NASA Conference Publication 3356

% / Fourth NASA Langley Formal Methods
Workshop

Compiled by
C. Michael Holloway and Kelly]. Hayhurst

Proceedings of a workshop sponsored by

the National Aeronautics and Space Administration,
Washington, D.C., and held at the Radisson Hotel,
Hampton, Virginia

September 10-12, 1997

. ___|
September 1997

NASA Conference Publication 3356

% / Fourth NASA Langley Formal Methods
Workshop
Compiled by

C. Michael Holloway and Kelly]. Hayhurst
Langley Research Center ® Hampton, Virginia

Proceedings of a workshop sponsored by

the National Aeronautics and Space Administration,
Washington, D.C., and held at the Radisson Hotel,
Hampton, Virginia

September 10-12, 1997

L.
September 1997

This publication is available from the following sources:

NASA Center for AeroSpace Information National Technical Information Service (NTIS)
800 Elkridge Landing Road 5285 Port Royal Road

Linthicum Heights, MD 21090-2934 Sprirgfield, VA 22161-2171

(301) 621-0390 (703) 487-4650

General Chairman’s Message

On behalf of the Langley Formal Methods Team, I welcome you to Lfm97, the Fourth
NASA Langley Formal Methods Workshop. The primary purpose of our workshops has always
been to bring together leading formal methods researchers and practicing engineers in an
environment in which each group can learn from the other. The three previous workshops were
limited to invited presentations, but we expanded this year’s workshop to include 17 submitted
papers. We believe that the program has something to offer to everyone, from those interested in
the theoretical aspects of formal methods to those interested in the practical application of
formal methods to help solve real problems. I hope that you will agree, and that you will find
your time at Lfm97 both interesting and useful.

Many of the slide presentations that will be given at the workshop will be available on the
World-Wide Web at <http://atb-www.larc.nasa.gov/Lfm97/>. Information on the NASA
Langley formal methods program is also available on the web at <http://atb-
www.larc.nasa.gov/fm.html>.

I look forward to meeting you during the workshop. Please let me know if there is
anything that I can do to help you while you are here.

C. Michael Holloway, Lfm97 General Chairman
E-mail: c.m.holloway @larc.nasa.gov
Postal Address: Mail Stop 130, NASA Langley Research Center, Hampton VA 23681-0001

iii

% 70rganization

Workshop General Chairman
Michael Holloway, NASA Langley Research Center

Program Committee

Ricky Butler, NASA Langley Research Center (chairman)
Jim Caldwell, NASA Langley Research Center

Victor Carrefio, NASA Langley Research Center

Ben DiVito, VIGYAN

David Guaspari, Odyssey Research Associates

Kelly Hayhurst, NASA Langley Research Center

Michael Holloway, NASA Langley Research Center (acting chairman)
Damir Jamsek, Odyssey Research Associates

Pat Lincoln, SRI International,

Paul Miner, NASA Langley Research Center

John Rushby, SRI International

Organizing Committee

Kelly Hayhurst, NASA Langley Research Center
Michael Holloway, NASA Langley Research Center
Lisa Peckham, NASA Langley Research Center
Pamela Verniel, NASA Langley Research Center

Sponsoring Organization
Assessment Technology Branch,

Flight Electronics Technology Division,
Research & Technology Group,

NASA Langley Research Center,
Hampton, Virginia, U.S.A.

Table of Contents

General Chairman's MESSAGE...............ccuueeoieieriieceireecieeeeeeteeteeeteeesesssesssesiesseseesssssssssessessesesessenssens iii

LEM97 OrGamiZAatioNcccooiiiiiierieieeeteeee et et eeae e et et este s e e saeessassesstesaessasasseresssansesnenssssasses v

Why Are Formal Methods Not Used More Widely?..............ccocvvvmioemeeicieieeeeeeeeeeeeeeee v 1
John Knight, Colleen DeJong, Matthew Gibble, and Luis Nakano

Plotting The Escape from The Tower: A Formalist's Practicality Primercccccccceue.n..... 13
James Sutton

Proving Properties of ACCIAENLS...................ooeeiiiiiirieeieeeeeeee et seeeereteseeeeeesnsessesasessessasssnennens 21

C. W. Johnson

Formalization and Analysis of the Separation Minima for Aircraft in the North Atlantic Region 35
Nancy Day, Jeffrey Joyce, and Gerry Pelletier

Modeling and Validating SAFER in VDM-SLottt aesee s 51
Sten Agerholm and Peter Gorm Larsen

Requirements Analysis of Real-Time Control Systems Using PVSc.cccoiieviniineeeenne. 65
Bruno Dutertre and Victoria Stavridou

Reuse of a Formal Model for Requirements Validation......................cccooeiiveeieeeniiniiniecreeeee. 75
Robyn Lutz

Applying the SCR Requirements Method to a Simple Autopilotcccooevreviiininninnieneninne 87
Ramesh Bharadwaj and Constance Heitmeyer

A Tabular Language for System Designcc.cccooiiriniiiiiniiiertereereeeeee e ettt eseenas 103
Steven Johnson

Verifying Communication Related Safety Constraints in RSML Specifications 115
Mats P.E. Heimdahl

Towards High-Assurance High-Performance Program Synthesisccccocoviiiivnnnnnnncnene. 129
Michael Lowry, Steven Roach, and Jeffrey Van Baalen

On the Automatic Discovery of Loop Invariants.................cccocceieiioieeeenininieeceeceeesteeeeseeeseeseeenas 137
Andrew Ireland and Jamie Stark

PV: A Model-Checker for Verifying LTL-X Properties..............ccccccoeierinenenieercneeseneenenreeeeeaeenns 153
Ratan Nalumasu and Ganesh Gopalakrishnan

Automated Deductive Verification of Parallel Systems..............c..ccooueeeiiiniiiniieiniencineeceeeeernne 163
Hassen Saidi

Robust Computer System Proofs in PVSttt 177
Matthew Wilding

Domain Checking Z SpecifiCatiOnScccooiiiiiiiiiiiiiieccceee ettt ettt esseesenees 185
Mark Saaltink

Fundamental Hardware Design in PVS ... eresee e e e e eees 193

James Leathrum, Jr.

vii

Why Are Formal Methods Not Used More Widely?

