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Abstract

Embedded distributed systems have become an integral
part of safety-critical computing applications, necessitating system
designs that incorporate fault tolerant clock synchronization in
order to achieve ultra-reliable assurance levels.  Many efficient
clock synchronization protocols do not, however, address
Byzantine failures, and most protocols that do tolerate Byzantine
failures do not self-stabilize.   Of the Byzantine self-stabilizing
clock synchronization algorithms that exist in the literature, they
are based on either unjustifiably strong assumptions about initial
synchrony of the nodes or on the existence of a common pulse at
the nodes.  The Byzantine self-stabilizing clock synchronization
protocol presented here does not rely on any assumptions about
the initial state of the clocks.  Furthermore, there is neither a
central clock nor an externally generated pulse system.  The
proposed protocol converges deterministically, is scalable, and
self-stabilizes in a short amount of time.  The convergence time is
linear with respect to the self-stabilization period.  Proofs of the
correctness of the protocol as well as the results of formal
verification efforts are reported.
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1.  Introduction

Synchronization and coordination algorithms are part of distributed computer systems.
Clock synchronization algorithms are essential for managing the use of resources and controlling
communication in a distributed system.  Also, a fundamental criterion in the design of a robust
distributed system is to provide the capability of tolerating and potentially recovering from
failures that are not predictable in advance.  Overcoming such failures is most suitably addressed
by tolerating Byzantine faults [Lamport 1982].  A Byzantine-fault model encompasses all
unexpected failures, including transient ones, within the limitations of the maximum number of
faults at a given time.  Driscoll et al. [Driscoll 2003] addressed the frequency of occurrences of
Byzantine faults in practice and the necessity to tolerate Byzantine faults in ultra-reliable
distributed systems.  A distributed system tolerating as many as F Byzantine faults requires a
network size of more than 3F nodes.  Lamport et al. [Lamport 1982, Lamport 1985] were the
first to present the problem and show that Byzantine agreement cannot be achieved for fewer
than 3F +1 nodes.  Dolev et al. [Dolev 1984] proved that at least 3F + 1 nodes are necessary for
clock synchronization in the presence of F Byzantine faults.

A distributed system is defined to be self-stabilizing if, from an arbitrary state and in the
presence of bounded number of Byzantine faults, it is guaranteed to reach a legitimate state in a
finite amount of time and remain in a legitimate state as long as the number of Byzantine faults
are within a specific bound.  A legitimate state is a state where all good clocks in the system are
synchronized within a given precision bound.

Therefore, a self-stabilizing system is able to start in a random state and recover from
transient failures after the faults dissipate.  The concept of self-stabilizing distributed
computation was first presented in a classic paper by Dijkstra [Dijkstra 1974].  In that paper, he
speculated whether it would be possible for a set of machines to stabilize their collective
behavior in spite of unknown initial conditions and distributed control.  The idea was that the
system should be able to converge to a legitimate state within a bounded amount of time, by
itself, and without external intervention.

This paper addresses the problem of synchronizing clocks in a distributed system in the
presence of Byzantine faults.  There are many algorithms that address permanent faults [Srikanth
1985], where the issue of transient failures is either ignored or inadequately addressed.  There are
many efficient Byzantine clock synchronization algorithms that are based on assumptions on
initial synchrony of the nodes [Srikanth 1985, Welch 1988] or existence of a common pulse at
the nodes [Dolev 2004].  There are many clock synchronization algorithms that are based on
randomization and, therefore, are non-deterministic [Dolev 2004].  Some clock synchronization
algorithms have provisions for initialization and/or reintegration.  However, solving these special
cases is insufficient to make the algorithm self-stabilizing.  A self-stabilizing algorithm
encompasses these special scenarios without having to address them separately.  The main
challenges associated with self-stabilization are the complexity of the design and the proof of
correctness of the protocol.  Another difficulty is achieving efficient convergence time for the
proposed self-stabilizing protocol.
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Other recent developments in this area are the algorithms developed by Daliot et al
[Daliot 2003A and 2003B].  The algorithm in [Daliot 2003B] is called the Byzantine self-
stabilization pulse synchronization (BSS-Pulse-Synch) protocol.  A flaw in BSS-Pulse-Synch
protocol was found and documented in [Malekpour 2006].  The biologically inspired Pulse
Synchronization protocol in [Daliot 2003A] has claims of self-stabilization, but no mechanized1

proofs are provided.

In this paper a rapid Byzantine self-stabilizing clock synchronization protocol is
presented that self-stabilizes from any state, tolerates bursts of transient failures, and
deterministically converges within a linear convergence time with respect to the self-stabilization
period.  Upon self-stabilization, all good clocks proceed synchronously.  This protocol has been
the subject of rigorous verification efforts that support the claim of correctness.

The following sections describe the proposed protocol in detail.  The report begins with
the underlying topology and network model, followed by a description of the protocol.  A proof
of the protocol is presented in the following section.  The protocol characteristics are then
discussed.  A summary of the simulation and model checking results is reported.  Some of the
potential applications are enumerated, followed by potential future work in this area.

2.  Topology

The underlying topology considered here is a network of K nodes that communicate by
exchanging messages through a set of communication channels.  The communication channels
are assumed to connect a set of source nodes to a set of destination nodes such that the source of
a given message is distinctly identifiable from other sources of messages.  This system of K
nodes can tolerate a maximum of F Byzantine faulty nodes, where K ≥ 3F +1.  Therefore, the
minimum number of good nodes in the system, G, is given by G = K-F and thus G ≥ (2F + 1)
nodes.  Let KG represent the set of good nodes.  The nodes communicate with each other by
exchanging broadcast messages.  Broadcast of a message to all other nodes is realized by
transmitting the message to all other nodes at the same time.  The source of a message is
assumed to be uniquely identifiable.  The communication network does not guarantee any order
of arrival of a transmitted message at the receiving nodes.  To paraphrase Kopetz [Kopetz 1997], a
consistent delivery order of a set of messages does not necessarily reflect the temporal or causal
order of the events.

Each node is driven by an independent local physical oscillator.  The oscillators of good
nodes have a known bounded drift rate, 1 >>ρ ≥ 0, with respect to real time.  Each node has two
logical time clocks, Local_Timer and State_Timer, which locally keep track of the passage of
time as indicated by the physical oscillator.  In the context of this report, all references to clock
synchronization and self-stabilization of the system are with respect to the State_Timer and the
Local_Timer of the nodes.  There is neither a central clock nor an externally generated global

                                                
1 A mechanized proof is a formal verification via either a theorem prover or model checker.
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pulse.  The communication channels and the nodes can behave arbitrarily, provided that
eventually the system adheres to the system assumptions (see Section 3.5).

The latency of interdependent communications between the nodes is expressed in terms
of the minimum event-response delay, D, and network imprecision, d.  These parameters are
described with the help of Figure 1.  In Figure 1, a message transmitted by node Ni at real time t0

is expected to arrive at all destination nodes Nj, be processed, and subsequent messages
generated by Nj within the time interval of [t0 + D, t0 + D + d] for all Nj ∈ KG.  Communication
between independently clocked nodes is inherently imprecise.  The network imprecision, d, is the
maximum time difference between all good receivers, Nj, of a message from Ni with respect to
real time.  The imprecision is due to the drift of the clocks with respect to real time, jitter,
discretization error, and slight variations in the communication delay due to various causes such
as temperature effects and differences in the lengths of the physical communication medium.
These two parameters are assumed to be bounded such that D ≥ 1 and d ≥ 0 and both have values
with units of real time nominal tick.  For the remainder of this report, all references to time are
with respect to the nominal tick and are simply referred to as clock ticks.

D d

t0+D t0+D+dt0

Figure 1. Event-response delay, D, and network imprecision, d.

