W5

- > /
/
85775
NASA Technical Memorandum 107568
7,100

A Verified Design of a Fault-Tolerant Clock
Synchronization Circuit: Preliminary
Investigations

Paul S. Miner
March 1992

National Aeronautics and
Space Administration

Langley Research Center
Hampton, VA 23665

(NASA-T4-107568) A VERIFTED DESIGN OF A
N9 2-
FAULT-TOLERANT CLDOCK SYNCHRONTZATION em23959
CIRCUTIT: PRELIMINARY INVESTIGATIONS (NASA)
100 p CSCL 12A Unclas
G3/59 0085775

o

Abstract

Schneider [1] demonstrates that many fault-tolerant clock synchronization
algorithms can be represented as refinements of a single proven correct
paradigm. Shankar [2] provides a mechanical proof (using EADM [3]) that
Schneider’s schema achieves Byzantine fault-tolerant clock synchronization
provided that eleven constraints are satisfied. Some of the constraints are
assumptions about physical properties of the system and can not be estab-
lished formally. Proofs are given (in EEDM) that the fault-tolerant midpoint
convergence function satisfies three of these constraints. This paper presents
a hardware design. implementing the fault-tolerant midpoint function. which
will be shown to satisfy the remaining constraints. The synchronization cir-
cuit will recover completely from transient faults provided the maximum
fault assumption is not violated. The initialization protocol for the circuit
also provides a recovery mechanism from total system failure caused by cor-
related transient faults.

~

Contents

1 Introduction 1
2 Description of the Reliable Computing Platform 2
3 Clock Definitions 4
3.1 Shankar's Notation 5
3.2 Shankar's Conditions iee.. 6
4 Fault-Tolerant Midpoint as an Instance of Schneider’s Schema 8
4.1 Translation Invariance 9
4.2 Precision Enhancement 9
4.3 Accuracy Preservation 12
4.4 EHDM Proofs of Convergence Properties 13
5 Proposed Verification 14
5.1 Informal Description 14
5.2 Correctness Criterla 17
6 Transient Recovery 17
6.1 Single Fault Scenario, 18
6.2 General Case e e e e e e e 18
6.3 Comparison with Other Approaches 18
7 Initial Synchronization 19
7.1 Mechanisms for Initialization 19
7.2 Comparison to Other Approaches 20
8 Concluding Remarks 20
A Proof Summary 22
B IRTEX printed EnpmM Modules 23
C Proof Chain Status 79
C.1 Translation Invariance 79
C.2 Precision Enhancement 81
C.3 Accuracy Preservation 88
1ii

PRECEDING PAGE BLANK NOT FILMED

ey L INTERTIONALLY LA

-

1 Introduction

NASA Lanigley Rescarch Center is currently involved in the development of
4 formally verified Reliable Computing Platform (RCP) for real-time digital
flight control systems [4, 5. 6]. An often quoted requirement for critical sys-
tenis efiiploved for elvil air {ransport is a probability of catastrophic failure
fess than 10~° for a 10 liour flight [7]. Since failure rates for digital devices
are on the order of 10~° per hour [R]. hardware redundancy is required to
achieve the desired level of reliability. While there are many ways of incor-
porating redundant hardware, the approach taken in the RCP is the use of
idenfical redundant channels with exact match voting (see [4, 5] and [6]).

A critical function in a fault-tolerant system is that of synchronizing
tlie elocks of the redundant computing elements. The clocks must be syn-
chronized in order to provide coordinated action among the redundant sites.
Although perfect synchronization is not possible, clocks can be synchronized
withiti 4 small skew. The purpose of this work is to provide a mechanically
verified design of a fault-tolerant clock synchronization circuit.

The fault-tolerant clock svnchronization circuit is intended to be part
of a verified hardware base for the RCP. The primary intent of the RCP is
to provide a verified fault-tolerant system which is proven to recover from
3 bounided number of transient faults. The current model of the system
a58ties (among other things) that the clocks are synchronized within a
baurided skew [5]. It Is ¢rucial that the clock synchronization circuitry also
be able to recover from transient faults. Originally, Lamport and Melliar-
§mith's Interactive Convergence Algorithm (ICA) [9] was to be the basis
for the clock synchronization hardware, the primary reason being the ex-
Istéiice of a mechanical proof that the algorithm is correct {10]. However,
modifications to ICA to achieve transient fault recovery are unnecessarily
eottiplicated. The fault-tolerant midpoint algorithm of [11] is more readily
adapted to transient recovery.

The synchronization circuit is designed 1o tolerate arbitrarily malicious
péfmiafient, intefmittent and transient hardware faults. A fault is defined
4¢ 5 physical perturbation altering the function implemented by a physical
device. Intermittent faults are permanent physical faults which do not con-
staiitly alter the function of a device (e.g. a loose wire). A transient fault is
4 6fle shot short duration physical perturbation of a device (e.g. caused by
4 cosmic ray of other electromagnetic effect). Once the source of the fault
is féf6ved, the device can function correctly.

Most proofs of fault-tolerant clock synchronization algorithms are by

induction on the number of synchronization intervals. Usually. the base
case of the induction. the initial skew. is assumed. The descriptions in
[1. 2. 9. 10] all assume initial synchronization with no mention of how it
is achieved. Otlers. including [11, 12. 13] and [14] address the issue of
initial svnchronization and give descriptions of how it is achieved in varving

degrees of detail. In proving an implementation correct. the details of initial .

svnchronization cannot be ignored. If the initialization qcheme is robust
enough. it can also serve as a recovery mechanism from multlple correlated

transient failures (as is noted in [14]). — —
Schneider [1] demomtrates ‘that many fault- lolerant c]ocl\ sy 11eI\ronlza-

tion algorithms can ‘be repre:ented as refinements of a single proven correct .
paradigm. Shankar [2] provides a mechanical proof (using EHDM [3]) that .

Schneider's schema achieves By zantine fault-tolerant clock synchronization,
provided that eleven constraints are satisfied. Some of the constra.mts are

assumptions about physical propert:eq of the system_and can not _be es-

tablished formally. This paper proposes a, hardware solution to the clock =
to qatxsf\ the remammg con- -

svnchronization problem which will be shown
straints, :

This paper dl%cusseq prellmman resu]tq in tlle ve ﬁcatlon of the de-_,_

sign. The fault-tolerant midpoint funcnon is forma]T\ proven (in EHDM)

satlsf\ the propemes of tra,nslanon m\arlance precmon enhancement andi”

accuracy preservation.! A register transfer level design is presented which

implements the synchronization algorithm. An argument for transient re-
covery from a single fault is presented and issues relating to the more general
case are raised. Finally, the approach for achieving initial synchronization
is discussed. The notation used here is from Shankar [2].

2 Description of the Reliable Computing Plat-
form

This section summarizes the key details of the Reliable Computing Platform
to establish a context for the clock synchronization circuit. It is included
here for completeness. The material in this section is paraphrased from
Butler and DiVito [5]. The interested reader should consult [5] for more

detailed 1nformat10n

IThese properties will be defined in the section deqcnbmg the fault toleram mxdpomt
convergence function. -

LRl R

Uniprocessor System Model (US)
l

Fault-tolerant Rc-plimied Synchronous Model (RS)

|
Fauli-tolerant Distributed Synchronous Model (DS)

L
Fault-tolerant Distributed Asynchronous Model (DA)

Hardware /Software Implementation

Figure 1: Hierarchical Specification of the Reliable Computing Platform.

NASA-Langley is currently involved in the development of a formally
verified Reliable Computing Platform for real-time control [4, 5]. A pri-
mary goal is to provide a fault-tolerant computing base that appears to
the application programmer as a single ultra-reliable computer. To achieve
this. it is necessary to conceal implementation details of the system. Some
characteristics of the system are as follows [5):

“the system is non-reconfigurable

the system is frame-synchronous

the scheduling is static, non-preemptive

internal voting is used to recover the state of a processor affected by
a transient fault”

A hierarchy of models is introduced which provides different levels of ab-
straction (figure 1. taken from [5]). The top level is the view presented
to the applications programmer, i.e. an ultra-reliable uniprocessor system.
The details of fault-tolerance are introduced in the lower levels. The next
two levels, replicated synchronous and distributed synchronous, introduce
the redundancy and voting required for fault-tolerance, but assume perfectly
synchronized clocks and an interactive consistency network for reliable dis-
tribution of single source data. The fourth level, distributed asynchronous,
weakens the assumption of perfect synchrony to one where the clocks are syn-
chronized to within a bounded skew. The details of the hardware/software
implementation have yet to be worked out. An abstract view of the assumed

Sensors

I Interactive Consistency |
] Distribution Network l

Intcrprocessor
Communication Link

Processor Processor
Replicate xE Replicate
1 R
Interproce ssor

Communication Link

Actuators

Figure 2: Generic Hardware Architecture

hardware architecture is given in figure 2 (from [5]). The clock synchro-
nization circuit presented here is intended to serve as part of the verified
hardware base at the lowest level of the hierarchy.

3 Clock Definitions

This section introduces the notation and assumptions used in Shankar's
proof and is largely taken from sections 2.1 and 2.2 of [2]. The conditions
enumerated here provide the formal specification for the clock synchroniza-
tion circuit.

PC,(1) | The reading of p's phvsical clock at real time 1.
VC,(t) | The reading of p's virtual clock at time 1. This

is the logical time used by the svstem.

1(';,(!) The reading of p's ith interval clock at real time ¢
(Ouly sensible if 1, <).

t;, | The real time that processor p begins the /th

synchronization interval.

adj, | Cumulative adjustent to p’s physical clock up
to and including 7.

0, | An array of clock readings (local to p) such that
(for i > 0) ©)(¢) is p’s reading of ¢'s clock at t,.
cfn(p.@,) | Convergence fuuclion executed by p to establish
correct V'C',(1),).

Table 1: Clock Notation

3.1 Shankar’s Notation

In general, clocks will be represented by different abstractions. Each redun-
dant clock will incorporate a physical oscillator which marks passage of time.
Each oscillator will drift with respect to real time by a small amount. Phys-
ical clocks derived from these oscillators will similarly drift with respect to
each other. The purpose of a clock synclironization algorithm is to make pe-
riodic adjustments to local (virtual) clocks to keep redundant clocks within
a bounded skew of cacii other. This periodic adjustment makes analysis
difficult, so an interval clock abstraction is used in the proofs. This interval
clock is indexed by the number of elapsed intervals since the beginning of
the protocol. An interval corresponds to the elapsed time between adjust-
ments to the virtual clock. The proof that synchronization is maintained is
by inductjon on intervals. i ,

Table 1 introduces the notation for the key elements required for a ver-
ified clock synchronization algorithm. Shankar outlines the following set of
relationships between these values, :

a(lj;,"’l (‘fn(p, @;;H) - PCp(f;’+1)
adjg = 0
ICi(t) = PCy(t)+ adj,

VOpt) = ("(!) fOI'f;Sf<t;;+1

presuming the presence of PC' and V'('. with an abstraction for I(" used in
the proofs. The following can be simply derived.

I(‘i'H“H-l) = (.fn(p‘ @;';H)
cfn(p. 9"” + PC,(t) - P('p(f;,‘”)

VO (1)
TCH()

Using these equations and the eleven conditions outlined in the next section.
Shankar mechanically verified Schneider's paradigm. Some of the conditions
will need to be modified in order to reason about transient recovery. It will
then be necessary to rerun the EipM proofs of the main theorem of [2]
(below). -

Ary implementation which satisfies the constraints in Shankar’s report
will provide the following guarantee.

Theorem 1 (bounded skew) For any two clocks p and g that are non-

faulty at time t,
[‘v'Cp(t)-\'('(!)Isf’ .

That is, the difference in txme obqerved by two non- faulty clocks s

bounded by a small amount. This gives the leverage needed to reTlablv
build a fault-tolerant system. The next section enumerates the conditions
to be met to guarantee this result.

3.2 Shankar’s Conditions

The first condition is initial skew, és. which is a bound on the difference
between good clocks at the beginning of the protocol.

Condition 1 (initial skew) For nonfaulty processors p and ¢

|PC,(0) = PC,(0)] < b5

The rate at wﬁich a good clock can drift from real-time is bounded by a
small constant p.?

?Notice that in this formulatlon a good clock must have been good continually since
time 0. This condition will need to be modified in order to reason about recovery from

transient {aults.

Condition 2 (bounded drift) 7iicrc is a nonnegative constant p such
that if clock p is nonfaulty at time s.s > 1, then

(I=pls—1) < PC(s) = PCL(1) S (T4 p)s — 1)

Shankar notes the following corallary to bounded drift which limits the
amount two good clocks can drift with respect to each other during interval
from ? to s.

|PCy(5) = PCy(s)] € [PCu(t) = PCy(1)] + 2p(s = 1)

The next four conditions describe some constraints upon the synchro-
nization interval as related to initial conditions of the protocol.
Condition 3 (bounded interval) For nonfaulty clock p

0 <rpin £ ’;;H - f;, < 'mar
Condition 4 (bounded delay) For nonfaulty clocks p and ¢
lt, ~ 4,1 <8
Condition 5 (initial synchronization) For nonfaulty clock p

0 _
=0

Since we do not want process ¢ to start its (7 + 1)th clock before process
p starts its ith we state a nonoverlap condition

Condition 6 (nonoverlap)

B < Tnin

This, with bounded interval and bounded delay, ensures that for good
clocks p and ¢, t}, < ti*1.

All clock synchronization protocols require each process to obtain an
estimate of the clock values for other processes within the system. Error in
this estimate can be bounded, but not eliminated.

Condition 7 (reading error) For nonfaulty clocks p and ¢

Ot - 031 (q)] S A ‘

There is bound to the number of faults which can be tolerated?

Condition 8 (bounded faults) At any time 1. the number of faulty
processes is at most F.

For the purpose of the algomhm presented here, we will assume that the
number of clocks, N. satisfies the inequality N23F+1 7=~ :

Synchronization algorithms execute a convergence function cfn(p.6) “luch
must satisfy the conditions of translation invariance, premszon enhancement,
and accuracy preservation irrespective of the phvsncal constraints on the sys-

tem. Shankar mechanically proves that Lamport and Melliar- Smlth s Inter-
active Convergence function [9] satisfies these three conditions. The next
section defines these conditions in the context of the fault-tolerant midpoint

function used by Welch and Lynch [11].

4 Fault-Tolerant Midpoint as an Instance of Schnei-
der’s Schema

The convergence function for the implementation descr;bed here is the fault-
tolerant midpoint used by W elch and Lynch in [11]. The function consists of - - -
discarding the F largest and F smallest clock readings, and then determining
the midpoint of the range of the remaining readings. Its formal definition is

b +0N F)
Cf"MlD(P~)= 2 o)

where 6,,,) returns the mth largest element in 6. Tlus formulation of the
convergence function is different from that used in [11]. A proof of equal-
ity between the two formulations is not needed since it is shown that this

formulatlon satisfies the properues required by Schneider’s paradigm.

*This condmon will need to be changed to the number of processes not worhng . .
where working will be a predicate analogous to the one used in [4, 5]. This is necessuy
for reasoning about recovery from transient failures.

This section presents informal proofs that efnarp(p. 8) satisfies the de-
sired properties. The EHDM proofs are presented in the appendix and as-
sume that there is a deterministic sorting algorithm which arranges the
array of clock readings. This assumption will need to be discharged when
the implementation is verified.