John C. Knight Colleen L. DeJong Matthew S. Gibble Luis G. Nakano

(knight | c1d9h | msg7y | nakano) @virginia.edu
Department of Computer Science
University of Virginia
Charlottesville, VA 22903

Abstract

Despite extensive development over many years and
significant demonstrated benefits, formal methods
remain poorly accepted by industrial practitioners.
Many reasons have been suggested for this situation
such as a claim that they extent the development cycle,
that they require difficult mathematics, that inadequate
tools exist, and that they are incompatible with other
software packages. There is little empirical evidence
that any of these reasons is valid. The research presented
here addresses the question of why formal methods are
not used more widely. The approach used was to
develop a formal specification for a safety-critical appli-
cation using several specification notations and assess
the results in a comprehensive evaluation framework.
The results of the experiment suggests that there remain
many impediments to the routine use of formal methods.

1 Introduction

For many years, academics have claimed that the use of
formal methods in software development would help
industry meet its goals of generating a better software
process and increasing software quality. The benefits
that have been cited include finding defects earlier, auto-
mating checking of certain properties, and decreasing
rework. Despite their popularity in academia and these
claimed benefits, formal methods are still not widely
used by commercial software companies. Industrial
authors have expressed frustration in trying to incorpo-
rate formal technologies into practical software develop-
ment for many reasons including: the perception that
they add lengthy stages to the process; they require
extensive personnel training; or they are incompatible
with other software packages. Experts in formal meth-
ods have tried to analyse the situation and provide sys-
tematic insight into the reasons for this lack of
acceptance [4, 7, 9].

The goals of the research presented here are to
investigate this disparity between research and industry,
and to determine what steps might be taken to increase

the benefits realized by industry from formal methods.
The initial hypothesis for the relative lack of use of for-
mal methods was that industrial practitioners were
reluctant to change their current methods and hence they
overlooked the benefits that formal methods could pro-
vide. However, upon attempting to apply several formal
techniques to a significant application in a case study,
several shortcomings that are actually well-known
impeded progress dramatically right at the outset.
Examples of the difficulties encountered were that a sin-
gle specification language could describe only a rela-
tively small part of the system, and necessary tools were
either not available, not compatible with other develop-
ment tools, or too slow.

A new hypothesis was formulated in response to
these findings. This second hypothesis was that formal
methods must overcome a number of relatively mun-
dane but important practical hurdles before their bene-
fits can be realized. These practical hurdles arise from
the current state of software-development practice.
While the methods used in industry are rarely formally
based, they are reasonably well-developed and under-
stood. In order to be incorporated into industrial prac-
tice, formal methods must meet this current standard.

After formulating this second hypothesis, we set
out to characterize these practical hurdles. A variety of
evaluations have appeared in the literature written
largely by researchers and with conclusions that tend to
praise formal methods. However, further investigation
of the evaluations found them lacking. The criteria used
for evaluation tended to be vague and ambiguous. They
were often derived from the author’s experience with a
particular project, with little substantiation that the list
of criteria was in any sense complete or even applicable
to a range of projects. In addition to defects in the crite-
ria themselves, the methods of evaluation were subjec-
tive. All of this resulted in little insight into the general
characteristics or utility of the formal method.

In this paper we summarize an evaluation frame-
work for formal methods and present results of applying
the framework to several formal techniques. The com-
plete framework provides a comprehensive list of evalu-

ation criteria together with the rationale for each. The
basis of the evaluation framework is the need for any
software technology, including formal methods, to con-
tribute to one overriding goal—the cost-effective devel-
opment of high-quality software. The results come from
the development of formal specifications in several
notations for a safety-critical application together with
the application of a theorem-proving system to the
application.

In the next section we summarize previous work
both in the use of formal methods in software develop-
ment and their evaluation. Then we present a summary
of our evaluation framework, and we follow that with a
summary of the results of its application in a case
studyl. Finally, we present our conclusions.

2 Previous Work

2.1 Formal Specification

Formal methods have made some inroads into industrial
practice. A fairly large number of projects have been
undertaken using formal specification in notations such
as Z, VDM, PVS, and Statecharts. The most comprehen-
sive report on such work is the well-known study by
Craigen, Gerhart, and Ralston [2].

iLogix gives summaries of some of the industrial
applications in which the Statemate family of tools has
been used [12]. Cardiac Pacemakers, Inc., a unit of
Guidant Corp., used Statemate to speed up development
of defibrillators and pacemakers. Animations of the
Statechart models allowed them to examine interactions
between features before building a prototype and to
receive feedback on the design from physicians. AOA
Apparatebau used Statemate to design a new waste sys-
tem for the Airbus A330 aircraft. Animation of the sys-
tem allowed them to easily test single and multiple
failures. Boeing used Statecharts in the development
and validation of electrical, mechanical, and avionics
systems as well as in their integration [14].

The Hursley Park laboratory of IBM UK has used Z
in two major projects involving CICS [11]. The first of
these was the development of a new release of the sys-
tem and this release showed quality improvements cor-
responding to the sections which were formally
specified. The second project was the formal specifica-
tion of the application programming interface.

SCR is a formal method developed at the Naval
Research Laboratory during an effort to re-engineer the
flight control software for the A-7 aircraft [8]. Since its

1. A complete report of the research can be found
elsewhere [3, 6].

introduction, the SCR methodology has been expanded
and more formally defined. It has been used on several
industrial projects, such as a submarine communications
system [10] and the certification of the shutdown system
for a nuclear generating station [2], but never without
the involvement of research or academic experts.

2.2 Formal Verification

Some industrial applications of formal verification have
been reported using tools such as HOL, Nqthm, EVES,
and PVS. Despite the large number of research projects
that have used formal methods, the number of industrial
projects that have utilized formal verification is quite
small. Of the industrial projects that have taken place,
the majority are research projects as opposed to actual
practice producing real products.

By far the largest application of formal verification
has been in hardware verification. Although hardware
verification is not the subject of this paper, we note that
successful application to hardware design is a strong
indication that similar success with software is possible.

Specification analysis is the area within the soft-
ware domain where theorem provers are being used.
Lutz and Ampo applied mechanical analysis tools, spe-
cifically PVS, to the requirements analysis of critical
spacecraft software [13]. This project consisted of spec-
ifying and analyzing the requirements for portions of the
Cassini spacecraft’s system-level fault-protection soft-
ware. This project was more of an experimental study
examining the applicability of formal methods and
mechanical analysis to industrial software practices.

