NASA Technical Memorandum 107634

AN EXTENSION TO SCHNEIDER'S GENERAL
PARADIGM FOR FAULT-TOLERANT CLOCK
SYNCHRONIZATION

Paul S. Miner

June 1992

CNMSTICN TU N92-30677
(AT A-TH=10Tc34) AN FXTCMSICN TU

cHNOTLERY S GENERAL PARADIGM FOR
KEUR 2 B Rl RS

~ o g aAC¥

f'A\‘)LY_THl‘- .‘(AJT CL .

:(‘lf‘Hf' M TATION (‘\‘A;’A) 56 b

) L S - L) » - :

NASA Ga/me BLLoLE

National Aeronautics and
Space Administration

Jnclas

Langley Research Center
Hampton, VA 23665

Contents
1 Introduction

2 Clock Definitions
2.1 Notation

2.2 The Conditions

3 A General Solution for Bounded

Delay

3.1 Relationship to Shankar’s Mechanical Proof .. oo oo o0 o0 oo

3.2 1oupM Proofs of Bounded Delay
4 Concluding Remarks
A Proof Chain Status

B X Formatted Listings

11
15
16

18

19

26

1 Introduction

In 1087, Schneider presented a general paradigm that provides a single proof of a number of
fault-tolerant clock synchronization algorithms [1]. His proof was subsequently subjected to the
rigor of mechanical verification by Shankar [2]. However, both Schneider and Shankar assumed
a condition Shankar relers to as boundecd delay. This condition states that the elapsed time
between synchronization events (i.e. the time that the local process applies an adjustment to
its logical clock) is bounded. This property is really a result of the algorithm and should not
be assumed in a proof of correctness. The purpose of this paper is to remedy this by providing
a general proof of this property in the context of the general paradigm proposed by Schneider.
The argument given here is based on the proof of this property for the algorithm of Welch and

Lynch [3, Section 6]. The notation used is from [2] except where noted.

2 Clock Definitions

Any implementation that satisfies the definitions and constraints in Shankar’s report will provide

the following guarantce [2].

Theorem 1 (bounded skew) lor any two clocks p and g that are nonfaulty at time t,
VC,(1) - VC, (1) < 8

That is, the difference in time observed by two non-faulty clocks is bounded by a small
amount. This gives the leverage nceded to reliably build a fault-tolerant system. This section
presents the definitions and conditions to be met to guarantee this result. Much of it is taken from
sections 2.1 and 2.2 of Shankar’s report documenting his mechanization of Schneider’s proof [2].

Modifications to the conditions needed for this revision of the theory are also presented .

2.1 Notation

A fault-tolerant clock synchronization system is composed of an interconnected collection of
physically isolated clocks. Each redundant clock will incorporate a physical oscillator which
marks passage of time. Each oscillator will drift with respect to real time by a small amount.
Physical clocks derived from these oscillators will similarly drift with respect to each other.
There are two different views of physical clocks relating different perceptions of time. Real time
will be denoted by lower case letters, e.g. t,s: Var time. Typically, time is taken as ranging over
the real numbers. Clock time will be represented by upper case letters, e.g. T, S: Var Clocktime.
Wihile Clocktime is often treated as ranging over the reals (3, 2, 4], a physical realization of a

clock marks time in discrete intervals. [t is more appropriate to treat values of type Clocktime

as representing some integral number of ticks. There are two sets of functions associated with

the physical clocks!: functions mapping real time to clock time for each process p,
PC, : time — Clocktime;

and functions mapping clock time to real time,
pcp : Clocktime — time.

The intended semantics are for PCp(t) to represent the reading of p’s clock at real time ¢, and for
peo(T) to denote the carliest real time that p’s clock reads T. By definition, PCy(pcy(T)) =T,
for all T. We assume nothing about the relationship of pe,(PCp(t)) to t.

The purpose of a clock synchronization algorithm is to make periodic adjustments to local
(virtual) clocks to keep redundant clocks within a bounded skew of each other. This periodic
adjustment makes analysis difficult, so an interval clock abstraction is used in the proofs. Each
process p will have an infinite number of interval clocks associated with it, each of these will be
indexed by the number of intervals since the beginning of the protocol. An interval corresponds
to the elapsed time between adjustments to the virtual clock. These interval clocks are equivalent
to a process’ physical clock plus an offset. As with the physical clocks, they are characterized
by two functions: IC’:, : time — Clocktime; and ic; : Clocktime — time. If we let adj;; : Clocktime
denote the cumulative adjustment made to a clock as of the ith interval, we get the following

definitions for the ith interval clock:

1C3(t)
ic;;(’l‘)

PCH(t) + adj;
pep(T — adjz';).

From these definitions it is simple to show IC;;(ic:,(T)) = PCp(pey(T - adj;;)) + adj,‘; =T, for
all T. Sometimes it is more useful to refer to the incremental adjustment made in a particular
interval than to use a cumulative adjustment. By letting ADJ;; = adj,ﬂ‘H - adjf, we get the

following equations relating successive interval clocks:

1CHN (1) IC(t) + ADJ,
ietI(T) = ic,(T — ADJy).

IShankar’s presentation includes only the mappings {rom time to Clocktime. The mappings from Clocktime to
time are added here, because it is a more natural representation for some of the proofs.

\

A virtual clock, VC,, : time — Clocktime, is defined in terms of the interval clocks by the equation
VCy(t) = ICi(1), for &}, < t < ti¥1.

The symbol t;; denotes the instant in real time that process p begins the ith interval clock. Notice
that there is no mapping from Clocktime to time for the virtual clock. This is because VC, is
notl nceessarily monotonic; the inverse relation might not be a function for some synchronization
protocols.

Synchronization protocols provide a mechanisin for processes to read each others clocks. The
adjustment is computed as a function of these readings. In Shankar’s presentation, the readings
ol remote clocks are captured in function @;;“ : process — Clocktime, where G):,‘“(q) denotes
process p's estimate of ¢’s ith interval clock at real time t:,“ (i.e. IC;(t:,“)). Each process
exccutes the same (higher-order) convergence function, ¢fn : (process, (process — Clocktime)) —
Clocktime, to determine the proper correction to apply. Shankar defines the cumulative adjust-

ment in terms of the convergence function as follows:

(ulj,,',"*l = ¢ofn(p, O;“) - [)C'P(t;)+1)
adj:,) = 0.

The following can be simply derived from the preceding definitions:

VO () = ICH (G = efn(p, O5H)
I(,-;"+l(t) = cfn(p, (—);';1—1) + PCy(1) - PC,,(t;;“)
ADTY = cfa(p, O - ICH(ti).

Using some of these equations and the conditions presented in the next section, Shankar mechan-
ically verified Schueider’s paradigm. This paper presents a general argument for satisfying one
of the assumptions of Shankar’s proof. The argument requires some modifications to Shankar’s
constraints, and introduces a few new assumptions. In addition, some of the existing constraints
are rendered unnecessary.

A new constant, R : Clocktime, is introduced which denotes the expected duration of a
synchronization interval as measured by clock time (i.e. in the absence of drift and jitter,
no correction is necessary for the clocks to remain synchronized. In this case the duration
of an interval is exactly R ticks). We also introduce a collection of distinguished clock times
5% : Clocktime, such that §* = i R+5° and $°is a particular clock time in the first synchronization

interval. We also introduce the abbreviation .c;, defined to equal ic;,(S‘). The only constraints

on S* are that for each nonfaulty clock p, and real times ¢y and t;,

(VC(t) = SHA(VCy(ta) = 51 Dty =1,

and there exists some real time t, such that

The rtationale for these constraints is that we want to unambiguously define a clock time
in each synchronization interval to simplify the arguments necessary to bound separation of
good clocks. 1f we choose a clock time near the instant that an adjustment is applied, it is
possible that the VC will never read that value (because the clock has been adjusted ahead), or
that the value will be reached twice (due to the clock being adjusted back). In [3], the chosen
unambiguous event is the clock time that cach good processor uses to initiate the exchange
of clock values. For other algorithms, any clock time sufficiently removed from the time of

the adjustment will sullice.

Ve, () = S

A simple way to satisfy these coustraints is to ensure for all t,

S+ ADJL < THY < SHY = ADJG, where T3 = IC(1H).

PC,(t) | The reading of p’s physical clock at real time ¢.
pep(1) | The earliest real time that p’s physical clock
reads T'.
VCy(t) | The reading of p’s virtual clock at time t. This
is the logical time used by the system.
ICi(t) | The reading of p’s ith interval clock at real time ¢
ic,(T) | The earliest real time that p’s ith interval clock
reads T
t, | The real time that processor p begins the ith
synchronization interval.
adj, | Cumulative adjustment to p’s physical clock up
to and including .
ADJ; adj,ﬁ'“ — adj,
O;,” An array of clock readings (local to p) such that
0} (q) is p's reading of ¢’s ith interval clock at t,,.
efn(p, (-);,“) Convergence function executed by p to establish
correct VC,(15H!).

Table 1 summarizes the notation for the key elements required for a verified clock synchro-

nization algorithm.

Table 1: Clock Notation

2.2 The Conditions

This section introduces the conditions required by Shankar’s mechanical proof of Schneider’s
Theory. The changes needed for the general extension to the theory are also introduced here.
The first condition defines initial skew, ég, which is a bound on the diflerence between good

clocks at the beginning of the protocol.

Old Condition 1 (initial skew) For nonfaulty processors p and q

|PCy(0) = PC,(0)] < 85

This condition will be replaced by the following;

New Condition 1 (bounded delay init) For nonfaulty processes p and q

|.s'2 - 52] <y

a constraint similar to the original condition can be easily derived from this new condition
using the constraint on clock drift. Given suitable constraints on the convergence function, it

will be shown that for nonfaulty processes p and ¢, and all ¢,
I, ~ sgl = licy(8°) — icy(S) < .

That is, 8’ will be shown to bound the separation of clocks at a particular Clocktime in each

interval.
The rate at which a good clock can drift from real-time is bounded by a small constant p.

Old Condition 2 (bounded drift) There is a nonnegative constant p such that if clock
p ts nonfaulty at time s,s > t, then

(1= p)s— 1) < PCy(s) = PC,() < (14 p)(s~1)

This characterization of drift is not quite accurate, and is only valid if Clocktime ranges over
the rationals or reals. If we treat Clocktime as an integer, the inequality does not hold for all s,
t, or p. We restate the condition for the mapping from Clocktime to time. To allow for future
modifications to the theory which allow for recovery from transient faults, we also remove the

implicit assumption that non-faulty clocks have been so since the beginning of the protocol.

New Condition 2 (bounded drift) There is a nonnegative constant p such that if p’s
clock is nonfaully during the interval from T to §,(S > T), then

(8 = TV/(1+ p) < peyl() = pey(T) < (1+p)(S = T)

The benefit of changing the lower bound to (S — T)/(1 + p) is that we can derive the following

constraint on the mapping from time to Clocktime:
(pep(S) — pep(T))/(1+ p) < PCy(pep(8)) = PC(pep(T)) < (1 + p)(pep(S) — pey(T))

This is not as strong an assumption as Shankar’s original condition. However, if the unit of time
is taken to be a tick of Clocktime and Clocktime ranges over the integers, we can then derive the
following hound on drift that is sufficient for preserving Shankar’s mechanical proof (with minor

modifications):

(s = /(14 p)] € PCy(s) = PCy(1) < [(1+ p)(s =)]

Note that using Shankar’s algebraic relations defining various components of clocks, we can use
these constraints to bound the drift of any interval clock (ic:,) for any 1.
The following corollary to bounded drift limits the amount two good clocks can drift with

respect to each other during the interval from 7' to S.
Ipep(S) — peg(S) < pep(T) = peg(T)| + 2p(S - T)

Shankar stated the above corollary with respect to the original formulation of bounded drift.