The properties presented in this section are applicable for any clock
svnchronization protocol which employs the fault-tolerant midpoint conver-
gence function. All that will be required for a verified implementation is a
proof that the function is correctly implemented and proofs that the other
conditions have been satisfied.

4.1 ‘Translation Invariance

Translation invariance states that the value obtained by adding z to the
result of the convergence function should be the same as adding r to each
of the clock readings used in evaluating the convergence function.

Condition 9 (translation invariance) For any function 6 mapping
clocks to clock values,

cfu(p.(An:8(n)+2))=cfn(p,d)+x

Translation invariance is evident by noticing that for all m:
’ (’\1:0(1)+1)(n1)=0(m)+r

and

Brsny +2)+ On_py+7) b1y +En-F)
= - +7r
T 2 2

4.2 Precision Enhancement

Precision enhancement is a formalization of the concept that, after executing
the convergence function, the values of interest should be closer together.

Condition 10 (precision enhancement) Given any subset (' of the
N clocks with |C| > N = F. and clocks p and q in . then for any
readings 4 and @ satisfying the conditions

S

L foranyl in C. |4(1)-8()| < x

1]

. foranyl, m inC. A(l)=5(m)| <y
3. foranyl, m in C.[0(l)-0(m)| <y
there is a bound «m(x.y) such that

lefn(p.y) = cflq.0)] < w(a.y)

Theorem 2 Precision Enhancement is satisfied for cfoprp(p,) if

rlr.y)= % +:f

One characteristic of c_fnwp(p t?) is that it is posstTe for it to use
readings from faulty clocks. If this occurs. we know that such readings
are bounded by readings from good clocks. The next few lemmas establish
this fact. To prove these lemmas it was necessary to develop a pigeon hole
principle.

Lemma 1 (Pigeon Hole Principle) If N is the number of clocks in the
system, and Cy and C; are subsets of these N clocks,

ICH41C) 2 N+ED|CiNCa 2 k

This principle greatly simplifies the existence proofs required to establish
the next two lemmas. First, we establish that the values used in computing
the convergence function are bounded by readings from good clocks.

Lemma 2 Given any subset C' of the N clocks with |C| > N — F and any
reading 6, there exists a p.q € C such that,

8(p) > 6(F41) (and O n_F) 2 0(q))

10

Proof: By definition. |{p: 8(p) 2 6141)}] = F+1 (similarly. Hy: 0n-F) 2
8(q)}] > F + 1). The conclusion follows immediately from the pigeon hole
principle.]

Now we introduce a lemma that allows us to relate values from two
different readings to the same good clock.

Lemma 3 Given any subset (' of the N clocks with Il > N - F and
readings @ and 1, there exisis a p € (' such that,

B(p) > On-F) and Y(Fyry 2 T(p)

Proof: Recalling that N > 3F + 1. we can apply the pigeon hole principle
twice. First to establish that |{p: 6(p) > 8 x_p)} NC| > F + 1, and then
to establish the conclusion. o "

A immediate consequence of the preceding lemma is that the readings
used in computing cfupsrp(p. @) bound a reading from a good clock.

The next lemma introduces a useful fact for bounding the difference
between good clock values from different readings.

Lemma 4 Given any subset C of the N clocks, and clock readings @ and 7
such that for any 1 in C. the bound |8(1) — 7(1)] < = holds. forall p.¢q € C.

8(p) > 8(q) AV(g) 2 1(p) D 1B(P) = V(@) S 2

Proof: By cases,

o 106(p) 2 (q). then [6(p) = (9] < [6(p) = Y| < =
o 1£ 6(p) < 7(q). then |8(p) = (¢)] < 16(g) = (@) < 7

This enables us to establish the following lemma.

Lemma 5 Given any subset C of the N clocks, and clock readings 6 and
Y such that for any | in C, the bound |6(l) — Y1) € = holds, there exist
p.q € C such that,
8(p) 2 0(F+1)a
T(¢) 2 V(F41). and
|8(p) = V(g)| < .

11

Proof: We know from lemma 2 that there are p;,q; € C that satisfy the
first two conjuncts of the conclusion. There are three cases to consider:

o f(p1) >V aq) let p=g=p1.
o HO(q)>0(p)letp=g=aq.
o Otherwise, we have satisfied the hypotheses for lemma 4, so we let -

p=pand ¢= ¢

We are now able to establish precision enhancement for cfnarrp(p.J)

(Theorem 2).
Proof: Without loss of generality, assume cfraip(p,7) 2 ¢fmarip(q. 0)

1C.fﬂMm(P. ¥) - ¢frarip(g.- 6)
'7 (F+11+ (N=F) _ OF41)+6(n =F)|

ur+1)+7(N F)—(9(F+1 1+02u~ Sl

Thus we nee& to rs”how that . -

|7(F+1) +Y(N-F) — (0(F+1) + 9(}\-;‘))[< y+ 21'

By choosmg good clocks p.¢ from lemma 5 7 from lemma 3 and ¢; from

the right conjunct of lemma 2, we estafbhéh =t

VF+1) + Y(N=F) = (Op41) + Ov-P))|

() +7p) - 0(p1) - 8(qn)| —

[7(q) + (8(p) — 6(p)) + V(1) — 8(p1) — 8(q1)]
16(p) — 8(q1)| + |7(q) = 8(p)| + |V (p1) — 8(p1)|
v + 2z (by hypotheses and lemma 5)

IANA IUIA

4 3 Accuracy Preservatxon - ,f ,

Accuracy preservation formalxzes the notion tha.t there should be a bound
on the amount of correction applied in any synchromzatxon interval.

12

Condition 11 (accuracy preservation) (iven any subset C' of the
N clocks with |C') > N = F. and clock rcadings 8 such that for any ! and
m in C', the bound |8(1) — 8(m)| < x holds. there is a bound a(x) such
that for any q in C

lefn(p.8) - 8(q)| < alr)

Theorem 3 Accuracy preservation is salisfied for cfupp(p.8) ifa(x) = z.

Proof: Begin by selecting p; and ¢; using lemma 2. Clearly. 8(p;) >
cfmarip(p.8) and cfnprip(p.0) > 6(¢1). There are two cases to consider:

o I{ 8(q) < cfuprip(p.8). then |efnrgp(p.8)—8(q)] < |6(1n) - 68(q)]| < =.
o 1 8(¢) > cfuprip(p.). then [efnarip(p.8)— 8(q)] < 10(q1) - 0(¢)] < 2.

4.4 EnpM Proofs of Convergence Properties

This section presents the important details of the EnDM proofs that cfnarip(p. 6)
satisfies the convergence properties. In general. the proofs closely follow the
presentation given above. The EEDM modules used in this effort are listed in
the appendix. One underlying assumption is that N > 3F+ 1. This is a well
known requirement for systems to achieve Byzantine fault-tolerance without
requiring authentication. Anotler assumption added for this effort states
that the array of clock readings can be sorted. Additionally, a few prop-
erties one would expect to be true of a sorted array were assumed. These
additional properties used in the EHDM proofs are {from module clocksort):

funsort_ax: Axiom
i <jAj< N D d(funsort(?)(i)) > (funsort(¥)(5))

funsort_trans_inv: Axiom
E <N D (J(funsort((A ¢ : d(¢)+ X))(k)) = d(funsort(?)(k)))

cnt_sort_geq: Axiom
k< N Dcount({ Ap:d(p)> Vfunsort(D)(k))), N)>k

cnt_sort_leq: Axiom
k < N D count((Ap: d(funsort(9)(k)) 2 d(p)), N) 2 N -k+1

13

These properties will be proven in the context of the design.

A few of the given modules are taken from Shankar's proofs [2]. These
include the arithmetic modules (absmod, multiplication. and division). clock-
assumptions. and countmod. With the exception of countmod these modules
were unaltered. A number of lemmas were added to (and proven in) module
countmod. The most important of these is the aforementioned pigeon hole
principle. In addition. lemma count_complement was moved from Shankar's
module ica3 to countmod. Shankar's complete proof was re-run after the
changes to ensure that nothing was inadvertently destroyved. Future efforts
will likely require additional modifications to Shankar’s modules.

The induction modules. natinduction and noetherian. were taken from
Rushby s transient recovery verification [6]. The standard induction schema
was modified to syvntactically match that used by Shankar. In addition, a
lemma was added for complete induction over the natural numbers. The

remaining modules were generated in the course of this verification.

The appendix contains the proof chain analysis for the three properties
stated above. The proof for translation invariance is in module mid, precision
enhancement is in mid3, and accuracy preservation is in mid4.

5 Proposed Verification
This section describes the proposed verification that the circuit correctly
implements the convergence function. First an informal description of the

circuit is given, and then the verification plan is discussed. This design
assumes that the network of clocks is completely connected.

5.1 Informal Descrlptlon

As in other s&'nchromzatlon a]gonﬂlmq ﬂnq one consists of an infinite se-
quence of synchronization intervals of duration ~ R. For the time being,
we will presume the constraints listed above. It is assumed that all good
clocks know the index of the current interval (a simple counter is sufficient,

provided that all good channels start the counter in the same interval). The
major concern is when to begin the next interval. For this we require read-
ings of the other clocks in the system, and a suitable convergence function.
As stated above, the selected convergence function is the fault-tolerant mid-
point.

In order to execute the convergence function to start the (i41)th interval
clock, we need an estimate of the other processes clocks when local time is

14

al

(i + YR (according to I(';,(I)). OQur estimate. O;,“. of other clocks is
O (g) = (i+ DR +(Q - LC (1)

where 1,, is the time that p receives the signal from ¢, and L(' is a local
counter measuring elapsed time since the beginning of the current inter-
val. All clocks participating in the protocol know to send their signal when
L(’;,(f) = Q. The value (Q — L(';’;(f;,(,)) gives the difference between when
the local clock expected the signal and when it observed a signal from g¢.
The reading is taken in such a way, that simply adding the value to the
current time gives an estimate of the other processors clocks at that instant
(modulo any effects from drift).
If the local processor p reads its clock at time ¢ it will receive the pair

(. LCi(t)). This reading gives the duration of time since the beginning of
the protocol. The correct interpretation is VO(1) = iR+ LC’;,(f). Thus
the reading of the virtual clock just before p resets its registers for the ith
interval will be iR + cfnarrp(p.(Aq.©%(g) — iR)). Notice that translation
invariance allows the computation of the convergence function based solely
on (Ag.(Q — LCi(1y4)))-

" Figure 3 presents an informal block model of the proposed clock syn-
chronization circuit. The circuit consists of the following components:

e N pulse recognizers {only one pulse per clock is recognized in any given
interval),

e a pulse counter (triggers events based upon pulse arrivals),

a local counter LC (measures elapsed time since beginning of current

interval).

e an interval counter (contains the index ¢ of the current interval),

o one adder for computing the value —(Q - L(',’;(tpq)),

e one register each for storing —8(r4;) and —O(N-F)s

]

L]

an adder for computing the sum of these two registers, and
a divide-by-2 component.

The pulses are already sorted by arrival time, so it is natural to use a pulse
counter to select the time-stamp of the (F + 1)th and the (N - F)th pulses
for the computation of the convergence function. As stated previously, all
that is required is the difference between the local and remote clocks. Let
0= (Aq.@i,“(q)-— (i+ 1)R). When the F+1st (N — Fth) signal is observed,
register —8(r41) (—O(n-F)) is clocked, saving the value —(Q—LCy(1)). After
N — F signals have been observed, the multiplexer selects the computed

15

1 2 N-1 N
Signal Select =07 1
—8n-F) J T —bF+1)
/= AN +\
b \/ 3 i
\ + / MI:X\ LC
/2 Q

Figure 3: Informal Block Model

16

convergence function instead of Q. Wlhen L(',i,(f) — (=efurrip(p.(8))) = R
it is time to begin the 7 4+ Ist interval. To do this. all that is required is
to increment i aud reset L to (. The pulse recognizers. multiplexer select
and registers are also reset at this time.

5.2 Correctness Criteria

First, the RTL description will be entered in the EADM specification lan-
guage. and then EnpM will be used to prove that RTL description correctly
implements cfnarn(p. 9). Each block in the informal model will be decom-
posed into normal lardware components such as registers. arithmetic logic
units, multiplexors. and standard logic components. A functional descrip-
tion will be given for each device. and their composition will be shown to
implement the fault-tolerant mid-point convergence function. This part of
the verification will assume the properties of read error. bounded drift, and
initial synchronization. Any assumptions about the convergence function
used in the proofs of translation invariance. precision enhancement. or ac-
curacy preservation need to be discharged at this level.

6 Transient Recovéry

The argument for transient recovery capabilities hinges upon the following
observation:

As long is there is power 1o the circuit and no faults are present,
the circuit will execule the algorithm.

Using the fact that the algorithm executes continually. and that pulses can
be observed during the entire synchronization interval, we can establish
that up to F transiently aflected channels will automatically reintegrate
themselves into the set of good channels.

We will break the discussion down into cases: First, the simple case
when F = 1, and then the more general case for F' > 1. Remember that
N > 3F + 1. The reason two cases are considered is that only a simple
modification to the hardware is required to guarantee reintegration when
F = 1; the more general case require more inventive techniques.

17

6.1 Single Fault Scenario

The only modification required is that the svnchronization signals include
the sender’s value for i (the index for the current synch interval). By virtue
of the maintenance algorithm the N — | good clocks are synchronized within
a bounded skew é < R. Suppose the recovering clock observes N — 1 pulses
within é + 2A: it will chose two of these good values for computing the
convergence function and a simple vote of the received interval indices will
restore correct time to a lost process.

There js a possibility that the readings from the good clocks will straddle
the frame boundary. The recovering clock will be ignored in the computa-
tions of the good channel. and it should adjust its own clock such that in its

next interval, it will see all of the good clocks. If the window is symmetric

(ie. @ = R/2).itis poqsxble that the recovering channel will compute no
correction and will remain unsynchronized. However, if the window is asvm-
metric, a split at the boundaries will cause a recovering p process to compute
sufficient correction to push it into a region where it will see all the good
clocks in the same interval. Thus. Q should be selected so that the window
is asvmmetric (i.e. Q # R/2). ‘

6.2 General Case

When F > 2 the problem becomes more coniplicated. As above, if the
recovering clock observes N — F pulses within & + 2A, it will restore its
synchrony via the convergence function and a vote of the received interval
indices. However, if the good clocks straddle the boundary. the additional
faulty clock(s) can prevent any adjustment from being computed on the
recovering clock. It is likely that recovery cannot be guaranteed unless a
timeout mechanism is added. :

restoration of a Iost clock The approach taken here is very similar to that
proposed by Welch and Lynch [11]. They propose that when a process awak-
ens, that it observe j incoming messages until it can_ determine which round is
underway, and then wait sufficiently long to ensure that it has seen all valid
messages in that round. It can then compute the necessary correction to
become synchronized. Srikanth and Toueg [12] use a similar approach, mod-
ified to the context of their algorithm. Halpern et al. [13] suggest a rather

18

complicated protocol which requires explicit cooperation of other clocks in
the system. It is more appropriate when the number of clocks in the system
varies greatly over time. All of these approaches have the common theme,
namely. that the joining processor knows that it wants to join. This implies
the presence of some diagnostic logic or timeout mechanism which triggers
the recovery process. The approach suggested here happens automatically.
By virtue of the algorithm’s execution in dedicated hardware. there is no
need to awaken a process to participate in the protocol. The main idea is for
the recovering process to converge 1o a state where it will observe all other
clocks in the same interval. and then to restore the correct interval counter.