2.3 Evaluation of Formal Methods

Various authors have proposed evaluation criteria for
formal methods and used them in a variety of ways.
Rushby introduced some ideas intended to help practi-
tioners select a verification system and also offered a set
of evaluation criteria for specification notations [15].
Faulk also proposed a set of evaluation criteria for spec-
ification notations [5].

A comprehensive approach to evaluation and some
results were presented by Ardis et al [1]. In this work, a
set of criteria was established for the evaluation of for-
mal specification notations and the set was then applied
to several notations. The evaluation was performed on a
sample problem from the field of telecommunications.

3 Evaluation Framework

3.1 Framework Basis

Our objective was to evaluate formal methods in a sys-
tematic manner, and an evaluation framework enabled
us to generate a clear and complete set of evaluation cri-
teria. The alternative was merely to develop a list of
seemingly relevant criteria, but such an ad hoc list,
though it might appear useful, leaves three important
questions unanswered:

¢ Where did the criteria on the list come from?
* Why are the criteria on the list considered important?
¢ Is the list complete?

Questions such as these are not answered readily
from a list of criteria. An investigation of the develop-
ment of the criteria could answer these questions, but
the framework summarized here provides a defendable
list of criteria for the evaluation of specification lan-
guages and mechanical analysis tools.

The basis of our evaluation framework is software
development and the associated software lifecycle. In
other words, we seek to discover how formal methods
contribute to software development and how they fit
into the software lifecycle. The criteria used for an eval-
uation of formal methods should ultimately return to the
question, “How will this help build better software?”,
where the definition of better is not restricted to a cer-
tain set of goals. There are two aspects to this ques-
tion—first,” what is needed to build software and,
second, how can the use of formal methods augment the
current development practices of industry to help build
“better” software?

The question of what is needed to build software
leads us to examine current practice. Current methods of
software development divide the activities into lifecycle
phases. Such a division focuses the developers’ atten-
tion on the tasks that must be completed. But the lifecy-
cle alone is not sufficient to describe the current process
of building software since development is guided by
program management activities. These activities con-
tinue throughout the lifecycle, monitoring and directing
1t.

An evaluation of formal methods technologies must
examine their compatibility with current practice and
the actual benefits they realize over the entire lifecycle.
In order to be accepted by industrial practitioners, for-
mal methods have to meet certain objectives:

* They must not detract from the accomplishments
achieved by current methods.

» They must augment current methods so as to permit

industry to build “better” software.

* They must be consistent with those current methods
with which they must be integrated.

* They must be compatible with the tools and tech-
niques that are in current use.

A further difficulty is that each project has different
practical requirements. For instance, if the goal of a
project is to be the first commercial vendor to develop a
certain networked Java application, the reliability is less
important than the speed of production. In this context,
“better” software would probably imply a faster time to
market, whereas in a safety-critical system, “better”
would refer to greater reliability of the software.

We present here only a sample of the framework
because of space limitations. The complete framework
is in two major parts—one for formal specification and
the other for mechanical analysis techniques. The
framework is structured by the six phases of the soft-
ware lifecycle—requirements analysis, requirements
specification, design, implementation, verification, and
maintenance—and for each phase a set of criteria that
must be met have been identified and documented along
with the rationale for each.

As an example of the way in which the framework
operates, consider the oft-cited criterion that a formal
specification language must be “readable”. In practice,
this is completely inadequate as a criterion because it is
imprecisely defined and is untestable. In practice, a for-
mal specification is read by engineers with different
goals, skills, and needs in each phase of the lifecycle.
What is readable to an engineer involved in developing
a specification is not necessarily readable to an engineer
using the specification for reference during implementa-
tion or maintenance. Thus, there are in fact many impor-
tant criteria associated with the notion of a readable
specification—the criteria are determined by the lifecy-
cle phase and their relative importance by the product
goals.

A selection of the criteria used for formal specifica-
tion in the framework is presented in the next subsec-
tion. For brevity here, they are not broken down by
lifecycle phase. In addition, they were chosen for illus-
tration and are in no sense complete. In general, we use
criteria for illustration that have not been noted by oth-
ers, and we include the rational for each.

3.2 Criteria for Formal Specification

* Coverage.
Real systems are large and complex with many
aspects. For a specification notation to serve well, it
must either permit description of all of an application

or be designed to operate with the other notations that
will be required.

Integration with other components.

A specification is not developed in isolation, but
rather as part of the larger software development pro-
cess. Any specification technology must integrate
with the other components of this process, such as
documentation, templates, management information,
and executive summaries. Often a system database
and version control system are used. A part or all of
the specification might be inserted into another docu-
ment, so the specification must have a common file
format. There will almost always be the need for a
printed version of the specification. It should be easy
to print the entire specification, including comments
and non-functional requirements, in a straightforward
manner. The formal method technology must be
suited to the larger working environment.

Group development.

Every software project involves more than one per-
son. During the development of the specification, it
must be possible for several people to work in paral-
lel and combine their efforts into a comprehensive
work product. This means that any specification tech-
nique must provide support for the idea of separate
development—a notion equivalent to that of separate
compilation of source programs in languages such as
Ada that have syntactic structures and very precise
semantics forseparately compiled units.

Evolution.

A specification is not built in one effort and then set
in concrete; it is developed and changed over time.
The specification technology must support the logical
evolution of specification and ease its change.
Incompleteness must be tolerated. Functionality such
as searching, replacing, cutting, copying, and file
insertion must be provided. Modularity and informa-
tion hiding must be facilitated, so that for example a
change in a definition is automatically propagated to
every usage of it. Large scale manipulations must
also be supported, such as moving entire sections or
making them subsections.

Usability.

The ability to locate relevant information is a vital
part of the utility of a specification. The ability to
search, for example with regular expressions is valu-
able, but not sufficient. The specification is intended
to serve as a means of communication. Annotating
the specification with explanations, rationale, or
assumptions is important for both the use of the spec-
ification in later phases and for modifications of the
specification. This annotation must be easy to create

and access, and it must be linked to a part of the spec-
ification, so that changes effect the corresponding
annotation. The formal method should also provide
structuring mechanisms to aid in navigation since the
specification document is likely to be large. In a natu-
ral language document, the table of contents and
index assist in the location of information; many tools
allow them to be generated automatically from the
text. Another useful capability seen in text editing is
the use of hypertext links to a related section or glos-
sary entry. Formal methods must address the usability
of the resulting specification documents.