We can also derive an additional corollary (this adapted from lemma 2 of (3]).
|(pes(8) = §) = (pep(T) = T < p|S — T

A similar relation holds for PC.

Shankar assumes a bound on the duration of the synchronization interval.

Old Condition 3 (bounded interval) For nonfaulty clock p

. t41] .
0 < rpin S F =1, < rimaz

The terms 7,4, and Tz are uninstantiated constants. In our formulation, we assume that
a nowinal duration (R) of an interval is determined from the implementation. We set a lower

bound on R by placing restrictious on the events St. The term a8’ + 2A") will be shown to

6

bound ADJ;; for nonfaulty process p. The function « is introduced in condition 11, #' is a

bound on the separation of clocks at a particular Clocktime in each interval, and A’ bounds the

error in estimating the value of a remote clock.

New Condition 3 (bounded interval) For nonfaulty clock p,

ST+ a(f +20) < T3 < 71— (B +24)

A trivial consequence is that R > 2a(f8' + 2A’). Clearly, we can let r.. = (R — a(f' +
2A"))/(1 4 p) and Tmaz = (1 + p)(R + a(8’ + 2A’)). The values for A/, §, and a() will be
determined by the implementation. The constraints on these values will be presented later.
Shankar and Schneider both assume the following in their proofs. The condition states that
the elapsed tiine between two processes starting their sth interval clock is bounded. This prop-
erty is closely related to the end result of the general theory (bounded skew), and should be

derived in the context of an arbitrary algorithm.

Old Condition 4 (bounded delay) For nonfaulty clocks p and ¢

[t -] < B

The related property, that for nonfaulty clocks p and ¢,
lsg — sl < B

is proven independently of the algorithm in section 3. This gives sufficient information to prove
bounded delay directly from the algorithm, however, this proof depends upon the interpretation
of T;,'. Two interpretations and their corresponding proofs are given later.

The next condition states that all good clocks begin executing the protocol at the same

instant of real time (and defines that time to be 0).

Old Condition 5 (initial synchronization) For nonfaulty clock p

This is clearly unsatisfiable, and will be discarded. It is used in proving the base case of the
induction proof which establishes that good clocks are within §s of other good clocks, immedi-

ately following applying a correction. A satisfiable condition for that proof is that

New Condition 5 (initial synchronization) For nonfaulty clock p

N0
1C)1) =1

where 7° is some constant clock time known to all good clocks (i.e. T? is the clock time in
the initial state). This just states that all nonfaulty clocks start the protocol at the same
Clocktime. It is possible that this condition can be eliminated entirely.

Since we do not want process q to start its (i + 1)th clock before process p starts its ith,

Shankar states a nonoverlap condition

0Old Condition 6 (nonoverlap)
B < Timin

This, with bounded interval and bounded delay, ensures that for good clocks p and g, t; < tf’*".

We restate the condition in terms related to this presentation

New Condition 8 (nonoverlap)

B<(R—a(f +21)/(14p)

This essentially defines an additional constraint on I; namely that R > (14+p)8+a(f +2A).
All clock synchronization protocols require each process to obtain an estimate of the clock
values for other processes within the system. Error in this estimate can be bounded, but not

eliminated.

Old Condition 7 (reading error) For nonfaulty clocks p and g

[ICH5+) — 0 ()l < A

Hlowever, in stating this condition an important consideration was overlooked. In some pro-
tocols, the ability to accurately read another processor’s clock is dependent upon those clocks
being alrcady synchronized. Therefore, we add a precondition to the condition. Another useful
observation is that an estimate of a remote clock’s value is subject to two interpretations. It
can he used to approximate the difference in Clocktime that two clocks show at an instant of

real time, or it can be used to approximate the separation in real time that two clocks show the

same Clocktime.

New Condition 7 (reading error) For nonfaully clocks p and g, if st — 8| < B,
1. |ICH(EAY) = 057 (o) = (05 (0) - ICH(EFY)) = (ICYG) — ICH (BN < A
2. (O3 (q) — ICHEF)) = (e (T3F1) = icg(T;F DI < A
3. (O (q) — IC}(ti)) ~ (iy(57) = i, (S < A

The first clause just restates the existing read error condition to illustrate that the read er-
ror can also be viewed as the error in an estimate of the difference in readings of Clocktime,
i.e. the estimate allows us to approximately determine another clocks reading at a particular
‘ustant of time. The sccond clause recognizes that this difference can also be used to obtain
an estimate of the time that a remote clock shows a particular Clocktime. The third clause is
the one used in this paper; it relates real time separation of clocks when they read $ ' to the
estimated difference when the correction is applied. A bound on this could be derived from the
second clause, but it is likely that a tighter bound can be derived from the implementation.
Since the guaranteed skew is derived, in part, from the read error, we wish this bound to be as
tight as possible. For this reason, we add it as an assumption to be satisfied in the context of a
particular implementation.

The remaining constraints are unaltered in this presentation. They are exactly as Shankar
stated them. The first of these is that there is bound to the number of faults which can be

tolerated.

Old Condition 8 (bounded faults) At any time t, the number of faulty processes is at
most F.

Synchronization algorithms exccute a convergence function cfn(p,8) which must satisfy the
conditions of translation invariance, precision enhancement, and accuracy preservation irrespec-
tive of the physical constraints on the system. Shankar mechanically proves that Lamport and
Melliar-Smith’s Interactive Convergence function [5] satisfies these three conditions [2]. A me-
chanically checked proof that the fault-tolerant midpoint function used by Welch and Lynch (3]
satisfies these conditions is presented in [6]. Schneider presents proofs that a number of other
protocols satisfy these properties in [13.

Translation invariance states that the value obtained by adding z to the result of the conver-
gence function should be the same as adding z to each of the clock readings used in evaluating

the convergence function.

Old Condition 9 (translation invariance) For any function 8 mapping clocks to clock
values,

efn(p, (An: B(n) + 2)) = cfn(p,6) + o

Precision enhancement is a formalization of the concept that, after executing the convergence

function, the values of interest should be close together.

Old Condition 10 (precision enhancement) Given any subset C of the N clocks with
|C] > N—F, and clocks p and q in C, then for any readings vy and 8 satisfying the conditions

1. foranyl in C, |y(&)—6(f)| < z

2. for anyl, m in C, |7(€) —y(m)| < y

3. for anyl, m in C, |8(¢) — 8(m)| <y
there is a bound w(z,y) such that

'Cf”(pa 7) - cfn(q, 0)! S 7|'(2), y)

Accuracy preservation formalizes the notion that there should be a bound on the amount of

correction applied in any synchronization interval.

Old Condition 11 (accuracy preservation) Given any subset C of the N clocks with
|C] > N —F, and clock readings 0 such that for anyl and m in C, the bound |8(£)-6(m)| < z
holds, there is a bound a(z) such that for any q in C

lefu(p,8) — 0(q)| < a(z)

In the course of his proof of Theorem 1, Shankar derives the following additional conditions

for an algorithm to be verified in this theory.
1. 7(2A + 28p, 65 + 2p(rmax +) + 24) < b5
2. bs+2prmaz <6
3. a(bs +2p(rmaz+ B+ 20)+ A +2p8 <6

These prevent trivial bounds for the properties of precision enhancement and accuracy preserva-
tion. Future plans include revisiting Shankar’s proof to try to improve on these constraints. The
next section uses the new conditions presented in this section, along with the old constraints on

the convergence function to provide a general proof of bounded delay.

10

3 A General Solution for Bounded Delay

Schneider’s schema assumes that It:, - t;| < B for good clocks p and ¢, where t;, denotes the real
time that clock p begins its ith interval clock (this is condition 4 in Shankar’s presentation).
Anyone wishing to use the generalized proof to verify an implementation correct must prove that
this property is satisficd in the context of their implementation. In the case of the algorithm
presented in [3], this is a non-trivial proof.

The difficulty stems, in part, from the inherent ambiguity in the interpretation of t5*! in
the context of an arbitrary algorithm. Relating the event to a particular clock time is difficult
because it serves as a crossover point between two interval clocks. The logical clock implemented
by the algorithm undergoes an instantancous shift in its representation of time. Thus the local
clock readings surrounding the time of adjustinent may show a particular clock time twice, or
never. The event l;“ is determined by the algorithm to occur when IC;,(t) = T;‘H, i.e. T;“
is the clock time for applying the adjustment ADJ; = (adj;',+l - adj:,). This also means that

t:,“ = ici,(T,i“). In an instantaneous adjustment algorithm there are at least two possibilities:
LT =G+)R+ T%or
2. Tt = (i+)R+ 1° - ADJ},.

A more stable frame of reference is needed for bounding the separation of events. Welch and
Lynch exploit their mechanism for reading remote clocks to provide this frame of reference. Every
clock in the system sends a synchronization pulse when its virtual clock reads S* = iR + 5°,
where SO denotes the first exchange of clock values. Let s;, denote the earliest real time that
IC;;(t) = §%. If we ignore any implied interpretation of event s:,, and just select S* which satisfy
condition 3 we have suflicient information to prove bounded delay for an arbitrary algorithm.
The general proof follows closely the argument given in [3]. The proof adapted is that of
Theorem 4 of [3, section G]. We wish to prove for good clocks p and ¢ that |tj, - t;l < pB. To

establish this we first prove the following;:

Theorem 2 (bounded deluy offset) For nonfaulty clocks p and q, and for i > 0.

(a) Ifi> 1, then [ADJ'| < a(f' + 207).
(b) s, —sgl < B".

Proof: By induction on 7. The base case (i = 0) is trivial; part (a) is vacuously true and (b) is
true by assumption.
Assuming that (a) and (b) are true for i we proceed by showing they hold for i +1

1

(a)
G4

We begin by recognizing that (a) is an instance of accuracy preservation. ADJ;'.‘H)_] = adj,

adj; = cfn(p, Ot) — IC3(ti*1). Since ICi(6HY) = 03*!(p) (no error in reading own clock), we

have an instance of accuracy preservation:
]cfn(p,O;,“) - (-);,“(p)l < a(z).

All that is required is to show that 8’+2A" substituted for z satisfies the hypotheses of accuracy

preservation.
We need to establish that for good €,m,

|05 (6) — @ (m)| < B+ 2
We know from the induction hypothesis that for good clocks p and q,
Jsh = 8i] = liel(5°) — ich(S)] <
Using reading error and the induction hypothesis we get for nonfaulty clocks p and ¢
(054 (q) — TCH(E1) — (ick(S) - ici(S¥)| < A’

We proceed as follows:

|05 (€) - 057! (m)]

= (O30 - 05} (m)) + (IC(t5H1) = ICH ()
+ (ich(87) = ich(87) + (ich(57) — icy(5%)) + (icin(5%) — icin ()]
lici(§%) — ici (S + (O3 (&) = IC(15F1)) = (icy(S*) — icy(5*))]
+ (@5 (m) = ICH(15FY)) = (iey(S*) — i€, (59)]
< f+2A

IA

We get the last step by substituting ¢ and m for p and ¢ respectively in the induction hypothesis,

then using reading error twice, substituting first € for ¢ and then m for q.