7 Initial Synchronization

If we can get into a state which satisfies the requirements for precision
enhancement:

Given any subsct ' of thc N clocks with || 2 N — F, and clocks p and ¢
in (', then for any readings 7 and 8 satisfying the conditions
1 Joranyl inC.|y()-8(H| <z
2 foranyl.min C. (1) - ym)| <y
3. foranyl, m in C, |8(]) - fm)| <y

there is a bound w(x.y) such that
‘(‘f”(ps 9) - Cfn(q,ﬂ)l S 7{'(1, y)

where y = R/2 and x is the normal value (& 2A), the above circuit will con-
verge to within 65 in approximately log,(R/2) intervals. Byzantine agree-
ment will then be required to establish a consistent interval counter. It will
be necessary to ensure that the clocks converge to a state satisfyving the
above constraints.

7.1 Mechanisms for Initialization

In order to ensure that we reach a state which satisfies the above require-
ments, it is necessary to identify possible states which violate the above
requirements. Such states would happen due to the behavior of clocks prior
to the time that enough good clocks are running. In previous cases we knew

19

we had a set € of good clocks with || > N — F. This means that there
were a sufficient number of clock readings to resolve 8,1y and 8 x_r). This
may not be the case during initialization. We need to determine a course of
action when we do not observe N — F clocks. Two plausible options are to

1. pretend all clocks are observed to be in perfect synchrony. or

2. pretend that unobserved clocks are observed at the end of the interval
(ie. (LCH(1p) = Q)= (R - Q)). Compute the correction based upon
this value.

Both options will he explored. The first option is simple to implement
because no correction is necessary. When LC' = R, set both i and LC
to 0. and reset the circuit for the next interval. To lmp]ement ‘the second
option, perform the following action when L' = R: if fewer than N - F
(F + 1) signals are observed. then enable register -—0‘ N=F) (—0(}."+1)) This
will cause the unobserved readings to be (R — @) which is equna,lent to
observing the pulse at the end of an interval of ﬂuratlon R: :

It will be necessary to define a convergence stair (ala [15)) for scenarios
that don’t converge by default.

7.2 Comparlson to Other Approaches

Most of the comments concerning the approach to ‘transient recover) are
applicable here as well This approach for achieving initial synchronization
differs from most methods in that it first synchronizes the interval clocks,

and then it decides upon a value for the current interval. ‘Techniques in [11],
[12). and [13] all depend upon the good clocks knowing that they wish to
initialize. Agreement is reached among the clocks wwhmg to join, and then
the protocol begins. The approach taken here seen_xq _closer to that used in

[14]. lxowe\}er detaxls of their approach are not ng*n

8 C_oncluding Remarks

Clock synchronization provides the cornerstone of any fault-tolerant com-
puter architecture. To avoid a single point failure it is imper tive that each

processor maintain a local clock which is penod:cally resynchronized mthr

ks in afault 1btleties i volved: i
ing abnut interactions mvolvmg misbehavi g components, it is

other clocks in a fault- t,olerant manner. Due

prove that the clock synchronization functnon operatesfcorrectry Sh:«mkar

20

[2] provides a mechanical proof (using EuDM [3]) that Schneider’s gener-
alized protocol [1] achieves Byzantine fault-tolerant clock synchronization.
provided that cleven constraints are satisfied. Shankar’s work provides the
formal specification of the proposed verified design.

The fault-tolerant midpoint convergence function lias been proven (in
EHDM) to satisfy the properties of translation invariance. precision enhance-
ment. and accuracy preservation. These proofs are reusable in the verifica-
tion of any synchronization algorithm which uses the same function. An
informal design of a circuit to implement this function has been presented.
Future efforts will focus on formalizing this design and proving the addi-
tional required properties from it. A register transfer level description of
the design will be expressed in the specification language of EHDM. and
proven to correctly implement the fault-tolerant midpoint function. Other
properties to be proven from the design include bounded interval, bounded
delay. initial synchronization. non-overlap. and any assumptions made in
establishing the properties of the convergence function. Bounded drift is a
physical property of the oscillator and cannot be established formally. The
value for drift will be taken from the oscillator’s stated performance param-
eters. It is assumed that the number of faults F is less than N/3, where
N denotes the number of clocks in the system. Read error will be assumed
in this development, but there is ongoing work at SRI to prove that remote
clocks can be read with bounded error. An approach for bounding initial
skew will be verified for the single fault scenario and a more general solution
will be explored.

In keeping with the spirit of the Reliable Computing Platform, it is
imperative that the clock synchronization subsystem provide for recovery
from transient faults. This paper has argued that the proposed design will
recover from a single transient fault. This argument will be formalized
in EHDM using an approach similar to that used by DiVito, Butler, and
Caldwell for the RCP [4]. Extensions to accommodate the more general case
will be developed, but would likely involve modifications to the design. An
interesting feature of this design is that for the single fault case (i.e. 4,5,0r 6
clocks), the properties of transient recovery and initial synchronization occur
automatically. The clock system will recover without explicitly recognizing
that something is amiss. The system can be augmented to recognize loss of
synchrony due to a transient fault, but need not do so for recovery purposes.

21

A Proof Summary

Notice that the only modules with failed proofs have the suffix _tcc. These
modules are automatically generated by EHDM. and cannot be altered by
the user. When a proof fails the user must prove the type check constraint
elsewhere. The proof chain analvsis (Appendix (') ensures that these obli-
gations have been discharged.

Proof summaries for modules on using chain of module mid_top

Module mid4_tcc: 1 successful proof, i1 failure, 0
Module mid3_tcc: 8 successful proofs, 5 failures, 0
Module mid2_tcc: 2 successful proofs, 2 failures, 0
Module mid_tcc: 2 successful proofs, 1 failure, O
Module tcc_mid: 9 successful proofs, O failures, O
Module division_tcc: 7 successful proofs, O failures, 0
Module natinduction_tcc: 1 successful proof, 0 failures, ©
Module countmod_tcc: 3 successful proofs, 3 failures, O
Module ft_mid_assume: no proo SRR :

Module clocksort: no proofs L
Module select_defs: 6 successful proofs, 0 failures, 0
Module mid: 2 successful proofs, 0 failures, 0
Module mid2: " 2 successful proofs, O failures, O
Module mid3: 9 successful proofs, 0 failures, 0
Module noetherian: 1 successful proof, 0 failures, O
Module natinduction: § successful proofs, O failures, O
Module countmod: - 30 successful proofs, 0 failures, 0
Module clockassumptions: 9 successful proofs, O failures, O
Module absmod: 15 successful proofs, O failures, 0
Module division: 11 successful proofs, O failures, 0
Module multiplication: 11 successful proofs, O failures, O
Module arith:’ no proofs’ AR AR
Module mid4: 9 successful proofs, O failures, 0
Module mid_top: 3 successful proofs, 0 failures, 0
Totals: 146 successful proofs, 12 failures,

Total time: 715 seconds.

22

errors
errors
errors
errors
errors
errors
eITors

errors

eITors

eIITors

arrors
erTors
eIrTors
errors
errors
errors
errors
errors
errors

errors
errors

0 errors

-
TR N —— T

B ITgX printed EHDM Modules

mid_top: Module

Using midé4. countmod_tcc, natinduction_tcc. division-tcc.
tcc_mid

Theory
Proof
posint. TCC1_.PROOF: Prove posint_ TCC1 {i; — 1}

countmod_TCC4_pr: Prove count. TCC4 from

countsize,
countsize {i — (if i > 0 then i — | else i end if)}

countmod_TCCS_pr: Prove count. TCC5 from

countsize,
countsize {i — (if i > 0 then i — 1 else ¢ end if)}

End mid_top

23

countmod_tcc: Module
Using countmod

Exporting all with countmod
Theory

i1: Var integer

ppred: Var function[naturalnumber — boolean)
1: Var naturalnumber

p: Var naturalnumber

k: Var naturalnumber

n: Var naturalnumber

dy: Var nk_type

nk: Var nk_type

nk2: Var nk_type

j: Var naturalnumber

posint.TCC1: Formula (31, : i; > 0)

count_TCC1: Formula (7 > 0) D (i = 12> 0)
count_.TCC2: Formula (ppred{i —I)AG>0)D(i-120)
count.TCC3: Formula (—(ppred(i — 1)) A (i > 0) D (i =12 0)

count.TCC4: Formula

(ppréc'!"(ir-r-'f'l)r) A(i>0)
D countsize(ppred, i) > countsize(ppred,7 — 1)

count.TCCS5: Formula
(—(ppred(i — 1)))A (i > 0)
D countsize(ppred, i) > countsize(ppred,i — 1)
Proof |
posint-TCClr_';l;séb;O'F: Prove posint_TCC1
count_ TCC1.PROOF: Prove count_TCC1

count_ TCC2_PROOF: Prove count_ TCC2

34

count_TCC3_.PROOF: Prove count . TCC3
count.TCC4_PROOF: Prove count. TCC4
count-TCCS-PROVOF: Prove count_.TCC5S

End countmod_tcc

25

natinduction_tcc: Module
Using natinduction

Exporting all with natinduction
Theory

m: Var naturalnumber

n: Var naturalnumber

t: Var naturalnumber

j: Var naturalnumber

dy: Var naturalnumber

ind_m_proof_TCC1: Formula
(if n > m then n— m else 0 end if > 0) [

Proof
ind_m_proof . TCC1_PROOF: Prove ind_m_proof . TCC1

End natinduction_tcc

)

26

division_tcc: Module
Using division

Exporting all with division
Theory

x: Var number
y: Var number

z: Var number
mult_div.1_.TCC1: Formula (z # 0) D (: #0)

mult_div.TCC1: Formula (y # 0) D (y # 0)
div_cancel_TCC1: Formula (r # 0) D (x # 0)
ceil_mult_div.TCC1: Formula (y > 0) D (y # 0)
div_nonnegative. TCC1l: Formula (+ 2 0A y > 0)D>(y#0)
div.ineq.TCC1: Formula (: > 0Ax < y) D (= #0)
div.minus_1_.TCC1: Formula (y > 0Ax < 0) D (y # 0)
Proof 7
mult_div_.1.TCC1_PROOF: Prove mult_div.1.TCC1
mult_div.TCC1_.PROOF: Prove mult.div.TCC1
div_cancel_.TCC1_PROOF: Prove div_cancel. TCC1
ceil_mult_div.TCC1_PROOF: Prove ceil_mult_div.TCC1
div_nonnegative. TCC1_PROOF: Prove div_nonnegative_TCC1
div_ineq_TCC1_PROOF: Prove div.ineq . TCCl
div_minus_1_TCC1_PROOF: Prove div.minus_1.TCC1

End division_tec

27

tcc.mid: Module
Using mid_tcc. mid2_tcc. mid3_tcc. mid4 _tec
Theory
Proof
ft_mid_TCC2_PROOF: Prove ft_mid_TCC2 from ft_mid_maxfaults

good_less NF_TCC1_PROOF: Prove good_less NF_TCC1 from
ft_mid_maxfaults

good_less. NF_pr_ TCC1_PROOF: Prove good_less.NF_pr. TCC1 from
ft_mid_maxfaults

good_between. TCC1_PROOF: Prove good.betweeﬁ;'i'(i:'(:l from
ft_mid_maxfaults

ft_mid_prec_sym1_TCC2_PROOF: Prove ft_mid.prec_sym1.TCC2 from
ft_mid_maxfaults o

ft_mid_prec_sym1_TCC4_PROOF: Prove ft_mid_prec_sym1_.TCC4 from
ft.mid.maxfaults

‘mid_gt_imp_sel_gt_TCC2_PROOF: Prove mid_gt. lmp_sel_gt TCC2 from
ft m|d maxfaults o o

ft_mid_prec_sym1_pr . TCC2. PROOF Prove ft mld.prec.syml.pr TCC2
from ft_mid_maxfaults

ft.mid_greater TCC1_PROOF: Prove ft_mid_greater TCC1 from
ft_mid_maxfaults

End tcc_mid

28

absmod: Module
Using multiplication
Exporting all
Theory

PO TRET SO TR P N P RRP Var number
| % 1]: Definition function|[number — number] =
(A2:(ifr <0 then -2 else r end if))

abs.main: Lemma |r] < 2 D (r <3V =2 <3)

abs_leq_0: Lemma |+ — y <z (v—y) <

abs_diff Lemma |r —y| <z D ({x —y) <= V(ig—-1)<=)
abs_leq: Lemma |r| < =D (r <2V -0 < z)

abs_bnd: Lemma
0$:/\0§.x-/\r_<_:/\0§y/\y§:Dl.r-y|§:

abs.1bnd: Lemma |r —y| <D rSy+=
abs.?2.bnd: Lemma |jr—y| <2Dr2y—2
abs.3.bnd: Lemmaz <y+:Ax 2 y—zDle—yl <=

abs_drift: Lemma
|4r‘yl§~'/\l$1-1'|.<.51 Dler—y| <=2+

abs.com: Lemma |7 — y| = |y = ¥

abs_drift_2: Lemma
le-yl<zAlm—z[<Al -yl <=
Dy —ml<z+a+ 2

abs_geq: Lemma r 2 yAy 20D || > |yl
abs_ge0: Lemmaz 20D lz] =z

abs_plus: Lemma |z + y| < |2| +]

29

abs_ diff3: Lemmar—-y<:Ay—r<:zD|r—yl<:
Proof

abs_plus_pr: Prove abs_plus from
|1 {e —a+y}, | +1], [*1[{r — 9} -

abs_diff_3_pr: Prove abs_diff.3 from |« 1| {r — 2 — y}
abs_ge0_proof: Prove abs_ge0 from | » 1]
abs_geq_proof: Prove abs_geq from |x 1|, [x 1| {z — y}

abs_drift 2_proof: Prove abs_drift.2 from

abs_drift, .

abs_drift ' . IR i

{z—v 3
y—h,
2=z

o —z+)

abs_com {r — y}

“abs_com_proof: Prove abs_com from .
U {e—(z—g)), |+l fa— (w=2)}

abs_drift_proof: Prove abs_drift from
abs_1.bnd,
abs.lbnd {z — 7, y — 2, 2 — 31},
abs_2_bnd,
abs:2bnd {z — 21, y — 2, 2 — 5},
abs.3bnd {z — 1y, z — 2+ 7}

abs_3_bnd_proof: Prove abs.3.bnd from | x 1| {z — (z - y)}
abs_main_proof: Prove abs_main from |« 1|
abs_leq_0_proof: Prove abs_leq.0 from | x 1| {z — z - y}

abs_diff_proof: Prove abs_diff from |« 1| {z — (z~y)}

N W O U B W

abs_leq_proof: Prove abs_leq from |« 1]