Compatibility with design tools.

A very strong relationship exists between the specifi-
cation of a system and its design, therefore the tools
should also be closely related. It should not be neces-
sary for the designer to re-enter parts of the specifica-
tion that are also part of the design. Either the
specification tool must also fully support the design
phase or it must be compatible with common design
tools.

Compatible with design methods.

Just as the specification technology must be the same
as or compatible with popular design tools, it must
also be compatible with popular design methods. A
difficult transition from a formal specification to say
an object-oriented design is an unacceptable lifecycle
burden.

Communicate desired system characteristics to
designers.

In order to design the system, the designer must be
able to read and understand the specification. Natu-
rally, the specification should describe the normal
operating procedure, any error conditions and the
response that is appropriate, and non-functional
requirements. The specification has to answer every
question raised about the system by the designer
(who is not likely to be an author of the specifica-
tion).

Facilitate design process.

The more easily a design can be developed from the
specification, the better. The use of a formal methods
could speed up the design process by describing the
system clearly and precisely. The designer must take
the abstract description in the specification and
describe how a real system is going to implement the
specification. Information hiding must be maintained
and the ability to view the system at varying levels of
abstraction must be provided.

Implementation performance.
Implementation is hindered by any lack of clarity in
the specification (and design) and misunderstandings

that cause rework. The more complete, precise, and
detailed the specification and design are, the more
smoothly implementation will go. An improvement
in implementation efficiency is expected, therefore,
from the use of formal specification because of its
ability to achieve clarity and precision. This effi-
ciency improvement is a critical element in the over-
all cost effectiveness that is realized by introducing
formal specification into the lifecycle.

Support for unit testing in implementation phase.

A precise, complete, and accurate specification can
greatly aid in the formulation of a unit test suite, per-
haps through automatic generation. It should also
minimize rework, since the requirements are well
defined and unambiguously stated in the specifica-
tion. Again, this expected benefit is a critical element
in the overall cost effectiveness argument.

Maintenance comprehension.

An engineer responsible for maintenance should be
able to study the specification and gain either a broad
or detailed understanding of the system quickly. The
documentation of non-functional requirements and
design decisions is vital to a complete understanding
of the system. The specification should be easy for
the maintainer to navigate, accurate, complete, and
easy to reference to find answers to questions. Struc-
ture, support for information hiding, and the ability to
view the specification at different levels of abstrac-
tion are essential.

Maintenance changes.

When a change is made to an operational software
system, the specification, the design, the implementa-
tion, and the verification must be changed. This is
clearly facilitated if the different work products are
carefully linked together so the changes needed in the
code, for example, are very similar to those in the
specification. In many current developments the
specification is changed as an afterthought or not at
all. Ideally the specification should be changed first
to examine the effects of the change on the system.
This requires that the specification be easily changed
and that the document remains well-structured. Once
changed, formal methods could allow static analysis,
animation, or even the establishment of proofs of
properties on the new specification before the change
is propagated to the code. Clearly both validation and
verification of a maintenance change are important
and lifecycle support is required.

4 Experimental Evaluation

To evaluate the utility of a formal technique in industrial
practice with any degree of statistical rigor, the tech-
nique must be tested in a large number and variety of
projects. The projects chosen for study should encom-
pass a wide range of application areas with a variety of
goals. The population of engineers involved should con-
sist of experienced industrial software practitioners,
including clients, managers, designers, developers, tech-
nical writers, and maintainers. Finally, projects should
be followed from conception through a period of main-
tenance, and measurements of productivity and product
quality made before and after the addition of formal
methods to the development process, so that a compari-
son can be made.

Unfortunately, a study‘ with these characteristics
would require many years, the cooperation of thousands
of people, and is beyond the scope of this endeavor. The
study reported here is quite modest and the results corre-
spondingly modest. What we report: (a) is based on a
single application of a particular type; (b) comes from a
single development activity; (c) involves specifications
that have not yet proceeded to implementation; and (d)
is based on specifications that were not developed by
experts.

We have applied the evaluation framework to a
small but realistic safety-critical application in order to
obtain assessments of various formal techniques. The
application is the University of Virginia Reactor
(UVAR), a research reactor that is used for the training
of nuclear engineering students, service work in the
areas of neutron activation analysis and radioisotope
generation, neutron radiography, radiation damage stud-
ies, and other research [16].

The experimental evaluation was conducted by first
developing three separate specifications for part of a
control system for the reactor in three specification lan-
guages—Z, PVS, and Statecharts—and establishing
proofs of safety properties of the PVS specification
using the PVS system. During the creation of these arti-
facts, various observations and measurements were
made by those involved in the development. Once the
artifacts were complete, a second set of observations
and measurements were made by the developers, com-
puter scientists not involved in the development, and
nuclear engineers and reactor operational staff.

4.1 The Case Study Application

The UVAR is a “swimming pool” reactor, i.e., the reac-
tor core is submerged in a very large tank of water. The
core is located under approximately 22 feet of water on
an 8x8 grid-plate that is suspended from the top of the

Cooling
Tower

Heat
Exchanger

Safety Rods

Experiments n

Regulator Rod
Control

Sensor Data

Reactor Core

Header

O

Pump

Fig. 1. - The University of Virginia reactor system.

reactor pool. The reactor core is made up of a variable
number of fuel -elements and in-core experiments, and
always includes four control rod elements. Three of
these control rods provide gross control and safety. They
are coupled magnetically to their drive mechanisms, and
they drop into the core by gravity if power fails or a
safety shutdown signal (known as a “SCRAM”) is gen-
erated either by the operator or the reactor protection
system. The fourth rod is a regulating rod that is fixed to
a drive mechanism and is therefore non-scramable. The
regulating rod is moved automatically by the drive
mechanism to maintain fine control of the power level
to compensate for small changes in reactivity associated
with normal operations [16].

The heat capacity of the pool is sufficient for
steady-state operation at 200 kW with natural convec-
tion cooling. When the reactor is operated above 200
kW, the water in the pool is drawn down through the
core by a pump via a header located beneath the grid-
plate to a heat exchanger that transfers the heat gener-
ated in the water to a secondary system. A cooling tower
located on the roof of the facility exhausts the heat and
the cooled primary water is returned to the pool. The
overall organization of the system is shown in Fig. 1.

