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ABSTRACT

A key design principle of a high-level plan execution language is the ability to predict
the output of a planning task under limited information on the external environment
and on the platform where the plan is executed. This type of determinism is particu-
larly critical in unmanned space exploration systems, such as robotic rovers, which are
often deployed in a semi-autonomous mode. This paper proposes a formal framework
for specifying the semantics of general plan execution languages based on NASA’ Plan
Execution Interchange Language (PLEXIL), a rich concurrent language that is being
developed in support of NASA’s Space Exploration Program. The semantic framework
allows for the formal study of properties such as determinism for different assumptions
on the knowledge of the external environment. The framework is organized as a stack
of parametric layers defining the execution mechanism of a parallel synchronous event-
driven language. This modular presentation enables the instantiation of the framework
to different semantic variants of PLEXIL-like languages. The mathematical develop-
ment presented in this paper has been formalized and mechanically checked in the
Program Verification System (PVS).

1 INTRODUCTION

The Plan Execution Interchange Language (PLEXIL) [9] is a high-level plan execution lan-
guage, recently developed at NASA to support autonomous spacecraft operations in a multi-
platform environment. PLEXIL is a parallel language for specifying actions to be executed
by an autonomous system. These actions can be part of normal spacecraft operations or they
can respond to unexpected changes in the environment. Programs written in this language
are reactive in the sense that they maintain a permanent interaction with their environment.

In the family of reactive languages, plan execution languages belong to the sub-family of
synchronous languages such as Esterel [5], Lustre [7] and Signal [10], where the only non-
determinism allowed originates from external events occurring in the environment. Plan
execution languages, such as PLEXIL, differ from these general purpose reactive languages
in that their processes (called execution nodes in PLEXIL) do not receive or emit signals.
In PLEXIL, for example, each node is equipped with a set of conditions that trigger and
monitor execution. These conditions enable nodes to react to changes in the environment,
to communicate with other nodes via shared variables, and to enter specialized modes of
operation in case of failures.

From an operation point of view, a PLEXIL node has a very simple structure as it can
only do three type of things: initiate an external activity (such as start an engine), assign
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a local variable, or provide scope for children nodes. Thus, PLEXIL programs (also called
plans) are structured into a tree, analogous to the command trees used by human operators to
monitor and control spacecraft operations. Despite its relative simplicity, PLEXIL happens
to be computationally complete, but this computational completeness is not as obvious as
for other languages that include sequences, loops, etc., as primitive features.

This paper contributes with a presentation of the formal semantics for a family of plan
execution languages based on PLEXIL. The semantics is meant as both a reference for
implementations and a framework to formally prove several properties of the language such
as various forms of determinism. As we shall see, these plan execution languages provide
a unique combination of synchronous execution and shared variable communication that
ensures deterministic execution.

The formal semantics is a small-step operational semantics and it is organized in several
layers ranging from the definition of an atomic relation describing the evolution of a single
node during a single time step to a macro relation describing the evolution of the plan and its
environment after the occurrence of an event. This layered architecture is the most important
feature of our semantic framework, as many properties of the language depend only on the
definition of the upper layers and are therefore robust to the continuous evolution of the
language.

The mathematical development presented in this paper has been formally specified and
mechanically verified in the Program Verification System (PVS) [15], allowing us to reach
the highest degree of certainty in the proof-checking.

The rest of the paper is organized as follows. Section 2 gives an informal presentation of
PLEXIL. Section 3 presents the semantic framework and Section 4 discusses its properties
for several semantic variants of PLEXIL-like languages. Section 5 discusses related work and
Section 6 concludes the paper.

2 A HIGH LEVEL DESCRIPTION OF PLEXIL

PLEXIL is an execution language used for writing plans (control strategies) to command and
control a variety of complex systems such as spacecraft, robots, instruments, and habitats.
PLEXIL plans are generated by high level automated planners or human operators, and are
interpreted by an executive system that executes the commands encoded in the plan, monitors
the conditions in the environment, reacts to environment changes, and sends feedback to the
higher-level decision making capabilities.

PLEXIL is akin to a concurrent reactive programming language: it can represent branches,
loops, time- and event- driven activities, concurrent activities, sequences, and temporal con-
straints. PLEXIL has been designed to be simple (it has few syntactic constructs) but
expressive enough to unify many existing execution languages and systems, and hence to be
interfaced with a variety of existing automated planners.

2.1 Language Features

A PLEXIL plan consists of a hierarchical set of nodes, which execute concurrently and
communicate through shared variables. The execution of each node is governed by a set of
conditions (or guards) that encode logical and temporal relationships between nodes and the
external environment.
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Nodes

There are two kinds of nodes: action nodes that perform actions such as commanding sys-
tems, assignments to local variables, calls to pre-defined library functions, calls back to the
planner, etc.; and list nodes that consist of collections of execution nodes. Thus, a PLEXIL
plan has a tree structure, where the leaves are action nodes, and the root and the internal
nodes are list nodes. A list node is the parent of the nodes stored in its list, which form its
children.

Conditions

The execution of each node is driven and monitored by a set of conditions. Start and end
conditions specify when a node should start and end execution, respectively, while repeat
conditions specify when the execution of a node should be iterated.

Pre and post conditions are checked before and after each node execution, while invariant
conditions are checked during node execution. If any of these conditions fail, then the node
execution is aborted (and the node is marked as failed).

Note that in PLEXIL there is a distinction between gate conditions, which are continu-
ously monitored, e.g., start, end, and invariant conditions; and check conditions, which are
checked upon request during a node execution, e.g., pre, post, and repeat conditions.

Lookups

The execution senses the external world via lookup operations that read values (measure-
ments) from external state variables, e.g., temperature, time, engine status, etc. We note
that, in PLEXIL, time is treated like any other external variable.

There are three types of lookup operations: LookupOnChange returns the current value
of the state variable immediately and then it monitors the state variable and repeatedly
returns its value whenever it changes (according to some specified minimal change threshold).
LookupWithFrequency is similar to LookupOnChange except that it repeatedly returns the
value of the state variable according to a specified frequency. LookupNow simply returns the
current value of the state variable. LookupOnChange and LookupWithFrequency are only
used in gate conditions, while LookupNow is used in check conditions and in assignments.

Variables

Each node may contain a set of local variable declarations of type integer, boolean, float,
string, or time. The scope of local variables is the sub-tree where they are declared. The
domain of variables is extended with an additional value unknown to account for undefined
values. For example, in the PLEXIL assignment
temp := LookupNow(Engine.temperature)

the value of temp is set to unknown if the sensor for reading the temperature of the engine
fails. Moreover, conditions are evaluated using a three valued logic over an extended Boolean
domain {true, false, unknown}.

In addition to the explicitly declared variables and the external state variables, a PLEXIL
plan has also access to some implicit node variables, such as the status of a node execu-
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tion (Waiting, Executing, Finished, etc.) and the node outcome (Skipped, Success, Pre-
Failed,PostFailed,InvFailed,ParentFailed).1

Note that standard programming constructs such as sequences, if-then-else, while-loops,
etc., are not primitive in PLEXIL. However, they can be simulated using the basic constructs:
concurrent nodes and conditions. To support PLEXIL’s role as an interchange language
between multiple planners and execution systems, the concrete syntax of the language is
defined by an XML [6] schema. For simplicity, in the rest of the paper, we phrase our
discussion and examples in terms of a simplified (non-XML) notation for a PLEXIL-like
language, which should be sufficient for our presentation.