3.  Protocol Description

The self-stabilization problem has two facets.  First, it is inherently event-driven and,
second, it is time-driven.  Most attempts at solving the self-stabilization problem have focused
only on the event-driven aspect of this problem.  Additionally, all efforts toward solving this
problem must recognize that the system undergoes two distinct phases, un-stabilized and
stabilized, and that once stabilized, the system state needs to be preserved.  The protocol
presented here properly merges the time and event driven aspects of this problem in order to self-
stabilize the system in a gradual and yet timely manner.  Furthermore, this protocol is based on
the concept of a continual vigilance of state of the system in order to maintain and guarantee its
stabilized status, and a continual reaffirmation of nodes by declaring their internal status.
Finally, initialization and/or reintegration are not treated as special cases.  These scenarios are
regarded as inherent part of this self-stabilizing protocol.

The self-stabilization events are captured at a node via a selection function that is based
on received valid messages from other nodes.  When such an event occurs, it is said that a node
has accepted or an accept event has occurred.

When the system is stabilized, it is said to be in the steady state.
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In order to achieve self-stabilization, the nodes communicate by exchanging two self-
stabilization messages labeled Resync and Affirm.  The Resync message reflects the time-driven
aspect of this self-stabilization protocol, while the Affirm message reflects the event-driven
aspect of it.  The Resync message is transmitted when a node realizes that the system is no longer
stabilized or as a result of a resynchronization timeout.  It indicates that the originator of the
Resync message has to reset and try to reengage in the self-stabilization process with other nodes.
The Affirm message is transmitted periodically and at specific intervals primarily in response to a
legitimate self-stabilization accept event at the node.  The Affirm message either indicates that
the node is in the transition process to another state in its attempt toward synchronization, or
reaffirms that the node will remain synchronized.  The timing diagram of transmissions of a good
node during the steady state is depicted in Figure 2.  In the following figures, Resync messages
are represented as R and Affirm messages are represented as A.  The line segments indicate the
time of the transmission of messages.  As depicted, the expected sequence of messages
transmitted by a good node is a Resync message followed by a number of Affirm messages, i.e.
RAAA … AAARAA.  The exact number of consecutive Affirm messages will be accounted for
later in this report.

time
A         A    R       A         A                   A         A     R         A

Figure 2.  Timing diagram of transmissions of a good node during the steady state.

The time difference between the interdependent consecutive events is expressed in terms
of the minimum event-response delay, D, and network imprecision, d.  As a result, the approach
presented here is expressed as a self-stabilization of the system as a function of the expected time
separation between the consecutive Affirm messages, ∆AA.  To guarantee that a message from a
good node is received by all other good nodes before a subsequent message is transmitted, ∆AA is
constrained such that ∆AA ≥ (D + d).  Unless stated otherwise, all time dependent parameters of
this protocol are measured locally and expressed as functions of ∆AA.

In Figure 3, node Ni is shown to transmit two consecutive Affirm messages.  In the steady
state, Ni receives one Affirm message from every good node between any two consecutive Affirm
messages it transmits.  Since the messages may arrive at any time after the transmission of an
Affirm message, the accept event can occur at any time prior to the transmission of the next
Affirm message.

AA 

time
message out

message in
A   A                    A

A                                 A

Figure 3.  Typical activities of Ni between two A messages in a stabilized system.
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Three fundamental parameters characterize the self-stabilization protocol presented
here, namely K, D, and d.  The number of faulty nodes, F, the number of good nodes, G, and the
remaining parameters that are subsequently enumerated are derived parameters and are based
on these three fundamental parameters.  Furthermore, except for K, F, and G which are integer
numbers, all other parameters are real numbers.  In particular, ∆AA is used as a threshold value for
monitoring of proper timing of incoming and outgoing Affirm messages.  The derived parameters
TA = G - 1 and TR = F + 1 are used as thresholds in conjunction with the Affirm and Resync
messages, respectively.

3.1.  The Monitor

The transmitted messages to be delivered to the destination nodes are deposited on
communication channels.  To closely observe the behavior of other nodes, a node employs (K-1)
monitors, one monitor for each source of incoming messages as shown in Figure 4.  A node
neither uses nor monitors its own messages.  The distributed observation of other nodes localizes
error detection of incoming messages to their corresponding monitors, and allows for
modularization and distribution of the self-stabilization protocol process within a node.  A
monitor keeps track of the activities of its corresponding source node.  A monitor detects proper
sequence and timeliness of the received messages from its corresponding source node.  A
monitor reads, evaluates, time stamps, validates, and stores only the last message it receives from
that node.  Additionally, a monitor ascertains the health condition of its corresponding source
node by keeping track of the current state of that node.  As K increases so does the number of
monitors instantiated in each node.  Although similar modules have been used in engineering
practice and, conceptually, by others in theoretical work, as far as the author is aware this is the
first use of the monitors as an integral part of a self-stabilization protocol.

State 
Machine

From Nk

From Ni+1

From N1

To other nodes
Monitori+1

Monitork

From Ni-1 Monitori-1

Monitor1

Node i 

Figure 4.  The ith node, Ni, with its monitors and state machine.



- 6 –

3.2.  The State Machine

The assessment results of the monitored nodes are utilized by the node in the self-
stabilization process.  The node consists of a state machine and a set of (K-1) monitors.  The state
machine has two states, Restore state (T) and Maintain state (M), that reflect the current state of
the node in the system as shown in Figure 5.  The state machine describes the collective behavior
of the node, Ni, utilizing assessment results from its monitors, M1 .. Mi-1, Mi+1 .. MK as shown in
Figure 4, where Mj is the monitor for the corresponding node Nj.  In addition to the behavior of
its corresponding source node, a monitor’s internal status is influenced by the current state of the
node’s state machine.  In a master-slave fashion, when the state machine transitions to another
state it directs the monitors to update their internal status.

A

MT

R

R, A A

Figure 5.  The node state machine.

The transitory conditions enable the node to migrate to the Maintain state and are defined as:
1. The node is in the Restore state,
2. At least 2F accept events in as many ∆AA intervals have occurred after the node entered

the Restore state,
3. No valid Resync messages are received for the last accept event.

The transitory delay is the length of time a node stays in the Restore state.

The minimum required duration for the transitory delay is 2F∆AA after the node enters the
Restore state.  The maximum duration of the transitory delay is dependent on the number of
additional valid Resync messages received.  Validity of received messages  is  defined  in
Section 3.3.  When the system is stabilized, the maximum delay is a result of receiving valid
Resync messages from all faulty nodes.  Since there are at most F faulty nodes present, during
the steady state operation the duration of the transitory delay is bounded by  [2F∆AA, 3F∆AA].

A node in either of the Restore or Maintain state periodically transmits an Affirm message
every ∆AA.  When in the Restore state, it either will meet the transitory conditions and transition
to the Maintain state, or will remain in the Restore state for the duration of the self-stabilization
period until it times out and transmits a Resync message.  When in the Maintain state, a node
either will remain in the Maintain state for the duration of the self-stabilization period until it
times out, or will unexpectedly transition to the Restore state because TR other nodes have
transitioned out of the Maintain state.  At the transition, the node transmits a Resync message.

The self-stabilization period is defined as the maximum time interval (during the steady
state) that a good node engages in the self-stabilization process.  In this protocol the self-
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stabilization period depends on the current state of the node.  Specifically, the self-stabilization
period for the Restore state is represented by PT and the self-stabilization period for the Maintain
state is represented by PM.   PT and PM are expressed in terms of ∆AA.  The length of time a good
node stays in the Restore state is denoted by LT.  During the steady state LT is always less than
PT.  The time a good node stays in the Maintain state is denoted by LM.  When the system is
stabilized LM is less than or equal to PM.  The effective self-stabilization period, PEffective, is the
time interval between the last two consecutive resets of the Local_Timer of a good node in a
stabilized system, where PEffective = LT + LM < PT + PM.

