
A Formal Verification Framework for Runtime
Assurance

J Tanner Slagel1, Lauren M. White1, Aaron Dutle1, César A. Muñoz1, and
Nicolas Crespo1

NASA Langley Research Center, Hampton, VA 23666, USA
j.tanner.slagel@nasa.gov

Abstract. The simplex architecture is an instance of Runtime Assur-
ance (RTA) where a trusted component takes control of a safety-critical
system when an untrusted component violates a safety property. This
paper presents a formalization of the simplex RTA framework in the lan-
guage of hybrid programs. A feature of this formal verification framework
is that, for a given system, a specific instantiation can be created and
its safety properties are guaranteed by construction. Instantiations may
be kept at varying levels of generality that allow for black box compo-
nents, such as ML/AI-based controllers, to be modeled. The framework
is written in the Prototype Verification System (PVS) using Plaidypvs,
an embedding of differential dynamic logic in PVS. As a proof of concept,
the framework is illustrated on an automatic vehicle braking system.

Keywords: Runtime Assurance · Hybrid Programs · Plaidypvs · PVS

1 Introduction

Runtime Assurance (RTA) is a design-time architecture for safety-critical sys-
tems where an internal monitor takes action upon detecting a violation of a
property [2]. The simplex architecture is an instance of RTA where control of
the overall system is handed to a trusted controller when an untrusted one vi-
olates a safety property [9]. Simplex RTA is emerging as a method for allowing
AI/ML and other unverified software to be integrated into safety-critical appli-
cations.

This paper presents a formalization of a simplex RTA framework in the Pro-
totype Verification System (PVS) [7] using an embedding of differential dynamic
logic (dL) called Plaidypvs [10]. A novel feature of this framework is that it can
be instantiated at different levels of abstraction. This feature allows for the for-
mal verification of a system with an untrusted black box component, such as an
AI/ML controller.

1.1 Runtime Assurance

Runtime verification is the use of a monitor to check safety properties of a
system at runtime [4,6]. If a property is violated, the monitor may send a signal

2 J Tanner Slagel et al.

to perform some action or to alert a user. Runtime Assurance is the design-time
integration of runtime verification into a system to provide some guarantee on
the overall system.

Arguably, the most common application of Runtime Assurance is in the sim-
plex architecture [9]. In this architecture, a system has an advanced controller
(AC) and a reversionary controller (RC). The system is allowed to operate with
the AC until a runtime monitor detects that some property has been violated
and then the RC takes over. Assuming that the monitor can detect improper
functioning with enough time for the RC to correct the impending problem, and
that the RC is trusted, this use of RTA allows for the integration of untrusted
— but possibly more performant — controllers in a safe way. This is of par-
ticular interest with the rise of AI/ML technology and the desire to integrate
it in safety-critical systems like aircraft. To this end, ASTM and NASA have
each published guidelines on the use of RTA in such systems [1,2]. Due to the
ubiquity of the simplex RTA framework, the term RTA will be used to represent
a simplex architecture in the remainder of the paper.

This paper does not address the many difficulties in deploying RTA to an
industrial-level system [3]. Instead, the focus is on the formal verification of
the simplex RTA framework in the language of hybrid programs. Employing
the Plaidypvs formalization in PVS allows for the verification of the general
framework and then, by specializing some components of the hybrid program,
to verify instances of the framework while keeping the untrusted component
essentially a black box.

1.2 Plaidypvs

Plaidypvs (Properly Assured Implementation of Differential Dynamic Logic for
Hybrid Program Verification and Specification) [10]1 is a formal embedding of
Differential Dynamic Logic [8] that allows for the formal specification of, and
reasoning about, hybrid programs within the PVS interactive theorem prover.
Hybrid programs are used to model hybrid systems, i.e., systems with both
continuous and discrete behavior, which often arise in safety- and mission-critical
applications [5].

In Plaidypvs, reasoning can be done on the executions of a hybrid program
using universal and existential quantifiers denoted by allruns [·] and someruns
⟨·⟩ respectively. For a given hybrid program α and a Boolean expression P on
environments, [α]P (respectively, ⟨α⟩P) asserts that every (respectively, some)
run of the hybrid program α ends at a value that satisfies P .