The evaluation that we undertook involved the
development of formal specifications for the following

three components of a proposed new digital control sys-
tem:

« the alarm system that alerts the operator of conditions
needing attention;

« the logic associated with shutting the reactor down in
the event of a possible safety problem (the SCRAM
logic); and

* the activities undertaken by the operator to start the
reactor operating.

For the sake of brevity, we only summarize the
results of the study' in the following subsections. The
first subsection address the specific evaluation criteria
outlined earlier and reflect the experience of the devel-
opers. The next subsection itemizes specific results
obtained from the nuclear engineers. The last subsection
documents results obtained from computer scientists

4.2 Specification Assessment By Developers

e Coverage.
Our experience with the UVAR specifications is simi-
lar to that of others—many things that have to be

1. Further details can be found elsewhere [3. 6].

specified are not covered by any of the notations we
are using. A particularly significant example is the
user interface. For systems like the UVAR, the user
interface is complex, absolutely critical, and must be
formally specified. Even though a model-based spec-
ification notation, like Z for example, is not really
suitable for such specification, its integration with
other notations is essential.

Integration with other components.

There is a complete lack on compatibility of the tools
for the three notations with common text preparation
systems. It is remarkably difficult, for example, even
to get a printed copy of a specification in any of these
notations. Worse is the fact that non-formal elements
of a specification cannot be included in a specifica-
tion and manipulated in a consistent way. A complete
specification is more than the formal part. In the
UVAR specification, for example, extensive technical
background material has to be included.

Group development.

Statemate offers some support for version control and
access control but neither Z nor PVS provide either.
The latter is actually preferable because artifacts
using the notations can then be handled by existing
tools. The Statemate approach to projects and users is
completely inconsistent with that which large
projects are likely to be using for other purposes.

Support for separate development (akin, as noted
above, to separate compilation of source code in lan-
guages like Ada) is completely absent from all three
notations.

Evolution.

The structure of both standard Z and the PVS specifi-
cation notation offer no support for building specifi-
cations with any structure that facilitates evolution.
Even the elementary notion of information hiding is
absent. Statecharts offer some limited support using
the hierarchical chart facility. In the UVAR specifica-
tion, for example, there is extensive material related
to physical devices that might change over time. Sim-
ilarly, since the digital system is experimental, the
concepts it includes are subject to change.

Usability.

Both the structure and the tool support associated
with these three notations provide essentially no sup-
port for navigation and searching of a specification.
The PVS specification for the UVAR, for example,
defines literally dozens of identifiers. Reading, navi-
gating, and changing a specification of even the
UVAR’s moderate size is difficult and error prone.

» Compatibility with design tools and design methods.
Although specification and design are supposed to be
separate activities, there is always a lot of overlap.
The SCRAM logic for the UVAR; for example, is a
significant part of the specification and a clear imple-
mentation structure is implied by the basic function-
ality required. Despite this, neither Z nor PVS
provides a systematic link to any design methods or
tools, nor do they explicitly avoid doing so in an
effort to support generality. Statemate, on the other
hand, embeds the notion of data flow diagrams into
the basic specification structure and thereby biases
designs towards structured design, an approach that is
not universally preferred.

4.3 Specification Assessment By Nuclear
Engineers

The following results were obtained by interview. For
each of the specification notations, the notation and the
associated specification were presented to a nuclear
engineer and then the engineer was asked a series of
questions derived from the evaluation framework. This
process was repeated twice for each notation (making a
total of six interviews in all).

The presentation of the notation was informal and
brief, intended only to permit the nuclear engineer to
understand the subsequent presentation of the specifica-
tion. The presentation of the specification was intention-
ally very much like an inspection. As a result, we were
able to get very specific information about how under-
standable the specifications were to domain experts.
This is an important issue since, for the most part,
human inspection is the primary vehicle for specifica-
tion validation.

The results were quite unexpected and the detailed
discussion resulting from the interviews was more
enlightening than the specific answers to the framework
questions. The majority of the following are observa-
tions that resulted from these discussions. The first three
points are general and the remainder are language spe-
cific.

* The role of the specification has to be understood.
Communicating with people from a different field of
expertise is always difficult. In this experiment, a par-
ticularly troublesome issue was the role of the speci-
fication in software development—the nuclear
engineers were not familiar with this role. One of the
participants considered one of the specifications to be
source code and wanted to see the execution to check
correctness. Another considered it a summary that
should be easy to read and not contain many details.
The lesson learned was that it is vital that application

engineers understand the role of a specification
before trying to read or manipulate one.

Direct and indirect influence on the system are diffi-
cult to distinguish.

A common difficulty for the nuclear engineers in
understanding the specifications was with the differ-
ence between direct and indirect influence on the
state of the system. The nuclear control system is
reactive—it is constantly making alterations in
response to input received from sensors. A change in
the height of a rod causes changes in the sensor val-
ues. The height of the rod can be altered directly by
the system, but the sensor values change indirectly as
a result of the movement of the rod.

The formal specification notations designate parts of
the system that can be influenced directly differently
than those that cannot, for example Z uses primed
identifiers to indicate items that are changed directly
by operations. These designations were a constant
source of questions because, along with the changes
in the system from direct influence, there are
expected indirect changes in the state of the system.
By no means is this an argument to abolish the sepa-
rate designations for items that can be directly influ-
enced, rather to point out a difficulty in understanding
these notations that is forgotten once the notation is
familiar.

The use of symbolic constants is problematic.

An interesting anecdote involves the use of constants.
It is customary, in fact preached, in computer science
that constants should be defined in one place and
given symbols so that no “magic” numbers are used
throughout the rest of the system. The reasons are
first that the numbers are unexplained, and second
that every location of use has to be found if the con-
stant is changed. To most of the nuclear engineers,
this organization was clear and desirable since they
did not have the constants memorized and the values
would have to be checked against other documenta-
tion in an effort separate from the general perusal of
the specification. However, one participant was con-
fused by the use of constant identifiers rather than
numbers because the specific values have important
meanings in the context of the application.

There is no road back to natural language specifica-
tion.