In Figure 6 the transitions of a node from the Restore state to the Maintain state (during
the steady state) are depicted along a timeline of activities of the node.  The line segments in
Figure 6 indicate timing and order of the transmission of messages along the time axis.  Two new
parameters, ∆RA and ∆AR, are introduced in this figure in order to clarify other aspects of this
protocol’s behavior.  These parameters are defined in terms of ∆AA.  Although a Resync message
is transmitted immediately after the node realizes that it is no longer stabilized, i.e. 0 < ∆AR ≤
∆AA, an Affirm message is transmitted once every ∆AA, i.e. ∆RA = ∆AA.

time

Restore Maintain

RA AA 

A         A    R       A         A         A                   A         A     R         A         A

AR 

PEffective

Restore

Figure 6.  Timing diagram of activities of a good node during the steady state.

A node keeps track of time by incrementing a logical time clock, State_Timer, once every
∆AA.  After the State_Timer reaches PT or PM, depending on the current state of the node, the
node experiences a timeout, transmits a new Resync message, resets the State_Timer, transitions
to the Restore state, and attempts to resynchronize with other nodes.  If the node was in the
Restore state it remains in that state after the timeout.  The current value of this timer reflects the
duration of the current state of the node.  It also provides insight in assessing the state of the
system in the self-stabilization process.

In addition to the State_Timer, the node maintains the logical time clock Local_Timer.
The Local_Timer is incremented once every ∆AA and is reset only when the node has transitioned
to the Maintain state and remained in that state for the duration of �∆Precision�, where ∆Precision is
the maximum guaranteed self-stabilization precision.  The Local_Timer is intended to be used by
higher level protocols and is used in assessing the state of the system in the self-stabilization
process.

The monitor’s status reflects its perception of its corresponding source node.  In
particular, a monitor keeps track of the incoming messages from its corresponding source and
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ensures that only valid messages are stored.  If the expected time of arrival of a message is
violated or if the message arrives out of the expected sequence, then it is marked as invalid.
Otherwise, it is marked as valid and stored for the host node’s consumption.  It is important to
note that this protocol is expected to be used as the fundamental mechanism in bringing and
maintaining a system within a known synchronization bound.  This protocol neither maintains a
history of past behavior of the nodes nor does it attempt to classify the nodes into good and
faulty ones.  All such determination about the health status of the nodes in the system is assumed
to be done by higher level mechanisms.

3.3.  Message Sequence

An expected sequence is defined as a stream of Affirm messages enclosed by two Resync
messages where all received messages arrive within their expected arrival times.  The time
interval between the last two Resync messages is represented by ∆RR.

The following are three sequences where ‘-’ represents a missing message:
• RAAA … AAAR expected sequence, all A messages present
• RA-A … A--R unexpected message sequence, missing A messages
• R--- … ---R unexpected message sequence, no A messages present

When a node is in the Restore state, its output sequence of messages has one of two
patterns.  If the node does not transition to the Maintain state, it times out after PT and its
expected sequence of output messages will be RAAA … AAAR, consisting of PT consecutive A
messages.  In this case, ∆RR = PT.  On the other hand, when the node synchronizes with other
nodes, it transitions to the Maintain state before timing out, and its expected sequence of output
messages will have at least 2F Affirm messages followed by those Affirm messages produced in
the Maintain state.  The shortest amount of time it takes a node to transition to the Maintain state
is 2F∆AA.  The shortest amount of time the node stays in the Maintain state is ∆AR.  Therefore, the
time separation between any two consecutive Resync messages from a good node is given by
∆RR ≥ 2F∆AA + ∆AR.  As a result, the shortest expected sequence consists of 2F A messages
enclosed by two R messages with a duration of ∆RR,min = 2F∆AA + 1 clock ticks.

When a node is in the Maintain state, it has two possible output sequences of messages.
If it times out after PM, its expected sequence of output messages will be RAAA … AAAR
consisting of an R message, followed by A messages for when the node was in the Restore state,
followed by at least PM consecutive A messages for the duration of the Maintain state, followed
by another R message.  Therefore, (PT + PM) > ∆RR, in other words, ∆RR,max = (PT + PM).  On the
other hand, when the node abruptly transitions out of the Maintain state, its output sequence of
messages will consist of fewer Affirm messages.  The sequence consists of an R message,
followed by A messages for when the node was in the Restore state, followed by A messages for
the duration of the Maintain state, followed by another R message.
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As depicted in Figure 6, starting from the last transmission of the Resync message
consecutive Affirm messages are transmitted at ∆AA intervals.  At the receiving nodes, the
following definitions hold:

– A message (Resync or Affirm) from a given source is valid if it is the first message from
that source.

– An Affirm message from a given source is early if it arrives earlier than (∆AA - d) of its
previous valid message (Resync or Affirm).

– A Resync message from a given source is early if it arrives earlier than ∆RR,min of its
previous valid Resync message.

– An Affirm message from a given source is valid if it is not early.
– A Resync message from a given source is valid if it is not early.

The protocol works when the received messages do not violate their timing requirements.
However, in addition to inspecting the timing requirements, examining the expected sequence of
the received messages provides stronger error detection at the nodes.

3.4.  Protocol Functions

The functions used in this protocol are described in this section.

Two functions, InvalidAffirm() and InvalidResync(), are used by the monitors.  The
InvalidAffirm() function determines whether or not a received Affirm message is valid.  The
InvalidResync() function determines if a received Resync message is valid.  When either of these
functions returns a true value, it is indicative of an unexpected behavior by the corresponding
source node.

The Accept() function is used by the state machine of the node in conjunction with the
threshold value TA = G - 1.  When at least TA valid messages (Resync or Affirm) have been
received, this function returns a true value indicating that an accept event has occurred and such
event has also taken place in at least F other good nodes.  When a node accepts, it consumes all
valid messages used in the accept process by the corresponding function.  Consumption of a
message is the process by which a monitor is informed that its stored message, if it existed and
was valid, has been utilized by the state machine.

The Retry() function  is  used  by  the state machine of the node with the threshold value
TR = F +1.  This function determines if at least TR other nodes have transitioned out of the
Maintain state.  A node, via its monitors, keeps track of the current state of other nodes.  When at
least TR valid Resync messages from as many nodes have been received, this function returns a
true value indicating that at least one good node has transitioned to the Restore state.  This
function is used to transition from the Maintain state to the Restore state.
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The TransitoryConditionsMet() function is used by the state machine of the node to
determine proper timing of the transition from the Restore state to the Maintain state.  This
function keeps track of the accept events, by incrementing the Accept_Event_Counter, to
determine if at least 2F accept events in as many ∆AA intervals have occurred.  It returns a true
value when the transitory conditions (see Section 3.2) are met.

The TimeOutRestore() function uses PT as a boundary value and asserts a timeout
condition when the value of the State_Timer has reached PT.  Such timeout triggers the node to
reengage in another round of self-stabilization process.  This function is used when the node is in
the Restore state.

The TimeOutMaintain() function uses PM as a boundary value and asserts a timeout
condition when the value of the State_Timer has reached PM.  Such timeout triggers the node to
reengage in another round of synchronization.  This function is used when the node is in the
Maintain state.

In addition to the above functions, the state machine utilizes the TimeOutAcceptEvent()
function.  This function is used to regulate the transmission time of the next Affirm message.
This function maintains a DelatAA_Timer by incrementing it once per local clock tick and once it
reaches the transmission time of the next Affirm message, ∆AA, it returns a true value.  In the advent of
such timeout, the node transmits an Affirm message.

3.5.  System Assumptions

1. The source of the transient faults has dissipated.
2. All good nodes actively participate in the self-stabilization process and execute the

protocol.
3. At most F of the nodes are faulty.
4. The source of a message is distinctly identifiable by the receivers from other sources of

messages.
5. A message sent by a good node will be received and processed by all other good nodes

within ∆AA, where ∆AA ≥ (D + d).
6. The initial values of the state and all variables of a node can be set to any arbitrary value

within their corresponding range.  In an implementation, it is expected that some local
capabilities exist to enforce type consistency of all variables.
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3.6.  The Self-Stabilizing Clock Synchronization Problem

To simplify the presentation of this protocol, it is assumed that all time references are
with respect to a real time t0 when the system assumptions are satisfied and the system operates
within the system assumptions.  Let

• C be the maximum convergence time,
• ∆Local_Timer(t), for real time t, the maximum time difference of the Local_Timers of any

two good nodes Ni and Nj, and
• ∆Precision the maximum guaranteed self-stabilization precision between the Local_Timer’s

of any two good nodes Ni and Nj in the presence of a maximum of F faulty nodes, ∀ Ni,
Nj ∈ KG.