30

abs_bnd_proof: Prove abs_bnd from | « 1 {o — (= y)}
abs_1_bnd_proof: Prove abs_1.bnd from |« 1| {# — (r —)}

abs_2_bnd_proof: Prove abs_2.bnd from | 1] {s — (r - y)}

End absmod

31

multiplication: Module
Exporting all
Theory

T.Y. 3.1, Y1, 51 T2- Y2. 20 Var number
*1 x «2: function|[number. number — number] = (Az.y: (7 *y))

mult_ldistrib: Lemma r«(y+ z)=arxy+ar*:z
mult_ldistrib_minus: Lemma rx(y—z)=r+y—2r %z
mult_rident: Lemma r+1 =z :

mult_lident: Lemma lx2r =1z

distrib: Lemma (r 4+ y)xz=r%z 4+ y=xz
distrib.minus: Lemma (r —y)xz=xr*:—y*: s

mult_non_neg: Axiom
({(z20Ay20)V(r<O0AYy<L0)) & r*y>0

mult_pos: Axiom ((z >0Ay>0)V(z<0Ay<0)) & rxy>0
mult_com: Lemma rxy=yx*zr

pos_product: Lemmaz > 0Ay>0Dz2»xy2>0

multleq: Lemma z: 2 0Az 2 yDr*:2y*xz

multleq.2: Lemma 2 0Az2 2 yDz*xr2zxy

mult 10: Axiom Oxr =0

mult_gt: Lemma:)O‘Ax> YDT*xz>y*s

Proof

mult_gt_pr: Prove mult_gt from
mult_pos {z — z — y, y «— =z}, distrib_minus

32

distrib_minus_pr: Prove distrib_minus from

mult_ldistrib_minus {x — =, y — 1, = — y},
mult_com {r —r —y, y — =},
mult_com {y — =},

mult_com {r — y, ¥ — =}

mult_leg_2_pr: Prove mult_leq_2 from
mult_Idistrib_minus {r — =, y — ¥, = — ¥y},
mult_non_neg {r — =, y — 7 — ¥}

mult_leq.pr: Prove mult_leq from
distrib_minus, mult_non_neg {r — r —y, y — =}

mult_com_pr: Prove mult_com from
wlaxx2 , *lxx2{x—y, y—ur)

pos_product_pr: Prove pos_product from mult_non_neg
mult_rident_proof: Prove mult_rident from «1 xx2 {y — 1}

mult_lident_proof: Prove mult_lident from
slxx2 {z—1, y— 7}

distrib_proof: Prove distrib from
dxw2{z—a+y y— 3}
x1 %2 {y — =},
*xlx+2 {r —y, y — =}

mult_ldistrib_proof: Prove mult_ldistrib from
*laa2 {y —y+z, *—), x1x%2, *] %42 {y — =}

mult_ldistrib_minus_proof: Prove mult_ldistrib_minus from
wlwx2 {y —y—z ¢ —x}), sl * %2, *1 %42 {y — =}

End multiplication

33

noetherian: Module [dom: Type, <: function[dom, dom — bool}]
Assuming

measure: Var function[dom — nat|
a.b: Var dom

well_founded: Formula
(I measure : ¢ < b D measure(a) < measure()))

Theory

p. A. B: Var function[dom — bool]
d.dy.d,: Var dom

general_induction: Axiom o : _ [

(Vdy:(Vdz:dz < dy D pldy)) D pldh)) D (Vd: p(d))
d3,ds: Var dom '

mod_induction: Theorem 7
(Vds.ds:dy < d3 D A(d3) D Aldy))
A(Vdy:(Vdy:dy < dy D(A(dy) A B(dz))) D B(dh))
D(Vd: A(d) D B(d))

Proof

mod_proof: Prove
mod_induction {dl -_ 41@1’1; ds — d]@l)l, d4,,t,dz,}

from general.induction {p —(Ad:A(d)D B(d))}

End noetherian

34

select_defs: Module

Using arith. countmod. clockassumptions. clocksort
Exporting all with clockassumptions

Theory

process: Type is nat
Clocktime: Type is number
[.m.n.p.q: Var process
J: Var function[process — Clocktime]
i.j.k: Var posint
T.X.Y.Z: Var Clocktime
*1 (.2 function[functﬁion[process — Clocktime]. posint
— Clocktime] == (A 9.i: d(funsort(7)(:)))

select_trans_inv: Lemma
k S ND (/\(] . 1)(‘1) + -Y)(k) = i)(k) + X

select_existsl: Lemma i < N D (3p:p < N Ad(p) =d,)
select_exists2: Lemma p < N D (3i:i < NAd(p) =)
select_ax: Lemma 1 <iAi < kAR <N DI, 2 dyy

count_geq_select: Lemma
E<NDcount({ Ap:d(p) > 9. N)2k

count_leq_select: Lemma
E<NDcount((Ap:idyy 2 dp)).Ny>2N-Fk+1

Proof

select_trans_inv_pr: Prove select_trans_inv from
funsort_trans_inv

select_exists1_pr: Prove select_existsl {p — funsort(?)(¢)}
from funsort_fun_1.1 {j — ¢}

select_exists2_pr: Prove select_exists2 {i — i@pl} from
funsort_fun_onto

select_ax_pr: Prove select_ax from
funsort_ax {i — iwe, j — kive}

count_leq_select_pr: Prove count_leq_select from cnt_sort_leq

count.geq._select_pr: Prove count_geq_select from cnt_sort_geq

End select_defs

36

ft_mid_assume: Module
Using clockassumptions
Exporting all with clockassumptions
Theory
ft_mid_maxfaults: Axiom N >3+ F +1

End ft_mid_assume

37

arith: Module
Using multiplication. division. absmod

Exporting all with multiplication. division. absmod

End arith

|
|
|

38

clocksort: Module

Using clockassumptions

Exporting all with clockassumptions
Theory

[.m,n.p.q: Var process
i.j.k: Var posint
X.Y: Var Clocktime
¥: Var function[process — Clocktime]
funsort: function|function[process — Clocktime]
— function|posint — process]]

funsort.ax: Axiom

i < jAj< N Do(funsort(d)(¢)) > P funsort() j})

funsort_fun_1_1: Axiom
i < NAj< N Afunsort(J)(7) = funsort(¥)(J)
D i =j Afunsort(d)(i) < N

funsort_fun_onto: Axiom
p< N D (3i:i< N Afunsort(?)(i) = p)

funsort_trans_inv: Axiom
k< N D (J(funsort({ Ag:9(q)+ X))(k)) = I(funsort(9)(F)))

cnt_sort_geq: Axiom
E< N Dcount({ Ap:(p) 2 I(funsort(D)(k))). N) > k

cnt_sort_leq: Axiom
k < N D count((Ap: d(funsort(J)(k)) 2 Hp) N)>N-k+1

Proof

End clocksort

39

clockassumptions: Module
Using arith. countmod
Exporting all with countmod. arith
Theory
N: nat
N.0: Axiom N >0

process: Type is nat
event: Type is nat
time: Type is number
Clocktime: Type is number |
l.m.n,p.q.p1,p2. 1,92, p3. ¢3: Var process |
i.j.k: Var event’ ‘ R
r.y.z.r.s8.t: Var time
X.Y.Z.R.$.T: Var Clocktime
7.8: Var function[process — Clocktime] o
b, P T yins Triars 3. A7 number ' |
PC(%2),V°C.1(+2): function[process. time — Clocktime] 5
1*2 function[process. event — time] N
03%: function[process. event. X
— function [process - Clocktnme]]

1 C"Q(*.'}) function|process. event. time — Clocktime)
correct: function|process. time — bool]
em cfn: function|process. function[process — Clocktime]

— Clocktime] :
7: function[Clocktime, Clocktime — Clocktime]
a: function[Clocktime — Clocktime]

delta 0: Axiom 6 >0
mu0: Axiom p > 0
rho.0: Axiom p >0

rho_1: Axiom p<1

rmin0: Axiom r,,;, > 0

40

rmax.0: Axiom 7,,,r > 0

beta_.0: Axiom 3 2> 0

lamb.0: Axiom A >0

init: Axiom correct(p.0) D PC,(0) > 0A PCH(0) < 4
correct_closed: Axiom s > 1 A correct(p.s) D correct(p, 1)

rate_.1l: Axiom
correct(p.s)A s 21D PCp(s) — PC (1) S(s-D)x(1+ P)

rate.2: Axiom
correct(p. s} A s 21D PCpu(s) - Pe 2 (s-t)x(1- p)

rts0: Axiom correct(p.) At <t D1 =1, < Toar
rtsl: Axiom correct(p.) A1 2> 1;,“ o1 - f;, > Toun
rts.0: Lemma correct(p.f;,'“-) Dt — 1, < Tmar
rts.1: Lemma correct(p. t;,“) D r;',+‘ - r;’, > Tmin

rts2: Axiom _ _
correct(p, 1) At > 1, + 3 A correct(¢q.1) D1 2 1,

rts.2: Axiom _ o
correct(p.t,) A correct(q, t) D, -1, < 3

synctime_0: Axiom 13 =0

VClock.defn: Axiom o)
correct(p.) AT 2 1 AL < D V(1) = 1O,

Adj: function|process,event — Clocktime] =
(Ap,i: ' '
(if i > 0 then ¢fn(p,0;) — PC(1,) else 0 end if))

IClock_defn: Axiom correct(p.t) D JCi(1) = PCy(t) + Adi(p)

41

Readerror: A_xiom A
correct(p. t;t1) A correct(q. i;,“)
D105 g) = ICHH < A

translation_invariance: Axiom
X > 0D cfn(p.(Apy — Clocktime : y(p1) + X)) = ¢fn(p.q)+ X

ppred: Var function[process — bool]
F: process
okay_Readpred: function[function[process — Clocktime].
Clocktime. function[process — bool]
— bool] =
(Ay.Y,ppred:
(Y1.m : ppred(l) A ppred(m) D |7(I)— 4(m)| £Y))
okay_pairs: function[function[process — Clocktime].
function|[process — Clocktime], Clocktime,
function|[process — bool] — bool] =
(A+4.6,X.ppred: L
(Vpa: ppred(ps) O |y(ps) — 8(p3)| < X))

N_maxfaults: Axiom F < N

precision_enhancement_ax: Axiom
count(ppred, N)> N - F
A okay_Readpred(4 .Y, ppred)
A okay_Readpred(6.Y’, ppred)
A okay_pairs(+, 8, X, ppred) A ppred(p) A ppred(¢)
D |efnlp,y) = efn(g.8)] < n(X.Y)

correct_count: Axiom count((A p: correct(p,t)),N)> N - F

42

okay_Reading: function{function[process — Clocktime].
Clocktime. time — bool] =
(Ar. Y 0
(Vproan:
correct(py.1) A correct(gi.1) D [1(p1) — () €£Y))
okay_Readvars: function[function[process — Clocktime)].
function[process — Clocktime].
Clocktime. Clocktime — bool] =
(A7.0.X.1:
(V ps3 : correct(pa.1) D |7(p3) — B(p3)l < X))

okay_Readpred_Reading: Lemma
okay_Reading(~.Y".1)
O okay_Readpred(4.Y.(A p: correct(p.1)))

okay_pairs_Readvars: Lemma
okay_Readvars(q.6. X.1)
O okay_pairs(7.6. X.(Ap : correct(p.1))})

precision_enhancement. Lemma
okay_Reading(7.Y. 151
A okay_Reading(6,1".1:+1)
A okay_Readvars(7.8. X.t;t!)
A correct(p. 15H!) A correct(y. 1)

S lefilp,) - efnlg.0)]| < X,Y)

okay_Reading_defn_Ir: Lemma
okay_Reading(.Y',1)
D(Yp.aqi:
correct(p;.1) A correct(gy. 1) D |y(p1) - M) LY)

okay_Reading_defn_rl: Lemma
(Vp.q1:
correct(py.t) A correct(qy,t) D |v(p1) — @) <Y)
O okay_Reading(7.}.1)

okay_Readvars_defn_Ir: Lemma
okay_Readvars(7.6, X, 1)
S (V ps : correct(pa,t) O |(p3) — B(p3)] £ X)

43

okay_Readvars_defn_rl: Lemma
(V¥ p3 : correct(pa. 1) D |y(pa) — 8(p3)| < X)
O okay.Readvars(4.8.X.1)

accuracy_preservation.ax: Axiom
okay_Readpred(+.X. ppred)
A count(ppred. N) > N — F A ppred(p) A ppred(¢)

D lefn(p.y) = 1(g)] £ a(X)
Proof

okay_Reading_defn_rl_pr: Prove
okay_Reading_defn_rl {p; — p1@P1S, ¢; — ¢, @P15} from
okay_Reading)

okay_Reading_defn_Ir_pr: Prove okay_Reading.defn_Ir from
okay_Reading {p; — 1 @CS, ¢1 — ¢:1@CS})

okay_Readvars_defn_rl_pr: Prove : :
okay_Readvars_defn_rl {p3 — p;@P1S} from okay Readvars

okay_Readvars_defn_lr_pr: Prove okay. Readvars defn_Ir from
okay_Readvars {p; — p3@CS} B IR

precision_enhancement-pr: Prove precision_enhancement from
precision_enhancement_ax
{ppred — (X g : correct(q,1:+1))},
okay_Readpred_Reading {t — t‘*‘}
okay_Readpred_Reading {t — t"“, 5 — 8},
okay_pairs_Readvars {t — t"”}
correct_count {1 — t3+1}

okay-Readpred_Reading-pr: Prove okay-Readpred-Revading from
okay_Readpred {ppred — (A p: correct(p,1))},
okay_Reading {p; — I@P1S, ¢ — m@P1S}

okay_pairs_Readvars_pr: Prove okay_pairs_Readvars from
okay_pairs {ppred — (A p : correct(p,1))},
okay_Readvars {p3 — p3@P1S}

rts_0_proof: Prove rts 0 from rts0 {t — 5t}

44

[N] N

rts_1_proof: Prove rts_1 from rts1 {1 — i+

End clockassumptions

45

countmod: Module
Exporting all
Theory

i1: Var int
posint: Type from nat with (A : ¢ > 0)
L.m.n.p.¢.p1.P2- 1. q2-P3, ¢3: 'Var nat
i.j.k: Var nat
r.y.z.r.s. 0 Var number
X.Y.Z: Var number
ppred. ppred]. ppred2: Var function|nat — bool]
v.6,4: Var function[nat — number]
countsize: function[function[nat — bool].nat — nat] =
(Appred,i:i)
count: Recursive function[function[nat — bool]. nat — nat] =
(Appred,i:
(ifi>0
then (if ppred(i — 1)
then 1 + (count(ppred.i — 1))
else count(ppred.i — 1)
end if)
else 0
end if))
by countsize
count_complement: Lemma
count((A ¢ : ~ppred(g)),n) = n — count(ppred.n)

count_exists: Lemma o
count(ppred.n) > 0D (3 p:p < n A ppred(p))

count_true: Lemma count{{ Ap:true),n) =n
count-fg!;e:: Lemma count((Ap:false),n) =10

‘count_bounded_imp: Lemma 7
count({ Ap: p < n D ppred(p)), n) = count(ppred, n)

count_bounded_and: Lemma ‘
count((Ap: p < n Appred(p)),n) = count(ppred, n)

46

pigeon_hole: Lemma
count(ppredl.u) + count(ppred2.n) > 1 + k
O count((A p: ppred1(p) A ppred2(p)).n) 2 k

predl, pred2: Var function[nat — bool]

pred_extensionality: Axiom
(V p:predl(p) = pred2(p)) D predl = pred2

nk_type: Type = Record n : nat.
k : nat
end record
nk.nkl,nk2: Var nk_type
nk_less: function|nk_type.nk_type — bool] ==
(Ank1,nk2 : nkl.n + nk1l.k < nk2.n + nk2.k)