Once the nuclear engineers had experience with one
or more of the formal specification notations, they
said they would never trust a natural language speci-
fication again. They were impressed by the level of
understanding of the system that was required to
write the specifications and felt that with natural lan-

guage they could never be sure that the words were
not just copied down with little understanding of the
system. While they would have liked some natural
language to accompany the formal specifications,
they wanted to retain the formalisms.

4317

* Effective for communication.

The Z specification was described as meaningful and
useful for communication by the nuclear engineers.
One participant felt comfortable with the notation
after a short period of time, no longer needed full
translations of the schemas, and began to find errors
in the specification. This participant felt that, after a
few iterations of discussion and correction of the
specification, he would feel that there was a mutual
understanding of the system.

Mathematical notation is not familiar.

A surprising discovery was that the mathematical
notation used in Z was not familiar to the nuclear
engineers. One participant expressed the desire for a
glossary of symbols, including for all, there exists,
and implies. Another asked why words, which are
universally understood, were not used in place of the
symbols.

Validation by inspection was effective.

In this case, the presenter of the Z specification was
not the author, but another computer scientist familiar
with the project, and the process of explaining the
specification to the nuclear engineers uncovered
errors. This helps to substantiate the generally
accepted view of the community that inspection is
valuable and cost effective.

4.3.2 PVS

o Looks like source code.

The first impressions of the PVS specification were
that it looked like source code, it was too long, and
there was too much text. One participant said he did
not even want to try to read it. Another criticism from
another participant was that there were too many
variables leading to confusion.

Validation by inspection was effective.

Although one of the participants was not comfortable
reading the PVS notation, a detailed explanation of
the specification facilitated useful discussions that
identified errors in the specification and in the speci-
fiers” understanding of the system. One way that this
occurred was that the nuclear engineer asked ques-
tions to check the model. He identified a misunder-
standing of the power levels of the reactor that
necessitated the redesign of a section of the specifica-

tion. If this error had not been found until the system
had been implemented, it would have been impossi-
ble to increase the power level of the reactor above
about half of the value at which it is licensed to oper-
ate. The use of meaningful variable names was key to
the understanding of the specification.

In addition to errors found by the nuclear engineers,
presenting the specification caused the specifier to
discover an error in his own specification.

4.3.3 Statecharts

 Effective for communication.

After less than an hour of introduction to the State-
charts notation and specification, one participant was
no longer intimidated by the notation and was able to
understand the specification without assistance. The
graphical notation was appealing, as well as the obvi-
ous flow of the system following the arrows. The cli-
che “a picture is worth a thousand words” was used
repeatedly. The structure of the specification was
much more evident in Statecharts than the other two
notations because of its hierarchical nature.

* Difficult to search and navigate.

In a very detailed examination of the specification,
participants complained of the difficulties of knowing
the state of the whole system at once and of identify-
ing the results of actions since the actions could affect
any page of the specification. Whenever the details of
a state were included in the diagram of that state
rather than being saved in another file, the lack of
abstraction seemed to be confusing.

» Easy to learn.

Within two hours of discussion of the specification,
the participants displayed the desire to learn the syn-
tax of the notation in order to understand the subtle-
ties of the specification. A large number of errors
were identified during the discussion of the specifica-
tion and the need for additional robustness was evi-
dent. The participants found the specification easy to
understand with the explanation from the specifier
and felt that they could then continue to study it
alone. They also felt comfortable enough with the
notation that, if there were changes to be made to the
system, they felt they could write Statecharts of the
proposed changes.

* Specification is superior to existing documentation.
The participants from the nuclear reactor staff felt
that the specifiers understood the system better than
most of the operators. They felt that they could even-
tually come to an agreement that the Statechart speci-
fication correctly described the system and did not
feel that they would have the same confidence with

an English document. They said that this specifica-
tion had the potential to be used in the training of
their operators and perhaps even to replace their SAR
which describes the control of the nuclear reactor.
These are significant comments.

4.4 Specification Assessment By Computer
Scientists

The participants in this portion of the study were seven
computer science students. There was one undergradu-
ate, four students working toward or finished with a
master’s degree, and two Ph.D. candidates. Two partici-
pants had a year or less work experience developing
software, three had one to five years experience, and
two had more than five years of work experience. All
had knowledge of the C programming language.
Regarding their experience with formal specification
methods, four had no experience prior to this study, two
had a segment of a course, and one had an entire course.
All had some, but not extensive, knowledge of basic sci-
ence and engineering and little to no knowledge of
nuclear reactors.

44.1Z

* Fairly easy to understand, navigate, and search.

The Z specification was generally well-structured and
this aided the participants in understanding and
searching the specification. However, one participant
expressed difficulty locating the definitions of types
since they are not defined near their use and another
suggested that the specification would be easier to
search, navigate, and use for reference if there were a
table of contents. The participants felt strongly that Z
would aid communication about the system, however
they considered it only average for use in the mainte-
nance phase as an introduction to the system and as a
reference document about the system. Familiarity
with logic symbols, the smallness and simplicity of
the notation, and the natural language descriptions
aided the participants in understanding the specifica-
tion.

* Reasonably easy to learn.
None of the participants felt very confident in their
ability to use Z after this short introduction. A few of
the participants felt that Z was harder to learn than a
programming language, but most felt that it was as
easy or easier to learn. Difficulties in learning Z were
attributed to the mathematical notation, the unusual
delimiters of inputs and outputs, and the unfamiliarity
of the notation in general. No one thought that Z was
too large a notation and almost everyone thought the
complexity of the notation was appropriate for speci-

fication.

Implementable.

After a thorough inspection of the description of the
SCRAM logic in the specification, everyone saw
ways that it could be implemented. No one was sure
that the description was complete, however. Some
participants found errors in the specification. Upon
quick perusal of the rest of the specification, almost
everyone felt that all the features of the notation were
implementable. It was practically unanimous that Z
provided the appropriate level of detail about the sys-
tem for a specification.

4.4.2 PVS

* Difficult to understand, navigate, and search.

Although PVS is structured a lot like source code in
C (of which all participants claimed a lot or extensive
knowledge), it received low ratings in the areas of
structure, understandability, and searching. One par-
ticipant cited the formatting as hindering understand-
ing. It was deemed average to bad for use during the
maintenance phase as an introduction to the system or
as a reference document. The answers were widely
varied as to whether PVS would aid communication
between people involved in the software develop-
ment process.