Convergence:  From any state, the system converges to a self-stabilized state after a finite
amount of time.

1. ∀ Ni, Nj ∈ KG, ∆Local_Timer(C) ≤ ∆Precision.
2. ∀ Ni, Nj ∈ KG, at C, Ni perceives Nj as being in the Maintain state.

Closure:  When all good nodes have converged such that ∆Local_Timer(C) ≤ ∆Precision at time C, the
system shall remain within the self-stabilization precision ∆Precision for t ≥ C, for real time t.

∀ Ni, Nj ∈ KG, t ≥ C, ∆Local_Timer(t) ≤ ∆Precision,

where,
C = (2PT + PM) ∆AA,
∆Local_Timer(t) =   min ( max (Local_Timeri, Local_Timerj) -

min (Local_Timeri, Local_Timerj),
max (Local_Timeri - �∆Precision�, Local_Timerj - �∆Precision�) -
min (Local_Timeri - �∆Precision�, Local_Timerj - �∆Precision�)),

�∆Precision� = truncate (∆Precision + 0.5),

and,
 (Local_Timer - �∆Precision�) is the �∆Precision�

th previous value of the Local_Timer

and,
∆Precision = (3F - 1) ∆AA - D + ∆Drift

where, the amount of drift from the initial precision is give by
∆Drift = ((1+ρ) - 1/(1+ρ)) PM ∆AA.
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4.  The Byzantine-Fault Tolerant Self-Stabilizing Protocol for Distributed
Clock Synchronization Systems

The presented protocol is described in Figure 7 and consists of a state machine and a set
of monitors which execute once every local oscillator tick.

Figure 7.  The self-stabilization protocol.

Monitor:
case (incoming message from the
corresponding node)
{Resync:

if InvalidResync() then
Invalidate the message

else
Validate and store the message,
Set state status of the source.

Affirm:
if InvalidAffirm() then

Invalidate the message
else

Validate and store the message.

Other:
Do nothing.

} // case

Node:
case (state of the node)
{Restore:

if TimeOutRestore() then
Transmit Resync message,
Reset State_Timer,
Reset DelatAA_Timer,
Reset Accept_Event_Counter,
Stay in Restore state,

elsif TimeOutAcceptEvent() then
Transmit Affirm message,
Reset DelatAA_Timer,
if Accept() then

Consume valid messages,
Clear state status of the sources,
Increment Accept_Event_Counter,
if TransitoryConditionsMet() then

Reset State_Timer,
Go to Maintain state,

else
Stay in Restore state.

else
Stay in Restore state.,

else
Stay in Restore state.

Maintain:
if TimeOutMaintain() or Retry() then

Transmit Resync message,
Reset State_Timer,
Reset DelatAA_Timer,
Reset Accept_Event_Counter,
Go to Restore state,

elsif TimeOutAcceptEvent() then
if Accept() then

Consume valid messages.,
if (State_Timer = �∆Precision�)

Reset Local_Timer.,
Transmit Affirm message, =

Reset DelatAA_Timer,
Stay in Maintain state,

else
Stay in Maintain state.

} // case
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4.1.  Semantics of the pseudo-code
• Indentation is used to show a block of sequential statements.
• ‘,’ is used to separate sequential statements.
• ‘.’ is used to end a statement.
• ‘.,’ is used to mark the end of a statement and at the same time to separate it from other

sequential statements.

= In a variation of this protocol and in conjunction with a higher level mechanism, a good node
stops transmitting Affirm messages after it is determined by the higher level mechanism that
the system has stabilized.  It follows from Theorem StopContinuousTransmit that such
variation preserves the self-stabilization properties.  Nevertheless, such optimization in the
number of exchanged self-stabilization messages is at a cost of delaying error detection,
introducing jitters in the system, and prolonging the self-stabilization process.

5.  Proof of the Protocol

The approach for the proof is to show that a system of K ≥ 3F + 1 nodes converges from
any condition to a state where all good nodes are in the Maintain state.  This system is then
shown to remain within the timing bounds of the self-stabilization precision of ∆Precision.  The
Lemmas and Theorems are presented in this section.

Since the oscillator drift rate, ρ, does not play a significant role in the convergence
process, it is omitted from the expressions regarding parameters, constants, equations, and the
proofs.  However, ρ does affect the closure property and is included in expressions regarding
∆Precision.  Omission of ρ does not change the behavior of the protocol or the validity of the
proofs.

Assumptions: All good nodes are active and the system operates within the system assumptions.
In this proof, unless otherwise stated in the Lemmas and Theorems, no other assumptions are
made about the system.  Also, throughout the proofs, unless stated otherwise, all references to
the Resync and Affirm messages are with respect to valid messages.

A node behaves properly if it executes the protocol.

Lemma TransmitEvery∆AA – A good node in either Restore or Maintain state transmits at least
one message (Resync or Affirm) every ∆AA interval.
Proof – It follows from the protocol that the DelatAA_Timer is reset after transmission of
a self-stabilization message (Resync or Affirm).  It is expressed in function
TimeOutAcceptEvent() that the node transmits an Affirm message every ∆AA interval.
Additionally, if after transmitting an Affirm message and within the next ∆AA interval, a node
times out to engage in another round of self-stabilization process, it will also transmit a Resync
message within that ∆AA interval.         ♦
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Theorem ResyncWithinPT – A good node remaining in the Restore state transmits a Resync
message within at most PT ∆AA clock ticks.
Proof – It is expressed in function TimeOutRestore() that if a node remains in the Restore
state and does not transition to the Maintain state, it will time out within PT ∆AA clock ticks,
transmit a Resync message, and stay in the Restore state.         ♦

Theorem RestoreWithinPM –A good node in the Maintain state transitions to the Restore state
within at most PM ∆AA clock ticks.
Proof – It follows from the protocol that a node in the Maintain state will transition from
the Maintain state to the Restore state either because of a resynchronization timeout, as
expressed in function TimeOutMaintain(), or when the system becomes unstabilized, as
expressed in function Retry().  Upon transitioning to the Restore state, the node transmits a
Resync message.  Since the longest such time interval is due to the timeout, the node transmits a
Resync message in at most PM ∆AA clock ticks.         ♦

Lemma DeltaRRmin – The shortest time interval between any two consecutive Resync
messages from a good node is 2F∆AA + 1 clock ticks.
Proof – From the definition of the transitory conditions in Section 3.2, the minimum
required duration for the transitory delay is 2F∆AA after the node entered the Restore state.  The
shortest amount of time the node stays in the Maintain state is ∆AR, as shown in Figure 6.
Therefore, the time separation between any two consecutive Resync messages from a good node
is given by ∆RR ≥ 2F∆AA + ∆AR.  As a result, ∆RR,min = 2F∆AA + 1 clock ticks.         ♦

Theorem RestoreToMaintain – A good node in the Restore state will always transition to
the Maintain state.
Proof – Let us consider the worst case scenario where a node wakes up with its internal
variables randomly set except that its state is set to the Restore state.  A sequence of activities of
the good node N5, for a system of K = 7, F = 2 and G = 5 nodes, is depicted in Figure 8.  The
activities of the good node are partitioned in different zones along the time axis.  The following
symbols are used in this figure.