(b)
All supporting lemmas introduced in this section implicitly assume both the induction hypothesis

and part (a) for i + 1. In Welch and Lynch’s presentation they introduce a variant of precision

enhancement. We restate it here in the context of the general protocol:

12

Lemma 1 For good clocks p and q,
(i€l (§7) = ich(S)) = (AT} = ADII)| < m(2A' + 2,4 + 20)

Proof: We begin by recognizing that AI)J; = cfn(p, (AL.OSF(E) — IC}(ti*1))) (and similarly

for ADJ;). A simple rearrangement of the terms give us

|(ici(S7) — iek(8%) = (ADJ}, — ADJY))|
= [(ADJ —ici(§Y) — (ADJY — ici(S%))]

To use translation invariance, we first nced to convert the terms icL(S‘) and ic;(S‘) to Clocktime.
We do this via the integer floor and ceiling functions. Without loss of generality, assume that

(ADJY, — ich(5%)) 2 (ADJ}, = icy(5Y).

[(ADJ} — ici(§7)) = (ADJy — icy(5))]
< [(ADJ; = Jick(S)]) = (ADJ = [ic (5]
= lefu(p, (ALOFO) ~ ICHGFY) = Li(59))) = e/, (ACOF (&) — ICY(EF) = iy (S)))]

All th‘at is requir.ed. is to (Ie-mor‘lstra,tc that if (A.OF(€) — IC’,‘;(t;',“) - [ic;',(Si)J) = 5 and
(A.OF(0) - IC,;(tf,‘”) — [ic}($*)]) = 8, they satisfy the hypotheses of precision enhancement.

We know from reading error and the induction hypothesis that
O () — 1CH(1FY) = (ici(87) = ici(S))] < A/
To satisly the first hypothesis of precision enhancement we notice that
it viggitl i P4 . i Qi
(MO (8) = ICH(1T7) — I_zc (SHNE) - (/\If.@q“(f)— ICq(tq“) = [icg(S)1)(€)]
(O (&) = 1C(1+") = [iep(5H)]) = (OFF (&) = IC (1) = [icy (SO
(O3 () ~ 1C3(t+1) = (lich($9)] - ici(5)

—((O5F(0) = TCH(EHY) = ([ick(59)] - ic($Y)))|
< 20" +2

Therefore, we can substitute 2A’42 for z to satisfy the first hypothesis of precision enhancement.
To satisfy the sccond and third hypothesis we proceed as follows (the argument presented is
for (AL.OL(€) = 1CH(13F1) - lich($%)]) = 7). We need a y such that

((ALOF(8) — ICHEH) = [ick (SO — (ALOF(€) - TCHLHY) ~ [ic(S)])(m)] < v.

We know that
(ALOUFI() — TCH(FT) = Lick(SHDIO) — (AT (&) = ICH(85+) = licy(5)[)(m)]
= (@) - ICH (1) - Lici($9))) — (O} (m) — ICH(t5+") — ik (S7)))
= |ot'(e) - 0L ()],

The argument in part (a) shows that this value is bounded by 8’ + 2A’ which is the desired y

for the remaining hypotheses of precision enhancement., -

Now we bound the separation of ic;','“('[‘) and i(.'f,“(T) forall T.

Lemma 2 For good clocks p and q, and clock time T,
lickt1(T') — degP ' (1)) < 2p(IT - S+ (B +2AN) + w(2A" + 2,8' + 2A7)

Proof: The proof is taken verbatim (modulo notational differences) from [3, Lemma 10].
Note that ic;t!(T) = iel(T - AI)J:,) and icitY(T) = ict(T - ADJ;). Now

q

licit (1) — icgt!(T)|
< |iel(T — ADJ}) —icy(S*) ~ (T - ADJ;, - 8]
Hici(T = ADJ}) = ici(S%) = (T = ADJ, - 5%)|
+H(ich(§%) ~ ici(8")) — (ADJ}, — ADJ})|

The three terms are bounded separately. By the second corollary of bounded drift we get

lick(T — ADJ3) = ick(87) = (I' = ADJ,, — %)
< plT - 5 — ADJ:,I
T — S 4 a(f' + 2A")), from part (a) for i + 1.

IA

r(

The second term is similarly bounded. Lemma 1 bounds the third term. Adding the bounds

and simplifying gives the result. -

This leads to the desired result:

Lemma 3 For good clocks p and g,

BARE st < 2p(R+a(f + M) + w(2A + 2,8 + 20) < B

14

Proof: This is simply an instance of Lemma 2 with S+ substituted for 7. ™

This completes the proof of Theorem 2. Algebraic manipulations on the inequality
2(R+ o +2A") +m(2N + 2,8 +2N) < ¢
give us an upper bound for R.

3.1 Relationship to Shankar’s Mechanical Proof

We begin by noticing that both instantancous adjustment schemes presented in this paper allow
for a simple derivation of a g that satisfies the condition of bounded delay. These are sufficient

to establish condition 4. Notice that knowledge of the algorithm is required in order to fully

establish this property.
L When TH! = (i + DR+ 10, let 8= '+ 2p(T3H - 57).
2. When Tit! = (i + DR+ T = ADJY, let § = ' = 2p(S* = IC}(14)).

This implies that all down stream proofs need not be altered. However, it is possible that some
bounds and arguments can be improved. This leaves us with a set of conditions which are much
casier to satisfy for a particular implementation. A proof that an implementation is an instance

of this extended theory requires the following:

o Prove the properties of translation invariance, precision enhancement and accuracy preser-
vation for the chosen convergence function.

o Identify data structures in the implementation which correspond to the algebraic defini-
tions of clocks. Prove that the structures used in the implementation satisfy the definitions.

¢ Prove that the implementation correctly executes a variation of the following algorithm:

t+— 0

do forever {
exchange clock values
determine adjustment for this interval
determine T**! (local time to apply correction)
when IC(t) = T"t! apply correction; i — i + 1

}

o Prove the new coundition of read error in the context of the algorithm.

e Solve the four (three from [2], one from above) derived inequalities using values determined

from the implementation.

R e . e e e o
e Prove correct a mechanism for establishing initial synchronization (|s, — 32| < f"). Ensure
that 8’ is as small as possible within the constraints of the aforementioned inequalities.

o If the protocol does not behave in the manner of either instantaneous adjustment option

presented in this paper, it will be necessary to use another means to establish Vi : It:, —t'] <
q —

B from Vi : Is; - 3f,| <pg.

3.2 EupM Proofs of Bounded Delay

The EnpM (version 5.2) proofs and supporting definitions and axioms are in the modules delay,
delay2, delay3 and delayd. INTREX formatted listings of these modules are in the appendix.?
Some of the revised constraints presented in section 2 are in module delay. The most difficult
aspect of the proofls was determining a reasonable predicate to express nonfaulty clocks. Since
we would like to express transient fault recovery in the theory, it is necessary to avoid the
axiom correct_closed from Shankar’s module clockassumptions® The notion of non-faulty clocks

is expressed by the following from module delay.

correct_during: function[process, time, time — bool] =
(Ap,t,8: t<sA(VE it <UL AL $8D correct(p,t1)))

wpred: function[event — function[process — bool]]

rpred: function[event — function[process — bool]]

wvr_pred: function[event — function[process — bool]] =
(Xi:(Ap:wpred(i)(p)V rpred(z)(p)))

wpred_ax: Axiom count(wpred(i), N) 2 N — F

wpred_correct: Axiom wpred(i)(p) D correct_during(p, t:,, t:,‘“
wpred_preceding: Axiom wpred(i + 1)(p) D wpred(i)(p) V rpred(i)(p)
wpred_rpred_disjoint: Axiom —(wpred(i)(p) A rpred(i)(p))

wpred_bridge: Axiom
wvr_pred(i)(p) A correct-during(p,ti,“,t;+2) O wpred(i + 1)(p)

Also, module delay3 states the following axiom:

recovery_lemma: Axiom
delay_pred(i) A ADJ_pred(i + 1)
A rpred(3)(p) A correct_during(p, (i+1, 15+2) A wpred(i + 1)(q)
D et = s < A

2A slightly modified version of Shankar’s module clockassumptions is also included in the appendix for

completeness.
37TLis axiom has not yet been removed from the general theory. None of the proofs of bounded delay offset

depend on it, however.

16

There are two predicates defined, wpred and rpred. Wpred is used to denote a working clock, i.e.
it is not faulty and is in the proper state. Rpred denotes a process that is not faulty, but has not
yet recovered proper state information. Correct is a predicate taken from Shankar’s proof which
states whether or not a clock is fault-free at a particular instance of real time. Correct_during is
used to denote correctness of a clock over an interval of time. In order to reason about transient
recovery it is necessary to provide an rpred that satisfies these relationships. If we do not plan
on establishing transient recovery, let rpred(i7) = (Ap : false). In this case, axioms recovery_lemma
and wpred_rpred_disjoint arc vacuously true, and the remaining axiom are analogous to Shankar’s
correct_closed. This reduces to a system in which the only correct clocks are those that have
been so since the beginning of the protocol. This is precisely what should be true if no recovery
is possible.

The restated property of bounded drift is captured by axioms RATE_1 and RATE_2. The new
constraints for bounded interval are rts_new_1 and rts_new_2. Bounded delay init is expressed by
bnd.delay_init. The third clause of the new reading error is reading_error3. The other two clauses
are not used in this proof. An additional assumption not included in the constraints given in
section 2 is that there is no error in reading your own clock. This is captured by read_self.
In addition there were a few assumptions included defining interrelationships of some of the
constants required by the theory.

The statement of Theorem 2 is bnd_delay_offset in module delay2. The main step of the
inductive proof for part (a) is captured by good_Readclock. This, with accuracy preservation was
sufficient to establish bnd_delay_offset_ind_a. P’art (b) is more involved. Lemma delay_prec_enh in
module delay2 is the machine checked version of lemma 1. Module delay3 contains the remaining
proofs for part (b). Lemma 2 is presented as bound_future. The first two terms in the proof
are bounded by lemma bound_futurel, the third by delay_prec_enh. Lemma bound_FIXTIME
completes the proof.

Module delay4 contains the proofs that cach of the proposed substitutions for g3 satisfy
the condition of bounded delay. Option 1is captured by optionl_bounded_delay, and option 2 is
expressed by option2_bounded_delay. The Ennpm proof chain status, demonstrating that all proof
obligations have been met, can be found in the appendix. The task of mechanically verifying
the proofs also forced some minor revisions to some hand proofs in an earlier draft of this paper.
The errors revealed by the mechanical proof included invalid substitution of reals for integers,

and arithmetic sign errors.

17

4 Concluding Remarks

This paper presents a mechanically confirmed proof for satisfying the condition bounded delay
in the context of an arbitrary clock synchronization algorithm. The general theory presented
by Schneider (and mechanically verified by Shankar) assumes this property. However, for some
clock synchronization algorithms, the difficulty of the proof required to establish this property
is comparable to that of directly proving the algorithm correct. If we wish to use Schneider’s
paradigm to simplify the verification of clock synchronization systems, a general proof of bounded
delay is required. The proof given by Welch and Lynch for a related property was generalized
and recast in the context of Schncider’s general theory. In addition, changes to the underlying
assumptions of the theory were given. These changes should ease the task of satisfying the
assumptions in the course of verifying an implementation. The proofs presented here were
sufficient to convince Enbm that the property of bounded delay can be satisfied in a general
manner. Furthermore, Shankar’s mechanically checked proofs still hold for the modified theory
(modulo minor changes). It is possible that reworking Shankar’s proofs using the new constraints

will yield better bounds on the derived constraints.