2.2 Example

Consider the following PLEXIL plan.

Node SafeDrive {

int pictures = 0;

Repeat-while:

LookupOnChange(Rover.WheelStuck) == false;

List: {

Node OneMeter {

Command: Rover.Drive(1);

}

Node TakePic {

Start: OneMeter.status == FINISHED &&

pictures < 10;

Command: Rover.TakePicture();

}

Node Counter {

Start: TakePic.status == FINISHED;

Pre: picture < 10;

Assignment: pictures := pictures + 1;

}

}

}

This plan consists of a list node named SafeDrive that contains three action nodes:
OneMeter, which invokes a command that drives the rover one meter, TakePic, which invokes
a command that takes a picture, and Counter, which counts the number of pictures that
have been taken. The start condition of node TakePic ensures that the node starts execution
only after node OneMeter finished and local variable pictures is strictly smaller than 10.
A pre condition in the node Counter ensures that no more than 10 pictures are taken. As
specified by a repeat condition, the list node keeps repeating the command nodes until the
rover is stuck. The repeat condition requests information from the functional layer via a
lookup.

1In PLEXIL, the execution status of a node is referred as its state. In this paper, the state of a node
refers to all the implicit variables of the node including the execution status and the node outcome.
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2.3 Informal Semantics

The execution in PLEXIL is driven by external events. The set of events includes events
related to lookups in conditions, e.g., changes in the value of an external state that affects
a gate condition, acknowledgments from the functional layer that a command has been
initiated, reception of a value returned by a command, etc.

The execution of a plan proceeds in discrete time steps, called macro steps. All the
external events are processed in the order in which they are received. An external event
and all its cascading effects are processed before the next event is processed; this behavior
is known as run-to-completion semantics. A macro step of execution consists of a number
of micro steps. Each micro step corresponds to the parallel synchronous execution of the
atomic steps of the individual plan nodes. We discuss all these notions in more detail below.

Atomic Steps

The execution semantics of an individual PLEXIL node is specified in terms of its execution
status: Inactive, Waiting, Executing, Finishing, IterationEnded, Failing, or Finished. During
the plan execution, nodes change their state, including their execution status, in atomic
steps.

At the beginning of plan execution, the status of each node is initialized to Inactive,
except the root node for which the status is set to Waiting. A node transitions from Waiting
to Executing, when its start condition becomes true (and its pre condition also evaluates
to true). When a list node changes status to Executing, all its children are activated, i.e.,
they are set to Waiting. When an action node has status Executing, it performs its action,
i.e., execute an assignment or issue a command; upon completion of the action the status
of the node is changed to IterationEnded. Furthermore, the node’s status can change back
to Waiting, if the repeat condition evaluates to true, or to Finished, if the repeat condition
evaluates to false or unknown. The execution of list nodes proceeds similarly, except for the
extra status Finishing, which allows the node to wait for its children to finish execution.
Explicit end conditions can also be used to instruct node termination.

A node fails its execution if one of its pre, post, or invariant condition is violated; a node
may also fail if one of its ancestors has failed. Whenever a failure occurs, an active action
node aborts execution while an active list node changes status to Failing (and waits for all
its children to abort execution). The outcome of the node records whether the execution
of the node for the current iteration was skipped, successful or failed; the outcome is reset
when a node repeats execution.

Node conditions are checked only in the states where they apply. For example, start
conditions are monitored only when the node status is Waiting, while end conditions are
monitored only when the node status is Executing. A detailed description of the atomic step
relation is provided in terms of an ad-hoc notation for state transition diagrams in [9].

Figure 1 shows the state transition diagram for status Waiting (as presented in [9]).
Gate conditions are shown in rectangles, i.e., start = true, ancestor end true, and
ancestor inv false, while check conditions, i.e., pre, are depicted in diamonds. A prece-
dence order on condition changes is used to resolve conflicts. For example, if the status of
a node is Waiting and both the start condition and an ancestor end condition become true,
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Figure 1: Transitions from Waiting

the ancestor end condition is given precedence: the status of the node is set to Finished and
the outcome is set to Skipped.

Micro Steps

A micro step corresponds to transitions that modify only the internal, local data of a plan,
i.e., the state of a node and the values of the declared variables. A micro step is defined as
the synchronous parallel execution of atomic steps. Priorities are used for solving conflicting
parallel assignments, e.g., simultaneous assignments to the same variables.

Macro Steps and Quiescence

A macro step is initiated by an external event. All the nodes waiting for that event are
transitioned in parallel to their next states via micro steps. If these transitions trigger other
condition changes, due to changes in the local data, these are executed until there are no
more enabled transitions. The process of repeatedly applying micro steps until no more
transitions are enabled is called quiescence cycle. After the execution of a macro step, a new
external event is handled.

Micro Step Duration

PLEXIL does not make any assumption about the duration of execution of a micro step.
An assumption that is commonly made for synchronous languages is that a step (in our
case, a micro step) takes zero time. Or, alternatively, that the external world changes (and
therefore the occurrence of external events happens) less frequently than the execution of
steps. This assumption is not mandatory in PLEXIL. If a micro step takes more than zero
time, this means that the execution of a macro step also takes more than zero time. Since
the external world may keep changing in the meantime, it is possible that some micro steps
within the macro step use obsolete data. A similar situation occurs if an event is processed
much later than it was produced. In this case, it is possible that the current status of the
external variables associated with the event might have changed. At the end of a macro
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step, the executive is updated with the latest information about the world and any obsolete
data is discarded.

3 SEMANTIC FRAMEWORK

The very rich structure of the PLEXIL execution mechanism is specified using a small-steps
semantics [16] via six term rewriting relations:

• The evaluation relation, denoted by ;, corresponds to the instantaneous evaluation of
PLEXIL expressions.

• The atomic relation, denoted by −→, represents state transitions and memory updates.

• The micro relation, denoted by =⇒, is defined as the synchronous execution of the
atomic relation.

• The quiescence relation, denoted by =⇒↓, is defined as the run until completion of the
micro relation.

• The macro relation, denoted by ?→, describes how the external world is locally per-
ceived by a plan.

• The execution relation, denoted by 7→, describes how a plan reacts to a series of events.

These relations are defined in terms of mathematical structures that represent the internal
state of the executive and the external state of the world.

3.1 Notation

Let → be in {;,−→, =⇒, =⇒↓, ?→, 7→}, we write c ` a → b to denote that, given a
parameter c, the pair (a, b) belongs to →. We say that → is deterministic if c ` a → b1 and
c ` a → b2 implies that b1 = b2. Furthermore, we say that → is terminating if there are no
infinite reductions of the form c ` a0 → a1, . . . , c ` ai → ai+1, . . .. Finally, given a parameter
c, an element a is a →-normal form if there is no b such that c ` a → b.

3.2 Internal State

The internal state is represented by a set of processes π with two types of of processes: node
processes, e.g., Node A, which contains the state information of a plan node A, and memory
processes, e.g., Var x:v, which represents an internal variable x with a value v. The set of
processes π is a linear representation of the tree structure of a PLEXIL plan. In particular,
process identifiers are fully qualified names where each process append its original node name
to the qualified name of its parent.2

In our formalism, a node process is a record where each field represents an implicit variable
of the node: start (start condition), end (end condition), repeat (repeat condition), pre
(precondition), post (postcondition), inv (invariant), parent (node’s parent), children

(node’s children), status (execution status), outcome (outcome value), and body (node’s
body). For instance, in the case of an assignment node A, we have A.body = x := e.