X = don’t care
A  = an Affirm message transmitted
Rgi = a Resync message received from the ith good node
Rfj = a Resync message received from the jth faulty node
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Out:   A   A   A   A   A   A   A   A  A   A   A   A   A   A   A   A   A   A   A    A    

In:      X   X   X   X   X   X   X   X   Rf1  Rf2  Rg1 Rg2 Rg3 Rg4 Rf1 Rf2 

Zone 1

Zone 2

Zone 3 Zone 4

∆RR for faulty node Nf1

Figure 8.  Worst case sequence of activities of a good node after random start up for F = 2.

Since receiving a Resync message can force the node to remain in a state of transition,
only the Resync messages are shown in this figure.  Also, since receiving one Resync message
during the current ∆AA interval can prevent the node from transitioning to the Maintain state, the
sequence of activities are shown for the worst case scenario where only one Resync message is
received within the time interval of any two consecutive transmissions of Affirm messages, i.e. at
every ∆AA.

Zone1:  If a good node Ni perceives that it has received a Resync message from another good
node Nj, it follows from Lemma DeltaRRmin that for the duration of ∆RR,min a Resync message
from Nj will be rejected.  Therefore, for the worst case scenario, let us assume that a good node
does not receive enough valid messages and accept events will not take place for the first
(2F+1)∆AA > ∆RR,min clock ticks.  However, it follows from Lemma TransmitEvery∆AA that all
good nodes transmit a message every ∆AA interval.  Therefore, by Lemma DeltaRRmin, after
∆RR,min a good node will receive at least TA messages for all subsequent ∆AA intervals and
consequently accept events will take place during those intervals.

Zone 2:  It follows from the protocol that a node has to wait for the minimum transitory delay of
2F∆AA before transitioning to the Maintain state.  To prevent the node from transitioning to the
Maintain state, the minimum transitory delay should not be met.  Therefore, a Resync message
has to be received at the last ∆AA interval.  As a result, duration of this zone will be (2F - 1)∆AA

intervals.

Zone 3:  To prolong the duration of the Restore state for this node, N5, the faulty nodes transmit
Resync messages interleaved with the Resync messages from the other good nodes, N1 through
N4, such that these messages are perceived valid by N5.  From Lemma DeltaRRmin, Resync
messages have to be at least ∆RR,min apart in order to be considered valid.  Since there are F faulty
nodes, the remaining F + 1 intervals between the consecutive Resync messages of a faulty node
must be filled by Resync messages from other good nodes.  As expressed in function Retry(), it
takes TR valid Resync messages for a good node to transition from the Maintain state to the
Restore state.
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Since TR = F + 1, after transmission of TR Resync messages from as many good nodes, N1

through N3, all other good nodes that remained in the Maintain state, e.g. N4, will transition to the
Restore state.  Therefore, at this point, all good nodes will have transitioned to the Restore state.
Also, none of the good nodes that had transitioned to the Restore state can meet the transitory
conditions and transition back to the Maintain state in the mean time.

The longest sequence results when F Resync messages from as many faulty nodes are
followed by 2F Resync messages from as many good nodes, N1 through N4, followed by F
additional Resync messages from as many faulty nodes as depicted in Figure 8.  Therefore, the
maximum duration of this zone will be F + 2F + F = 4F consecutive ∆AA intervals.

Following the time line of activities in the figure, the node has been in the Restore state
for the maximum possible transitory delay of (2F+1)+ (2F - 1)+ (F+2F+F) = 8F.

Zone 4:  At this point, no other Resync messages are expected to arrive from other good nodes
and from Lemma DeltaRRmin any additional Resync messages from the faulty nodes will be
considered as invalid.  Therefore,

State_Timer(t) = State_Timer(t0) + 8F ≤ PT

where,
State_Timer(t0) = 0,

or,
0 < State_Timer(t0) ≤ PT.

The subsequent behavior of the node is, therefore, dependent on the initial value of its
State_Timer, i.e. State_Timer(t0).  There are two possible initial scenarios for this node’s
State_Timer, either the State_Timer is reset to zero or it holds a non-zero value within its range,
i.e. its initial value is less than or equal to PT.  If the State_Timer is initially reset, unless this
node times out, it will have to transition out of the Restore state at the next ∆AA.  So, assuming PT

is large enough so that the node does not time out, it has to transition to the Maintain state at the
next ∆AA as shown in Figure 8.

If the State_Timer is initially non-zero and the current value of the State_Timer is less
than PT, the node does not time out and transitions to the Maintain state at the next ∆AA, as shown
in Figure 8.  Otherwise, the current value of the State_Timer is PT (hence the worst case
scenario), and this node times out at the next ∆AA, transmits a Resync message and remains in the
Restore state as shown in Figure 9.  The sequence of input message in Figure 9 reveals a
potential circular pattern in the behavior of the node.  However, unlike the initial scenario for this
case where State_Timer was not reset to zero, the State_Timer is now reset to zero.

Out:  A   A   A   A   A   A   A   A   A   A   A   A   A   A   A   R   A   A   A   A   A 

In:       X   X   X   X   X   X   X   Rf1  Rf2  Rg1 Rg2 Rg3 Rg4 Rf1 Rf2 X   X   X   X   Rf1 

Figure 9.  Worst case sequence of activities of a good node at random start up for F = 2.
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Using a similar argument as for the first case where State_Timer(t0) = 0, this node will
transition to the Maintain state within the next PT.  Therefore, a node will always transition from
the Restore state to the Maintain state.          ♦

From Theorem RestoreToMaintain, the maximum possible transitory delay for a node in
the Restore state is 8F.  However, in order to allow the node to transition to the Maintain state at
the next ∆AA, it has to be prevented from timing out.  Therefore, the required minimum period,
PT,min is constrained to be PT,min = 8F+2.

Although PT can be any value larger than PT,min, it follows from Theorem
RestoreToMaintain that it cannot exceed that minimum value.  Also, in order to expedite the
self-stabilization process, the convergence time has to be minimized.  Thus, PT is constrained to
PT,min.  The self-stabilization period for the Maintain state, PM, is typically much larger than PT.
Thus, PM is constrained to be PM ≥ PT.

Corollary RestoreToMaintainWithin2PT – A good node in the Restore state will always
transition to the Maintain state within 2PT.
Proof – From the proof of Theorem RestoreToMaintain, a node in the Restore state will
either transition to the Maintain state within the first PT, or it will time out and remain in that
state.  For the later case, it also follows that the node will transition to the Maintain state within
the next PT, therefore, the node will transition to the Maintain state within 2PT.          ♦

All good nodes validate an Affirm message from a good node if the minimum arrival time
requirement for that message is not violated.  By Lemma DeltaRRmin, consecutive Resync
messages from a good node are always more than ∆RR,min apart.  Therefore, after a random start-
up, it takes more than ∆RR,min clock ticks for Resync messages from a good node to be accepted
by all other good nodes.  If a node is in the Restore state, from Theorem ResyncWithinPT, it will
either time out and transmit a Resync message within PT or from Theorem RestoreToMaintain
and Corollary RestoreToMaintainWithin2PT, it will transition to the Maintain state within 2PT.
Therefore, for the proof of this protocol, and for the following lemmas and theorems, the state of
the system is considered after 2PT ∆AA clock ticks from a random start.  At this point, the system
is in one of the following three states and all Resync messages from the good nodes are at least
∆RR,min apart and all Affirm messages from the good nodes meet their timing requirements at the
receiving good nodes.

1 None of the good nodes are in the Maintain state
2 All good nodes are in the Maintain state
3 Some of the good nodes are in the Maintain state

Theorem ConvergeNoneMaintain – A system of K ≥ 3F + 1 nodes, where none of the good
nodes are in the Maintain state and have not met the transitory conditions, will always converge.
Proof – Since none of the good nodes are in the Maintain state, they are in the Restore
state either because they have just transitioned there or are forced to remain there due to
receiving Resync messages either from other good nodes or from the faulty nodes.  Since these
nodes accept each other’s messages, they will receive at least TA valid messages (Affirm or
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Resync) from each other every ∆AA, and will accept and transmit Affirm messages at every ∆AA

interval.