18

A Proof Chain Status

Terse proof chains for module delay4

Use of the formula
delay.RATE_lemmal_iclock

requires the following TCCs to be proven
delay_tcc.RATE_2_TCC1
delay_tcc.RATE_2_ iclock_TCC1
delay_tcc.rate_simplify_TCC1

Use of the formula
division.div_ineq

requires the following TCCs to be proven
division_tcc.mult_div_1_TCC1
division_tcc.mult_div_TCC1
division_tcc.div_cancel _TCC1
division_tcc.ceil_mult_div_TCC1
division_tcc.div_nonnegative_TCC1
division_tcc.div_ineq_TCC1
division_tcc.div_minus_1_TCC1

Use of the formula
delay2.bnd_delay_ocffset

requires the following TCCs to be proven
delay2_tcc.ADJ_pred_TCC1
delay2_tcc.ADJ_pred_TCC2

Use of the formula
natinduction. induction

requires the following TCCs to be proven
natinduction_tcc.ind_m_proof TCC1

Use of the formula
noetherian[naturalnumber, natinduction.less].general_induction
requires the following assumptions to be discharged
noetherian[naturalnumber, natinduction.less].well_founded

SUMMARY
The proof chain is complete
The axioms and assumptions at the base are:
clockassumptions.IClock_defn
clockassumptions.accuracy_preservation_ax

clockassumptions.precision_enhancement_ax
clockassumptions.rho_0

19

clockassumptions.translation_invariante
delay.RATE_1
delay.RATE_2
delay.R_FIX_SYNC_O
delay.bnd_delay._init
delay.fix_between_sync
delay.read_self
delay.reading_error3
delay.rts_new_1
delay.rts_new.2
delay.synctime_defn
delay.wpred._ax
delay.wpred_correct
delay.wpred_preceding
delay3.betaprime_ax
delay3.recovery_lemma
delay4.optioni_alg
delay4.option2_alg
division.mult_div_1
division.mult_div.2
division.mult_div.3
floor_ceil.ceil_defn
floor_ceil.floor_defn
multiplication.mult_non_neg
multiplication.mult_pos
noetherian[EXPR, EXPR].general_induction
Total: 30

The definitions and type-constraints are:
absmod.abs
clockassumptions.Ad]
clockassumptions.okay_Readpred
clockassumptions.okay_pairs
delay.ADJ
delay.FIXTIME
delay.correct_during
delay.fixtime
delay.iclock
delay2.ADJ_pred
delay2.delay_pred
delay3.good_interval
multiplication.mult

Total: 13

The formulae used are:

absmod.abs_3_bnd
absmod.abs_com

20

absmod

.abs_ge0

absmod.abs_plus

delay.
delay.
delay.
delay
delay.
delay.
delay.
delay.
delay
delay.
delay.
delay.
delay.
delay.
delay.
delay.
delay.
delay.
delay
delay
delay
delay.
delay.
delay
delay

delay2.
delay2.
delay2.
delay2.
delay2.
delay2.
delay2.
delay2.
delay2.
delay2.
delay2.
delay2.

delay2

delay2.
delay2.
delay2.
delay2.
delay2.
delay2.
delay2.

ADJ_leml
ADJ_lem2
FIXTIME_bound

.RATE_1_iclock

RATE_2_simplify
RATE_2_simplify_iclock
RATE_lemmal_iclock
RATE_lemmal_iclock_sym

.RATE_lemmaZ2

RATE_lemma2_iclock
Rlihack
correct_during_hi
correct_during_sub_left
correct_during_sub_right
correct_during_trans
diff_squares
iclock_ADJ lem
iclock_defn

.mult_abs_hack
.mult_assoc
.rate_simplify

rate_simplify_step
wpred_fixtime

.wpred_fixtime_low
.wpred_hi_lem

ADJ_hack

abs_hack

absceil

absfloor

abshack?2

abshack3

abshack4

abshackb

abshack6a

abshack6b

abshack?
bnd_delay_offset
.bnd_delay_offset_0
bnd_delay_offset_ind
bnd_delay_offset_ind_a
bnd_delay_offset_ind_b
ceil hack
delay_prec_enh
delay_prec_enh_stepl
delay_prec_enh_stepl_sym

21

delay2.floor_hack
delay2.good_ReadClock
delay2.prec_enh_hypl
delay2.prec_enh_hyp_2
delay2.prec_enh_hyp.3
delay2_tcc.ADJ_pred TCC1
delay?_tcc.ADJ_pred_TCC2
delay3.ADJ_bound
delay3.Alpha 0
delay3.R.0_hack
delay3.R.0_lem

delay3.abs_0
delay3.abs_minus
delay3.abshack
delay3.abshack2
delay3.abshack_future
delay3.bound _FIXTIME
delay3.bound FIXTIME2
delay3.bound_future
delay3.bound_futurel
delay3.bound_futurel_step
delay3.bound_futurel_step.a
delay3.bound_futurel_step.b
delay3.delay_offset
delay3.good_interval_lem
delay4.option2_convert_lemma
delay4.option2_good_interva1
delay_tcc.RATE_2_TCC1
delay_tcc.RATE_2_iclock_TCC1
delay_tcc.rate-simplify_TCCl
division.div_cancel
division.div_ineq
division.mult_div
division_tcc.ceil_mult_div_TCC1
division_tcc.div_cancel TCC1
division_tcc.div_ineq_TCC1
division_tcc.div_minus_1_TCC1
division_tcc.div_nonnegative_TCC1
division_tcc.mult_div_1_TCC1
division_tcc.mult_div_TCC1
multiplication.distrib
multiplication.distrib_minus
multiplication.mult_com
multiplication.mult_gt
multiplication.mult_ldistrib
multiplication.mult_ldistrib_minus
multiplication.mult_leq.2

22

multiplication.mult_lident

multiplication.mult_rident

multiplication.pos_product

natinduction.induction

natinduction_tcc.ind_m_proof TCC1
noetherian[naturalnumber, natinduction.less].well_founded

Total: 102

The completed proofs are:
absmod.abs_3_bnd_proof
absmod.abs_com_proof
absmod.abs_ge0_proof
absmod.abs_plus_pr
delay.ADJ_leml_pr
delay.ADJ_lem2_pr
delay.FIXTIME_ bound_pr
delay.RATE_1_iclock_pr
delay.RATE_2_simplify_iclock_pr
delay.RATE_2_simplify_pr
delay.RATE_lemmai_iclock_pr
delay.RATE_lemmal_iclock_sym_pr
delay.RATE_lemma2_iclock_pr
delay.RATE_lemma2_pr
delay.Rllhack_pr
delay.correct_during_hi_pr
delay.correct_during_sub_left_pr
delay.correct_during_sub_right_pr
delay.correct_during_trans_pr
delay.diff_squares_pr
delay.iclock_ADJ_ lem_pr
delay.iclock_defn_pr
delay.mult_abs_hack_pr
delay.mult_assoc_pr
delay.rate_simplify_pr
delay.rate_simplify_step_pr
delay.wpred_fixtime_low_pr
delay.wpred_fixtime_pr
delay.wpred_hi_lem_pr
delay2.ADJ_hack_pr
delay2.abs_hack_pr
delay2.absceil _pr
delay2.absfloor_pr
delay2.abshack2_pr
delay2.abshack3_pr
delay2.abshack4_pr
delay2.abshackS_pr
delay2.abshack6a_pr

23

delay2.abshackéb_pr
delay2.abshack7_pr
delay2.bnd_del_off_O_pr
delay2.bnd_del_off_ind_a_pr
delay2.bnd_delay_offset_ind_pr
delay2.bnd_delay_offset_pr
delay2.ceil_hack.pr
delay2.delay_prec_enh_pr
delay2.delay_prec_enh_stepl_pr
delay2.delay.prec_enh_stepl_sym_pr
delay2.floor_hack_pr
delay2.good_ReadClock.pr
delay2.prec_enh_hypl_pr
delay2.prec_enh_hyp_2_pr
delay2.prec_enh_hyp_3_pr
delay2_tcc.ADJ_pred _TCC1_PROOF
delay2_tcc.ADJ_pred_TCC2_PRO0F
delay3.ADJ_bound_pr
delay3.Alpha_O_pr
delay3.R_O_hack_pr
delay3.R_O_lem_pr
delay3.abs_O_pr
delay3.abs_minus_pr
delay3.abshack2_pr
delay3.abshack_future_pr
delay3.abshack_pr
delay3.bnd_delay_offset_ind_b_pr
delay3.bound _FIXTIME2_ pr
delay3.bound FIXTIME_ pr
delay3.bound_futurel_pr
delay3.bound_futurel_step_a_pr
delay3.bound_futurel_step_b_pr
delay3.bound_futurel_step_pr
delay3.bound_future_pr
delay3.delay_offset_pr
delay3.good_interval_lem_pr
delay4.optionl_bounded_delay_pr
delay4.option2_bounded_delay_pr
delay4.option2_convert_lemma_pr
delay4.option2_good_interval_pr
division.div_cancel_pr
division.div_ineq_pr
division.mult_div_pr
division_tcc.ceil_mult_div_TCC1_PROOF
division_tcc.div_cancel TCC1_PROOF
division_tcc.div_ineq_TCC1_PROOF
division_tcc.div_minus_1_TCC1_PROOF

24

division_tcc.div_nonnegative_TCC1i_PROOF
division_tcc.mult_div_1_TCCi_PROQF
division_tcc.mult_div_TCC1_PROOF
multiplication.distrib_minus_pr
multiplication.distrib_proof
multiplication.mult_com_pr
multiplication.mult_gt_pr
multiplication.mult_ldistrib_minus_proof
multiplication.mult_ldistrib_proof
multiplication.mult_leq_2_pr
multiplication.mult_lident_proof
multiplication.mult_rident_proof
multiplication.pos_product_pr
natinduction.discharge
natinduction.ind_proof
natinduction_tcc.ind_m_proof_TCC1_PROOF
tcc_delay .RATE_2_TCC1_PROOF
tcc_delay.RATE_2_iclock_TCC1_PROOF
tcc_delay.rate._simplify_TCC1_PROOF
Total: 104

B RIX Formatted Listings

clockassumptions: Module
Using arith, countmod
Exporting all with countmod, arith
Theory
N: nat
N.0: Axiom N >0

process: Type is nat

event: Type is nat

time: Type is number

Clocktime: Type is integer

1,m, 1, P, @ P1, P2, 011 42, P3, ¢30 Var process

i,7,k: Var event

z,Y,2,T, 8, 10 Var time

X,Y,Z,R,S,T: Var Clocktime

~,8: Var function[process — Clocktime]

8, P, Tmins Tmazy B number

A, p: Clocktime

PC 1(x2), VCa(x2): function|[process, time — Clocktime]
1*2: function[process, event — time)

©*2: function|process, event — function[process — Clocktime]]
IC*3(x3): function[process, event, time — Clocktime]

correct: function[process, time — bool]

¢fn: function[process, function[process — Clocktime] — Clocktime]
x: function[number, number — number]

«: function[number — number]

delta_0: Axiom 6 > 0
mu.0: Axiom p >0
rho_0: Axiom p >0
rho_1: Axiom p <1
rmin_0: Axiom Tyin > 0
rmax_0: Axiom 70z > 0
beta_0: Axiom 8 >0
lamb_0: Axiom A >0

init: Axiom correct(p,0) D PC,(0) 2 0A PCH0) <

26

correct_closed: Axiom s >t A correct(p, s) D correct(p,t)

rate_1: Axiom correct(p,s) A s >t D PCp(s) — PCp(t) < [(s—t) *(1 + p)]
rate_2: Axiom correct(p,s) A s > t D PCy(s) — PCy(t) > (s — t) x (1 — p)]
rts0: Axiom correct(p,t) AL < 5! Dt — 1) < g

rtsl: Axiom correct(p,t) A1 > t:,‘” Ot~ l:, > Poin

rts_.0: Lemma correct(p, t;;“) D t;,“ - t; < Poes

rts_.1: Lemma correct(p, t;,+l) D t;,“ - t;; > Tynin

rts2: Axiom correct(p,t) At > t; + B A correct(q,t) Dt > t;,

rts_2: Axiom correct(p, I;,) A correct(q,t;) D t;, - tfz <B

synctime_0: Axiom tg =0

VClock.defn: Axiom _ _
correct(p,)AL > L AL < LF DV, (1) = IC(1)

adjt}: function[process, event — Clocktime] =
(Ap,i:(if ¢ > 0 then ¢fu(p,0,) — PC,(1}) else 0 end if))