2In the examples, as the scope is clear from the context, we use simple identifiers instead of qualified
names.
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Except for status and outcome, all the other fields of a node state remain invariant during
execution. Note, however, that conditions are expressions, which may depend on local and
external variables. The expressions do not change, but their values do.

Henceforth, we write A with [a1 = v1,..., an = vn] to denote the node process that is
equal to A in all the fields except in a1, . . . ,an, where it has the values v1, . . . , vn, respectively.

The internal state of the plan in Example 2.2 is represented by a set

π = { Node SafeDrive, Node OneMeter,

Node TakePic, Node Counter,

Node Counter, Var pictures:0 }.

In the initial state, it holds that SafeDrive.status = Waiting , OneMeter.status =
TakePic.status = Counter.status = Inactive.

For the rest of this paper, we assume that π is well-formed, i.e., variables are well-scoped
and names are properly qualified.

3.3 External State

The set Σ denotes a snapshot of the world at a given moment in time. In consists of pairs
(X : v), where X is an external variable and v is its value. Variables in Σ are restricted
to variables appearing in lookup operations and variables that serve as interface to the
functional layer, e.g., variables that signal the abort of a command or that store a return
value. We remark that time is not a special concept in PLEXIL. Indeed, if time is required
by a plan, we just assume that there is variable Time in Σ that can be accessed via lookup
operations as any other external variable.

In the case of Example 2.2, the environment Σ contains the external variable
Rover.WheelStuck and interface variables related to the execution of commands Rover.Drive
and Rover.TakePicture.

A plan does not have direct access to Σ, but to a local copy of it denoted by Γ. The
variables in Σ and Γ are the same, but the values in Γ may be slightly outdated with respect
to Σ. The sets Σ and Γ are called environments and we assume that they are functional,
i.e., if (X, v) and (X, w) are both in the same environment, then v = w.

3.4 Expressions

The language includes a set of expressions formed by constant values, pre-defined functions,
basic Boolean and arithmetic expressions, local variables drawn from π, and lookup on
external variables drawn from Σ.

In order to accommodate different semantic variants of PLEXIL-like languages, these
relations are arranged in three parametric, but independent, executions layers: (1) kernel
layer, (2) internal layer, and (3) external layer.

3.5 Kernel Layer

The kernel layer defines the basic computation units in the language. More precisely, it
provides concrete definitions of the evaluation and the atomic relations.
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Evaluation Relation

The evaluation relation (Γ, π) ` e ; v represents the instantaneous evaluation of an ex-
pression e into a value v in environment Γ and local state π. This relation is defined by
structural induction on e, e.g.,

Var x:v ∈ π [Var]
(Γ, π) ` x ; v

(X : v) ∈ Γ [LookupNow]
(Γ, π) ` LookupNow(X) ; v

(Γ, π) ` e1 ; v1

(Γ, π) ` e2 ; v2 [Add]
(Γ, π) ` e1 + e2 ; v1 + v2

We assume that expressions are well-typed in the sense that conditions evaluate to Boolean
values and expressions in assignments evaluate to the declared types of the assigned variables.
A formal type system for PLEXIL is still under development.

As Γ is a functional environment and π is well-formed, the value v is unique. Therefore,
we have the following proposition.

Proposition 1 The relation ; is deterministic.

By abuse of notation, we will write (Γ, π) ` e 6; v to denote that expression e does not
evaluate to v in (Γ, π).

Atomic Relation

The atomic relation (Γ, π) ` P −→ P ′, where P ⊂ π, corresponds to the state transition
diagrams in [9]. As P is a set of processes, the atomic relation can be naturally expressed
using the Chemical Reaction Model [2].

The Chemical Reaction Model is a formalism based on multi-set rewriting systems for
modeling interactions between parallel processes. In this formalism, the set of processes is
formed by atomic processes, in our case node processes and memory processes, and a binary
associative-commutative operator (,) that maps a pair of processes P and Q into a parallel
process P, Q. Interaction between processes are expressed by an associative-commutative
rewrite system. For instance, the atomic rule that corresponds to the transition from Waiting
to Executing in Figure 1 is written as follows. We assume that Node A ∈ π:

(Γ, π) ` A.start ; true
(Γ, π) ` A.pre ; true
A.status = Waiting

[W3a]
(Γ, π) ` Node A −→ Node A with

[ status = Executing ]
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We also illustrate the rule that updates a memory cell of an assignment node whose status
is Executing.

A.status = Executing
A.body = x := e
Var x:v ∈ π
(Γ, π) ` A.end ; true
(Γ, π) ` A.post ; true
(Γ, π) ` e ; w

[EA3a]
(Γ, π) ` Node A, Var x:v −→ Node A with

[ status = IterationEnded,
outcome = Success ], Var x:w

For completeness, we include all the atomic rules in Appendix A. Note that the order of
the rules is relevant as it defines a precedence relation in case of conflict. By construction,
the atomic relation is defined such that P is a single node process, e.g., W3a, or a node
process and a memory process, e.g., EA3a. The resulting rewriting system is deterministic.

Proposition 2 The relation −→ is deterministic.

3.6 Internal Layer

The internal layer concerns the local computations of the executive. In particular, it describes
the synchronous and run-to-completion aspects of the PLEXIL execution mechanism. This
layer is parameterized by a deterministic abstract atomic relation and provides concrete
definitions of the micro relation and the quiescence relation. These relations have access to Γ,
a local copy of the environment Σ, which remains invariant to all the internal computations.

Micro Relation

In PLEXIL, atomics are executed synchronously. For instance, the following plan effectively
exchanges the values of the two variables x and y.

Node Exchange {

int x = 0;

int y = 1;

List: {

Node XY { Assignment: x:= y; }

Node YX { Assignment: y:= x; }

}

}

It may be possible that two nodes attempt to simultaneously write to the same variable. In
this case, the conflict is solved by using a priority mechanism: every node has a priority and
only the node with the higher priority has the right to write the memory cell.
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In our semantic framework, we assume a strict partial order ≺ over nodes. The micro
relation Γ ` π =⇒ π′ is defined as the synchronous −→-reduction of π for priority ≺:

(Γ, π) ` P1 −→ Q1

. . .
(Γ, π) ` Pn −→ Qn ,

Γ ` π =⇒ Q1, . . . , Qn

where the only reducible expressions in π are P1, . . . , Pn and those that overlap with P1, . . . , Pn

but have a lower ≺-priority.3

We have mechanically verified in the PVS theorem prover that for any deterministic
atomic relation, the micro relation is deterministic.

Proposition 3 The relation =⇒ is deterministic.

Quiescence Relation

The run-to-completion policy in PLEXIL states that micro steps are reduced until a stable
state is reached. Formally, the quiescence relation Γ ` π =⇒↓ π′ is defined as the =⇒-
normalized reduction [13] of π:

Γ ` π =⇒∗ π′

π′ is a =⇒-normal form ,
Γ ` π =⇒↓ π′

where =⇒∗ denotes the reflexive and transitive closure of =⇒. Note that since π′ is a
=⇒-normal form, π′ cannot be reduced any further using the micro relation.

By simple induction on the length of the reduction π=⇒∗π′ and Proposition 3, we have
verified in PVS that the quiescence relation is deterministic.

Proposition 4 The relation =⇒↓ is deterministic.

3.7 External Layer

The external layer concerns the event-driven aspect of the PLEXIL execution mechanism
and the synchronization between the environments Σ and Γ. This layer is parameterized by
an abstract deterministic quiescence relation and provides concrete definitions of the macro
relation and the execution relation.