Proof
Using natinduction. noetherian

count_bounded_imp0: Lemma
k> 0D count({ Ap:p <k Dppred(p}).0) = count(ppred, 0)

count_bounded_imp_ind: Lemma
(k> n Dcount((Ap:p <k Dppred(p)),n)
= count(ppred.n}))
D(k>2n+41
Scount{(Ap:p <k Doppred(p)).n+1)
= count(ppred,n + 1))

count_bounded_imp_k: Lemma
(k> n D count((Ap:p< kD ppred(p)).n)
= count({ppred, 1))

count_bounded_imp0_pr: Prove count_bounded_imp0 from
count {{ — 0},
count {ppred — (Ap:p < k D ppred(p)), i— 0}

count_bounded_imp_ind_pr: Prove count_bounded_imp_ind from
count {i — n+1},
count {ppred — (Ap:p <k Dppred(p)), i —n+ 1}

47

count_bounded_imp_k_pr: Prove count_bounded_imp_k from

induction

{prop

—{(An:
k>n
Dcount((Ap:p < k Dppred(p)).n)
= count(ppred.n)),

i—n},
count_bounded.imp0,
count_bounded_imp_ind {n — japl}

count_bounded_imp_pr: Prove count_bounded_imp from
count_bounded_imp_k {k — n}

count_bounded_and0): Lemma
k20D count((Ap:p< kA ppred(p)).O) = count(ppred.0)
count. bounded and_ind: Lemma
(k>n > count((Ap:p< kAppred(p)).n) = count(ppred n))
o (k 2n+ 1
> count((Ap:p<kA ppred(p hn+1)
= count(ppred n+1)) -

count_bounded_and_k: Lemma
(k2nDcount({Ap:p < kAppred(p)),n)= count(ppred n))

count_bounded_and0_pr: Prove count_bounded_and0 from
count {i — 0},
count {ppred — (Ap:p< kA ppred(p)) i— 0}

count_bounded_and_ind_pr: Prove count bounded and.ind from
count {{ — n + 1},
count {ppred — (Ap:p<kAppred(p)), i —n + 1}

48

count_bounded_and_k_pr: Prove count_bounded_and_k from
induction

{prop
—{(An:
k>
O count((Ap:p < kA ppred(p)).n)
= count{ppred. n)),
i— n},

count_bounded_and0,
count_bounded_and_ind {n — japl}

count_bounded_and_pr: Prove count_bounded_and from
count_bounded_and_k {k — n}

count_false_pr: Prove count_false from
count_true,
count_complement {ppred — (A p : true)},
pred_extensionality
{predl — (A p: —true),
pred2 — (A p: false)}

¢c0: Lemma count((A g : —ppred(¢)),0)=0- count(ppred.0)

cc.ind: Lemma
(count((A q: —ppred(g)).n)=mn— count(ppred.n))
> (count((Ag: —ppred(¢)).n + 1)
=n+ 1 - count(ppred.n + 1})

ccO_pr: Prove cc0 from
count {ppred — (A ¢ : ~ppred(¢)), 7 — 0},
count {1 — 0}

cc_ind_pr: Prove cc_ind from
count {ppred — (A ¢: -ppred(¢)), : —n + 1},
count {i — n+1}

49

count_complement_pr: Prove count_complement from
induction

{prop
—{An:
count({ A g : ~ppred{q)),n) = n — count(ppred. n)),
i —n},
cc0,

cc.ind {n — japl}

instance: Module is noetherian[nk_type, nk_less]

nk_measure: function[nk_type — nat] ==
(Ankl:nkl.n + nkl.k)

" nk_well_founded: Prove well_founded {measure — nk. measure}

nk_ph_pred: functaon[functaon[nat — bool]. :
function[nat — bool]. nk_type — bool]
(A ppredl. ppred2,nk :
count(ppredl. nk.n) + count(ppred2.nk.n) > > nk n + nk.k
> count((A p : ppredi(p) A ppred2(p)), nk.n) > nk.k)
nk_noeth_pred: function[function[nat — bool], ,
functcon[nat — bool]. nk_type
— bool] =
(Appredl, ppred2, nkl : '
(Vnk2:
nk- Iess(nk2 nkl) D nk ph pred(ppredl ppred2 nk2)))

ph.casel: Lemma

count((A p: ppred1(p) A ppred2(p) pred n)) > k
D count((A p: ppred1(p) A ppred2(p)),n) > k

ph_ casel pr: Prove ph_casel from '
count {ppred — (,\p ppred1(p) A ppred2(p)) i—n}

ph_case2: Lemma
count(ppredl, pred(n)) + count(ppred2, pred(n)) < pred(n) + k
A count(ppredl,n) + count(ppred2.n) > n + k
A count({ A p : ppred1(p) A ppred2(p)),pred(n)) > pred(k)
D count({ A p: ppredl(p) A ppred2(p)).n) > k

50

ph_case2a: Lemma
count(ppredl.pred(n)) + count(ppred2. pred(n)) < pred(n) + k
A count(ppredl.n) + count{ppred2.n) > n + k
> ppred1(pred(n)) A ppred2(pred(n))

ph_case2b: Lemma
n>0Ak>0
A count{ppredl._pred()) + count(ppred2, pred(n})
< pred(n) + k
A count(ppredl.n) + count(ppred2.n) 2 n + k
O count({ppredl.pred(n)) + count(ppred2.pred(n})
> pred(n) + pred(k)

ph_case2a_pr: Prove ph_case2a from
count {ppred — ppredl, i — n},
count {ppred — ppred2, i — n}

ph.case2b_pr: Prove ph_case2b from
count {ppred — ppredl, i — n},
count {ppred — ppred2, { — n}

ph_case2_pr: Prove ph_case2 from
count {ppred — (A p: ppred1(p) A ppred2(p)), i — 1},
ph_case2a

ph_case0: Lemma
(n=0vk=0)
> (count(ppredl, n) + count(ppred2.n) 2 n + k
o count({ A p : ppredl(p) A ppred2(p)).n) > k)

ph-case0n: Lemma
(count(ppredl,0) + count(ppred2,0) > k
D count({ A p : ppredl(p) A ppred2(p)),0) > k)

ph_caseOn_pr: Prove ph_caseOn from
count {ppred — ppredl, i — 0},
count {ppred — ppred2, i — 0},
count {ppred — (A p: ppredi(p) A ppred2(p)), i — 0}

ph_case0k: Lemma count({ Ap: ppred1(p) A ppred2(p)).n) 2 0

51

ph_caseOk_pr: Prove ph_case0k from
nat.invariant
{nat_var — count((A p : ppred1(p) A ppred2(p)).n)}

ph_case0_pr: Prove ph_case0 from ph_caseOn, ph_case0k

nk_ph_expand: Lemma
(Vn.k:
(count(ppredl. pred(n)) + count(ppred2. pred(n))
> pred(n) + pred(k)
D count({ A p : ppred1(p) A ppred2(p)).pred(n))
> pred(k)) o
A (count(ppredl.pred(n)) + count(ppred2. pred(n))
> pred(n)+ & ' -
D count((A p: ppredl(p) A ppred2(p)). pred(n))
> k) ~ |
D (count(ppredl, n) + count(ppred2,n) > n + k
D count((A p: ppred1(p) A ppred2(p)),n) > k))

nk_ph_expand_pr: Prove nk_ph_expand from
ph_case0, ph_casel, ph_case2, ph_case2a, ph_case2b

nk_ph_noeth_hyp: Lemma
(Vnkl: ,
nk-noeth_pred(ppredl. ppred2. nk1)
D nk_ph_pred(ppredl, ppred2, nkl1))

nk_ph_noeth_hyp_pr: Prove nk_ph_noeth_hyp from

nk_ph_pred {nk — nk1},
nk.noeth_pred {nk2 — nk1 with [(n) := pred(nkl.n)]},
nk_noeth_pred

{nk2 — nkl with [(n) := pred(nkl.n), (k) := pred(nk1.k)]},
nk_ph_pred {nk — nkl with [(») := pred(nkl.n)]},
nk_ph_pred , ,

{nk — nk1 with [(n) := pred(nkl.n), (k) := pred(nkl.k)]},
nk_ph_expand {n — nkl.n, k — nkl.k}, :
ph_case0 {n — nkl.n, k — nkl.k},
nat_invariant {nat_var — nkl.n},
nat.invariant {nat_var — nkl1.k}

52

nk_ph_lem: Lemma nk_ph_pred(ppredl. ppred2.nk)

nk_ph_lem_pr: Prove nk_ph_lem from
general_induction
{p—(Ank: nk_ph_pred(ppredl. ppred2. nk)),
d, — nk2:wp3,
d — nkdc},
nk_ph_noeth_hyp {nkl — d; apl},
nk_noeth_pred {nkl — d;apl}

pigeon_hole_pr: Prove pigeon_hole from
nk_ph_lem {nk — nk with [(n):= e (k)= kac]},
nk_ph_pred {nk — nkapl}

exists_less: function[function[nat — bool]. nat — bool] =
(Appred.n:(dp:p<nA ppred(p)))

count_exists_base: Lemma
count(ppred.0) > 0D exists_less(ppred.0)

count_exists_base_pr: Prove count_exists_base from
count {i — 0}, exists_less {n — 0}

count_exists_ind: Lemma
(count(ppred.n) > 0D exists_less(ppred. n}))
S (count(ppred.n+1)>0D5 exists_less(ppred.n + 1))

count_exists.ind_pr: Prove count_exists_ind from
count {i —n + 1},
exists_less,
exists_less
{n —n+1,
p — (if ppred(n) then n else pip2 end if)}

[Vha }
(L]

count_exists_pr: Prove count_exists {p — pupd} from
induction
{prop
— { An : count(ppred.n) > 0 D exists_less(ppred. n)),
i — née},
count_exists_base,
count_exists_ind {n — jipl},
exists_less {n — idpl}

count_base: Sublemma count(ppred.0) =0
count_base_pr. Prove count_base from count { i— 0}

count_true_ind: Sublemma
(count((A p: true).n) = n)
Dcount((Ap:true),n+1)=n+1

count {ppred — (Ap:true), i — n+1}

count_true_pr: Prove count_true from

induction
{prop — (A n : count((Ap:true).n) = n),
i — nGe},

count_base {ppred — (A p:true)},
count_true_ind {n — j@pl}

End countmod

54

natinduction: Module
Theory

i.j.m.my.n: Var nat
p.prop: Var function[nat — bool]

induction: Theorem
(prop(0) A (¥ j : prop(j) D prop(j + 1))) D prop(:)

complete_induction: Theorem
(Vi:(Vj:j<iDdpi))Dpli)y D (Vu:p(n))

induction.m: Theorem
pPm)A(Vizi>2mAp(i)D p(i+ 1))
D(¥Ynu:n>mDpn))

limited_induction: Theorem
(m<my Dplm))A(Vizi2mAi<myApli) Dpli+ 1))
S{Vn:n2>mAn<m Dpn))

Proof
Using noetherian
less: function[nat.nat — bool] == (Am.n:m < n)

instance: Module is noetherian|nat, less]
r: Var nat
identity: function[nat — nat] == (An:n)

discharge: Prove well_founded {measure — identity }

complete_ind_pr: Prove complete_induction {i — d,Gpl} from
general_induction {d — n, d; — j}

ind_proof: Prove induction {j — pred(d;@pl)} from
general_induction {p — prop, d — i, dy — i}

ind_m_proof: Prove induction.m {/ — japl + m} from
induction

{prop — (A : pQc(u + m)),
i — if n > m then n — m else 0 end if}

limited_proof: Prove limited_induction {i — itpl} from
induction.m {p — (Ar:x < my D p@c(r))}

End natinduction

56

W MRS W 1 IR R R HLL e e o w

division: Module

Using multiplication. absmod
Exporting all

Theory

ToY.c.T1 .51 2. Y2, 520 Var number
«1]: function[number — int]

ceil_defn: Axiom [*] > aA[r]-1<x

mult_div.l: Axiom : # 0D 2 *y/z =2 *(y/:)
mult_div.2: Axiom : # 0D rxy/z=(2/2)*y
mult_div.3: Axiom = # 0D (z/2)=1

mult.div: Lemma y £ 0D (v/y)*xy=71

divcancel: Lemma r # 0D rxyfz =y

div_distrib: Lemma z £ 0 D ((z + y)/=) = (2/2) +(y/=)
ceil.mult.div: Lemma y > 0D [r/y]lxy 22
ceil_plus.mult_div: Lemma y > 0D [r/y] + 1>y >z
div_nonnegative: Lemma r > 0Ay > 0> (z/y) =0

div_minus_distrib: Lemma

2# 0D (x-y)/==(x/2)—(y/2)
div_ineq: Lemma =z > 0A«x <y D (r/2)<(y/2)
abs_div: Lemma y > 0D |t /y| = |=|/y
mult_minus: Lemma y # 0D —(z/y) = (—z/y)
div.minus_1l: Lemmay>0Az <0D(x/y)<0

Proof

[uby]
-1

div_nonnegative_pr: Prove div_nonnegative from
mult_non_neg {r — (if y # 0 then (x/y) else 0 end if)},
mult_div

div_distrib_pr. Prove div_distrib from
multdivl {r —r+y, y—1, : —:},
mult_rident {r — & + y},
multdivl {r —z, y— 1, - — =},
mult_rident,
multdivl {r —y, y—1, = — =},
mult_rident {+ — y}, -
distrib {z — (if = # 0 then (1/z) else 0 end if)}

div_cancel_pr: Prove div_cancel from
mult_div.2 {z — z},
mult_div.3 {: — z},
~mult_lident {r — y}

mult_div_pr: Prove mult_div from
mult_div.2 {z — y}, '
mult.div.l {z —y},
mult_div.3 {z — y},
mult_rident

abs_div_pr: Prove abs_div from
[*1lj{z —(ify# 0 then (z/y) else 0 end 1f)}
*1],
div_nonnegative,
div_.minus_1,
mult_minus

muit_minus_pr: Prove mult_minus from
multdiv.l {r — -1, y—z, z — y}
*l 42 {z — -1, y——a‘}
*1xw2 .
{z — -1, :
y—(ify#0 then (:r/y) else 1 end 1f)}

58

div_minus_1_pr: Prove div.minus_1 from
mult_div,
pos.product
{r — (if y# 0 then (x/y) else 0 end if),
y—y}

div_minus_distrib_pr: Prove div_minus_distrib from
div_distrib {y — —y}, mult.minus {r —y, ¥y — -}

div_ineq_pr: Prove div_ineq from
mult_div {y — =},
mult_div {r — y, ¥y — =},
mult_gt
{r — (if = # 0 then (r/z) else 0 end if),
y — (if = # 0 then (y/=) else 0 end if)}

ceil_plus_mult _div_proof: Prove ceil_plus_mult_div from
ceil_mult_div,

distrib
{r—J(ify#0 then (x/y) else 0 end if)],
y—1,

:—y}
mult_lident {r — y}

ceil_mult_div_proof: Prove ceil_ mult_div from
mult_div,
mult_leq
{r — [(if y # 0 then («/y) else 0 end if)],
y — (if y# 0 then (z/y) else 0 end if),
=y}
ceil_defn {r — (if y # 0 then (r/y) else 0 end if)}

End division

mid_tcc: Module

Using mid

Exporting all with mid

Theory
ft_mid_TCC1: Formula (F+1 > 0)
ft.mid . TCC2: Formula (N - F>20)A(N - F > 0)
ft_mid_TCC3: Formula (2 # 0)

Proof
ft_mid_.TCC1.PROOF: Prove ft.mid_.TCC1
ft_mid_TCC2_PROOF: Prove ft.mid.TCC2
ft.mid_.TCC3_PROOF: Prove ft_.mid_.TCC3