The Earliest a good node transitions to the Maintain state (EM) is after it has remained in
the Restore state for the minimum duration of the transitory delay plus at least two accept events
after the last good node transitioned to the Restore state.  The earliest the first of the two accept
events happens is D ticks after the transmission of the last Resync message.  Therefore the EM
happens at D + ∆AA.  The Latest a good node transitions to the Maintain state (LM) is after
remaining in the Restore state for the maximum duration of the transitory delay, i.e. after
receiving Resync messages from all faulty nodes.  In this case, the LM happens at the last good
node transmitting the Resync message, i.e. at (2F+F)∆AA = 3F∆AA since its transition to the
Restore state.  So, the time difference between the LM and EM nodes is given by

∆LMEM = 3F∆AA - (∆AA + D) = (3F - 1) ∆AA - D.         ♦

The self-stabilization precision, ∆∆∆∆Precision, is the maximum time difference between the
Local_Timer’s of any two good nodes when the system is stabilized.  It is, therefore, the
guaranteed precision of the protocol.  From Theorem ConvergeNoneMaintain, the initial
precision after the resynchronization is the maximum value of ∆LMEM.

After the initial synchrony and due to the drift rate of the oscillators, Local_Timers of the
good nodes will deviate from the initial precision.  This phenomenon is depicted in Figure 10.

0     PS

0         PS

Fast

Slow

          ∆LMEM ∆Precision

Figure 10.  The self-stabilization precision.

Therefore, the guaranteed self-stabilization precision, ∆Precision, after elapsed time of PM

∆AA clock ticks, is bounded by,
∆Precision = ∆LMEM + ∆Drift

where, the amount of drift from the initial precision is give by
∆Drift = ((1+ρ) - 1/(1+ρ)) PM ∆AA.

The factors (1+ρ) and 1/(1+ρ) are, respectively, associated with the slowest and fastest nodes in
the system.  Therefore,

∆Precision = (3F - 1) ∆AA - D + ∆Drift.
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Corollary MutuallyStabilized – All good nodes mutually perceive each other as being in the
Maintain state.
Proof – It follows from Theorem ConvergeNoneMaintain that upon convergence and as
the good nodes transition to the Maintain state, they mutually perceive each other to be in the
Maintain state.         ♦

Theorem ConvergeAllMaintain – A system of K ≥ 3F + 1 nodes, where all good nodes are in
the Maintain state, will always converge.
Proof – Since no assumptions are made about the relative timing of the good nodes,
∆Local_Timer(t) > ∆Precision is possible.  In this case, all good nodes believe to be synchronized even
though the system is not.

It follows from the protocol, Theorem ResyncWithinPT and Theorem RestoreWithinPM,
that all good nodes will eventually time out, transition to the Restore state, and transmit Resync
messages.  The first (TR - 1) good nodes that transition to the Restore state may transition back to
the Maintain state before all other good nodes transition to the Restore state.  A good node in the
Maintain state keeps track of other nodes that have transitioned to the Restore state.  Therefore,
after the TR

th good node transitions to the Restore state, the remaining good nodes, a total of F
nodes, will receive TR Resync messages from as many good nodes, will transition to the Restore
state and transmit Resync messages within the next ∆AA.  Any of the first (TR - 1) good nodes that
had  transitioned  to  the  Restore  state  and  then back to the Maintain state, will now receive
(TR + 1) Resync messages within 2∆AA from as many good nodes, will transition to the Restore
state, and transmit Resync messages within the next ∆AA.  At this point all good nodes in the
system are in the Restore state, are within 2∆AA of each other, and none of them has met the
transitory conditions.  It follows from Theorem ConvergeNoneMaintain that such a system
always converges.         ♦

Theorem ConvergeSomeMaintain – A system of K ≥ 3F + 1 nodes, where some of the good
nodes are in the Maintain state will always converge.
Proof – The good nodes that are in the Restore state are there either because they have just
transitioned there or are forced to remain there due to receiving Resync messages either from
other good nodes or from the faulty nodes.  Furthermore, their transitions to the Restore state are
recorded by the good nodes that are in the Maintain state.  It follows from Lemma
MaintainWithinPT that unless these unstabilized nodes time out within PT, they’ll transition to
the Maintain state.  It follows from the protocol and Theorem RestoreWithinPM that all good
nodes that are in the Maintain state will eventually time out, transition to the Restore state, and
transmit Resync messages.

There are two possible scenarios for the system.  Since the transitions to the Restore state
are recorded by other good nodes in the Maintain state, as soon as TR good nodes have
transitioned to the Restore state, in a similar argument as in Theorem ConvergeAllMaintain, the
remaining good nodes will also transition to the Restore state.  At this point, the system consists
of all good nodes in the Restore state where none of them has met the transitory conditions.  It
follows from Theorem ConvergeNoneMaintain that such a system always converges.
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The second possibility is that if the good nodes in the Restore state transition back to the
Maintain state, the system consists of all good nodes in the Maintain state and it follows from
Theorems ConvergeNoneMaintain and ConvergeAllMaintain that such a system always
converges.         ♦

Lemma PrecisionLargerThanTD – The self-stabilization precision, ∆Precision, is greater than the
minimum transitory delay (TDmin) for F > 2.
Proof – In other words, ∆Precision - TDmin ≥ 0.

∆Precision = (3F - 1) ∆AA - D + ∆Drift

∆Precision - TDmin = (3F - 1) ∆AA - D + ∆Drift - 2F∆AA = (F - 1) ∆AA - D + ∆Drift.

For F > 2,
(F - 1) ∆AA - D + ∆Drift > 0.         ♦

Theorem ClosureAllMaintain – A system of K ≥ 3F + 1 nodes, where all good nodes have
converged such that all good nodes are mutually stabilized with each other (in other words, all
good nodes are in the Maintain state where ∆Local_Timer(t) ≤ ∆Precision), shall remain within the self-
stabilization precision ∆Precision.
Proof – Since all good nodes are in the Maintain state, it follows from Theorem
RestoreWithinPM that they will transition to the Restore state within PM.  As they transmit
Resync messages, their transitions to the Restore state are recorded by other good nodes that are
in the Maintain state.  Since the system is stabilized, the good nodes will transition to the Restore
state within ∆Precision of each other.  However, since from Lemma PrecisionLargerThanTD, and
for F > 2, the ∆Precision is greater than the minimum transitory delay, some good nodes can
potentially transition to the Restore state and then to the Maintain state before all good nodes
transition to the Restore state.  The proof, therefore, proceeds in the following two parts:

Similar to the proof of Theorem ConvergeAllMaintain, the first (TR - 1) good nodes that
transition to the Restore state may transition to the Maintain state before all other good nodes
transition to the Restore state.  Therefore, after the TR

th good node transitions to the Restore state,
the remaining good nodes, a total of F nodes, will have received TR Resync messages from as
many good nodes, will transition to the Restore state and transmit Resync messages within the
next ∆AA.  Any of the first (TR - 1) good nodes that had transitioned to the Restore state and then
to the Maintain state, will now receive (TR + 1) Resync messages within 2∆AA from as many good
nodes, will transition to the Restore state, and transmit Resync messages within the next ∆AA.   At
this point all good nodes in the system are in the Restore state, are within 2∆AA of each other, and
none of them has met the transitory conditions.  It follows from Theorem
ConvergeNoneMaintain that such a system always converges to within ∆Precision.

On the other hand, if after transitioning to the Restore state, none of the good nodes
transition to the Maintain state until all good nodes transition to the Restore state, the system
consists of all good nodes in the Restore state where none of them has met the transitory
conditions.  It follows from Theorem ConvergeNoneMaintain that such a system always
converges to within ∆Precision.         ♦
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Corollary StateTimerLessThanPrecision – In a stabilized system and during the re-
stabilization process, the maximum value of the State_Timer is always less than the self-
stabilization precision ∆Precision.
Proof – From the protocol, the State_Timer is reset when the node transitions to either the
Restore state or the Maintain state.  It follows from the first part of proof of Theorem
ClosureAllMaintain that some good nodes that transition to the Restore state may transition back
to the Maintain state before others.  The value of the State_Timer of such nodes does not exceed
∆Precision.  In other words, for these good nodes,

(State_Timer) ∆AA = ∆Precision - (2F∆AA) + (D + d).