Events

An event is an external phenomenon that, by modifying Σ, enables one or more gate con-
ditions in π. In the case of start and end conditions, the guard is enabled if it evaluates to
true. In the case of invariant conditions, the guard is enabled if it evaluates to false.

In our framework, we do not model events directly but we model their effects in Σ and
in gate conditions. Indeed, we assume a function Ω(π) that returns the set of start and

3Remark that −→ is defined such that there is only one node process in each Pi. Therefore, we define
the priority of Pi as the priority of that node.
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end conditions, and negated invariant conditions of active nodes in π. We say that (Σ, π) is
enabled if there is a guard e in Ω(π) that evaluates to true:

enabled(Σ, π) = ∃e ∈ Ω(π) : (Σ, π) ` e ; true .

For instance, during the execution of Example 2.2, Ω(π) may contain the conditions
OneMeter.status == FINISHED && pictures < 10 and TakePic.status == FINISHED. The
pair (Σ, π) is enabled when either one of these conditions evaluates to true.

Macro Relation

The macro relation provides an updated Γ to the internal layer only if there is an event, i.e.,
if a gate condition in π is enabled.

Γ′ =

{
Σ, if enabled(Σ, π)
Γ, otherwise,

Γ′ ` π =⇒↓ π′
.

Σ ` (Γ, π) ?→ (Γ′, π′)

We have mechanically verified in PVS that for any deterministic quiescence relation, the
macro relation is deterministic.

Proposition 5 The relation ?→ is deterministic.

Execution Relation

The execution relation defines the behavior of a plan for a series of sequential readings of
the state of the world Σ0,. . . , Σn. Formally, the execution of π in Σ0,. . . , Σn is inductively
defined by the rule

Σi ` (Γi, πi) ?→ (Γi+1, πi+1) ,
(Σi, Γi, πi) 7→ (Σi+1, Γi+1, πi+1)

where Γ0 = Σ0 and π0 = π.
Intuitively, the environment Σi can be understood as the state of the world before the i-th

macro step. The PLEXIL executive optimizes the access to the external world by reading
the external variables the first time they are needed during a macro step. These values are
cached such that further lookups to the variables during the same macro step return the
same values. In this case, Σi contains the value of the external variables at the time when
they are first read during the i-th macro step.

In PLEXIL, the executive waits for an event to occur in order to perform a macro step.
This synchronization is effectively achieved by the execution relation. A macro step is always
performed independently of whether an event has occurred or not. However, due to the run-
to-completion semantics of the quiescence cycle, if no event has occurred, the macro step
is empty. Further macro steps are empty until, eventually, an event enables a non-empty
macro step.

As we do not model events directly, we do not have to make explicit assumptions about
their temporal nature. We assume that changes to the external world are visible to the
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executive only at the beginning and end of macro steps. In practice, the executive enforces
this assumption by queuing events and processing them one at a time at the end of each
macro step.

3.8 Example

Consider the following plan in an environment Σ that contains the external variable Temp.

Node Toy {

int x = 0;

int y = 0;

List: {

Node0 {

Assignment: x:=10;

}

Node1 {

Start: LookupOnChange(Temp) > 0;

Assignment: x:=0;

}

Node2 {

Start: x > 0,

Assignment: y:=10;

}

}

}

Let π0 = {Var x:0, Var y:0, . . .} and Σ0 = {(Temp : 0), . . .}. The following are possible
executions of Toy for difference sequence of environments (in each case, the external state
that enables a condition is underlined):

• Assuming
Σ0 = Σ1 = Σ2,
Σ3 = {Temp:10, . . .},
Σ4 = Σ3.

Then,
(Σ0, Σ0, π0) 7→
(Σ1, Σ0, {Var x:10, Var y:10, . . .}) 7→
(Σ2, Σ0, {Var x:10, Var y:10, . . .}) 7→
(Σ3, Σ0, {Var x:10, Var y:10, . . .}) 7→
(Σ4, Σ3, {Var x:0, Var y:10, . . .}).

• Assuming
Σ1 = {Temp:10, . . .},
Σ2 = Σ1.

Then
(Σ0, Σ0, π0) 7→
(Σ1, Σ0, {Var x:10, Var y:10, . . .}) 7→
(Σ2, Σ1, {Var x:0, Var y:10, . . .}).
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4 PROPERTIES

This section presents the main theoretical properties of our framework for different se-
mantic variants of PLEXIL-like languages. These properties include determinism, run-to-
completion, and termination.

4.1 Determinism Under Full-Knowledge Hypothesis

Given a sequence Σ0, Σ1, . . . , Σn and an initial state (Σ0, Γ0, π0), an execution trace is a
sequence (Γ0, π0), . . . , (Γn, πn) such that

∀ 0 ≤ i < n : (Σi, Γi, πi) 7→ (Σi+1, Γi+1, πi+1).

By natural induction on the length of execution traces and Proposition 5, we have verified
in PVS the following property of the execution relation.

Theorem 1 (Determinism Under Full-Knowledge Hypothesis) Given a sequence of
environments Σ0, Σ1, . . . , Σn and an initial state (Σ0, Σ0, π0), if the execution admits an
execution trace, then it is unique.

The property above states that if we assume that the sequence of readings of the external
world is known in advance, then the behavior of a plan can be predicted. We call that
assumption the Full-Knowledge Hypothesis. Determinism under full-knowledge hypothesis
guarantees that two identical plans, deployed on two different platforms, have the same
outputs if their readings of the external world are the same. Notice that this does not mean
that the readings of the external world have to be synchronized on time. For determinism
under full-knowledge hypothesis to hold, it is sufficient that the readings of the external
world after each macro step coincide.

4.2 Operational Determinism

Determinism under full-knowledge hypothesis is an interesting theoretical property. However,
in practice, the full-knowledge hypothesis is seldom achieved in space applications due to
uncertainties in the world. From an operational point of view, it is important to constraint
potential non-deterministic behaviors to interactions with the external environment.

We say that an execution trace is sterile in Σ0, Σ1, . . . , Σn if no event occurred during its
execution, i.e.,

∀ 0 ≤ i < n : ¬enabled(Σi, πi).

The following property has been mechanically verified in PVS.

Theorem 2 (Operational Determinism) For all sequence of environments Σ0, Σ1, . . . , Σn

and initial state (Σ0, Σ0, π0), if the execution admits a sterile execution trace, then it is
unique.

The operational determinism states that in absence of external events, the language is
fully deterministic.

It is possible to instantiate our framework such that the resulting language is determin-
istic under full-knowledge hypothesis, but is not operationally deterministic. For example,
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consider the following plan that performs in sequence a lookup on an external variable, a
finite iteration, and a lookup on the same variable:4

Node Sequence {

int tempA = 0;

int tempB = 0;

List: {

Node A {

Assignment: tempA := LookupNow(Temp);

}

Node Loop {

int x = 0;

Start: A.status == Finished;

Repeat-while: x < 10;

Assignment: x := x + 1;

}

Node B {

Start: Loop.status == Finished;

Assignment: tempB := LookupNow(Temp);

}

Node C {

Start: B.status == Finished;

Pre: tempA == tempB;

}

}

}

In PLEXIL, all the action nodes in Sequence, including the full iteration in Loop, are
performed during the quiescence cycle in the first macro step. The plan finishes in an
state where the precondition of node C holds.