End mid_tec

60

mid2_tcc: Module
Using mid2

Exporting all with mid2
Theory

ppred: Var function[naturalnumber — boolean]
p: Var naturalnumber
good_greater F1.TCC1: Formula
(ppred(p)) A (count(ppred. N') > N-F)D>(F+1> 0)

good_less NF_TCC1: Formula
(ppred(p)) A (count(ppred. N') > N — F)
SDIN-F20)ANN-F>0)

good_greater _F1_pr TCC1: Formula (F + 1> 0)

good_less NF_pr TCC1: Formula (N - F>2 0)A(N—-F >0)
Proof

good_greater_F1. TCC1.PROOF: Prove good_greater F1.TCC1

good_less NF_.TCC1_PROOF: Prove good_less NF_TCC1

good_greater _F1_pr TCC1.PROOF: Prove good_greater_F1_pr TCC1

good_less_ NF_pr_TCC1_.PROOF: Prove good_less_NF_pr.TCC1

End mid2_tcc

61

mid3_tcc: Module
Using mid3

Exporting all with mid3
Theory

X: Var number
Z: Var number
ppred: Var function[naturainumber — boolean]
k: Var countmod.posint ,
ppred2: Var function|[naturalnumber — boolean]
ppredl: Var function[naturalnumber — boolean]
6: Var function|naturalnumber — number|
7: Var function[naturalnumber — number]
q: Var naturalnumber
])3: Var naturalnumber
: Var naturalnumber
p Var naturalnumber
: Var naturalnumber
ft mlJ Pi_TCC1: Formula (2 #0)

8°°d-86q F.add1.TCCl: Formula -~ ———-
(ppred(p)) A (count(ppred, X) > N — F) > (F+ 1>0)

okay_pair_geq. F-addl TCCl: Formula -
(ppred(m)) TR
A (count(ppred. N) > N - F A okay-pairs(ﬂ,’y, X.ppred))
D(F+1>0)

okay_pair_geq_F_add1. TCC2 Formula
(ppred(q1 '
3(1’1) 2 b(re1))
A (ppred(p;))
A (count(ppred, N) > N - F
A okay_pairs(8, v, X, ppred))
D(F+1>0)

62

good.between TCC1: Formula
(1(F+1) = 7(P)) A (ppred(p)) A (count(ppred. N) > N — F)
D(IN-F20AN-F>0)

ft_mid_prec_sym1_TCC1: Formula
(okay_Readpred(. Z. ppred))
A (okay_Readpred(6. Z. ppred))
A (okay_pairs(f.4..X . ppred))
A (count(ppred. N) > N — F)
D(F+1>0)

ft_mid_prec_sym1 TCC2: Formula
(okay_Readpred(~ . Z. ppred))
A (okay_Readpred(f. Z. ppred))
A (okay_pairs(6.~.X.ppred))
A (count(ppred. N) > N — F)
SIN=-F20)A(N-F>0)

ft_mid_prec_sym1.TCC3: Formula
(count(ppred. N)> N - F
A okay_pairs(8.~. X, ppred)
A okay_Readpred (8, Z. ppred)
A okay_Readpred(. Z. ppred)
A (BFs1) +On-rF))
> (yF+y T AN-P)))
>(F+1>0)

ft_mid_prec_sym1_TCC4: Formula
(count(ppred. N) > N — F
A okay_pairs(8,v, X, ppred)
A okay_Readpred(6. Z. ppred)
A okay_Readpred(~. Z. ppred)
A (B(F41) + On-F))
> (vreny +Iv-)))
SIN-F20A(N-F>0)

| mid_gt_imp_sel_gt_ TCC1: Formula
((cfras (P2 8) 2 fmpgp(g: 1)) D (F +1>0)

63

mid_gt.imp_sel_gt_TCC2: Formula

(Lefungp(p.8) 2 cfnpgrplg.n)))
DIN-F>20A(N-F>0)

ft_mid_prec_sym1_pr. TCC1: Formula (F +1 > 0)

ft.mid_prec_sym1_pr. TCC2: Formula (N - F > 0)A(N - F > 0)
Proof

ft_mid_Pi_TCC1_.PROOF: Prove ft_mid_Pi_TCC1

good_geq_F_add1.TCC1_PROOF: Prove good._geq-F.add1_TCC1

okay_pair_geq_F_add1_TCC1.P ROO F: Prove
okay_pair.geq.F_add1_TCC1

okay_pair.geq.F_add1_TCC2_PROOF: Prove
okay_pair_geq_F_add1_TCC2

good-between,TCCl,PROOF: Prove good-ﬁetvyegn;JQClr
ft-mid.precsyml.TCtl-PROOF: Prove ft-fﬁid-brre';:.syrr:nl.r'rrCCI

' ft-mid-prec_syml.TVCCZ;F”'R‘Oibe: Prove ft-mid_prec.:s‘y-ml_TCC2
ft_mid_prec.syml.TCC3;PROOF: Prove ft_mid_prec_sym1_TCC3
ft_mid_prec_sym1.TCC4_PROOF: Prove ft_mid_prec_sym1.TCC4
mid_gt_imp_sel_gt_TCC1_PROOF: Prove mid_gt_imp_sel_gt_TCC1
mid_gt_imp_sel_gt_ TCC2_PROOF: Prove mid.gt.imp_sel_gt_ TCC2
ft_mid_prec_sym1_pr TCC1_PROOF: Prove ft_mid_prec_.sym1.pr.TCC1
ft_mid_prec_sym1_pr_ TCC2_.PROOF: Prove ft_mid_prec_syml pr. TCC2

End mid3_tcc

64

mid4_tcc: Module
Using mid4

Exporting all with mid4
Theory

¢: Var naturalnumber

p: Var naturalnumber

y: Var number

r: Var number

p1: Var naturalnumber

ft_mid_less. TCC1: Formula (F +1 > 0)

ft_mid_greater TCC1: Formula (N — F 2 0)A(N - F > 0)
Proof

ft_mid_less.TCC1.PROOF: Prove ft_mid_less TCC1

ft_mid_greater TCC1_PROOF: Prove ft_mid_greater TCC1

End mid4 _tcc

65

mid: Module

Using arith. clockassumptions: select_defs. ft_mid_assume
Exporting all with select_defs

Theory

process: Type is nat

Clocktime: Type is number

[.m.n.p.q: Var process

). Var function[process — Clocktime]

i, j.k: Var posint

T.X.Y,Z: Var Clocktime

¢fnpygp: function[process. function[process — Clocktime]
— Clocktime] =

(Apd: (Ve + 0(,\,_;,)/2)

ft_mid_trans_inv: Lemma ,
cfapgp(p (Mg d(¢)+ X)) = t‘fnuw(l) 19)+ X

Proof
add-a;soc_hack: Lemma X +Y +Z+Y=(X+2)+2+Y

add_assoc_hack_pr: Prove add_assoc_hack from
x1%2 {z -2, y—-VY}

66

ft_mid_trans_inv_pr: Prove ft_mid_trans_inv from
frpin
cfimpp 49— (Aq:d(q)+ X)),
select_trans_inv {k — F + 1},
select_trans_inv {k — N — F},
add_assoc_hack

{X = diray
Z — dn-F)
Yy — X1,
div_distrib
{x — (NFen+In-p)
y—2+X,
z -2},

div.cancel {r — 2, y — X},
ft_mid_maxfaults

End mid

67

mid2: Module

Using arith. clockassumptions. mid
Exporting all with mid
Theory

Clocktime: Type is number

m.n.p.q.p1.¢1: vVar process

i.7.k.1: Var posint

r.y.z.r.8.t: Var time

D.X.Y.Z, R.5.T: Var Clocktime

. 8.~: Var function[process — Clocktime]

ppred, ppredl. ppred2: Var function[process — bool]

good_greater_F1: Lemma
count(ppred. N) > N — F > (3 p: ppred(p) A d(p) > I ry1))

good_less_NF: Lemma
count(ppred, N) > N — F D (3 p:ppred(p) Ad(p) L I n_p))

Proof

good_greater_F1_pr: Prove good_greater_F1 {p — pGp3} from
count_geq_select {k — F+ 1},
ft_mid_maxfaults,
count_exists ,
{ppred — (A p; : ppred1@pd(p;) A ppred2@pé(p)),
n— N},
pigeon_hole
{ppredl — ppred,
ppred2 — (A py : d(p1) 2 9 (piny)
n—N,
k—1}

68

good_less_NF_pr: Prove good_less NF {p — pap3} from
count_leg_select {k — N - F},
ft_mid_maxfaults,
count_exists
{ppred — (A py : ppred1@p4(p;) A ppred2@pd(p,)),
n— N},
pigeon_hole
{ppredl — ppred,
ppred2 — (Apy 1 dn-Fy 2 ()

n—N,
k—1}
End mid2

69

mid3: Module

Using arith. clockassumptions. mid2
Exporting all with mid2
Theory

Clocktime: Type is number

m.n.p.q.m-¢;: Var process

i.j.k.1: Var posint

r.y.z.r.8.t: Var time

D. XY, Z R,S.T: Var Clocktime

¥,8.~: Var function[process — Clocktime]

ppred. ppredl. ppred2: Var function|process — bool]

ft_mid_Pi: function[Clocktime, Clocktime — Clocktime] ==
(AX.Z2:2/2+X)

exchange_order: Lemma
ppred(p)
A ppred(¢)
A B(g) < 8(p)
Av(p) £ 7(q) A okay_pairs(d,4. X, ppred)
D 10(p) - 1(g)| < X

good_geq.F_addl: Lemma
count(ppred, N) > N — F D (3 p:ppred(p) A d(p) > J(Fi1))

okay_pair_geq_F_add1l: Lemma
count(ppred. N') > N — F A okay_pairs(8.4. X, ppred)
S(3paqr:
ppred(p:)
AO(m) 2 04
A ppred(qy)
Av(q) 2 YFey A8(m) — v(@)] £ X))

good_between: Lemma
count(ppred N)Y>N-F
D (3p:ppred(p) A yrer) 2 7(P) A 6(p) 2 0n-F))

ft_mid_precision_enhancement: Lemma
ppred(p) ‘
A ppred(¢)
A count(ppred. N) > N — F
A okay_pairs(f. 5. X . ppred)
A okay_Readpred(6. Z. ppred)
A okay_Readpred(- , 7. ppred)
S |efunsip(p-8) = cfinrple)l £ ft_mid_Pi(X. Z)

ft_mid_prec_enh_sym: Lemma
ppred(p)
A ppred(q)
A count(ppred. V) > N — F
A okay_pairs(f.+..X . ppred)
A okay_Readpred(6. Z. ppred)
A okay_Readpred(. Z. ppred)
A (efupprp(p) 2 frpiply- 7))
O |efing1ptp-0) = cfipgplg)| < ft_mid_Pi(X. Z)

ft_mid_prec_syml: Lemma
count(ppred. N) > N - F
A okay_pairs(#,4. X, ppred)
A okay_Readpred(8, Z, ppred)
A okay_Readpred(. Z, ppred)
A((BFs1y + ON-F))
> (yF+) FAN-F)))
D (6ir41) +On-F)) — (YF41) T YN-F))]

<Z+2+X

mid_gt_.imp_sel_gt: Lemma
(cfupgip(p8) 2 cfnppplev))
D ((BFr41) + On-F)) 2 Cipen) £2AN-F)))

okay_pairs_sym: Lemma
okay_pairs(8.7, X, ppred) D okay_pairs(7. 8, X, ppred)

Proof

ft_mid_prec_syml_pr: Prove ft_mid_prec_syml from
good_between,
okay_pair_geq_F_add1,
good_less NF {#) — 1},
abs_geq
{v — (1{q1@p2) ~ 5 (p@p3)) + (B(papl) - 7(papl))
+ (8(1 @p2) — {11 @p2)),
y
— (Oreny +On-k) = (irey + (v =-F))
abs_plus
{r — (4 (@1 @p2) = S (pp3)) + (B(pTipl) — 5 (papl)),
y — (8(m@p2) - 1(1:1@p2))},
abs_plus
{r — (7(q:@p2) — 5 (pTp3)),
y — (B(papl) = y(piepl))},
okay_pairs {4 — 8, 6§ — 4, p3s — pipl},
okay_Readpred

{r—
Y — Z,
l—q.@p2,

m — papl},
distib {+ — 1, y — 1, - — X},
mult_lident {+ — X'}

mid_gt_imp_sel_gt_pr: Prove mid_gt_imp_sel_gt from
cfnpgp {V — 6},
cfipgp {9 — 9. p— 4},
mult_leq
{r — cfmppp(p.6),
y — ofmyrnlq.y),
z =2},
mult_div {]‘ —_ (0(].‘+‘) + 0(}\'_[‘)), y— 2},
mult_div {7 — (y(F41) + Y N-F)), ¥ — 2}

ft_mid_prec_enh_sym_pr: Prove ft_mid_prec_enh_sym from
cfipip {0 — 6},
efoppip {9 — 5. p—q}.
div_minus_distrib
{r — (6(F41) T Oin-F)),
¥y — OFen) T AUN-F))

z -2},

abs_div
{r — (Ors1) + O 8-F)) = Cipany T 2(N=F))y
y— 2}7

ft_mid_prec_syml,
mid_gt.imp_sel_gt,

div_ineq
{r = 10p4ny +On-F)) — VP4 + rn-m)l
y—Z+2xX,
: =2},
div_distrib {z — Z, y — 2+ X, = — 2},

div_cancel {r — 2, y — X}

okay_pairs_sym_pr: Prove okay_pairs_sym from
okay_pairs {y — 8, 8 — 7, ps — p:@p2},
okay_pairs {y — 5, 6 — 8},
abs_com {r — 8(p3@p2), y — 7(3@p2)}

ft_mid_precision_enhancement_pr. Prove

© ft_mid_precision_enhancement from
ft_mid_prec_enh_sym,
ft_mid_prec_enh_sym

{p — q@pl,
q — papl,
— 5@pl,
7 — 6@pl},

okay_pairs_sym,
abs_com { — cfnpip(p.6), ¥ — ¢furrp(4:7)}

okay_pair_geq_F_addl _pr: Prove
okay_pair_geq F_add1
{m — A (B(pep2) 2 B(piepl)) ;
then pup2
elsif (7 (pupl) > 5(pup2)) then papl else pup3
end if,
1
— if (B(pap2) > G(papl))
then puy?
elsif (7 (papl) > 9(pop2)) then pupl else gap3
end if} from
good_geq_F_addl {v — #},
good_geq.F_addl {# — ~},
exchange_order {p — papl, ¢ — pup2},
okay_pairs {7 — #, 6 — 5, pi — papl},
okay_pairs {7 — 6, # — 5, py — pap?}

good.geq_F_add1 pr: Prove good_geq.F_addl {p — pupl) from
count_exists
{ppred — (Ap: ((ppred1ap2)p) A ((ppred2<p2)p)),

n— AN},
pigeon_hole

{n — N,

E—1,

ppredl — ppred,

ppred2 — (Ap :d(p) > ()],
count_geq.select {k — F' + 1},
ft_mid.maxfaults

good_between_pr: Prove good_between {p — papl} from
count_exists
{ppred — (A p: ((ppredlGp2)p) A ((ppred2ap2)p)),

n— N},
pigeon_hole

{n — N,

k—1,

ppredl — (Ap: ((ppredlapl)p) A ({ppred2@p3)p)),
ppred2 — (Ap 1 8(p) 2 O((rapay))},

pigeon_hole
{n — N,
k — kaps,

ppredl — ppred,

ppred2 — (Ap : Y(kaps) 2 1 (PN}
count_geq.select {# — 8, k — N — F},
count_leq_select {¢ — 7, k — F + 1},
ft_mid_maxfaults

exchange_order_pr: Prove exchange_order from
okay_pairs {y — 8, 6 — 7, ps — p}.
okay_pairs {1 — 6, § — 7, p3 — ¢},
abs_geq {z — (8(p) — 7(p)), y — 8(p) — ()},
abs_geq {z — (7(¢) = 8(¢)), ¥ — 7(¢) - B(p)},
abs_com {r — 8(q), ¥y — 7(¢)},
abs_com {r — 8(p), y — 7(q)}

