a task's entire set of output data per invocation, Fig. 5.
This was done to reduce the overhead that results from data
lookup. Although a larger penalty is paid to vote one buf-
fer—450 vs 413 /is—each subsequent vote is more economical.
One disadvantage of this method is that the vote of a task's
data cannot be spread over many subframes, e.g., if a task has
10 output buffers, it would put an inordinate burden on the
subframe in which its vote occurs.



MARCH-APRIL 1986 FAULT-TOLERANCE COMPUTER PERFORMANCE EVALUATION 179

Reconfiguration
The reconfiguration task is scheduled at the end of a major

frame. Although a 3.2-ms subframe is allocated to the recon-
figuration task, in the baseline SIFT system, the task is idle for
most of the time. When a configuration change is dictated by
the fault-isolation task, the reconfiguration task assumes two
major responsibilities. First, it searches the task tables for the
set of schedules that corresponds to the new configuration.
Second, it builds a new BT array based on the new schedules.
The BT array indicates which mailbox (and therefore which
processor) will contain valid data when the vote takes place.
The exact time for reconfiguration depends on the number of
working processors; however, the worst case is 35.19 ms or 11
subframes (see Fig. 6).

Since the scheduling is static, it must be based on worst-case
performance and, hence, 11 subframes must be dedicated to
the reconfiguration task even though the vast proportion of
time they are not being utilized. This condition could not be
tolerated and several new algorithms were tested in AIRLAB.
The most successful approach was to modify sections of the
local and global executives to use virtual processor numbers.
The use of virtual processor numbers allows the BT array to be
precalculated for every configuration level. It is left to the
reconfiguration task to select the correct schedule as before,
plus construct a mapping between the virtual and real proc-
essor numbers. This technique reduced the execution time to
2.5 ms, which fits comfortably within the 3,2-ms subframe.

Total System Overhead
In order to put the total system overhead in perspective, the

following operational mode is assumed. A major frame con-
tains three iterations of the application tasks and, therefore,
requires three iterations of the interactive consistency tasks.
To accomplish this, the major frame is divided into three sec-
tions 35.2-ms long, or 22 slots (a slot is one 1.6-ms clock tick).
Therefore, the major frame is 105.6 ms. Within each section,
18 slots are dedicated to the interactive consistency and ap-
plication tasks. The remaining four slots provide sufficient
processing time for clock synchronization and redundancy
management tasks to complete one iteration every major
frame. Table 3 lists processor utilization summarized under
the categories of dispatch overhead (voting and scheduling),
and global executive and application tasks. In this configura-
tion, the SIFT system achieves a utilization of 19%. However,
80% of this processing is dedicated to dispatch overhead and
the global executive.

Evaluation of the SIFT Concept
There,are many worthy aspects of the SIFT concept. It is

unfortunate that, to distinguish SIFT from other fault-
tolerant designs (e.g., the Fault-Tolerant Multi-
processor—FTMP12), the emphasis is often placed on soft-
ware vs hardware voting, when, in the authors' opinion, the
primary distinction lies in the fact that SIFT reconfigures task
schedules and not hardware devices. This approach has been
shown to be simple and efficient. Simplicity is significant
because, with all of the software implementation, the entire
SIFT operating system is just 1500 lines of Pascal code. The
small size of the operating system and straightforward
algorithms lend themselves well to validation efforts—the
most difficult aspect of fault-tolerant design. A second, but no
less important, difference is the loose synchronization of the
SIFT processors. The SIFT synchronization algorithm func-
tions over standard communication paths allowing fully
distributed, nonhomogeneous processors to synchronize.

These two distinguishing characteristics—the reconfigura-
tion of task schedules and loose synchronization—have a ma-
jor impact on system overhead. Both characteristics com-
plicate the vote procedure which is performed during task-to-
task communication and interactive consistency. Due to loose
synchronization, a certain amount of delay must follow com-

°2.28

0 1 2 3 4 5 6
Number of data values voted (NV)

g. 5 Baseline vs revised system vote overhead.

Reconfiguration
time (ms)

40 p

35

30

25

20

15

10

5

0

_
30.58

-.-o-~~~
-- 27.28

-

2.17 2.26
----<j>- - - ~y~ ~

2 3 4
Number of

35.19
O — " ""

-0-- 'Baseline

Revised
2.36 2.47

- - -O- - - -O- - — -T T i
5 6 7

processors
(before reconfiguration)

Fig. 6 Reconfiguration times.

Table 3 Summary of SIFT utilization

System
function

Processor
time, %

Dispatch
Global executive
Application tasks
Idle

21.6
41.6
15.8
21.0

munication before voting can take place. If normal processing
does not provide a sufficient delay, "deadtime" must be
added. Because the task schedule is different for different con-
figurations, a "lookup" procedure must be used to locate and
retrieve the data before each vote. This technique requires
more overhead than a tightly coupled system, such as FTMP,
where data can be voted and error information gathered dur-
ing the communication process.