Assume that the framework is instantiated in the following way:

1. The quiescence relation is defined as the micro step, i.e., =⇒↓ ≡ =⇒.

2. The macro step relation is defined such that Γ is always updated with Σ at the begin-
ning of the macro step, i.e.,

Γ′ = Σ
Γ′ ` π =⇒↓ π′

.
Σ ` (Γ, π) ?→ (Γ′, π′)

We call this semantics Updated Step-by-Step. The language defined by this semantics does
not have the run-to-completion and the event-driven aspects of PLEXIL. On the other hand,
we can verify that it does satisfy determinism under full-knowledge hypothesis. However,

4This example has been extensively discussed by the PLEXIL team. The version presented here was
provided by Michael Iatauro.
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the updated step-by-step semantics does not satisfy operational determinism as the following
executions show.5

• Assuming Σi = {Temp:0, . . .}, for all i:

(Σ0, Σ0, {Var tempA:0, Var tempB:0, Var x:0, . . .}) 7→
(Σ1, Σ0, {Var tempA:0, Var tempB:0, Var x:1, . . .}) 7→
. . .
(Σ9, Σ8, {Var tempA:0, Var tempB:0, Var x:9, . . .}) 7→
(Σ10, Σ9, {Var tempA:0, Var tempB:0, Var x:10, . . .}).

• Assuming Σ0 = {Temp:0, . . .} and Σi = {Temp:5, . . .}, for all i > 0:

(Σ0, Σ0, {Var tempA:0, Var tempB:0, Var x:0, . . .}) 7→
(Σ1, Σ0, {Var tempA:0, Var tempB:0, Var x:1, . . .}) 7→
. . .
(Σ9, Σ8, {Var tempA:0, Var tempB:0, Var x:9, . . .}) 7→
(Σ10, Σ9, {Var tempA:0, Var tempB:5, Var x:10, . . .}).

Since none of the gate conditions in Sequence are enabled by an event, all execution traces
of this plan are sterile. One may expect, as the operational determinism property states,
that the output of this plan is independent of the external environment. However, in the
first case, the execution ends in a state where the precondition of node C holds, while, in the
second case, it does not.

4.3 Run-to-Completion Semantics

The run-to completion semantics of PLEXIL states that when a quiescence cycle terminates,
it reaches a stable state. In particular, if no event occurs, this state should remain invariant
under the macro relation. In PVS, we have verified that our semantic framework satisfies
the following theorem.

Theorem 3 (Run-to-Completion) For all Σ, Σ′, Γ, Γ′, π, and π′, if Σ ` (Γ, π) ?→ (Γ′, π′)
and ¬enabled(Σ′, π′), then

Σ′ ` (Γ′, π′) ?→ (Γ′, π′).

This property is a consequence of the definition of the quiescence relation as the normal-
ized reduction of =⇒. A natural question that arises from this definition is if a quiescence
cycle, or for that matter, a macro step, always terminates, i.e., if for all Σ, Γ, and π, there
is a always pair (Γ′, π′) such that

Σ ` (Γ, π) ?→ (Γ′, π′).

Unfortunately, this is not always the case as illustrated by the following simple example.

5This example is just an illustration. In the step-by-step semantics, it takes more than one step to perform
an action.
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Node InfiniteLoop {

int x = 0;

Repeat-while: x >= 0;

Assignment: x := x + 1;

}

Because the repeat condition is always true, the first-macro step of this plan does not ter-
minate. Therefore, this plan does not admit any execution trace.

4.4 Alternative No Run-to-Completion Semantics

In order to gain termination of the quiescence relation, it may be necessary to constrain the
run-to-completion semantics. Consider the following instantiations of our semantic frame-
work.

• Step-by-Step Semantics: The quiescence relation is defined as the micro step, i.e.,
=⇒↓ ≡ =⇒.

• Broken-Quiescence Semantics: Quiescence relation is defined such that a repeating
node goes from execution status Waiting to Waiting only once (or a pre-specified
number of times) during a quiescence cycle.

We can verify that these two instantiations yield PLEXIL-like languages that satisfy
both operational determinism and termination of the quiescence relation. The following
execution compares the PLEXIL semantics to the step-by-step semantics for the example in
Section 4.2. Assume Σ0 = {Temp:0, . . .} and Σi = {Temp:5, . . .}, for all i > 0.

• PLEXIL Semantics.

(Σ0, Σ0, {Var tempA:0, Var tempB:0, Var x:0, . . .}) 7→
(Σ1, Σ0, {Var tempA:0, Var tempB:0, Var x:10, . . .}).

• Step-by-Step Semantics.

(Σ0, Σ0, {Var tempA:0, Var tempB:0, Var x:0, . . .}) 7→
(Σ1, Σ0, {Var tempA:0, Var tempB:0, Var x:1, . . .}) 7→
. . .
(Σ9, Σ0, {Var tempA:0, Var tempB:0, Var x:9, . . .}) 7→
(Σ10, Σ0, {Var tempA:0, Var tempB:0, Var x:10, . . .}).

In contrast to the updated step-by-step semantics in Section 4.2, the PLEXIL semantics,
step-by-step semantics, and broken-quiescence semantics do not update Γ unless there is
an event in Σ. For this reason, these latter semantics satisfy operational determinism,
while the former semantics does not. By ignoring changes to Σ during a macro step, we
manage to remain deterministic under full-knowledge hypothesis without having a zero-time
assumption. By keeping a local copy Γ of the external environment Σ, we gain operational
determinism. The idea is to ignore any change in the environment before a macro step is
completed and updating the environment only when some task is complete.
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Semantics DFH OD TQ RC

PLEXIL
√ √ √

Updated Step-by-Step
√ √

Step-by-Step
√ √ √

Broken-Quiescence
√ √ √

Figure 2: PLEXIL-like semantic variants and their properties

It can be easily checked that the updated step-by-step semantics, the step-by-step se-
mantics, and the broken-quiescence semantics do not satisfy the run-to-completion prop-
erty (Theorem 3). Figure 2 summarizes the semantic variants presented in this section and
their properties: Determinism under Full-knowledge Hypothesis, Operational Determinism,
Termination of Quiescence, and Run to Completion.

We observe that the semantics discussed here differ in the way they are sensitive (or
insensitive) to stuttering in the environment. Intuitively, a stuttering step does not change
the state of the relevant external world, and therefore it should not have an observable effect
on execution. As explained in [1], stuttering is a useful notion when reasoning about systems
in a modular (or compositional) way. We plan to investigate this further.

5 RELATED WORK

The work presented here touches on design and implementation of plan execution languages
and of synchronous programming languages. We discuss some of them below.

Plan execution languages and executive systems vary greatly in sophistication and in
the degree of autonomy (i.e., the capability to operate without human intervention) that
they provide. See [17] for a survey of command execution systems for NASA spacecraft
and robots. The simplest systems execute linear sequences of commands at fixed times and
provide little autonomy, while the most sophisticated systems use fully fledged programming
languages to encode complex control strategies, which take into account unexpected changes
in the environment, and hence provide a high degree of autonomy. Autonomy is particularly
critical for NASA missions, since NASA robots and spacecraft typically operate far from
Earth so they must take significant responsibility for their own safe operation. However, the
more complex a system is, the harder it is to predict properties about command execution,
due to the high uncertainty in the environment.

A pre-requisite for the predictability and verifiability of an execution language is the
availability of a formal execution semantics. However, few existing plan execution languages
have well-defined semantics or are powerful enough to express complex control plans [9].
PLEXIL attempts to unify and extend many execution control capabilities of other execution
languages and executive systems, while providing a clear semantics. Therefore, it is a good
subject for our formal study here.