Since ∆AA ≥ D + d,
(State_Timer) ∆AA ≤ ∆Precision - 2F∆AA + ∆AA,
(State_Timer) ∆AA ≤ ∆Precision - F∆AA < ∆Precision.         ♦

Therefore, the Local_Timer can be reset at any point where State_Timer is greater than or
equal to the precision.  In order to expedite the self-stabilization process, Local_Timer is reset
when State_Timer reaches the next integer value greater than ∆Precision, i.e. �∆Precision� = truncate
(∆Precision + 0.5).  Alternatively, if the amount of drift is such that ∆Drift < (∆AA + D) the
Local_Timer can be reset when State_Timer reaches 3F.

∆Precision < 3F
(3F - 1)∆AA - D + ∆Drift < 3F
-∆AA - D + ∆Drift < 0
∆Drift < ∆AA + D

Corollary SteadyStateConvergeTime – In a stabilized system, the maximum convergence
time is less than 6F∆AA.
Proof – It follows from the first part of Theorem ClosureAllMaintain that the time interval
from when the first good node transitions to the Restore state until all good nodes transition to
the Maintain state is given by the following equations.

∆Precision + Latest to Maintain state (LM),

From Theorem ConvergeNoneMaintain, LM  = (3F - 1) ∆AA - D, therefore,
((3F - 1)∆AA - D + ∆Drift) + (3F - 1)∆AA - D

Since ∆AA ≥ D + d,
(6F - 2)∆AA - 2D + ∆Drift ≥ (6F - 4)∆AA + ∆Drift

but since typically ∆AA > ∆Drift,
(6F - 4)∆AA + ∆Drift < 6F < PT.         ♦

Theorem LocalTimerWithinPrecision – The difference of Local_Timers  of  all  good  nodes
in  a  stabilized  system  of K ≥ 3F + 1  nodes   will   always   be   within   the   self-stabilization
precision,  i.e.  ∆Local_Timer(t) ≤ ∆Precision.



- 22 –

Proof – Since the Local_Timer is reset when State_Timer = �∆Precision�, it follows from the
Corollaries StateTimerLessThanPrecision that, during the re-stabilization process, the
State_Timer never reaches this value and thus the Local_Timer will not be reset during this
process.  On the other hand, it follows from Theorem ClosureAllMaintain that the good nodes
will remain within ∆Precision of each other, thus, ∆Local_Timer(t) ≤ ∆Precision.         ♦

Theorem StabilizeFromAnyState – A system of K ≥ 3F + 1 nodes self-stabilizes from any
random state after a finite amount of time.
Proof – The proof of this theorem consists of proving the convergence and closure
properties as defined in the Self-Stabilizing Clock Synchronization Problem section.

Assumptions: All good nodes are active and the system operates within the system assumptions.

Convergence –  From any state, the system converges to a self-stabilized state after a finite
amount of time.

1. ∀ Ni, Nj ∈ KG, ∆Local_Timer(C) ≤ ∆Precision.
2. ∀ Ni, Nj ∈ KG, at C, Ni perceives Nj as being in the Maintain state.

Proof – The proof is done in the following four parts.  The approach for the proof is
depicted in Figure 11.  The system is shown to converge from any state and upon convergence
maintain the closure property.  The figure is partitioned via a dashed line into two regions.  The
left region depicts the state of the system in the convergence process.  The right region depicts
the system operating in the steady state and maintaining the self-stabilization precision.

In this figure, the states All, None, and Some represent one of three possible states of the
system after 2PT ∆AA clock ticks from a random start.  The propositions labeled as theorems
indicate that a transition from one state to another eventually takes place.

Theorems
ClosureAllStabilized,
LocalTimerWithinPrecision

All

Some

Theorem
Converge
None
Stabilized

Theorem
ConvergeAllStabilized

Theorem
ConvergeSomeStabilized

None

Theorem 
ConvergeAllStabilized

ClosureConvergence

Theorem
ConvergeSomeStabilized

∆Local_Timer(t) < ∆Precision

Figure 11.  Approach for proof of convergence.

Convergence – None of the good nodes are in the Maintain state.
Proof – It follows from Theorems ConvergeNoneMaintain and ClosureAllMaintain that
such system always self-stabilizes.
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Convergence – All good nodes are in the Maintain state.
Proof – It follows from Theorems ConvergeNoneMaintain, ConvergeAllMaintain and
ClosureAllMaintain that such system always self-stabilizes.

Convergence – Some of the good nodes are in the Maintain state.
Proof – It follows from Theorems ConvergeNoneMaintain, ConvergeAllMaintain,
ConvergeSomeMaintain, and ClosureAllMaintain that such system always self-stabilizes.

Mutually Stabilized – ∀ Ni, Nj ∈ KG, at C, Ni perceives Nj as being in the Maintain
state.
Proof – It follows from Corollary MutuallyStabilized that all good nodes mutually
perceive each other to be in the Maintain state.

Closure – When all good nodes have converged such that ∆Local_Timer(C) ≤ ∆Precision, at time C, the
system shall remain within the self-stabilization precision ∆Precision  for t ≥ C, for real time t.

∀ Ni, Nj ∈ KG, t ≥ C, ∆Local_Timer(t) ≤ ∆Precision.
Proof – It follows from Theorems ClosureAllMaintain and LocalTimerWithinPrecision that such
system always remains stabilized and ∆Local_Timer(t) ≤ ∆Precision for t ≥ C.         ♦

This protocol neither maintains a history of past behavior of the nodes nor does it attempt
to classify the nodes into good and faulty ones.  Since this protocol self-stabilizes from any state,
initialization and/or reintegration are not treated as special cases.  Therefore, a reintegrating node
will always be admitted to participate in the self-stabilization process as soon as it becomes
active.  Continual transmission of the Affirm messages by the good nodes expedites the
reintegration process.

Lemma ResyncWithinPTPlusPM – A good node transmits a Resync message within at most
(PT + PM) ∆AA clock ticks.
Proof – From Theorem ResyncWithinPT, a node in the Restore state will time out within
PT ∆AA clock ticks.  So, if a node transitions from the Restore state to the Maintain state before it
times out, it had remained in the Restore state for at most (PT - 1).  From Theorem
RestoreWithinPM, the node will time out within PM.  Therefore, within at most (PT + PM) ∆AA

clock ticks a node transmits a Resync message.         ♦

Theorem ConvergeTime – A system of K ≥ 3F + 1 nodes converges from any random state to
a self-stabilized state within C = (2PT + PM) ∆AA clock ticks.
Proof – It follows from Lemma ResyncWithinPTPlusPM that a good node transmits a
Resync message within at most (PT + PM) ∆AA clock ticks.  It follows from Theorems
ConvergeNoneMaintain, ConvergeAllMaintain, ConvergeSomeMaintain, ClosureAllMaintain,
LocalTimerWithinPrecision, and StabilizeFromAnyState that the system always converges.  It
also follows from these Theorem and Theorem RestoreToMaintain and Corollary
SteadyStateConvergeTime that the system converges and all good nodes will transition to the
Maintain  state  within the next PT ∆AA clock ticks.  Therefore, the system convergence  within
(PT + PM + PT) ∆AA.  Thus, C = (2PT + PM) ∆AA.         ♦
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If PM = PT, then C = 3PM, but since typically PM >> PT, therefore, C can be approximated
to C ≅ PM.  Therefore, the convergence time of this protocol is a linear function of the PM.