End mid3

-1

ot

mid4: Module

Using arith. clockassumptions. mid3
Exporting all with clockassumptions. mid3
Theory

process: Type is nat

Clocktime: Type is number

m.n.p.q.py. gy Var process

i.j.k: Var posint

r.y.z.r.s. L Var time

D. N Y. Z R 5. T: Var Clocktime

). 6.7: Var function|process — Clocktime]
ppred.ppredl. ppred2: Var function[process — bool]

ft_mid_accuracy.preservation: Lemma
ppred(p)
A ppred(y)
A count(ppred. N') > N — [" A okay_Readpred(/. X. ppred)
Dilefmaptp)= dg)| < X T

ft.mid_less: Lemma cfuy, p(p.) < i pyy)
ft_.mid_greater: Lemuma cfiny;(p. i) > dn_p

abs_q_less: Lemma
count(ppred. N) > N — F
D (3 prppredipy) A (py) < efuiggnlp- 1))

abs_q_greater: Lemma
count(ppred. N') > N - I
D (3 pr ppred(pr) A d(py) = efupgp(p.)

ft_mid_bnd_by _good: Lemma
count(ppred, N\) > N - F
D(Im:
ppred(py) A lefupg pip. V) = (g < |9(py) — d(q)])

maxfaults_lem: Lemma FF+ 1 < N - F

0

ft_select: Lemma v(py1) > ha—p)
Proof

ft_select_pr: Prove ft_select from
select.ax {{ — F+1, k — N — F}, maxfaults_lem

maxfaults_lem_pr: Prove maxfaults_lem from ft_mid_maxfaults

ft_mid_bnd_by_good_pr: Prove
ft_mid_bnd_by_good
{m — (if cfipgyplp.) 2 V)
then p,@pl
else p, @p2
end if)} from
abs_q_greater,
abs_q.less,
abs_com {r — ¥(q), y — HpQc)},
abs_com {z — 9(q), y — cfmprp(p- N}
abs_geq {r — x@p3 — y@p3, y — xapd - yapd},
abs_geq {r — J(p;@c) - d(q), y — cfnpgrplp-) — 9(q)}

abs_q_less_pr: Prove abs_q_less {py — papl} from
good_less_NF, ft_mid_greater

abs_q_greater_pr: Prove abs_q_greater {1 — p@pl} from
good_greater_F1, ft_mid_less

mult_hack: Lemma X + X =2« X
mult_hack_pr: Prove mult_hack from 1 x*2 {r — 2, y — X}

ft_mid_less_pr: Prove ft_mid_less from
frpip
ft_select,
div_ineq
{ — (IFs1) + I N-F)),
y — (dpyny + dFeny)s
div_cancel {z — 2, y — ?(Fyny},
mult_hack {X — ¥p41)}

-1
-1

ft_mid_greater_pr: Prove ft_mid_greater from
firiin
ft_select,
div_ineq
{r — (dnpy+ da-py)
y— (dpenyt dxom)
T2}
div.cancel {+ — 2, y — Vx_py},
mult_hack {X — Jx_p)}

ft_mid_acc_pres_pr: Prove ft_mid_accuracy_preservation from
ft_mid_bnd_by_good,
okay_Readpred

{y — 0,

Y - X,

I — i @pl,

m — g}
End mid4

C Proof Chain Status

C.1 Translation Invariance

Terse proof chain for proof ft_mid_trans_inv_pr in module mid

Use of the formula
mid.ft_mid)

requires the following TCCs to be proven
mid_tcc.ft_mid_TCC1
mid_tcc.ft_mid_TCC2
mid_tcc.ft_mid_TCC3

Use of the formula
division.div_distrib

requires the following TCCs to be proven
division_tcc.mult_div_1_TCC1
division_tcc.mult_div_TCC1
division_tcc.div_cancel TCC1
division_tcc.ceil _mult_div_TCC1
division_tcc.div_nonnegative TCC1
division_tcc.div_ineq_TCC1
division_tcc.div_minus_1_TCCt

s=zass=c=z=zs====s3=z SUMMARY s==aszssssssSs28SSS
The proof chain is complete

The axioms and assumptions at the base are:
clocksort.funsort_trans_inv
division.mult_div_1
division.mult_div_2
division.mult_div_3
ft_mid_assume.ft_mid_maxfaults

Total: 5

The definitions and type-constraints are:
mid.ft_mid
multiplication.mult

Total: 2

The formulae used are:
division.div_cancel
division.div_distrib
division_tcc.ceil_mult_div_TCC1
division_tcc.div_cancel _TCC1
division_tcc.div_ineq_TCCl
division_tcc.div_minus_1_TCC1
division_tcc.div_nonnegative_TCC1
division_tcc.mult_div_1_TCC1
division_tcc.mult_div_TCC1
mid.add_assoc_hack
mid_tcc.ft_mid_TCC1
mid_tcc.ft_mid_TCC2
mid_tcc.ft_mid_TCC3
multiplication.distrib
multiplication.mult_lident
multiplication.mult_rident
select_defs.select_trans_inv

Total: 17 '

The completed proofs are:
division.div_cancel_pr
division.div_distrib_pr
division_tcc.ceil_mult_div_TCC1_PROOF
division_tcc.div_cancel TCC1_PROOF
division_tcc.div_ineq_TCCi_PROOF
division_tcc.div_minus_1_TCC1_PROOF
division_tcc.div_nonnegative_TCC1_PROOF
division_tcc.mult_div_1_TCC1_PROOF
division_tcc.mult_div_TCC1_PROOF
mid.add_assoc_hack_pr
mid.ft_mid_trans_inv_pr
mid_tcc.ft_mid_TCC1i_PROOF
mid_tcc.ft_mid_TCC3_PROOF
multiplication.distrib_proof -
multiplication.mult_lident_proof
multiplication.mult_rident_proof

R0

select_defs.select_trans_inv_pr
tcc_mid.ft_mid_TCC2_PROOF
Total: 18

C.2 Precision Enhancement

Terse proof chain for proof ft_mid_precision_enhancement_pr in module mid3

Use of the formula
mid3.ft_mid_prec_enh_sym

requires the following TCCs to be proven
mid3_tcc.ft_mid_Pi_TCC1
mid3_tcc.good_geq_F_add1_TCC1
mid3_tcc.okay_péir_geq_F_add1_TCC1
mid3_tcc.okay_pair_geq_F_add1_TCC2
mid3_tcc.good_between TCCl
mid3_tcc.ft_mid_prec_syml_TCC1
mid3_tcc.ft_mid_prec_syml_TCC2
mid3_tcc.ft_mid_prec_symi_TCC3
mid3_tcc.ft_mid_prec_syml_TCC4
mid3_tcc.mid_gt_imp_sel_gt_TCC1
mid3_tcc.mid_gt_imp_sel_gt _TCC2
mid3_tcc.ft_mid_prec_syml_pr_TCC1
mid3_tcc.ft_mid_prec_syml_pr_TCC2

Use of the formula
mid.ft_mid

requires the following TCCs to be proven
mid_tcc.ft_mid_TCC1
mid_tce.ft_mid_TCC2
mid_tcc.ft_mid_TCC3

Use of the formula
division.div_minus_distrib

requires the following TCCs to be proven
division_tcc.mult_div_1_TCC1
division_tcc¢.mult_div_TCCi

81

division_tcc.div_cancel _TCCi
division_tcc.ceil_mult_div_TCC1
division_tcc.div_nonnegative_TCC1
division_tcc.div_ineq_TCC1
division_tcc.div_minus_1_TCC1

Use of the formula
countmod.count_exists

requires the following TCCs to be proven
countmod_tcc.posint_TCC1
countmod_tcc.count_TCC1
countmod_tcc.count_TCC2
countmod_tcc.count _TCC3
countmod_tcc.count_TCC4
countmod_tcc.count_TCCS

Formula countmod_tcc.count_TCC4 is a termination TCC for countmod.count

Proof of
countmod_tcc.count_TCC4

must not use
countmod.count

Formula countmod_tcc.count_TCCS is a termingiion TCC for coﬁﬁtmod.count
Proof of S - .
countmod_tcc.count_TCCS B ' .
must not use
countmod. count

Use of the formula
natinduction.induction

requires the following TCCs to be proven
natinduction_tcc.ind_m_proof _TCC1

Use of the formula -
noetherian[naturalnumber, natinduction.less].general_induction
requires the following assumptions to be discharged

noetherian[naturalnumber, natinduction.less].well_founded

Use of the formula

82

noetherian{countmod.nk_type, countmod.nk_less] .general_induction
requires the following assumptions to be discharged
noetherian{countmod.nk_type, countmod.nk_less] .well_founded

Use of the formula
mid2.good_less_NF

requires the following TCCs to be proven
mid2_tcc.good_greater _F1_TCC1
mid2_tcc.good_less_NF_TCC1
mid2_tcc.good_greater Fi_pr_TCC1
mid2_tcc.good_less _NF_pr_TCC1

szssxss=zzc=cs=as== SUMMARY sssss=szss=s3=Sz=ssSs
The proof chain is complete

The axioms and assumptions at the base are:
clocksort.cnt_sort_geq
clocksort.cnt_sort_leq
division.mult_div_1
division.mult_div_2
division.mult_div_3
ft_mid_assume.ft_mid_maxfaults
multiplication.mult_non_neg
multiplication.mult_pos
noetherian[EXPR, EXPR].general_induction

Total: 9

The definitions and type-constraints are:
absmod. abs
clockassumptions.okay_Readpred
clockassumptions.okay_pairs
countmod.count
countmod.countsize
countmod.exists_less
countmod.nk_noeth_pred
countmod.nk_ph_pred
mid.ft_mid
multiplication.mult

R3

\naturalnumbers.nat_invariant
Total: 11

The formulae used are:
absmod.abs_com
absmod.abs_geq - :
absmod .abs_plus
countmod .count_exists
countmod.count_exists_base
countmod.count _exists_ind
countmod .nk_ph_expand
countmod .nk_ph_lem
countmod.nk_ph_noeth_hyp
countmod .ph_case0
countmod . ph_caselk
countmod.ph_caseOn
countmod .ph_casel
countmod.ph_case2
countmod .ph_case2a
countmod .ph_casa2b
countmod .pigeon_hole
countmod_tcc.count_TCC1
countmod_té¢c.count_TCC2
countmoed_tcc.count_TCC3
countmod_tcc.count_TCC4
countmod_tcc.count_TCCS
countmod_tcc.posint _TCC1
division.abs_div
division.div_cancel
division.div_distribdb
division.div_ineq
division.div_minus_1
division.div_minus_distrib
division.div_nonnegative
division.mult_div
division.mult_minus
division_tcc.ceil_mult_div_TCC1
division_tcc.div_cancel _TCC1
division_tcc.div_ineq_TCC1

&4

division_tcc.div_minus_1_TCCi
division_tcc.div_nonnegative TCC1
division_tcc.mult_div_1_TCC1
division_tcc.mult_div_TCC1
mid2.good_less_NF
mid2_tcc.good_greater_F1_TCC1
mid2_tcc.good_greater_Fi_pr_TCC1
mid2_tcc.good_less_NF_TCC1
mid2_tcc.good_less_NF_pr_TCC1
mid3.exchange_order
mid3.ft_mid_prec_enh_sym
mid3.ft_mid_prec_syml
mid3.good_between
mid3.good_geq_F_addl
mid3.mid_gt_imp_sel_gt
mid3.okay_pair_geq_F_addl
mid3.okay_pairs_sym
mid3_tcc.ft_mid_Pi_TCC1
mid3_tcc.ft_mid_prec_syml_TCC1
mid3_tcc.ft_mid_prec_syml_TCC2
mid3_tcc.ft_mid_prec_syml_TCC3
mid3_tcc.ft_mid_prec_syml_TCC4
mid3_tcc.ft_mid_prec_symi_pr_TCC1
mid3_tcc.ft_mid_prec_symi_pr_TCC2
mid3_tcc.good_between_TCC1
mid3_tcc.good._geq_F_add1_TCC1
mid3_tcc.mid_gt_imp_sel_gt TCC1
mid3_tcc.mid_gt_imp_sel_gt_TCC2
mid3_tcc.okay_pair_geq_F_add1l_TCC1
mid3_tcc.okay_pair_geq_F_add1_TCC2
mid_tcc.ft_mid_TCC1
mid_tcc.ft_mid_TCC2
mid_tcc.ft_mid_TCC3
multiplication.distrib
multiplication.distrib_minus
multiplication.mult_com
multiplication.mult_gt
multiplication.mult_ldistrib_minus
multiplication.mult_leg

85

multiplication.mult_lident
multiplication.mult_rident
multiplication.pos_product
natinduction. induction
natinduction_tcc.ind_m_proof _TCC1
noetherian[countmod.nk_type, countmod.nk_less].well_founded
noetherian(naturalnumber, natinduction.less].well_founded
select_defs.count_geq_select
select_defs.count_leq_select

Total: 83

The completed proofs are:
absmod.abs_com_proof
absmod.abs_geq_proof
absmod.abs_plus_pr
countmod.count_exists_base_pr
countmod.count_exists_ind_pr
countmod.count_exists_pr
countmod .nk_ph_expand_pr
countmod.hi-ph;lem_pr
countmod.nk_ph_noeth_hyp_pr
countmod.nk_well_founded
countmod.ph_case0_pr
countmod.ph_caseOk_pr
countmod.ph_caseOn_pr
countmod.ph_casel_pr
countmod.ph_case2_pr
countmod.ph_case2a_pr
countmod.ph_case2b_pr
countmod.pigeon_hole_pr
countmod_tcc.count_TCC1_PROOF
countmod_tcc.count _TCC2_PROOF
countmod_tcc.count_TCC3_PROOF
division.abs_div_pr
division.div_cancel_pr
division.div_distrib_pr
division.div_ineq_pr
division.div_minus_1_pr
division.div_minus_distrib_pr

86

division.div_nonnegative_pr
division.mult_div_pT
division.mult_minus_pr
division_tcc.ceil_mult_div_TCC1_PROOF
division_tcc.div_cancel TCC1_PROOF
division_tcc.div_ineq_TCC1_PROOF
division_tcc.div_minus_1_TCC1_PROOF
division_tcc.div_nonnegative TCC1_PROOF
division_tcc.mult_div_1_TCC1_PROOF
division_tcc.mult_div_TCCi_PROOF
mid2.good_less _NF_pr
mid2_tcc.good_greater_Fl_TCC1_PRDDF
mid2_tcc.good_greater_Fi_pr_TCCl,PRODF
mid3.exchange_order_pT
mid3.ft_mid_prec_enh_sym_pr
mid3.ft_mid_prec_syml_pr
mid3.ft_mid_precision_enhancement_pT
mid3.good_between_pr
mid3.good_geq_F_addl_pr
mid3.mid_gt_imp_sel_gt_pr
mid3.okay_pair_geq_F_addl_pr
mid3.okay_pairs_sym.pr
mid3_tcc.ft_mid_Pi_TCC1_PROOF
mid3_tcc.ft_mid_prec_syml_TCC1_PROOF
mid3_tcc.ft_mid_prec_symi_TCC3_PROOF
mid3_tcc.ft_mid_prec_symi_pr_TCC1_PROOF
mid3_tcc.good_geq_F_addl_TCC1_PRDOF
mid3_tcc.mid_gt_imp_sel,gt_TCC1_PRO0F
mid3_tcc.okay_pair_geq_F_add1_TCC1_PROOF
mid3,tcc.okay_pair_geq_F_add1,TCC2-PRO0F
mid_tcc.ft_mid_TCC1_PROOF
mid_tcc.ft_mid_TCC3_PROOF
mid_top.countmod_TCC4_pr
mid_top.countmod_TCCS_pr
mid_top.posint_TCC1_PROOF
multiplication.distrib_minus_pr
multiplication.distrib_proof
multiplication.mult_com_pr
multiplication.mult_gt_pr