IClock_defn: Axiom correct(p,t) D IC;,(t) = PCy(1) + adj;

Readerror: Axiom correct(p, t;;‘“) A correct(y, t;,“)
D105 (q) - IC, (LI < A

translation_invariance: Axiom
cfn(p,(Apy — Clocktime : y(p1) + X)) = ¢/n(p,y)+ X

ppred: Var function[process — bool]
F: process
okay_Readpred: function[function[process — Clocktime], number,
function[process — bool] — bool] =
(A7y,y.ppred: (Vi,m: ppred(l) A ppred(m) > |y(l) — y(m)| < y))
okay_pairs: function{function[process — Clocktime],
function[process — Clocktime], number,
function[process — bool] — bool] =

(Av,0,2,ppred: (V py : ppred(ps) D [v(p3) - 8(p3)] < 7))
N_maxfaults: Axiom F'< N

precision_enhancement_ax: Axiocin
count(ppred, N) > N - I
A okay_Readpred(7, y, ppred)
A okay_Readpred(#, y, ppred)
A okay_pairs(7y, 8, z, ppred) A ppred(p) A ppred(q)
S lefa(p,7) - efnlq, 8)] < w(z,7)

27

correct_count: Axiom count((A p: correct(p,t)),N) 2 N - F

okay_Reading: function[function[process — Clocktime], number, time
— bool] =
(Ay,y,t:(Ypr,qu:
correct(py, 1) A correct(gr, 1) D [7(p1) = 700 €)
okay_Readvars: function[function[process — Clocktime],
function[process — Clocktime], number, time
— bool] =
(Av,0,z,t:(Vps: correct(ps, t) D |7(p3) — 8(p3)] < 2))

okay_Readpred_Reading: Lemma
okay_Reading(7v,¥,t) D okay_Readpred(7y,¥,(Ap: correct(p,1)))

okay_pairs_Readvars: Lemma
okay_Readvars(7,0,z,t) D okay_pairs(v,8,,(Ap : correct(p, t)))

precision_enhancement: Lemma
okay_Reading(7, ¥, t;“)

A okay_Reading(8, v, t:,“
A okay_Readvars(y, 6, z, t5+1)

A correct(p, tit!) A correct(q, lag)
> lefu(p,7) — cfilq,8)] < n(z, y)

okay_Reading_defn_Ir: Lemma
okay_Reading(7, ¥, 1)
5 (V piyas : correct(py, 1) A correct(a, 1) [7(p1) = 7(m)| < ¥)

okay-Reading_defn_rl: Lemma
(¥ pu, 1 : correct(py, 1) A correct(q1, 1) D [y(p1) — v(@i)l < ¥)
> okay_Reading(, ¥,1)

okay_Readvars_defn.Ir: Lemma
okay_Readvars(y, 8, z,1) D (V pa : correct(ps, 1) D |7(ps) = 8(ps)l < 2)

okay_Readvars_defn_rl: Lemma
(V pas : correct(pa, t) D |7(ps) — O(pa)l S 2) D okay_Readvars(v, 6, ,1)

accuracy.preservation_ax: Axiom
okay_Readpred(y, z, ppred) A count(ppred, N) > N — F A ppred(p) A ppred(q)

> |efa(p,7) = 1(4)] € alz)
Proof

okay_Reading._defn.ri_pr: Prove
okay_Reading_defn_rl {p; — p1@P1S, ¢ — ;@P1S} from okay_Reading

okay_Reading._defn_Ir_pr: Prove okay_Reading_defn_Ir from
okay_Reading {p1 « m@CS, q1 — ¢ @CS}

28

okay_Readvars_defn_rl_pr: Prove okay_Readvars_defn_rl {p; — p3@P1S} from
okay_Readvars

okay_Readvars_defn_Ir_pr: Prove okay_Readvars_defn_Ir from
okay_Readvars {p3 «— p3@CS}

precision_enhancement_pr: Prove precision_enhancement from

precision_enhancement_ax {ppred — (A g : correct(q, 13t1))},
okay_Readpred_Reading {t « ti*'},

okay_Readpred_Reading {t — t;*!, v — 6},
okay_pairs_Readvars {t — t;,+1},

correct_count {t — ti+1}

okay.Readpred_Reading_pr: Prove okay_Readpred_Reading from

okay_Readpred {ppred — (A p : correct(p,t))},
okay_Reading {p; — (QPLS, ¢ — m@PLS)

okay_pairs_Readvars_pr: Prove okay_pairs_Readvars from
okay_pairs {ppred « (A p: correct(p,t))}, okay_Readvars {p3 — p;@P1S}

rts.0_proof: Prove rts.0 from rts0 {t — l;,“}
rts_1_proof: Prove rts_1 from rtsl {t — £3+1}

End clockassumptions

29

delay: Module

Using arith, clockassumptions
Exporting all with clockassumptions
Theory

Py @y 1, qy: Var process

i: Var event

X, 8, T: Var Clocktime

s,t,t1,tz: Var time

~: Var function[process — Clocktime]

B’ number

R, A": Clocktime

ppred, ppredl: Var function|process — bool]

§9: Clocktime

G*1: function[event — Clocktime] = (Mi:ix R+ 59)

pe,(%2): function[process, Clocktime — time]

ict3(x3): function[process, event, Clocktime — time] =
(Ap,i, T :pey(T - mlj;;))

s*2: function[process, event — time] = (Ap,i: ic;(b'i))

TY: Clocktime

7*2: function[process, event — Clocktime]

synctime_defn: Axiom ! = ich(T3*)
synctime0_defn: Axiom 19 = pe,(T°)

correct _during: function[process, time, time — bool] =
(Ap,t,s:t<s AVt it At £8D correct(p, 1))

wpred: function[event — function[process — bool]]

rpred: function[event — function|process — bool]]

wur_pred: function[event — function|process — bool]] =

(Ai:(Ap: wpred(i)(p) V rpred(i)(p)))
wyr_defn: Lemma wvr_pred(é) = (Ap: wpred(i)(p) V rpred(i)(p))
wpred_wvr: Lemma wpred(i)(p) D wvr_pred(i)(p)
rpred_wvr: Lemma rpred(i)(p) D wvr_pred(i)(p)
wpred_ax: Axiom count(wpred(i), N) > N — F
wvr_count: Lemma count(wvr_pred(i), N) > N — F
wpred_correct: Axiom wpred(z)(p) D correct_during(p, t;,,t:,“)
wpred_preceding: Axiom wpred(i + 1)(p) D wpred(i)(p) V rpred(£)(p)

wpred_rpred_disjoint: Axiom ~(wpred(i)(p) A rpred(:)(p))

30

wpred_bridge: Axiom . .
wvr_pred(i)(p) A correct_during(p, tst1, t5+2) O wpred(i + 1)(p)

wpred_fixtime: Lemma wpred(i)(p) D correct_during(p, s}, t5+1)
wpred_fixtime_low: Lemma wpred(i)(p) D correct_during(p, t:,, s;,)

correct_during_trans: Lemma
correct_during(p, ¢, t2) A correct_during(p, t2, s)
D correct_during(p, 1, 3)

correct_during_sub_left: Lemma
correct_during(p,t,8) At <ty Aty < 8D correct_during(p, t,t3)

correct_during_sub_right: Lemma
correct_during(p, £, s) At <ty Aty < 8 D correct_during(p, t2, s)

wpred_lo_lem: Lemma wpred(i)(p) D correct(p, t;,)

wpred_hi_lem: Lemma wpred(i)(p) D correct(p, t;;“)
correct_during_hi: Lemma correct_during(p,t,s) D correct(p, s)
correct_during_lo: Lemma correct_during(p,t,s) D correct(p, t)
clock_ax: Axiom PCp(pc, (1)) =T

iclock_defn: Lemma ir;(T) = pey(T — a(lj;)

iclock_lem: Lemma correct(p, pe,(T ~ adj;)) D IC;,(ic:,(T')) =T
ADJ?2: function[process, event — Clocktime] = (Ap,1: u(lj,i‘"1 - a(lj;;)
IClock_.ADJ_lem: Lemma correct(p,t) D IC:,“(t) = IC;(t) + ADJ,';
iclock_.ADJ_lem: Lemma ic;,+1(T) = ic:,(T - AI)J;)

1) D S'+ af + 2+ A') < TEH!

rts_new_1: Axiom correct(p, t;

rts_new.2: Axiom correct(p, t;,) D '1',’; < S —a(f +2xA)
FIXTIME_bound: Lemma correct(p, t;',“) DS > S 4 2 a(f +25A")
R._bound: Lemma correct(p, t;,“) DR>2+xa(f +2xA)

RATE.1: Axiom correct_during(p, pe,(T),pc,(SHAS > T
S pe,(8) = pe,(T) < (5= T)x (1 +)

RATE_2: Axiom correct_during(p, pcy(T), pe,(S)HAS 2T
D pey(8) = pep(T) 2 (S = T)/(1 + p)

31

RATE.l.iclock: Lemma
correct during(p, ic,(T),ic,(S)HAS 2T
D ich(8) — ich (1) < (S =T)*(1+p)

RATE.2.iclock: Lemma
correct_during(p, ics(T), i (SHAS2T
S ic(8) — ie(T) > (S = T)/(1+ p)

rate_simplify: Lemma § > 717 D> (§=T)/(1+p) 2 (§-=T)x(1-p)
rate_simplify_step: Lemma S > T D (1 +p)*(5 - TY*x(1-p)<85-T

. RATE_2_simplify: Lemma
correct_during(p, pcp(’['),pcp(S)) AS>T
D pey(8) = pey(T) 2 (S —T)*(L—p)

RATE_2_simplify_iclock: Lemma
correct_during(p, ic;,(T), i(SHAS 2T
D ich(S) - ic},(’l") >(S§-T)*(1-p)

RATE_lemmal: Lemma
correct during(p, pe, (1), pc,(S))
A correct_during(g, pe, (1), pe,(SHAS 2T
S [pe,(5) = peg(S) < Ipe,(T) = pe(TH + 2+ p (S = T)

RATE_lemmal.clock: Lemma
correct_during(p, ici,(T), w;,(S)) '
A correct _during(g, i, (1), icy(5)) A S>T
> ich(S) — ey (8)] < liey(T') = icl(T)| +2+px(§-T)

RATE_lemma2: Lemma
correct_during(p, pc, (1), pe,(SHAS 2 T
S (pey(S) - §) ~ (pey(T) = T < px (15 = T1)

RATE_lemma2.clock: Lemma
correct_during(p, ici,(’l‘), ic;,(b')) AS>T
> |(ic(8) = §) = (ie(T) = TN < px (IS =T

bnd_delay_init: Axiom wpred(0)(p) A wpred(0)(q) D |0 — s < B

reading_error3: Axiom
correct_during(p, s}, t5t')
A correct_during(¢, sfl, t;“) A |.5;, - sfll <p
5 (03 () - ICHE)) = (s)] < A
ADJ_lem1: Lemma correct_during(p, sb, t5*")
5 (ADJ} = ¢fn(p, (Apr : O3 () = [CL(5H))))