Ease of learning mixed.

None of the participants felt confident using PVS
after this short introduction. Most felt that PVS was
as easy or easier to learn than a programming lan-
guage, but a few felt that it was harder to learn. No
one thought that the PVS notation had too few fea-
tures and most people thought that it had the appro-
priate amount of complexity, while a few felt that it
was too complex. Difficulties in learning the notation
were attributed to the size and complexity of the nota-
tion and the difficulty in understanding the keywords
and constructs. However, some participants felt that
the keywords and constructs were easy to learn and
PVS was similar to other notations with which they
were familiar.

Implementable.

After examining the scram logic in the PVS specifi-
cation, everyone saw ways that it could be imple-
mented, but a few saw some problems. No one was
certain whether the description of the scrams was
complete. After a quick inspection of the rest of the
specification, the participants felt that everything was
implementable. There was a wide range of responses
when asked whether PVS provided the appropriate
level of detail for a specification.

10

4.4.3 Statecharts

» Easy to understand.

Statecharts was described as well-structured and this
aided the participants in understanding the specifica-
tion. Difficulties in understanding the specification
were attributed to the global nature of events and the
division of the specification over many pages. The
responses indicated strongly that Statecharts would
aid communication between people in the develop-
ment of a software product.

* Difficult to navigate and search.
The structure of Statecharts aided in searching, but
one participant noted that the specification would be
easier to navigate, search, and use as reference, if it
had a table of contents. It was deemed average for use
in the maintenance phase as an introduction to the
system and as a reference document.

» Fairly easy to learn.

The participants did not feel confident in their ability
to specify a system using Statecharts at this point.
Difficulties in learning Statecharts were attributed to
the notation being unlike any notation they had seen
before and the constructs being difficult to under-
stand. However some people felt that Statecharts was
easy to learn because the notation was familiar,
graphical, small and simple, and the constructs were
easily understood. Most of the participants thought
that Statecharts was as easy or easier to learn than a
programming language.

* Implementable.

After studying the scram logic described in the State-
charts specification, everyone saw ways to implement
it, however no one was certain the description was
complete. After a quick survey of the specification,
almost every participant thought that all the features
of the notation were implementable. It was almost
unanimous that Statecharts provided the appropriate
level of detail about the system. Most of the partici-
pants thought that Statecharts notation contained the
appropriate level of complexity.

4.5 Mechanical Analysis With PVS

The PVS specification was subjected to limited analysis
with the PVS theorem-proving system. The purpose was
to evaluate the difficulties involved in dealing with this
modest sized specification and to learn what the practi-
cal issues might be that are limiting the wide-spread
application of mechanical theorem proving. This part of
the study was performed by the authors.

The conclusions from this part of the study fall into
two basic categories. The first concerns the “method”

part of formal methods. Devising the requisite theorems
and developing a proof strategy for them proved to be a
significant challenge and there is no real “method” that
can assist the specifier.

The second category of conclusions is in the area of
tool performance. Although the PVS system is very
powerful, this power is difficult to use. Some of the dif-
ficulties with the tool are the following:

* Syntax and type checking are laborious because the
system reports errors individually.

* The specification interface is very awkward to use
since, for example, it does not permit many display
items to be customized, does not provide status infor-
mation conveniently, and lacks expressivity.

* Navigation through a specification using the toolset
is extremely labored.

» The variation in delays that occur with different user
actions makes interactive use very difficult.

* The theorem prover interface is awkward to use
since, for example, information is not displayed con-
veniently during proof attempts, proofs are re-dis-
played after invalid commands, and certain
commands generate an overabundance of output.

These and many other observations lead us to con-
clude that the practical adoption of mechanical theorem
proving by industrial practitioners is being severely lim-
ited by one major problem—the difficulty of determin-
ing what should be proved to gain confidence in a
specification, and one relatively minor problem (or at
least a problem that should be minor)—the relatively
poor usability of the toolset.

5 Conclusions

Our assessment of the formal technologies that we used
is that there are many practical barriers to their routine
use in industrial software development projects. In most
cases, this will not be “news” either to the developers of
the techniques or the community at large. In fact, some
developers have been quite open in their discussion of
the pragmatic weaknesses of their technologies. Thus,
we offer little specific new information. However, the
accumulation of all the different criteria in our frame-
work together with their systematic development pro-
vides a clear picture of what is needed to achieve
success in industrial applications. It is important to keep
in mind that the criteria are not sufficient, merely neces-
sary.

Several of our results are surprising but two are
repeated here because of their significance. Both of

11

these comments arose during the interviews with the
nuclear engineers:

They felt that they could eventually come to an
agreement that the Statechart specification
correctly described the system and did not feel that
they would have the same confidence with an
English document.

Once the nuclear engineers had experience with
one or more of the formal specification notations,
they said they would never trust a natural
language specification again.

These are very positive comments although when read-
ing them it must be kept in mind that the nuclear engi-
neers involved had been exposed to this technology for
only a short time. However, these remarks provide
strong motivation for continued work in the area of for-
mal methods.

Perhaps the most important conclusion to be drawn
from this work is that the framework provides a detailed
research agenda for workers in this field. The potential
is tremendous but unless the criteria in the framework
are met by specific formal methods, their chance of
widespread acceptance is remote at best.

6 Acknowledgments

It is a pleasure to acknowledge those who patiently
described the requirements of the UVAR control system
including Tom Doyle, Bo Hosticka, Don Krause, Bob
Mulder, and Reed Johnson. The participants in this
study also deserve recognition: Roger Rydin, Reed
Johnson, William Dixon, Jim Kelly, Bob Mulder, Tom
Doyle, Emily West, Dale Newfield, Russ Haddleton,
Craig Chaney, Cassie Trontoski, Meng Yin, and Chenxi
Wang. This work was supported in part by the National
Science Foundation under grant number CCR-9213427,
in part by NASA under grant number NAG1-1123-FDP,
and in part by the U.S. Nuclear Regulatory Commission
under grant number NRC-04-94-093. This work was
performed under the auspices of the U.S. Nuclear Regu-
latory Commission. The views expressed are those of
the authors and do not necessarily reflect the position or
policy of the U.S. Nuclear Regulatory Commission.