If the SIFT concept were used in a production system to-
day, the software-intensive design philosophy should be
reconsidered. Recent advances in the fabrication of electronic
devices have altered the nature of the performance/reliability
tradeoff. An increase in circuit complexity can be accom-
modated without a significant increase in failure rate. Further-
more, the use of hardware implementation does not preclude
proof of correctness. In fact, algorithms implemented in hard-
ware are often easier to verify than their software
counterparts.13

Three functions of the SIFT operating system can benefit
directly from hardware support. They are the implementation
of the synchronization algorithm, the vote algorithm, and in-
teractive consistency. As stated previously, a large clock read
error is associated with the software looping inherent in the



180 D.L. PALUMBO AND R.W. BUTLER J. GUIDANCE

current implementation of the synchronization algorithm. The
read error, and, therefore, the upper bound on the system
clock skew, can be reduced significantly with minor hardware
support. Although loose synchronization and task schedule
reconfiguration complicate the vote algorithm, it is never-
theless possible to implement this algorithm efficiently in
hardware. In a hardware implementation, the designer could
exploit parallelism in the data lookup and vote procedures to
achieve significant performance improvement. Optimally, the
vote algorithm would be added as a special function of the
communication hardware. Interactive consistency would
benefit directly from an increase in vote performance. The re-
maining contributor to interactive consistency overhead is the
time required to redistribute data. Again, special functionality
built into the communication hardware could reduce this
burden. Because all of the suggested hardware support is in-
tegrated into the communications interface, SIFT would re-
tain its characteristic of using "off-the-shelf" computers to
construct fault-tolerant systems.

Conclusions
Software-implemented fault tolerance places a tremendous

overhead on a system. In the test case considered, over 60% of
the processor's time is devoted to operating-system overhead.
While it can be argued that future processors with perhaps 10
times the speed of the BDX930 would reduce this overhead to
acceptable levels, most of the overhead is proportional to the
amount of data produced, and it is unreasonable to assume
future systems will have an equal or lower data volume.

However, it has been shown that 100% software implemen-
tation is unnecessary to achieve the primary benefits of the
SIFT architecture, i.e., loose synchronization and task
schedule reconfiguration. Additional hardware functionality
built into the communications interface would significantly
reduce the overhead of the vote and interactive consistency
processes.

Although software implementation of the redundancy
management functions has imposed a large overhead, the soft-
ware nature of SIFT allows speedy testing of new algorithms

and methodologies. Thus, SIFT serves well as an experimental
test bed for fault-tolerant systems research.

References
^ensley, J. H. et al., "SIFT: Design and Analysis of a Fault-

Tolerant Computer for Aircraft Control," Proceedings of the IEEE,
Vol. 66, Oct. 1978, pp. 1240-1255.

2Goldberg, J., "SIFT: A Provable Fault-Tolerant Computer for
Aircraft Flight Control," Proceedings IFIP Congress '80, Interna-
tional Federation for Information. Processing, Tokyo, 1980, pp.
151-156.

3Weinstock, C.B., "SIFT: System Design and Implementation,"
The 10th International Symposium of Fault-Tolerant Computing,
Oct. 1980, pp. 75-77.

4Goldberg, J. et al., "Development and Analysis of the Software
Implemented Fault-Tolerance (SIFT) Computer," NASA CR-172146,
June 1983.

5Wensley, J. H. et al., "Design of a Fault-Tolerant Airborne
Digital Computer. Volume I—Architecture," NASA CR-132252,
1973.

6Levitt, K. N. et al., "Investigation, Development, and Evaluation
of Performance Proving for Fault-Toleant Computers," NASA
CR-166008, Aug. 1983.

7Butler, R. W., An Assessment of the Real-Time Application
Capabilities of the SIFT Computer System," NASA TM 84482, April
1982.

8Palumbo, D. L. and Butler, R. W., "Measurement of SIFT
Operating System Overhead," NASA TM 86322, April 1985.

9Pease, M., Shostak, R., and Lamport, L., "Reaching Agreement
in the Presence of Faults," Journal of the Association for Computing
Machinery, Vol. 27, April 1980, pp. 228-234.

10Butler, R. W. and Johnson, S. C., "Validation of a Fault-
Tolerant Clock Synchronization System," NASA TP 2346, Sept.
1984.

11 Green, D. F., Palumbo, D. L., and Baltrus, D. W., "Software
Implemented Fault-Tolerant (SIFT) User's Guide," NASA TM
86289, Aug. 1984.

12Smith, T. B. et al., "A Fault-Tolerant Multi-Processor Architec-
ture for Aircraft," NASA CR 3010, July 1978.

13Rennels, D. A., "Fault-Tolerant Computing Concepts and Ex-
amples," IEEE Transactions on Computer, Vol. C-33, Dec. 1984, pp.
1116-1129.