ADJ_lem2: Lemma correct_during(p, sh, t5t')

> (ADJ) = cfn(p, O5F1) - ICL(65FY))

32

read_self: Axiom wpred(i)(p) D 0;,“(;:) = I():,(t;',“)

fix_between_sync: Axiom
correct_during(p, t,,)y D < sy Asy < 4F

Proof
FIXTIME_ bound_pr: Prove FIXTIME bound from rts_new_1, rts_.new 2 {i — i + 1}

R_bound_pr: Prove R_bound from FIXTIME bound, $*1, §*1 {i —i+ 1}
iclock_defn_pr: Prove iclock_defn from ict3(x3)

wpred_fixtime_pr: Prove wpred_fixtime from
fix_between_sync,
wpred_correct, _
correct during_sub_right {s — i¥1, t — 13, 13 — 5!}

wpred_fixtime_low_pr: Prove wpred_fixtime_low from
fix_between_sync,
wpred_correct,
correct_during_sub_left {s — ¥, 1 — 1, 15 — s}

correct_during_sub_left_pr: Prove correct_during_sub_left from
correct_during {s — t,}, correct_during {t; «— t,@p1}

correct_during_sub_right_pr: Prove correct_during_sub_right from
correct_during {t « 12}, correct_during {t; — 1, @pl}

correct_during_trans_pr: Prove correct.during_trans from

correct_during,
correct_during {s — 13, 1, « t,@pl},
correct_during {t — 1, t; — t,;@pl}

wpred_wvr_pr: Prove wpred_wvr from wvr_defn
rpred_wvr_pr: Prove rpred_wvr from wvr_defn

wvr_defn_hack: Lemma
(Vp:wyrpred()(p) = ((Ap : wpred(i)(p) V rpred(i)(p))p))

wvr_defn_hack_pr: Prove wvr_defn_hack from wvr_pred {p — pQ@c}

wvr_defn_pr: Prove wvr_defn from
pred_extensionality
{predl — wvr_pred(i),
pred2 « (A p: wpred(¢)(p)V rpred(i)(p))},
wvr_defn_hack {p « p@pl}

33

wvr_count_pr: Prove wvr_count from
wpred_ax,
count._imp
{ppredl « wpred(?),
ppred2 — (A p : wpred(i)(p) Vv rpred(i)(p)).
ne— N},
wvr_defn,
imp_pred_or {ppredl — wpred(?), ppred2 « rpred(%)}

w,,y, 2 Var number
mult_abs_hack: Lemma zx (L —p) <yAy<zx(1+p)Dly—z[<pxz

mult_abs_hack_pr: Prove mult_abs_hack from
mult_Idistrib {y « 1, z < p},
mult_Idistrib_minus {y «— 1, =z « p},
mult.rident,
abs3bnd {z —y, y — =z, 2 —pxz},
mult_com {y « p}

RATE_1_iclock_pr: Prove RATE_ l.iclock from
RATE.1 {§ < 5 — adjp, T—T- a(l]p}
iclock_defn,
iclock_defn {T — 5}

RATE_2.iclock_pr: Prove RATE_ 2.iclock from
RATE2 {S « § —adjj, T« T - adj;},
iclock_defn,
iclock_defn {T" — S}

RATE_2_simplify.iclock_pr: Prove RATE. 2_simplify_iclock from
RATE_2_simplify {S « 5 — ad]p, T~T- ud]p}
iclock_defn,
iclock_defn {1' — S}

RATE_lemmal_sym: Lemma

correct_during(p, pc, (1), pe,(5))
A correct_during(¢, pc,(1'), pe(SNAS 2T Ape, (8) = pc,(S)
D |pe,y(8) — peg(S) < |I’¢‘p('1) peg(T) + 24px(S—T)

Rllhack: Lemma w <z Ay<zAy>zDly—z| <[z —w|

Rilhack_pr: Prove Rllhack from | x 1| {2 —y - z}, | *1| {z « z — w}

34

RATE_lemmal_sym_pr: Prove RATE_lemmal sym from
RATE.1,
RATE 2 simplify {p « ¢},
Rilhack
i — pey(S),
Yy pCP(S),
w e pe,(T)+ (5= T)x(1-p),
2 pey(T) + (5 = T)x (1 + p)},
multIldistrib {z « S =T, y — 1, z «— p},
mult_ldistrib_minus {z — S -1, y — 1, 2 « p},
abs_plus {z « pc,(T) — pc,(T), y — 2% px (5 -T)},
mult_com {z «~ p, y «~ 5§ =T},
abs_gel {z — 2% px (S -1T)},
mult_non_neg {z «— p, y — 5 - T},
rho_0

RATE_lemmal_pr: Prove RATE._lemmal from
RATE_lemmal._sym,
RATE_lemmalsym {p — ¢, q — p},
abs_com {z — pc,(S), y — pe,(9)}.
abs_com {z « pc,(T), y — pe, (1)}

RATE_lemmal.clock_sym: Lemma
correct_during(p, ic;;(fl‘), i(';;(S))
A correct_during(q, iy (1'),ic () A S > T Aicy(5) > icy(S)
D lich(8) = icy(S)] < licy(T) = ici(T)| + 2+ p* (S~ T)

RATE_lemmal.clock_sym_pr: Prove RATE_lemmal.clock_sym from
RATE l.iclock,
RATE 2_simplify_iclock {p « ¢},
Rllhack
{z — icfl(S),

y — ich(9),

w — ict(T)+ (5 - T)x (1 - p),

2 — ic{,(’]‘) + (5 =T)x(1+p)},
mult_Idistrib {x — S =T, y — 1, z — p},
mult_ldistrib_minus {& — 5 =T, y < 1, z « p},
abs_plus {z « ic;(T) - z(':l(]) y—2%px(S-T)},
mult.com {z «~ p, y — 5 =T},
abs_gel {z — 2xpx (5 -1T)},
mult_non_neg {z — p, y — S =T},
rho_0

RATE.lemmal.clock_pr: Prove RATE_lemmal_clock from
RATE_lemmal.clock_sym,
RATE_lemmal.clock_sym {p — ¢, ¢ — p},
abs_com {z — ich(9), y — icy(5)}.
abs_com {z «~ ic;,(’l’), Y icf)(’l‘)}

RATE_lemma2_pr: Prove RATE_lemma2 from
RATE.1,
RATE_2_simplify,
mult_abs_hack {z — S — T, y — pc,(§) — pe,(T)}.
abs_ge0 {z — S - T}

RATE_lemma?2.iclock_pr: Prove RATE_lemma2.iclock from
RATE lemma2 {§ « § — adji, T « T ~ adj;},
iclock_defn {T" « S},
iclock_defn

wpred_lo_lem_pr: Prove wpred_lo_lem from
wpred_correct,
correct during {s — i1, t —ty, t1 — 1}

wpred_hi_lem_pr: Prove wpred_hi_lem from
wpred_correct,
correct _during {s — 3t!, t — 1, t —)

correct_during_hi_pr: Prove correct_during_hi from correct_during {t; « s}
correct_during_lo_pr: Prove correct_during_lo from correct_during {{; « t}
mult_assoc: Lemma z x(y*xz) = (zxy)*z

mult_assoc_pr: Prove mult_assoc from
*xxx2 {y — y*z}, '
xl % %2,
sxlxx2{z =y, y— 2z},
*xlxx2 {x —zxy, y— 2z}

diff squares: Lemma (1+ p)x(l—p)=1—px*p

diff_squares_pr: Prove diff_squares from
distrib {z — 1, y — p, 2 — 1 = p},
mult lident {z — 1 —p},
mult_ldistrib_minus {z — p, y « 1, 2 — p},
mult_rident {x — p}

rate_simplify_step_pr: Prove rate_simplify_step from
mult_com {z — (§ = T), y — (1 = p)},
mult_assoc {t — 1+ p, y—1—-p, 2« §-T},
diff_squares,
distrib.minus {z — 1, y — pxp, 2= §-T},
mult_lident {z — S - T},
pos_product {z — pxp, y — 5T},
pos_product {z — p, ¥y « p},
rho_0

rate_simplify_pr: Prove rate_simplify from

div_ineq
{z=(1+0n)
y—(S-1T),

2+ (14 p)* (S =T)x(1-p)},
div_cancel {z — (14 p), y = (§-T)*(1-p)},
rho_0,
rate_simplify_step

RATE_2_simplify_pr: Prove RATE_2_simplify from RATE.2, rate_simplify

iclock_lem_pr: Prove iclock_lem from
iclock_defn, I1Clock_defn {t — ic,(T)}, clock-ax {T « T — a(lj;;}

IClock_ADJ_lem_pr: Prove IClock_ ADJ_lem from
IClock_defn, IClockdefn {i — i+ 1}, ADJ?

iclock.ADJ_lem_pr: Prove iclock-ADJ_lem from
iclock_defn {T' «— T — ADJ}}, iclock_defn {i — 1+ 1}, ADJ*?

ADJ_leml_pr: Prove ADJ_leml from

ADJ_lem2, .
translation_invariance {X — —IC;(t;H)' § - @;‘;H}

ADJ_lem2_pr: Prove ADJ_lem2 from
ADJ?,
adji} {i =i+ 1},
IClock_defn {t — t;,‘”, i i},

correct_during_hi {1 « 5;,. 8 t#l}

End delay

37

delay2: Module
Using arith, clockassumptions, delay

Exporting all with clockassumptions, delay

Theory

P, q, 1, q1: Var process
t: Var event
delay_pred: function[event — bool] =
Cni = (¥ 0y : wpred(D)(p) A wpred(i)(g) D Is) = 551 < 8)
ADJ_pred: function[event — bool] =
(Ai:(Vpri2 1A wpred(i — 1)(p) D |AI)J,';"| <a(f +2+A)))

delay_pred_lr: Lemma
delay_pred(i) D (wpred(1)(p) A wpred(:)(¢) D Is;, - sf,‘ < g

bnd_delay_offset: Theorem ADJ_pred(i) A delay_pred(i)
bnd_delay_offset_ 0: Lemma ADJ_pred(0) A delay_pred(0)

bnd_delay_offset_ind: Lemma
ADJ_pred(i) A delay_pred(i) D ADJ_pred(i + 1) A delay_pred(i + 1)

bnd_delay_offset_ind_a: Lemma delay_pred(i) D ADJ_pred(i + 1)

bnd_delay_offset_ind_b: Lemma
delay_pred(i) A ADJ_pred(i + 1) O delay_pred(i + 1)

good_ReadClock: Lemma
delay_pred(¢) A wpred(i)(p) D okay_Readpred(©3+!, 8" + 2 + A, wpred(?))

delay_prec_enh: Lemma
delay_prgd(i) A wpred(i)(p) A wpr_ed(z')(q)
D (s} — sg) — (ADJ; - ADJ})| < m(2% AN+2,8 +2xA)

delay_prec_enh_stepl: Lemma
delay._pred(2) A wpred(z)(p) A wpred(i)(¢)
S lefu(p, (Apr : 05 () = ICH(GH) = 1551))
—cfn(q,(Apr: (-)fl“(pl) - I'Cfl(t;"") - [s$ I
< w2+ A +2,5 +2x)

delay_prec_enh_stepl_sym: Lemma
delay-pred(i) A wpred(i)(p) A wpred(i)(q) A (ADJ,'; - s;, > ADJ; - s;)
D |(ADJ; - 8p) — (A‘DJJ - Sf,)| o
< lefalp, (Apr: O, (1) - HGAUARES L5p]))
— efn(g, (Apr 1 O () = TCH(F) — [s3D)I