As mentioned before, PLEXIL is related to synchronous languages such as Esterel [5],
Lustre [7] or Signal [10]. These languages assume that time advances in lockstep with one
or more clocks. A synchronous program reacts to inputs such as clock ticks or more general
events, synchronously, i.e., in zero time. These atomic reactions are macro steps that are
formed of sequences of smaller steps (micro steps). See [3] for a survey of synchronous
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languages.
PLEXIL is most closely related to Esterel. Unlike Lustre and Signal, which are data-flow

declarative languages, Esterel is an imperative language that focuses on describing control.
An Esterel program consists of a collection of nested, concurrent threads whose execution
is synchronized to a single, global clock. Threads communicate through signals, while in
PLEXIL communication is through shared variables. Compile-time analysis techniques are
used to rule out bad Esterel programs that have potentially infinite (or deadlocked) macro
steps. Interestingly, PLEXIL and the variants studied here, do not require such an analysis
to guarantee determinism and, for some variants, termination of the quiescence relation.

Related languages also include the many different variants of Statecharts [12]. The Stat-
echarts formalism provides a hierarchical representation of state information; concurrency is
modeled by simultaneously active states and by parallel transition execution. Communica-
tion is done via a broadcast mechanism. Most Statecharts variants are based on a discrete
time domain (natural numbers) and transitions are executed in zero time; there is no guar-
antee of determinism. See [18] for a survey of Statecharts variants. In UML [8], for example,
Statecharts use a run-to-completion semantics that is similar to PLEXIL’s quiescence: all
the locally enabled transitions of a state chart caused by the processing of an event will
be executed before the next event will be taken for execution; priorities can be used to
(partially) solve non-determinism.

It has been observed [3] that there is a need to combine synchrony and asynchrony [14]
to take into account the intrinsic asynchrony of the interfaces of a synchronous system. Note
that a similar problem is encountered in PLEXIL due to to the asynchronous interaction of
plan execution with the external environment. This is an area of active research that has
led to new programming paradigms, such as “Globally Asynchronous, Locally Synchronous
Systems” [11] and to extensions of existing synchronous languages. For example, [4] presents
a language that extends Esterel with asynchronous rendez-vous communication.

The main difference between these languages and PLEXIL is that PLEXIL is tailored for
command execution in uncertain environments: it provides a set of specialized conditions
that trigger and monitor the execution of nodes and it enables invocation and abortion
of external activities that are specific to plan execution. When a node fails execution, it
transitions to specialized failure modes which may trigger the execution of other nodes (to
perform recovery actions for example). Moreover, PLEXIL provides a unique combination of
synchronous execution, shared variables communication, and no zero-time transition delay
that does guarantee determinism.

6 CONCLUSION

The definition of a language that satisfies both operational determinism and termination of
the quiescence relation has been the object of an intensive debate during the design of the
PLEXIL language. The standard semantics of PLEXIL does not guarantee termination of
quiescence, but we have seen that two alternative semantics do guarantee both properties.
The use of our semantic framework as a designing tool has helped to understand these issues
better.

The entire PVS development for the semantic framework presented here consists of 14
theories. Most of these theories are specific to PLEXIL, but we have also developed general
theories on abstract relations such as normalized reductions and synchronous reductions
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with priorities. In total, these 14 theories include 107 lemmas, 1094 lines of specification,
and 2864 lines of proofs. All the lemmas have been mechanically checked and there are no
axioms in the theories. We are currently working on proofs of other properties of planning
languages such as liveness and compositionality in the same framework. The summary of
the PVS output is included in Appendix B.

PLEXIL is evolving and being able to formally check properties of variants of the language
was, from the beginning, a goal of our development. This justifies the modular approach with
several layers separating the description of computations, parallel composition, and interac-
tion with the environment. We can prove properties of one layer based on assumptions on the
other layers, thus allowing us to experiment with different language design decisions without
re-doing the proofs for all the layers. Perhaps, such an approach could be recommended to
other languages that have many semantic variations (such as Statecharts).

Finally, this work, among others, suggests that formal methods are now mature enough
to be used for programming languages design and in engineering domains, such as aerospace,
where safety is a major issue.
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[2] Jean-Pierre Banâtre and Daniel Le Métayer. Gamma and the chemical reaction model.
In Proceedings of the Coordination ’95 Workshop, Londres, 1995. IC Press.

[3] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le Guer-
nic, and Robert de Simone. The synchronous languages twelve years later. In Proceedings
of the IEEE, Special Issue on Embedded Systems, Volume 91, 2003.

[4] G. Berry, S. Ramesh, and R. K. Shyamasundar. Communicating reactive processes. In
Proceedings of the 20th Annual Symposium on Principles of Programming Languages,
pages 85–98, 1993.

[5] Gérard Berry. The foundations of Esterel. In Proof, Language and Interaction: Essays
in Honour of Robin Milner. MIT Press, 2000.

[6] Tim Bray, Jean Paoli, C. Michael Sperberg-McQueen, Eve Maler, Franois Yergeau, and
John Cowan. Extensible Markup Language (XML) 1.1 (Second Edition). In World
Wide Web Consortium, Recommendation REC-xml11-20060816, August 2006.

[7] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. Lustre: A declarative
language for programming synchronous systems. In Proceedings of the 14th Symposium
on Principles of Programming Languages (POPL), 1987.

20



[8] Werner Damm, Bernhard Josko, Amir Pnueli, and Angelika Votintseva. A discrete-time
UML semantics for concurrency and communication in safety-critical applications. Sci.
Comput. Program., 55(1-3):81–115, 2005.
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A ATOMIC-STEP RELATION

The predicates ancestor inv false and ancestor end true are inductively defined as fol-
lows.

ancestor inv false(Γ, π, A) =
(Γ, π) ` A.parent.inv ; false or
ancestor inv false(Γ, π, A.parent).

ancestor end trrue(Γ, π, A) =
(Γ, π) ` A.parent.end ; true or
ancestor end true(Γ, π, A.parent).

Inactive Nodes

ancestor inv false(Γ, π, A)
A.status = Inactive

[I1](Γ, π) ` Node A −→ Node A with
[ status = Finished, outcome = Skipped ]

ancestor end true(Γ, π, A)
A.status = Inactive

[I2](Γ, π) ` Node A −→ Node A with
[ status = Finished, outcome = Skipped ]

A.parent.status = Executing
A.status = Inactive

[I3](Γ, π) ` Node A −→ Node A with
[ status = Waiting ]

Waiting Nodes

ancestor inv false(Γ, π, A)
A.status = Waiting

[W1](Γ, π) ` Node A −→ Node A with
[ status = Finished, outcome = Skipped ]

ancestor end true(Γ, π, A)
A.status = Waiting

[W2](Γ, π) ` Node A −→ Node A with
[ status = Finished, outcome = Skipped ]

(Γ, π) ` A.start ; true
(Γ, π) ` A.pre ; true
A.status = Waiting

[W3a](Γ, π) ` Node A −→ Node A with
[ status = Executing ]
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(Γ, π) ` A.start ; true
(Γ, π) ` A.pre 6; true
A.status = Waiting

[W3b](Γ, π) ` Node A −→ Node A with
[ status = IterationEnded, outcome = PreFailed ]

Executing List Nodes

ancestor inv false(Γ, π, A)
A.status = Executing

[EL1](Γ, π) ` Node A −→ Node A with
[ status = Failing, outcome = ParentFailed ]