R7

multiplication.mult_ldistrib_minus_proof
multiplication.mult_leq_pr
multiplication.mult_lident_proof
multiplication.mult_rident_proof
multiplication.pos_product_pr
natinduction.discharge
natinduction.ind_proof
natinduction_tcc.ind_m_proof TCC1_PROOF
select_defs.count_geq_select_pr
select_defs.count_leq_select_pr
tcc_mid.ft_mid_TCC2_PROOF
tcc_mid.ft_mid_prec_syml_TCC2_PROOF
tcc_mid.ft_mid_prec_syml_TCC4_PROOF
tcc_mid.ft_mid_prec_syml_pr_TCC2_PROOF
tcc_mid.good_between_TCC1_PROCF
tcc_mid.good_less_NF_TCC1_PROOF
tcc.mid.good_less NF_pr_TCC1_PROOF
tcc_mid.mid_gt_imp_sel_gt_TCC2_PRODF
Total: 84

C.3 Accuracy Preservation

Terse proof chain for proof ft_mid_acc_pres_pr in module mid4

Use of the formula
mid4.ft_mid_bnd_by_good

requires the following TCCs to be proven
mid4_tcc.ft_mid_less_TCC1
mid4_tcc.ft mid_greater_TCC1

Use of the formula
mid2.good_greater F1

requires the following TCCs to be proven
mid2_tcc.good_greater_F1_TCC1
mid2_tcc.good_less_NF_TCC1
mid2_tcc.good_greater_F1_pr_TCC1
mid2_tcc.good_less_NF_pr_TCC1

B8

Use of the formula
countmod.count_exists

requires the following TCCs to be proven
countmod_tcc.posint_TCC1
countmod_tcc.count _TCC1
countmod_tcc.count_TCC2
countmod_tcc.count _TCC3
countmod_tcc.count _TCC4
countmod_tcc.count _TCCS

Formula countmod_tcc.count_TCC4 is a termination TCC for countmod.count
Proof of

countmod_tcc.count _TCC4
must not use

countmod.count

Formula countmod_tcc.count_TCCS is a termination TCC for countmod.count
Proof of

countmod_tcc.count _TCCS
must not use

countmod.count

Use of the formula
natinduction.induction

requires the following TCCs to be proven
natinduction_tcc.ind_m_proof_TCC1

Use of the formula
noetherian[naturalnumber, natinduction.less].general_induction
requires the following assumptions to be discharged
noetherian[naturalnumber, natinduction.less]) .well_founded

Use of the formula
noetherian{countmod.nk_type, countmod.nk_less] .general_induction
requires the following assumptions to be discharged
noetherian{countmod.nk_type, countmod.nk_less] .well_founded

Use of the formula

89

mid.ft_mid

requires the following TCCs to be proven
mid_tcc.ft_mid_TCC1
mid_tcc.ft_mid_TCC2
mid_tcc.ft_mid_TCC3

Use of the formula
division.div_ineq

requires the following TCCs to be proven
division_tcc.mult_div_1_TCC1
division_tcc.mult_div_TCCi
division_tcc.div_cancel _TCC1
division_tcc.ceil_mult_div_TCC1
division_tcc.div_nonnegative_TCC1
division_tcc.div_ineq_TCC1
division_tcc.div_minus_1_TCC1

The proof chain is complete

The axioms and assumptions at the base are:
clocksort.cnt_sort_geq
clocksort.cnt_sort_leq
clocksort.funsort_ax
division.mult_div_1
division.mult_div_2
division.mult_div_3
ft_mid_assume.ft_mid_maxfaults
multiplication.mult_pos
noetherian[EXPR, EXPR].general_induction

Total: 9 - e

The definitions and type-constraints are:
absmod . abs
clockassumptions.okay_Readpred
countmod.count
countmod.countsize
countmod.exists_less

90

countmod.nk_noeth_pred
countmod.nk_ph_pred
mid.ft_mid
multiplication.mult

naturalnumbers.nat_invariant

Total: 10

The formulae used are:
absmod.abs_com
absmod.abs_geq
countmod.count_exists

countmod.count_exists_base
countmod.count_exists_ind

countmod .nk_ph_expand
countmod.nk_ph_lem

countmod .nk_ph_noeth_hyp

countmod.bh-caseo
countmod.ph_caseOk
countmod.ph_caseOn
countmod.ph_casel
countmod.ph_case2
countmod.ph_case2a
countmod.ph_case2b
countmod.pigeon_hole
countmod_tcc.count_TCCi
countmod_tcc.count TCC2
countmod_tcc.count_TCC3
countmod_tcc.count_TCC4
countmod_tcc.count _TCCS

countmod_tcc.posint _TCC1

division.div_cancel
division.div_ineq
division.mult_div

division_tcc
division_tcc
division_tcc
division_tcc
division_tcc
division_tcc

.ceil_mult_div_TCC1
.div_cancel_TCC1
.div_ineq_TCC1
.div_minus_1_TCC1
.div_nonnegative_TCC1
.mult_div_1_TCCi1

91

division_tcc.mult_div_TCC1
mid2.good_greater_F1
mid2.good_less_NF
mid2_tcc.good_greater_Fi_TCCi
mid2_tcc.good_greater _F1_pr_TCC1
mid2_tcc.good_less_NF_TCC1
mid2_tcc.good_less_NF_pr_TCC1
mid4.abs_q_greater
mid4.abs_gq._less
mid4.ft_mid_bnd_by_good
mid4.ft_mid_greater
mid4.ft_mid_less
mid4.ft_select
mid4.maxfaults_lem
mid4.mult_hack
mid4_tcc.ft_mid_greater_TCC1
mid4_tcc.ft_mid_less_TCC1
mid_tcc.ft_mid_TCCi
mid_tcc.ft_mid_TCC2
mid_tcc.ft_mid_TCC3
multiplication.distrib_minus
multiplication.mult_com
multiplication.mult_gt
multiplication.mult_ldistrib_minus
multiplication.mult_lident
multiplication.mult_rident
natinduction.induction
natinduction_tcc.ind_m_proof _TCCl
noetherian[countmod.nk_type, countmod.nk_less].well_founded
noetherian[naturalnumber, natinduction.less].well_founded
select_defs.count_geq_select
select_defs.count_leq_select
select_defs.select_ax

Total: 64

The completed proofs are:
absmod . abs_com_proof
absmod.abs_geq_proof
countmod.count_exists_base_pr

92

countmod .count_exists_ind_pr
countmod.count_exists.pr

countmod .nk_ph_expand_pT
countmod.nk_ph_lem_pT
countmod.nk_ph_noeth_hyp_pr
countmod.nk_well_founded

countmod .ph_caseO_pr
countmod.ph_caseOk_pr
countmod.ph_caseOn_pr
countmod.ph_casel_prT
countmod.ph_case2_pr

countmod .ph_case2a_pT
countmod.ph_case2b_pr
countmod.pigeon_hole_pr

' countmod_tcc.count _TCC1_PROOF
countmod_tcc.count_TCC2_PROOF
countmod_tcc.count_TCC3_PROOF
division.div_cancel_pr
division.div_ineq_pr
division.mult_div_pr
division-tcc.ceil_mult,div_TCCl_PRDOF
division_tcc.div_cancel TCC1_PROOF
division_tcc.div_ineq.TCC1_PROOF
division_tcc.div_minus_1_TCC1_PROOF
division_tcc.div_nonnegative_TCC1_PROOF
division_tcc.mult_div_1_TCC1_PROOF
division_tcc.mult_div_TCC1_PROOF
mid2.good_greater F1_pr
mid2.good_less_NF_pr
mid2_tcc.good_greater_Fi-TCCl_PROOF
mid2-tcc.good_greater_Fi_pr,TCCi_PROOF
mid4.abs_q.greater_pr
mid4.abs_q_less_pr
mid4.ft_mid_acc_pres_pr
mid4.ft_mid_bnd_by_good_pT
mid4.ft_mid_greater_ pr
mid4.ft_mid_less_pr
mid4.ft_select pr
mid4.maxfaults_lem_pr

93

mid4.mult_hack_pr
mid4_tcc.ft_mid_less_TCC1_PROOF
mid_tcc.ft_mid_TCC1_PROOF
mid_tcc.ft_mid_TCC3_PROOF
mid_top.countmod_TCC4_pr
mid_top.countmod_TCC5_pr
mid_top.posint _TCC1_PROOF
multiplication.distrib_minus_pr
multiplication.mult_com_pr
multiplication.mult_gt_pr
multiplication.mult_ldistrib_minus_proof
multiplication.mult_lident_proof
multiplication.mult_rident_proof
natinduction.discharge
natinduction.ind_proof
natinduction_tcc.ind_m_proof TCC1_PROOF
select_defs.count_geq_select_pr
select_defs.count_leq_select_pr
select_defs.select_ax_pr
tee_mid.ft_mid_TCC2_PROOF
tce_mid.ft_mid_greater_TCC1_PROOF
tcc_mid.good_less_NF_TCC1_PROOF
tcc_mid.good_less_NF_pr_TCC1_PROOF
Total: 65

94

References

(1]

[2]

(3]

4]

(5]

(8]

[9]

(10]

Schneider. Fred B.: Understanding Protocols for By:antine Clock Syn-
chronization. Department of Computer Science. Cornell University.
Technical Report 87-8539. Ithaca. NY. Aug. 19%8%.

Shankar. Natarajra.ﬁ: Mechanical Verification of a Schematic Byzantine
Clock Synchronization Algorithm. NASA. Contractor Report 4386. July
1991.

Rushby. John: von Henke. Friedrich; anud Owre, Sam: An Introduction
to Formal Specification and Verification Using ExDpM. Computer Sci-
ence Laboratory, SRI International. Technical Report SRI-C'SL-91-2.
Menlo Park. CA. Feb. 1991.

Di Vito. Ben L.: Butler. Ricky W.; and (aldwell. James L.: Formal De-
sign and Verification of a Reliable C'omputing Platform For Real-Time
Control: Phase 1 Results. NASA. Technical Memorandum 102716, Lan-
gley Research Center, Hampton, VA. Oct. 1990.

Butler. Ricky W.: and Di Vito, Ben L.: Formal Design and Verifica-
tion of a Reliable Computing Platform For Real-Time Control: Phase
2 Results. NASA. Technical Memorandum 104196. Langlev Research
Center, Hampton. VA, Jan. 1992.

Rushby, John: Formal Specification and Verification of a Fault-
Masking and Transient-Recovery Model for Digital Flight-Control Sys-
tems. NASA. Contractor Report 4384, July 1991.

FAA: System Design and Analysis. U.S. Department of Transportation.
Advisory Circular AC 25.1309-1A. June 1988,

U.S. Department of Defense. Reliability Prediction of Electronic Equip-
ment, Jan. 1982. MIL-HDBK-217D.

Lamport. Leslie; and Melliar-Smith, P.M.: Synchronizing Clocks in the
Presence of Faults. Journal of the ACM, vol. 21, Jan. 1985, pp. 52-78.

Rushby. John; and von Henke, Friedrich: Formal Verification of a Fault
Tolerant Clock Synchronization Algorithm. NASA, Contractor Report
1239, June 1989.

95

(1]

[12]

[13]

[14]

[15]

Welch, J. Lundelius: and Lynch. N.: A New Fault-Tolerant Algorithm
for Clock Synchonization. Information and Computation. vol. 77, no. 1,
Apr. 1988, pp. 1-36.

Srikanth. T.K.: and Toueg. S.: Optimal ('lock Synchronization. Journal
of the ACM. vol. 34. no. 3. July 1987. pp. 626~-645.

Halpern, J.; Simons, B.: Strong. R.; and Dolev, D.: Fault-Tolerant
Clock Synchonization. In Proceedings of the 3rd ACM Symposium on
Principles of Distributed Computing. ACM. Aug. 1984, pp. 89-102.

Kieckhafer, R.M.; Walter. C".J.: Finn, A.M.: and Thambidurai. P.: The
MAFT Architecture for Distributed Fault Tolerance. IEEE Transac-
tions on Computers. vol. 37, no. 4, Apr. 1988, pp. 398-405.

Gouda. M.G.: and Multari, N.J.: Stabilizing Communication Protocols.
IEEE Transactions on Computers, vol. 40, no. 4, Apr. 1991. pp. 448-
458,

96

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information s estimated 1o average 1 hour per respanse, including the time fOr reviewing instructions, searching existing data sources,
gathenng and maintaining the data needed, and completing and reviewing the collecuon of information Sengd comments regarding this burden estimate or any cther aspect of thiy
collection of information, including suggestions for reducing this burden. to Washington Headguarters Services, Duredora!:?or information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and 10 the Otfice of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

T AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 1992 Technical Memorandum
4. TITLE AND SUBTITLE —)) 5. FUNDING NUMBERS
A Verified Design of a Fault-Tolerant Clock Synchronization Circuit: Preliminary WU 505-64-10-05
Investigations
6. AUTHOR(S) ®
Paul S. Miner -
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
NASA Langley Research Center REPORT NUMBER
Hampton, VA 23865-5225
%, SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10, SPONSORING / MONITORING
National Aeronautics and Space Administration AGENCY REPORT NUMBER
Washington, DC 20546-0001 NASA TM-107568
#—
11. SUPPLEMENTARY NOTES
i R MM SO - e ——— — — ——
12a. O!STRIBUTION / AVAILABILITY STATEMENT i 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category 59

13. ABSTRACT (Maximum 200 words)

Schneider [1] demonstrates that many fault-tolerant clock synchronization algorithms can be represented as refinements of
single proven correct paradigm. Shankar [2] provides a mechanical proof (using Ehdm [3]) that Schneider’s schema
achieves Byzantine fault-tolerant clock synchronization provided that 11 constraints are satisfied. Some of the constraints
are assumptions about physical properties of the system and cannot be established formally. Proofs are given (in Ehdm)
that the fault-tolerant midpoint convergence function satisfies three of these constraints. This paper presents a hardware
design, implementing the fault-tolerant midpoint function, which will be shown to satisfy the remaining constraints. The
synchronization circuit will recover completely from transient faults provided the maximum fault assumption is not violated.

The initialization protocol for the circuit also provides a recovery mechanism from total system failure caused by correlated

prescribed by ANSI Std Z39-18
298-102

transiont faults.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Clock Synchronization, Fault Tolerance, Formal Methods, Transient Faults 100

16. PRICE CODE

. AO5

17 SECURITY CLASSIFICATION]18. SECURITY CLASSIFICATION |19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