38

prec_enh_hypl: Lemma
delay_pred(i) A wpred(i)(p) A wpred(i)(q) .
D okay.pairs((Apy : O3 (p) — ICL(GHY) — |s4]),
(Ap1: O () — IC (1Y) = [i]),
2% A +2,
wpred(1))

prec_enh_hyp_2: Lemma
delay_pred(7) A wpred(i)(p)
> okay_Readpred((Ap; : O5 (py) — 1(];“;“) - I_s;;_‘),
B+ 2+ A,
wpred(i))

prec_enh_hyp_3: Lemma
delay_pred(i) A wpred(i)(q)
D okay.Readpred((Ap; : (-)fl“(pl) - j(’l p+1) [5;]),
B +2xAN,
wpred(i))

Proof
delay_pred_lr_pr: Prove delay_pred_Ir from delay_pred

delay_prec_enh_stepl_pr: Prove delay_prec_enh_stepl from
precision_enhancement_ax
{ppred — wpred(i),
ye—p+2xA,
ze—2xA+2, .
7= (Apr: O (p1) = TCH(E) = [s5)),
0 (Api O3 ()~ 1C3(1H) - [s])),
prec_enh_hypl,
prec_enh_hyp_2,
prec_enh_hyp_3,
wpred_ax

prec_enh_hyp_2 pr: Prove prec_enh_hyp_2 from
good_ReadClock,
okay_Readpred
{y — (Aps O3 () = TCL(EF) = 1)),
y— B +2+A,
ppred «— wpred(i)},
okay_Readpred
{y — 03},
ye—p+2«A,
ppred «— wpred(:),
[—1@p2,
m — m@p2}

39

prec_enh_hyp_3.pr: Prove prec_enh_hyp_3 from
good_ReadClock {p — q},
okay_Readpred
{y=(Ap1: Ot (m) - IC:,(t;‘H) - [s3 D)
Y — ﬂ’ + 2% A’,
ppred «— wpred(i)},
okay_Readpred
{v — O,
y— B +2% N,
ppred « wpred(i),
m — m@p2}

bnd.del_off_ 0_pr: Prove bnd_delay_offset_0 from
ADJ_pred {i — 0},
delay_pred {i « 0},
bnd_delay_init {p « pUp2, ¢ < q@p2}

bnd_delay_offset_ind_pr: Prove bnd_delay_offset_ind from
bnd_delay_offset_ind_a, bnd_delay_offset_ind_b

bnd_delay_offset_pr: Prove bnd_delay_offset from
induction {prop « (Ai: ADJ_pred(i) A delay_pred(i))},
bnd_delay_offset_0,
bnd_delay_offset_ind {¢ — j@pl}

a,b,e,d,c, f,g,h: Var number

abs_hack: Lemma |a — b]

<le—fl+la—e)=(@d=ol+1(b=e) = (d= 1)

abs_hack_pr: Prove abs_hack from
abs_com {z « f, ¥ « ¢},
abs.com {z — (d— f), y < (b— c)}
abs._plus
{z = (f-€)
b ((a-) = (d-N+(d= D= (b=
abs_plus {z — ((a —¢)—(d - €)), y— ((d=f)—(b—)}

abshack?2: Lemma |a| <bA el <dA]e] < dola]+le]+]el <b+2xd

abshack2_pr: Prove abshack2

40

good_ReadClock_pr: Prove good_ReadClock from
okay_Readpred
{v = 0,1,
y— B +2xA,
ppred — wpred(i)},
delay_pred {p — (@p1, ¢ «— m@pl},
delay_pred {q « [@pl},
delay_pred {q «— m@pl},
reading_error3 {q — [@pl},
reading_error3 {q — mn@pl},
abs_hack
{a « G);,“(l@;;l),
b — @;,'H(m@pl),
¢ — IC;,(!;,“),
d — 3;,,
€ — 3;_@p1'
f - 3:rl@pl}'

abshack?2
{a — e@p7 — f@p7,
b= g,
¢ — ((a@p7 — c@pT) — (dQp7 — e@pT)),
d e A,

e — ((b@QpT — cQp7) — (d@pT7 — f@pT))},
wpred_fixtime,
wpred_fixtime {p — [@pl},
wpred_fixtime {p — m@pl}

bnd_del off.ind_a_pr: Prove bnd_delay_offset_ind_a from
ADJ_pred {i — 1 + 1},
ADJ_lem2 {p « p@pl},
accuracy_preservation_ax
{ppred — wpred(%),
Y= 0;;&;1'
p — pQpl,
q — pQpl,
x— (' +2xA"},
wpred_ax,
read_self {p — p@pl},
good_ReadClock {p « p@pl},
wpred_fixtime {p — papl}

abshack4: Lemmma a~b2>c—d

D l(e=b)~(c=d)| < |(a~[b]) ~ (¢~ [d])]
floor_hack: Lemma ¢ — |[b] > a -

floor_hack_pr: Prove floor_hack from floor_defn {z « b}

41

ceil_hack: Lemmac—d 2 ¢~ [d]
ceil_hack_pr: Prove ceil_hack from ceil_defn {z « d}

abshack4_pr: Prove abshack4 from
abs_ge0 {z — (a —b)—(c— d)}.
abs_ge0 {z — (¢ — [b]) = (e = [d)},
floor_hack,
ceil_hack

X: Var Clocktime

ADJ_hack: Lemma wpred(2)(p) . .
DADJ, - X = cfu{p,(Ap: (-);,*"(1)1) - I(J;,(t:,“) -X))

ADJ_hack_pr: Prove ADJ_hack from
ADJ_ leml,

translation_invariance
{y — (Ap1 — Clocktime: O+ () - IC(t5H)).
X — -X},

wpred_fixtime

delay_prec_enh_stepl_sym.pr: Prove delay_prec_enh_stepl_sym from
ADJ_hack {X — [s5]).
ADJ_hack {p— ¢, X — [61},
abshack4 {a « ADJ,‘;, b +— s;;, c AI)J;, d — sfl}

abshack5: Lemma |((a —b) — (le) —d)) = ((e - - ([g9] =)
< |(a—b)—(le] =)+ (e =)= (9] - d)|

abshack5_pr: Prove abshackd from
abs.com {z —e—f, y— [9] - d},
abs_plus {z « (a—0) - (le] = d), v~ ([9] —d)— (e =)}

absfloor: Lemma |a — [b]| < e - bl +1
absceil: Lemma |a — [0]] < le—b]+1

absfloor_pr: Prove absfloor from
floor_defn {z « b}, | * 1| {& —a~— o)}, 1x 1] {z —a— b}

absceil_pr: Prove absceil from
ceil_defn {z — b}, | x| {2 —a~ (6]}, | * 1| {z — a—b}

abshack6a: Lemma |(« —b) — (lc] - A < (a-b)—(c—d)|+1

abshack6b: Lemma |(¢ — f) — (gl = D] < (e - fl-(g—d)}+1

42

abshack6a_pr: Prove abshack6a from
absfloor {a — (a - b)+ d, b «~ ¢},
abs_plus {z — (a —b) — (¢ = d), y « 1},
abs_ge0 {z — 1}

abshack6b_pr: Prove abshack6b from
absceil {a — (e = f)+d, b~ ¢},
abs_plus {z « (¢~ f) = (g = d), y — 1},
abs_ge0 {z « 1}

abshack7: Lemma [(¢ —b0) = (¢ —d)| < hAjle— f)=(¢g~d)| < h
Dll(a=b)=(le] —d)) = (e = S) = ([g] —d))| < 2% (h + 1)

abshack7_pr: Prove abshack7 from abshack5, abshack6a, abshack6b

prec_enh_hypl_pr: Prove prec_enh_hypl from
okay_pairs
{v = (Ap: O () = TCL(GFY) = [3)),
6 — (Apy: O (p1) - [C (L) = [s4]),
z—2x(A+1),
ppred — wpred(i)},
delay_pred {¢ — p3@p1},
delay_pred {p «— q, ¢ — p3@p1},
reading_error3 {q — p;@pl},
reading_error3 {p « ¢, ¢ — p3@pl},
abshack?
{a — O (p30pl),
b ICiI),
C — s;:,
d — Sp;@pl'
e +— O (p3@pl),
f = IG5,
g s,
h — A'},
wpred_fixtime,
wpred_fixtime {p — ¢},
wpred_fixtime {p «— p3@pl}

abshack3: Lemma |(¢ — b) — (¢ = d)| = |[(c — @) = (d = b)|

abshack3_pr: Prove abshack3 from abs_com {z — a - b, y — ¢ — d}

43

delay_prec_enh_pr: Prove delay_prec_enh from
delay_prec_enh_stepl,
delay_prec_enh_stepl {p — ¢, ¢ < P}
delay_prec_enh_stepl_sym,
delay_prec_enh_stepl_sym {p—q qg—rh
abs_com {z « ADJ;; - s"p’, Y — ADJ;.— s;}, .
abshack3 {a « s}, b~ sy, € ADJy, d —~ ADJ,;}

End delay2

44

delay3: Module

Using arith, clockassumptions, delay2
Exporting all with clockassumptions, delay2
Theory

P, 4, P1,q1: var process
i: Var event
T: Var Clocktime
good_interval: function[process, event, Clocktime — bool] =
(Ap,i,T : (correct_during(p, ..9;'), ici,“("[')) A 7' - ADJ;; > .S")
V (correct during(p, ic,t (T), s5) A S* 2 T' — ADJ,))

recovery_lemma: Axiom
delay_pred(:) A ADJ_pred(i + 1)
A rpred(i)(p) A correct_during(p, 1+l 15+2) A wpred(i + 1)(¢)
D syt - sf]“l <p

good_interval_lem: Lemma
wpred(i)(p) A wpred(z + 1)(p) A ADJ_pred(i + 1) D good._interval(p, i, S*+1)

betaprime_ax: Axiom
24 px(R+a(f +2+N)+m(2%x (A + 1), +2xA) <P

R.0_lem: Lemma wpred(i)(p) A ADJ_pred(i+ 1) D R >0

bound_future: Lemma
delay_pred(¢) A ADJ_pred(i + 1)
A wpred(i)(p)
A wpred(i)(¢q) A good_interval(p, i, T") A good_interval(g,1,T)
D iegt (1) — it (1)
<2xpx(IT =S +a(f+2xA))+ 72+ (A +1),8 +2xA")

bound_futurel: Lemma
delay_pred(i) A ADJ_pred(i + 1) A wpred(z)(p) A good_interval(p,1,T)
D icy(T = ADJ)) = si) = (T = ADJy = 59|
< px(IT = S|+ alf + 24 A)

bound_futurel_step: Lemia
delay_pred(i) A ADJ_pred(i + 1) A wpred(i)(p) A good.interval(p, i, T)
D (i (T — ADJ,) = 83) = (T' = ADJ, = §Y)| < px(|T — ADJ, - 5i)

bound_FIXTIME: Lemma
delay_pred(i) A ADJ_pred(: + 1)
A wpred(i)(p)
A wpred(i)(q)
A good_interval(p, i, §*t') A good._interval(q, i, §'+1)
D st = st < B

45

bound_FIXTIME2: Lemma
delay_pred(i) A ADJ_pred(: + 1) A wpred(i)(p) A wpred(i)(¢)
S (wpred(i + 1)(p) A wpred(i + 1)(g) D 18" = s < 8)

delay_offset: Lemma wpred(i)(p) A wpred(7)(¢) D |s;, - 92] <p
ADJ bound: Lemma wpred(i)(p) D |A DJ;;I <a(ff +2+A)
Alpha_0: Lemma wpred(i)(p) D a(f' +2* A)y>0