Hybrid programs are syntactically defined as a datatype H in Plaidypvs
according to the grammar

α ::= x := ℓ | x′ = ℓ&P | ?P | x := ∗ | α1;α2 | α1 ∪ α2 | α∗
1

1 Plaidypvs is available as part of the NASA PVS library at https://github.com/nasa/
pvslib/tree/master/dL.

https://github.com/nasa/pvslib/tree/master/dL
https://github.com/nasa/pvslib/tree/master/dL

A Formal Verification Framework for Runtime Assurance 3

where x := ℓ is a discrete assignment, x′ = ℓ is a differential system symbolizing
a continuous evolution, and P is a Boolean expression. The expression ?P rep-
resents a check of the Boolean expression P , x := ∗ is an arbitrary assignment
of the variable x, the expression α1;α2 represents sequential execution of two
subprograms, α1∪α2 symbolizes a nondeterministic choice between two subpro-
grams, and finally α∗

1 represents a fixed but unknown number of repetitions of
a hybrid program.

Plaidypvs uses a predicate called the dL-sequent denoted Γ ⊢ ∆, where Γ
and ∆ are lists of Boolean expressions. This predicate is defined by the Boolean
formula ∧

i

Γi(e) →
∨
j

∆j(e),

where Γi(e) and ∆j(e) represent the i-th and j-th Boolean expressions of Γ and
∆, respectively, evaluated in the environment e.

2 RTA Framework in Plaidypvs

Output

Output

Trusted

Untrusted
Advanced System

Reversionary System Trusted
Output

Switch Mechanism 𝑀
& RTA Monitor 𝑚!,#

System
Being
Controlled
with
Safety
Property, 𝑆

Input
Allocator

𝛼

𝛽

Fig. 1. The simplex RTA framework. In this work the advanced and reversionary sys-
tems are denoted by hybrid programs α and β respectively.

This section presents a general framework for RTA in Plaidypvs where the
entire system, including trusted and untrusted components, are modeled as hy-
brid programs. In this architecture, it is assumed the monitor does not instan-
taneously detect when the switch condition is violated, but rather samples at
least every τ ∈ R≥0 amount of time. This assumption models real-world systems
where the monitor is checked with discrete samples.

To model this sampling, the notion of a monitored hybrid program is in-
troduced. This monitored hybrid program can be defined as a function mτ,M ,
where τ is the maximum allowed amount of time between samples and M is the
switch condition. This function takes a hybrid program α and produces a hybrid

4 J Tanner Slagel et al.

program that has the same dynamics as α but is restricted to the runs where M
has been true within τ units of time of the final state. For a hybrid program α
the associated monitored hybrid program is defined as:

mτ,M (α) =

(?M ; t := 0; (x′ = ℓ, t′ = 1&P ∧ t ≤ τ))
∗ if α = (x′ = ℓ&P),

mτ,M (α1);mτ,M (α2) if α = α1;α2,

mτ,M (α1) ∪mτ,M (α2) if α = α1 ∪ α2,

(mτ,M (α1))
∗ if α = α∗

1

α otherwise.

Here, it is required that the variable t does not appear in the hybrid program
α.

Figure 1 shows the general RTA framework, which has been specified and ver-
ified in Plaidypvs.2 Let the advanced and reversionary components be modeled
by hybrid programs α and β, respectively, and let S be a Boolean expression
describing the safety property that must be always satisfied by the RTA sys-
tem. The function mτ,M enforces that the hybrid program does not evolve for
more than τ ∈ R≥0 units of time without the switch condition property M be-
ing checked. In this system, the RTA framework can be written as the hybrid
program:

((?M ;mτ,M (α)) ∪ (?¬M ;β))
∗
. (1)

This RTA structure enforces the switch to β when it is detected that the switch
condition property M is not satisfied. Note that β is allowed to run for as long as
it wants regardless of the value of M . The switch back to the advanced system α
is not specified in this paper but can be defined within Plaidypvs. For instance,
one enforcement of a switchback is to replace β with a monitored reversionary
system mτ,¬N (β) checking for a switchback condition N . With the assumption
that N is an invariant of β, N implies M , and the existence of a run of mτ,¬N (β)
where N is true, it can be shown a switchback to the advanced system occurs.

Given an RTA system, a primary goal is to know that the safety property S
is always satisfied, written in Plaidypvs as:[

((?M ;mτ,M (α)) ∪ (?¬M ;β))
∗]

S.