Theorem StopContinuousTransmit –A stabilized system of K ≥ 3F + 1 nodes does not have to
transmit Affirm messages continuously.
Proof – When the system is stabilized, all good nodes are within ∆Precision of each other.  It
follows from Corollary MutuallyStabilized that all good nodes mutually perceive each other to be
in the Maintain state.  Also, it follows from the protocol that the good nodes reset their
Local_timers after �∆Precision� clock ticks of transitioning to the Maintain state.  Since the good
nodes will not engage in another round of self-stabilization process until they time out, therefore,
stopping transmission of Affirm messages at this point will not affect the self-stabilization status
of the system for the remainder of the current self-stabilization period.         ♦

6.  Overhead of the Protocol

Since only two self-stabilization messages, namely Resync and Affirm messages, are
required for the proper operation of this protocol, a single bit suffices to represent both messages.
Therefore, for a data message w bits wide, the self-stabilization overhead will be 1/w per
transmission.

The continual aspect of the proposed protocol requires reaffirmation of self-stabilization
status of good nodes by periodic transmission of Affirm messages at ∆AA intervals.  As a result,
the maximum number of self-stabilization messages transmitted within any time interval is
deterministic and is a function of that time interval.  In particular, a good node transmits at most
PEffective / ∆AA self-stabilization messages during a period of PEffective,

where,
PEffective = time difference between any two consecutive resets of the Local_Timer
PEffective ≤ PM + 6F.

Therefore,
Number of messages sent by a node = PEffective / ∆AA

and
Total number of messages sent by K nodes = K PEffective / ∆AA.

7.  Achieving Tighter Precision

Since the self-stabilization messages are communicated at ∆AA intervals, if ∆AA, and hence
∆Precision, are larger than the desired precision, the system is said to be Coarsely Synchronized.
Otherwise, the system is said to be Finely Synchronized.  If the granularity provided by the self-
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stabilization precision is coarser than desired, a higher synchronization precision can be achieved
in a two step process.  First, a system from any initial state has to be Coarsely Synchronized and
guaranteed that the system remains Coarsely Synchronized and operates within a known
precision, ∆Precision.  The second step, in conjunction with the Coarse Synchronization protocol, is
to utilize a proven protocol that is based on the initial synchrony assumptions to achieve
optimum precision of the synchronized system as depicted in Figure 12.

Any State

Coarse Synchronization

∆Precision too large?

Fine Synchronization

Yes

No

Figure 12.  The interplay of Coarse and Fine level protocols.

As depicted in Figure 12, the Coarse Synchronization protocol initiates the start of the
Fine Synchronization protocol if a tighter precision of the system is desired.  The Coarse
protocol maintains self-stabilization of the system while the Fine Synchronization protocol
increases the precision of the system.

8.  Simulations and Model Checking

Several approaches were taken toward verification of this protocol.  The first is a VHSIC
Hardware Description Language (VHDL)2 simulation model that confirms the proper operations
of the protocol for specific cases.  The VHDL environment is primarily for simulation of specific
scenarios where examination of the known cases requires proper set up of the system for each
case separately.  As the number of cases to be examined increases, this process becomes
impractical.  Therefore, symbolic model checkers are used which can examine all possible

                                                
2 Very High Speed Integrated Circuit (VHSIC) Hardware Description Language.
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scenarios.  The Symbolic Model Verifier (SMV)3 was used for the second modeling of this
protocol.  It was executed on a PC with 4GB of memory running Linux.

The topology considered is a system of 4 nodes, as shown in Figure 13, such that all
nodes can directly communicate with all other nodes, where K = 4, G = 3 and F = 1.  With D = 1
and d = 0, and ∆AA = D+d = 1, the number of states needed to represent all possible combinations
of initial states for the entire 4-node system is 4.26x1046 states.  However, with proper
abstractions and employing a number of reduction techniques the state-space is reduced to
5.13x1024 states.  SMV is able to handle all possible scenarios and the protocol is exhaustively
model checked.

N2

N3N4

N1

Figure 13.  A 4-node fully-connected graph.

This verification effort was conducted to mechanically verify the claims of the protocol.
Verification of self-stabilizing a system of 4 nodes in the presence of a Byzantine fault may
deceptively seem trivial, but to the best of the author’s knowledge, no other self-stabilization
protocols has ever been mechanically verified to accomplish this goal.  The amount of memory
needed for the construction of the Binary Decision Diagram (BDD) readily reached the 4GB
available on the PC after construction of the state-space.  Therefore, model checking of larger
and more complex systems poses a greater challenge.  A detailed description of the model-
checking efforts for this 4-node system will be the subject of subsequent reports.

9.  Applications

The proposed self-stabilizing protocol is expected to have many practical applications as
well as many theoretical implications.  Embedded systems, distributed process control,
synchronization, inherent fault tolerance which also includes Byzantine agreement, computer
networks, the Internet, Internet applications, security, safety, automotive, aircraft, wired and
wireless telecommunications, graph theoretic problems, leader election, time division multiple
access (TDMA), and the SPIDER4 project [Torres 2005] at NASA-LaRC are a few examples.
These are some of the many areas of distributed systems that can use self-stabilization in order to
design more robust distributed systems.

                                                
3 http://www-2.cs.cmu.edu/~modelcheck/smv.html
4 Scalable Processor-Independent Design for Enhanced Reliability (SPIDER).
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10.  Conclusions

In this paper, a rapid Byzantine self-stabilizing clock synchronization protocol is
presented that self-stabilizes from any state.  It tolerates bursts of transient failures, and
deterministically converges with a linear convergence time with respect to the self-stabilization
period.  Upon self-stabilization, all good clocks proceed synchronously.  This protocol has been
the subject of a rigorous verification effort.  A 4-node system consisting of 3 good nodes and one
Byzantine faulty node has been proven correct using model checking.

The proposed protocol explores the timing and event driven facets of the self-stabilization
problem.  The protocol employs monitors to closely observe the activities of the nodes in the
system.  All timing measures of variables are based on the node’s local clock and thus no central
clock or externally generated pulse is used.

The proposed protocol is scalable with respect to the fundamental parameters, K, D, and
d.  The self-stabilization precision ∆Precision, ∆Local_Timer(t), and self-stabilization periods PT and PM

are functions of K, D and d.  The convergence time is a linear function of PT and PM and
deterministic.  As K increases so does the number of monitors instantiated in each node.  Also, as
K increases so does the number of communication channels in a system of fully connected
communication network.  Therefore, although there is no theoretical upper bound on the
maximum values for the fundamental parameters, implementation of this protocol may introduce
some practical limitations on the maximum value of these parameters and the choice of topology.

A proof of this protocol has been presented in this report.  The VHDL simulation and
SMV model-checking efforts that verified the correctness of this self-stabilizing protocol are
reported.  This protocol is expected to be used as the fundamental mechanism in bringing and
maintaining a system within bounded synchrony.

Integration of a higher level mechanism with this protocol needs to be further studied.
Furthermore, if a higher level secondary protocol is non-self-stabilizing, it is conjectured that it
can be made self-stabilizing when used in conjunction with the protocol presented here.

We have started formalizing the integration process of other protocols with this protocol
in order to achieve tighter synchronization.  We are also planning to implement this protocol in
hardware and characterize it in a representative adverse environment.
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Symbols

ρ bounded drift rate with respect to real time
d network imprecision
D event-response delay
F sum of all faulty nodes
G sum of all good nodes
K sum of all nodes
KG set of all good nodes
Resync self-stabilization message
Affirm self-stabilization message
R abbreviation for Resync message
A abbreviation for Affirm message
TA threshold for Accept() function
TR threshold for Retry() function
Restore self-stabilization state
Maintain self-stabilization state
T abbreviation for Restore state
M abbreviation for Maintain state
PT,min minimum period while in the Restore state
PT period while in the Restore state
PM period while in the Maintain state
∆AA time difference between the last consecutive Affirm messages
∆RR time difference between the last consecutive Resync messages
C maximum convergence time
∆Local_Timer(t) maximum time difference of Local_Timers of any two good nodes at real time t
∆Precision maximum self-stabilization precision
∆Drift maximum deviation from the initial synchrony
Ni the ith node
Mi the ith monitor of a node
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