Proof
delay_offset_pr: Prove delay_offset from bnd._delay_offset, delay_pred

ADJ_bound_pr: Prove ADJ_bound fromn
bnd_delay_offset {i — ¢+ L}, ADJ_pred {i — i+ 1}

ay, by, cp,dy: Var number
abs 0: Lemma |a;] < by Db 20
abs_0_pr: Prove abs.0 from | % 1] {& — a1}

Alpha_0_pr: Prove Alpha_0 from
ADJ_bound, abs.0 {a; — ADJ, by — a(f' +2xA)}

R_0.hack: Lemma wpred(i)(p) A ADJ_pred(i+ 1) D Sitl — 545 0

R_0_hack_pr: Prove R_0.hack from
ADJ_pred {i — i+ 1},
FIXTIME.bound,

wpred_hi_lem, .
abs_0 {a; «— ADJ,, b1 — a(f' +2+AN)}

R.0_lem_pr: Prove R.0_lem from R_0_hack, g1, 8% {i i+ 1}
abshack_future: Lemma |(a; — by) — (e1 = d)) = |(ag —e1) = (b1 — dy)l
abshack_future_pr: Prove abshack_future

abs.minus: Lemma |a; — Iy} < lay| + 104}

abs_minus_pr: Prove abs_minus from
|« 1] {z «— ay = b1}, | % 1] {x —ar}, | x 1] {2 — by}

46

bound_futurel_pr: Prove bound_futurel from

bound_futurel_step, .
abs_minus {a; — T — St by ADJ;},
ADJ_pred {i « i + 1},
mult_leq.2

{z—p

y— |T - ADJ‘ - 5%,

z — |7~ 5+ a(,d' +2x A"},

rho_0

bound_futurel_step_a: Lemma '
correct durmg(p ict ('1' - ADJ;), p) ANS'>T - ADJ;
D |(ich(T — ADJ;) - &) — (T ADJ‘ SO < p*(IT - ADJ; - 5%)

bound_futurel step_b: Lemma
correct_during(p, s, ic; (T — ADJ,)) AT - ADJ' > S

S |(iei(T — ADJ;) —si) —(r ADJ; - |< p* (T — ADJ: - 57))

bound_futurel_step_a_pr: Prove bound_futurel_step.a from

RATE_lemma2.iclock {T « T ~ ADJ;, § — §'},
s
abshack_future

{a1 « iq (f— ADJP)

by — 3,,.

ci — T = ADJ},

dy — S*},
abs_.com {z « a;@p3 — ¢;@p3, y — b,@p3 - d;@p3},
abs_com {z — T@pl, y — §@pl}

bound_futurel_step_b_pr: Prove bound_futurel_step_b from

RATE lemma2.iclock {§ «— 7' — ADJ;, T ~ §'},
*2
S

abshack_futpre ‘
{ar — ic (T~ ADJ}),
by — s,
g1~ /11)/‘
dl — S }

bound_futurel_step_pr: Prove bound_futurel_step from
good_interval, bound_futurel_step_a, bound_futurel_step_b, iclock_ADJ_lem

47

good_interval_lem_pr: Prove good_interval_lem from
good._interval {T" « Si+1y

st{i—i+1}

wpred_fixtime,

wpred_fixtime_low {i — i+ 1},

correct_during.trans {t — 3;.,, ty «— t;,‘“, 8 — s;,“}

wpred_hi_lem,

FIXTIME_bound,

ADJ_pred {i — i+ 1},

| x1] {z — ADJ}

bound_FIXTIME2_ pr: Prove bound_FIXTIME2 from
bound_FIXTIME, good_interval_lem, good_interval_lem {p—q}

bound_FIXTIME_pr: Prove bound_FIXTIME from
bound_future {T' — S**'},
S*l ,
S*U{i— 1+ 1},
abs_ge0 {a — R},
R_0_lem,
22 {p—pQ@pl, i — i+ 1},
s {p—q@pl, i —i+t 1},
betaprime._ax

bnd_delay_offset_ind_b_pr: Prove bnd_delay_offset_ind_b from
bound_FIXTIME2 {p — p@p2, ¢ — ¢@p2},
delay_pred {i — i+ 1},
delay_pred {p — p@p2, ¢ — ¢p2},
recovery_lemma {p « p@p2, ¢ « q@p2},
recovery_lemma {p «— ¢@p2, ¢ — p@p2},
abs_com {z ~ 8;.)-&;)2’ y — s:alpz},
wpred_preceding {p « p@p2},
wpred_preceding {p — q@p2},
wpred_correct {i — i+ 1, p — p@p2},
wpred _correct {i — i+ 1, p qQp2}

a.b.e,d,e, f,g,h,aa bb: Var number

abshack: Lemma | — b|
<la—e)y=(c=f =] +|(b-g)—(c— h— d))
+1le—g)— ([-

abshack?2: Lemma |(¢ —¢) = (¢ — f = d)| < aa
M(b—g)—(c—h—d) < aaAl(e—g)~ (/= k)| < bb
Ola—-bl <2%aa+bb

abshack2_pr: Prove abshack2 from abshack

48

abshack.pr: Prove abshack from
abs_com {z —b~g¢, y —c—h—d},
abs_plus {z — (a—e)—(c—f—d), y=(c-h-d)-(b-g)},
abs_plus {z — 2@p2 + y@p2, y — (e —g)— (f - 1)}

bound_future_pr: Prove bound_future from

bound_futurel,
bound_futurel {p — ¢},
delay_prec_enh,
iclock_ADJ_lem,
iclock_.ADJ_lem {p — q},
abshack?2

{a — ici(T = ADJ)),

b ici(T — ADJS),

c— T,

(l — Si,

e — s

'p'

f — ADJ;

p?
g Ssg,
h— ADJ;, _

aa — px (|I'— S|+ a(f + 2+ A)),

bb — w(2+ (A + 1), +2xA')}
End delay3

49

delay4: Module
Using arith, clockassumptions, delay3

Exporting all with clockassumptions, delay3

Theory

P, q,P1,q1: Var process

:; Var event

X, $,T: Var Clocktime

s,1,t1,1p: Var time

~: Var function[process — Clocktime]
ppred, ppred1: Var function{process — bool]
optionl, option2: bool

optionl_alg: Axiom optionl D T = (i+ 1) R+ ™
option2_alg: Axiom option2 D fl‘;;“ =G+ 1)*R+ T - ADJ;
options_disjoint: Axiom —(optionl A option2)

option1_bounded._delay: Lemma

optionl A (B = 2% px (R — (50 =T +A)A wpred(i)(p) A wpred(i)(q)

D -Gt <

option2_bounded_delay: Lemma
option2 A (A = B —2xpx(S°—T)NA wpred(z)(p) A wpred(i)(q)
D - <P

option?-convert_lemma: Lemma
(B=p —24px(°=T)
524 px((R—=(8° =T+ afff + 2% A"))
Fr(2x (M4 1),8 +2+A)
<B

option2_good._interval: Lemma
option2 A wpred(i)(p) D good_interval(p, 2, (i+1)* R+ T°)

R_FIX.SYNC_0: Axiom R — ($°—1°)>0

Proof

optionl_bounded_delay_pr: Prove optionl_bounded_delay from
RATE_lemmaliclock {S — (i1+ 1)* R+ T°, T « §'},
S*l ,
delay_offset,
wpred_fixtime,
wpred_fixtime {p — ¢},
synctime_defn,
synctime_defn {p < ¢},

*2
8*1 '

sit {p ~ a}.
optionl_alg,
optionl_alg {p « q},
R_FIX.SYNC.0

option2_good_interval_pr: Prove option2_good_interval from
good.interval {T' — T3+! + AI)J;},
wpred_fixtime,
wpred_hi_lem,
rts_new_1,
iclock_ ADJ_lem {T « T'@pl},
synctime_defn,
Alpha_0,
option2_alg

option2_convert_lemma_pr: Prove option2_convert_lemma from

betaprime_ax,
mult_ldistrib_minus

{z < »p
y—R+a(f +2xA),
z«—(SO—TO)}

option2_bounded_delay_pr: Prove option2_bounded_delay from
option2_convert_lemma,
option2_good._interval,
option2_good_interval {p — q},
bound_future {T « (i+ 1) * R + T°},
option2.alg,
option2_alg {p « ¢},
iclock . ADJ lem {T' — T'@p4},
iclock_ADJ_lem {T' — T@p4, p — q},
synctime_defn,
synctime_defn {p « ¢},
S*l ,
R_0_lem,
bnd_delay_offset,
bnd_delay_offset {i — i+ 1},
abs_ge0 {2 — (R - (5° - T9))},
R_FIX_.SYNC.0

End delay4

[

References

(1] Schneider, Fred B.: Understanding Protocols for Byzantine Clock Synchronization. Depart-
ment of Computer Science, Cornell University, Technical Report 87-859, Ithaca, NY, Aug.
1987.

[2] Shankar, Natarajan: Mechanical Verification of a Schematic Byzantine Clock Synchroniza-
tion Algorithm. NASA, Contractor Report 4386, July 1991.

(3] Welch, J. Lundelius; and Lynch, N.: A New Fault-Tolerant Algorithm for Clock Synchro-
nization. Information and Computation, vol. 77, no. 1, Apr. 1988, pp. 1-36.

(4] Rushby, John; and von Heuke, Friedrich: Formal Verification of a Fault Tolerant Clock
Synchronization Algorithm. NASA, Contractor Report 4239, June 1989.

[5] Lamport, Leslie; and Melliér-Smith, P.M.: Synchronizing Clocks in the Presence of Faults.
Journal of the ACM, vol. 21, Jan. 1985, pp. 52-78.

[6] Miner, Paul S.: A Verified Design of a Fault- Tolerant Clock Synchronization Circuit: Pre-
liminary Investigations. NASA, Technical Memorandum 107568, Langley Research Center,
Hampton, VA, Mar. 1992.

53

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information 15 estimated to average 1 hour per respanse, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
Zollection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate Tor Information Operations and Reports, 1215 Jetferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

T. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 1992 Technical Memorandum

0 O

4. TITLE AND SUBTITLE ‘ 5. FUNDING NUMBERS
An Extension to Schneider's General Paradigm for Fault-Tolerant Clock WU 505-64-10-05
Synchronization

6. AUTHOR(S)
Paul 8. Miner

w

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
NASA Langley Research Center REPORT NUMBER
Hampton, VA 23665-5225

M

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
National Asronautics and Space Administration AGENCY REPORT NUMBER
Washington, DC 20546-0001 NASA TM-107634

csmrr——as—
11. SUPPLEMENTARY NOTES

oo ——————
122, DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Unclassified - Unlimited
Subject Category 62

13. ABSTRACT (Maximum 200 words)

in 1987, Schneider presented a general paradigm that provides a single proof of a number of fault-tolerant clock
synchronization aigorithms. His proof was subsequently subjected to the rigor of mechanical verification by Shankar.
Howsever, both Schneider and Shankar assumed a condition Shankar refers to as bounded delay. This condition
states that the elapsed time between synchronization events (.e. the time that the local process applies an adjustment
1o its logical clock) is bounded. This property is really a resutt of the algorithm and should not be assumed in a proof
of correctness. This paper remedies this by providing a proof of this property in the context of the genaeral paradigm
prop:;od‘:yo Schneider. The argument given is a generalization of Weich and Lynch's proof of a related property

for their rithm.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Fauk Tolerance, Clock Synchronization, Formal Verification 35
: 16. PRICE CODE
AO4
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std Z39-18
298-102