(Γ, π) ` A.inv ; false
A.status = Executing

[EL2](Γ, π) ` Node A −→ Node A with
[ status = Failing, outcome = InvFailed ]

(Γ, π) ` A.end ; true
A.status = Executing

[EL3a](Γ, π) ` Node A −→ Node A with
[ status = Finishing ]

(Γ, π) ` A.end ; true
(Γ, π) ` A.post 6; true
A.status = Executing

[EL3b](Γ, π) ` Node A −→ Node A with
[ status = Failing, outcome = PostFailed ]

Executing Command Nodes

ancestor inv false(Γ, π, A)
(Γ, π) ` A.end ; true
A.status = Executing

[EC1a](Γ, π) ` Node A −→ Node A with
[ status = Finished, outcome = ParentFailed ]

ancestor inv false(Γ, π, A)
(Γ, π) ` A.end 6; true
A.status = Executing

[EC1b](Γ, π) ` Node A −→ Node A with
[ status = Failing, outcome = ParentFailed ]

(Γ, π) ` A.inv ; false
(Γ, π) ` A.end ; true
A.status = Executing

[EC2a](Γ, π) ` Node A −→ Node A with
[ status = IterationEnded, outcome = InvFailed ]
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(Γ, π) ` A.inv ; false
(Γ, π) ` A.end 6; true
A.status = Executing

[EC2b](Γ, π) ` Node A −→ Node A with
[ status = Failing, outcome = InvFailed ]

(Γ, π) ` A.end ; true
(Γ, π) ` A.post ; true
A.status = Executing

[EC3a](Γ, π) ` Node A −→ Node A with
[ status = IterationEnded, outcome = Success ]

(Γ, π) ` A.end ; true
(Γ, π) ` A.post 6; true
A.status = Executing

[EC3b](Γ, π) ` Node A −→ Node A with
[ status = IterationEnded, outcome = PostFailed ]

Executing Assignment Nodes

ancestor inv false(Γ, π, A)
A.status = Executing

[EA1](Γ, π) ` Node A −→ Node A with
[ status = Finished, outcome = ParentFailed ]

(Γ, π) ` A.inv ; false
A.status = Executing

[EA2](Γ, π) ` Node A −→ Node A with
[ status = IterationEnded, outcome = InvFailed ]

A.status = Executing
A.body = x := e
Var x:v ∈ π
(Γ, π) ` A.end ; true
(Γ, π) ` A.post ; true
(Γ, π) ` e ; w

[EA3a](Γ, π) ` Node A, Var x:v −→ Node A with
[ status = IterationEnded,

outcome = Success ], Var x:w

(Γ, π) ` A.end ; true
(Γ, π) ` A.post 6; true
A.status = Executing

[EA3b](Γ, π) ` Node A −→ Node A with
[ status = IterationEnded, outcome = PostFailed ]
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Executing Function Call Nodes

(Γ, π) ` A.ancestor inv ; false
[EF1](Γ, π) ` Node A: {Executing,...} −→

Node A: {Finished,ParentFailed,...}

(Γ, π) ` A.inv ; false
[EF2](Γ, π) ` Node A: {Executing,...} −→

Node A: {IterationEnded,InvFailed,...}

(Γ, π) ` A.end ; true
(Γ, π) ` A.post ; true

[EF3a](Γ, π) ` Node A: {Executing,...} −→
Node A: {IterationEnded,Success,...}

(Γ, π) ` A.end ; true
(Γ, π) ` A.post 6; true

[EF3b](Γ, π) ` Node A: {Executing,...} −→
Node A: {IterationEnded,PostFailed,...}

Failing List Nodes

∀ Ai ∈ A.children : Ai.status ∈ {Waiting ,Finished}
A.outcome = ParentFailed

A.status = Failing
[FL1a](Γ, π) ` Node A −→ Node A with

[ status = Finished ]

∀ Ai ∈ A.children : Ai.status ∈ {Waiting ,Finished}
A.outcome 6= ParentFailed

A.status = Failing
[FL1b](Γ, π) ` Node A −→ Node A with

[ status = IterationEnded ]

Failing Command Nodes

abort complete true(Γ, π, A)
A.outcome = ParentFailed

A.status = Failing
[FC1a](Γ, π) ` Node A −→ Node A with

[ status = Finished ]

abort complete true(Γ, π, A)
A.outcome 6= ParentFailed

A.status = Failing
[FC1b](Γ, π) ` Node A −→ Node A with

[ status = IterationEnded ]
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Finishing Nodes

ancestor inv false(Γ, π, A)
A.status = Finishing

[F1](Γ, π) ` Node A −→ Node A with
[ status = Failing, outcome = ParentFailed ]

(Γ, π) ` A.inv ; false
A.status = Finishing

[F2](Γ, π) ` Node A −→ Node A with
[ status = Failing, outcome = InvFailed ]

∀ Ai ∈ A.children : Ai.status ∈ {Waiting ,Finished}
(Γ, π) ` A.post ; true
A.status = Finishing

[F3a](Γ, π) ` Node A −→ Node A with
[ status = IterationEnded, outcome = Success ]

∀ Ai ∈ A.children : Ai.status ∈ {Waiting ,Finished}
(Γ, π) ` A.post 6; true
A.status = Finishing

[F3b](Γ, π) ` Node A −→ Node A with
[ status = IterationEnded, outcome = PostFailed ]

IterarationEnded Nodes

ancestor inv false(Γ, π, A)
A.status = IterationEnded

[IE1](Γ, π) ` Node A −→ Node A with
[ status = Finished, outcome = ParentFailed ]

ancestor end true(Γ, π, A)
A.status = IterationEnded

[IE2](Γ, π) ` Node A −→ Node A with [
status = Finished ]

(Γ, π) ` A.repeat ; true
A.status = IterationEnded

[IE3](Γ, π) ` Node A −→ Node A with
[ status = Waiting, outcome = Success ]

(Γ, π) ` A.repeat ; false
A.status = IterationEnded

[IE4](Γ, π) ` Node A −→ Node A with [
status = Finished ]
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Finished Nodes

A.parent.status = Waiting
A.status = Finished

[F]
(Γ, π) ` Node A −→ Node A with

[ status = Inactive, outcome = Success ]

B PVS SUMMARY

Proof summary for theory reductions
normalized_det........................proved - complete [shostak](0.15 s)
normalized_nf.........................proved - complete [shostak](0.03 s)
normalized_symm.......................proved - complete [shostak](0.03 s)
Theory totals: 3 formulas, 3 attempted, 3 succeeded (0.21 s)

Proof summary for theory plexil_sets
state2list_TCC1.......................proved - complete [shostak](0.14 s)
Theory totals: 1 formulas, 1 attempted, 1 succeeded (0.14 s)

Proof summary for theory external
macro_det.............................proved - complete [shostak](0.28 s)
macro_weak_det........................proved - complete [shostak](0.06 s)
execution_step_TCC1...................proved - complete [shostak](0.37 s)
execution_det.........................proved - complete [shostak](0.29 s)
trace?_TCC1...........................proved - complete [shostak](0.25 s)
trace?_TCC2...........................proved - complete [shostak](0.32 s)
sterile?_TCC1.........................proved - complete [shostak](0.18 s)
operational_determinism_TCC1..........proved - complete [shostak](0.03 s)
operational_determinism_TCC2..........proved - complete [shostak](0.03 s)
operational_determinism_TCC3..........proved - complete [shostak](0.04 s)
operational_determinism_TCC4..........proved - complete [shostak](0.04 s)
operational_determinism...............proved - complete [shostak](1.20 s)
Theory totals: 12 formulas, 12 attempted, 12 succeeded (3.09 s)