To prove this invariant property, a general rule was specified and proven in
Plaidypvs that relates the safety of the overall system to safety of its individual
components:

Γ ⊢ S ∧ (M ∨G) S ⊢ [mτ,M (α)](S ∧ (G ∨M)) G ⊢ [β∗]S

Γ ⊢ [((?M ;mτ,M (α)) ∪ (?¬M ;β))
∗
]S

(RTA),

where G ∈ B is a user-instantiated condition that represents a property that
carries over when switching between the advanced system to the reversionary
2 The formal development presented in this paper, including examples, is available at

https://github.com/nasa/pvslib/tree/master/dL/dL_RTA.

https://github.com/nasa/pvslib/tree/master/dL/dL_RTA

A Formal Verification Framework for Runtime Assurance 5

system. This switch property G is used to capture conditions that will allow the
reversionary controller to satisfy S after detecting the monitor is violated.

The rule RTA takes the RTA system in Formula (1) and generates three
subgoals. The first subgoal Γ ⊢ S ∧ (M ∨ G) corresponds to the initial state
of the system. The safety property S must be true to start, and either the
monitoring condition M or the switch property G must hold. The second subgoal
S ⊢ [mτ,M (α)](S∧ (G∨M)) is the proof condition that if the system is in a safe
initial point, every monitored run of the advanced system will satisfy S (recall
that a monitored run of α is terminated within τ of the M failing to hold),
and have the property that if the monitoring condition M is not true, then the
switch condition G holds— since G ∨ M ⇐⇒ (¬M → G). The third subgoal
G ⊢ [β∗]S requires proving that when starting from the switch condition being
true, the reversionary system may run any finite number of times and the safety
property S is satisfied.

3 A Simple Example

!
WW− D% −&

2

v# = 	f$ v# =	−A	- = 0

!&

Fig. 2. A simple hysteresis controller set-up, which is an instantiation of the general
RTA framework.

Consider the one-dimensional braking example in Figure 2, where a vehicle
whose position and velocity are given by the variables s and v, respectively, is
governed by an RTA system. The advanced controller is given by

α := (s′ := v, v′ := fa), (2)

where fa ∈ R is any positive acceleration function bounded by A ∈ R>0. Note
that fa is not specifically defined, but is a black box component with only the
requirement that it is bounded by A. The reversionary braking system is given
by

β := (s′ := v, v′ := −A). (3)

The switching condition M is a check on the position and velocity. Given a
sampling rate τ, the full RTA system is a variant of the hysteresis controller,
having the form of Formula (1).

Let the vehicle start with s = 0 and v = 0, and as a safety property, require
that the vehicle does not go within a given distance D ∈ R>0 to a wall W ∈ R

6 J Tanner Slagel et al.

(assuming that W −D > 0). The RTA property is then

s = 0, v = 0 →
[
(?M ;mτ,M (α)∪ ?¬M ;β)

∗]
(s ≤ W −D). (4)

Using the values

τ =

√
W −D

A
(5)

M = s ≤ sτ ∧ v ≤
√
A(W −D) (6)

sτ =
(
√

A(W −D)− τ)2

2
, (7)

allows Formula (4) to be proven in Plaidypvs. In fact, the proof process itself was
crucial in discovering the requirement on the maximum time between samples, τ ,
to guarantee the safety property for the system. Furthermore, it illuminates an
important aspect of runtime verification, that the amount of drift in the system
between samples must be accounted for to ensure correctness. This is shown in
the term sτ corresponding the position component of the switch condition M .
This term is specified so that even in the worst case, where the sampling rate is
such that the position is sampled right before M is violated and the next sample
occurs τ time after the previous, the switch condition allows the reversionary
controller to take over with enough time so that a distance D away from the
wall is maintained.

Proving the property is done by applying the RTA rule with

G = s ≤ W −D

2
∧ v ≤

√
A(W −D),

which yields the three subgoals

s = 0, v = 0 ⊢ s ≤ W −D ∧ (M ∨G) (8)
s ≤ W −D ⊢ [mτ,M (α)]s ≤ W −D ∧ (M ∨G) (9)

G ⊢ [(β)∗] (s ≤ W −D) (10)

each of which are then proven within Plaidypvs.

4 Conclusion

This paper presents a general framework for RTA, which has been formalized in
Plaidypvs. The formalization allows the designer of a safety-critical system to
prove safety properties of the entire RTA system based on properties of its indi-
vidual components. A simple braking example illustrates the use of this emerging
idea. Particularly, this framework extracts and reveals requirements of the un-
derlying system being modeled. Future work will apply this RTA framework to
more complex examples in the aerospace domain, to extract safety requirements,
including the delicate interplay between sample rates of sensors and monitoring

A Formal Verification Framework for Runtime Assurance 7

specifications. Using the temporal extension of Plaidypvs that includes the trace
semantics of hybrid programs [11], examples will be developed where tempo-
ral properties are shown for the system. Additionally, the trace semantics of
hybrid program will allow a rigorous connection to be made between a hybrid
program and its analogous monitored hybrid program. Plaidypvs allows more
complicated RTA structures to be modeled at a generic level. This could include
multiple components such as secondary reversionary controller or even a system
made of several simplex RTA structures, which creates the need for modeling
concurrency in Plaidypvs.