Proof summary for theory extended_reds
extended_det..........................proved - complete [shostak](0.07 s)
Theory totals: 1 formulas, 1 attempted, 1 succeeded (0.07 s)

Proof summary for theory synchronous_reds
synchronous_det.......................proved - complete [shostak](0.09 s)
Theory totals: 1 formulas, 1 attempted, 1 succeeded (0.09 s)

Proof summary for theory internal
max_priority_TCC1.....................proved - complete [shostak](0.59 s)
max_redices_TCC1......................proved - complete [shostak](0.02 s)
max_redices_TCC2......................proved - complete [shostak](0.02 s)
micro_TCC1............................proved - complete [shostak](0.57 s)
micro_det.............................proved - complete [shostak](0.05 s)
quiescence_det........................proved - complete [shostak](0.03 s)
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Theory totals: 6 formulas, 6 attempted, 6 succeeded (1.28 s)

Proof summary for theory list_iterator
iterate_TCC1..........................proved - complete [shostak](0.03 s)
Theory totals: 1 formulas, 1 attempted, 1 succeeded (0.03 s)

Proof summary for theory list_extra
member_nth............................proved - complete [shostak](0.63 s)
every_forall..........................proved - complete [shostak](0.12 s)
some_exists...........................proved - complete [shostak](0.11 s)
Theory totals: 3 formulas, 3 attempted, 3 succeeded (0.86 s)

Proof summary for theory plexil_defs
TrueValue_TCC1........................proved - complete [shostak](0.01 s)
FalseValue_TCC1.......................proved - complete [shostak](0.01 s)
fun_context...........................proved - complete [shostak](0.10 s)
priority_TCC1.........................proved - complete [shostak](0.05 s)
fun_procs?_TCC1.......................proved - complete [shostak](0.13 s)
fun_procs_cons........................proved - complete [shostak](0.68 s)
wf_procs?_TCC1........................proved - complete [shostak](0.09 s)
wf_procs?_TCC2........................proved - complete [shostak](0.16 s)
member_process........................proved - complete [shostak](0.05 s)
get_node_TCC1.........................proved - complete [shostak](0.07 s)
get_node_member.......................proved - complete [shostak](0.46 s)
get_parent_TCC1.......................proved - complete [shostak](0.04 s)
nth_node..............................proved - complete [shostak](0.11 s)
parent_TCC1...........................proved - complete [shostak](0.10 s)
parent................................proved - complete [shostak](0.56 s)
set_body_TCC1.........................proved - complete [shostak](0.04 s)
Theory totals: 16 formulas, 16 attempted, 16 succeeded (2.66 s)

Proof summary for theory compiler
divide_TCC1...........................proved - complete [shostak](0.02 s)
equal_TCC1............................proved - complete [shostak](0.01 s)
plan_order............................proved - complete [shostak](0.04 s)
compile_plan_TCC1.....................proved - complete [shostak](0.04 s)
Theory totals: 4 formulas, 4 attempted, 4 succeeded (0.15 s)

Proof summary for theory plexil_eval
get_global_TCC1.......................proved - complete [shostak](0.01 s)
get_global_TCC2.......................proved - complete [shostak](0.05 s)
get_local_TCC1........................proved - complete [shostak](0.01 s)
get_local_TCC2........................proved - complete [shostak](0.05 s)
eval_TCC1.............................proved - complete [shostak](0.05 s)
eval_TCC2.............................proved - complete [shostak](0.05 s)
eval_TCC3.............................proved - complete [shostak](0.06 s)
eval_TCC4.............................proved - complete [shostak](0.08 s)
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eval_TCC5.............................proved - complete [shostak](0.25 s)
eval_TCC6.............................proved - complete [shostak](0.06 s)
eval_TCC7.............................proved - complete [shostak](0.08 s)
eval_TCC8.............................proved - complete [shostak](0.29 s)
eval_TCC9.............................proved - complete [shostak](0.05 s)
eval_TCC10............................proved - complete [shostak](0.08 s)
eval_TCC11............................proved - complete [shostak](0.25 s)
eval_TCC12............................proved - complete [shostak](0.06 s)
eval_TCC13............................proved - complete [shostak](0.05 s)
eval_TCC14............................proved - complete [shostak](0.08 s)
eval_TCC15............................proved - complete [shostak](0.26 s)
eval_TCC16............................proved - complete [shostak](0.05 s)
eval_TCC17............................proved - complete [shostak](0.07 s)
eval_TCC18............................proved - complete [shostak](0.27 s)
eval_TCC19............................proved - complete [shostak](0.05 s)
eval_TCC20............................proved - complete [shostak](0.07 s)
eval_TCC21............................proved - complete [shostak](0.26 s)
eval_TCC22............................proved - complete [shostak](0.06 s)
eval_TCC23............................proved - complete [shostak](0.08 s)
eval_TCC24............................proved - complete [shostak](0.25 s)
eval_TCC25............................proved - complete [shostak](0.05 s)
eval_TCC26............................proved - complete [shostak](0.07 s)
eval_TCC27............................proved - complete [shostak](0.24 s)
eval_TCC28............................proved - complete [shostak](0.06 s)
eval_TCC29............................proved - complete [shostak](0.08 s)
eval_TCC30............................proved - complete [shostak](0.25 s)
eval_TCC31............................proved - complete [shostak](0.08 s)
eval_TCC32............................proved - complete [shostak](0.06 s)
eval_TCC33............................proved - complete [shostak](0.25 s)
eval_TCC34............................proved - complete [shostak](0.05 s)
eval_TCC35............................proved - complete [shostak](0.15 s)
eval_TCC36............................proved - complete [shostak](0.07 s)
Theory totals: 40 formulas, 40 attempted, 40 succeeded (4.44 s)

Proof summary for theory kernel
ancestor_invariant_false_TCC1.........proved - complete [shostak](0.09 s)
ancestor_invariant_false_TCC2.........proved - complete [shostak](0.03 s)
ancestor_end_true_TCC1................proved - complete [shostak](0.08 s)
all_children_waiting_or_finished_TCC1.proved - complete [shostak](0.07 s)
all_children_waiting_or_finished_TCC2.proved - complete [shostak](0.33 s)
inactive_TCC1.........................proved - complete [shostak](0.11 s)
inactive_TCC2.........................proved - complete [shostak](0.05 s)
inactive_TCC3.........................proved - complete [shostak](0.12 s)
waiting_TCC1..........................proved - complete [shostak](0.04 s)
executing_node_list_TCC1..............proved - complete [shostak](2.02 s)
executing_node_command_TCC1...........proved - complete [shostak](2.00 s)
executing_node_assignment_TCC1........proved - complete [shostak](2.02 s)
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executing_node_funcall_TCC1...........proved - complete [shostak](1.99 s)
failing_node_list_TCC1................proved - complete [shostak](0.07 s)
failing_node_command_TCC1.............proved - complete [shostak](0.07 s)
finishing_TCC1........................proved - complete [shostak](6.52 s)
finishing_TCC2........................proved - complete [shostak](0.50 s)
iteration_ended_TCC1..................proved - complete [shostak](6.57 s)
finished_TCC1.........................proved - complete [shostak](0.15 s)
Theory totals: 19 formulas, 19 attempted, 19 succeeded (22.83 s)

Grand Totals: 107 proofs, 107 attempted, 107 succeeded (35.85 s)
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