References

1. ASTM International: Standard practice for methods to safely bound behavior of
aircraft systems containing complex functions using run-time assurance, ASTM
F3269-21. (2021). https://doi.org/10.1520/F3269-21

2. Brat, G., Pai, G.: Runtime assurance of aeronautical products: Preliminary rec-
ommendations. Technical Memorandum (2023), https://ntrs.nasa.gov/citations/
20220015734

3. Goodloe, A.: Challenges in high-assurance runtime verification. In: International
Symposium on Leveraging Applications of Formal Methods. ISoLA. Springer
(2016). https://doi.org/10.1007/978-3-319-47166-2_31

4. Havelund, K.: Using runtime analysis to guide model checking of java programs.
In: International Symposium on Model Checking Software. SPIN. Springer (2000).
https://doi.org/10.1007/10722468_15

5. Jeannin, J., Ghorbal, K., Kouskoulas, Y., Schmidt, A.C., Gardner, R.W., Mitsch,
S., Platzer, A.: A formally verified hybrid system for safe advisories in the
next-generation airborne collision avoidance system. International Journal on
Software Tools for Technology Transfer 19(6) (2017). https://doi.org/10.1007/
978-3-662-46681-0_2

6. Kim, M., Viswanathan, M., Ben-Abdallah, H., Kannan, S., Lee, I., Sokolsky, O.:
Formally specified monitoring of temporal properties. In: Euromicro Conference
on Real-Time Systems. Euromicro RTS. IEEE (1999). https://doi.org/10.1109/
EMRTS.1999.777457

7. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In:
International Conference on Automated Deduction. CADE. Springer (1992). https:
//doi.org/10.1007/3-540-55602-8_217

8. Platzer, A.: Differential dynamic logic for hybrid systems. Journal of Automated
Reasoning 41(2) (2008). https://doi.org/10.1007/s10817-008-9103-8

9. Seto, D., Krogh, B., Sha, L., Chutinan, A.: The simplex architecture for safe online
control system upgrades. In: Proceedings of the 1998 American Control Conference.
ACC. vol. 6, pp. 3504–3508 (1998). https://doi.org/10.1109/ACC.1998.703255

10. Slagel, J.T., Moscato, M.M., White, L., Muñoz, C., Balachandran, S., Dutle,
A.: Embedding differential dynamic logic in PVS. In: International Conference
on Logical and Semantic Frameworks, with Applications. LSFA (2023), https:
//ntrs.nasa.gov/citations/20220019093

11. White, L., Titolo, L., Slagel, J.T., Muñoz, C.: A temporal differential dynamic
logic formal embedding. In: ACM SIGPLAN International Conference on Certified
Programs and Proofs. CPP (2024). https://doi.org/10.1145/3636501.3636943

https://doi.org/10.1520/F3269-21
https://doi.org/10.1520/F3269-21
https://ntrs.nasa.gov/citations/20220015734
https://ntrs.nasa.gov/citations/20220015734
https://doi.org/10.1007/978-3-319-47166-2_31
https://doi.org/10.1007/978-3-319-47166-2_31
https://doi.org/10.1007/10722468_15
https://doi.org/10.1007/10722468_15
https://doi.org/10.1007/978-3-662-46681-0_2
https://doi.org/10.1007/978-3-662-46681-0_2
https://doi.org/10.1007/978-3-662-46681-0_2
https://doi.org/10.1007/978-3-662-46681-0_2
https://doi.org/10.1109/EMRTS.1999.777457
https://doi.org/10.1109/EMRTS.1999.777457
https://doi.org/10.1109/EMRTS.1999.777457
https://doi.org/10.1109/EMRTS.1999.777457
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1109/ACC.1998.703255
https://doi.org/10.1109/ACC.1998.703255
https://ntrs.nasa.gov/citations/20220019093
https://ntrs.nasa.gov/citations/20220019093
https://doi.org/10.1145/3636501.3636943
https://doi.org/10.1145/3636501.3636943

	A Formal Verification Framework for Runtime Assurance