References

[1] Mark A. Ardis, John A. Chaves, Lalita J. Jagadee-
san, Peter Mataga, Carlos Puchol, Mark G.
Staskauskas, and James Von Olnhausen. A Frame-
work for Evaluating Specification Methods for
Reactive Systems: Experience Report. IEEE

Transactions on Software Engineering, 22(6):378-

2]

[3]

(4]

(5]

[6]

(71

(8]

(9]

(10]

[11]

[12]

[13]

389, June 1996.

Dan Craigen, Susan Gerhart, Ted Ralston. An
International Survey of Industrial Applications of
Formal Methods. U.S. Department of Commerce,
March 1993.

Colleen L. DeJong, Matthew S. Gibble, John C.
Knight, and Luis G. Nakano. Formal Specification:
A Systematic Evaluation. Technical Report CS-97-
09, Department of Computer Science, University
of Virginia, Charlottesville, VA, June 1997.

David Dill and John Rushby. Acceptance of For-
mal Methods: Lessons from Hardware Design.
IEEE Computer, 29(4):23-24, April 1996.

Stuart Faulk. Software Requirements: A Tutorial.
Technical Report NRL/MR/5546—95-7775, Naval
Research Laboratories, November 14, 1995.

Matthew S. Gibble and John C. Knight. Experi-
ence Report Using PVS for a Nuclear Reactor
Control System. Technical Report CS-97-13,
Department of Computer Science, University of
Virginia, Charlottesville, VA, June 1997.

Anthony Hall. What is the Formal Methods Debate
About? IEEE Computer, 29(4):22-23, April 1996.

Kathryn L. Heninger. Specifying Software
Requirements for Complex Systems: New Tech-
niques and Their Application. IEEE Transactions
on Software Engineering, 6(1):2—13, January,
1980.

C. Michael Holloway and Ricky W. Butler. Imped-
iments to Industrial Use of Formal Methods. IEEE
Computer, 29(4):25-26, April 1996.

Constance Heitmeyer and John McLean. Abstract
Requirements Specification: A New Approach and
Its Application. IEEE Transactions on Software
Engineering, 9(5), Sept. 1983.

I. Houstan and S. King. CICS Project Report:
Experiences and Results from The Use Of Z In
IBM. VDM 91. Formal Software Development
Methods, Vol. 1: Conference Contribution. Lecture
Notes in Computer Science, Volume 552, Springer
Verlag, 588-596.

Some industrial uses of iLogix tools can be found
on-line at: <http://www.ilogix.com/company/suc-
cess.htm>, 1997.

Robyn Lutz and Yoko Ampo. Experience Report:
Using Formal Methods For Requirements Analysis
Of Critical Spacecraft Software. In Proceedings of
the 19th Annual Software Engineering Workshop,

12

[14]

[15]

[16]

pp. 231-248, Greenbelt, MD, December 1994.
NASA Goddard Space Flight Center.

C. R. Nobe and W. E. Warner. Lessons Learned
from a Trial Application of Requirements Model-
ing using Statecharts. In Proceedings the Second
International Conference on Requirements Engi-
neering, pp. 86-93, April 15-18, 1996.

John Rushby. Formal Methods and the Certifica-
tion of Critical Systems. Technical Report CSL-93-
7, SRI International, December 1993.

University of Virginia Reactor, The University of
Virginia Nuclear Reactor Tour Information Book-
let can be found on-line at: <http://min-
erva.acc. Virginia EDU/~reactor/>, 1997.

Plotting The Escape from The Tower:
A Formalist’s Practicality Primer

James M. Sutton

james.m.sutton-iii@boeing.com
Boeing North American
1800 Satellite Blvd., Mail Stop DL23
Duluth, Georgia 30155

Abstract

Formality will eventually become the norm in soft-
ware development. It will happen for the same rea-
sons that formality has become the norm in every
other engineering discipline: Quality, confidence,
objectivity, and even cost only make their greatest
strides when mathematics becomes the basis for a
discipline.

The theory of software formality has matured
greatly in the last ten years. Enough is now under-
stood to make formality useful not just to academia
but also to industry. The main impediment to wide-
spread adoption is financial: as formal methods are
typically applied, they cost their users more than they
pay them back. Nobody gets career credit for “doing
the right thing” to the detriment of their company.

Thus, formality will only be adopted when it pays
its own way. This is already happening on a few
projects. Achieving payback requires treating the
software lifecycle as an integrated whole of which
formality is just one aspect.

The formal methods available at present share
similar strengths and weaknesses. An effective for-
mal process takes advantage of those strengths and
compensates for those weaknesses. Compensation
comes through integration...using other methods and
approaches to “fill in” where formal methods are
weak, while allowing their strengths to continue to
shine.

In such a context formal methods have proven, on
real industrial projects, they can benefit everyone and

13

become the best business option. Adoption then fol-
lows without a need for further cajoling or coercion.

This paper will explore the use of formality in a
practical and self-justifying way, in the realistic in-
dustrial setting. The principles given will be illus-
trated from Boeing North American’s development
of the Brimstone missile system, and other programs.

1 Philosophical Foundations

Practicality always boils down to economics. If a
method is so unpleasant or difficult to use that work-
ers resist it or simply never become proficient, pro-
ductivity suffers and money is lost. If a method re-
quires such expensive tooling that resource costs can
never be recouped before technology evolution has
obsoleted the tool, and if productivity gains from that
tool’s use are less than the capital loss, again there is
no net benefit.

Therefore, the “gatekeeper” for adoption of for-
mality is that the benefits from its use must exceed its
costs. The challenge is to find ways of using formal-
ity which maximize benefits and minimize costs until
breakeven is achieved. As one would expect, the
benefits of formality come from its strengths, while
the costs come from its weaknesses.

The strengths of formality are already benefiting
users regularly. They are well known and under-
stood: assurance of internal correctness, consistency,
completeness, traceability and so forth. Much work is
ongoing to further improve these strengths.

The weaknesses of formality are also well known.
They include labor intensiveness, poor communica-

bility to others than formalists. lack of scaleability to
handle large problems, and poor efficiency in the
face of system change.

These weaknesses typically receive somewhat
less attention than do the strengths, perhaps because
we assume that little can be done about them for now
(placing our hopes on future breakthroughs in formal
technology to somehow reduce the problems). How-
ever, the assumption of present helplessness is incor-
rect.

Since significant benefits are already being ob-
tained from the strengths, most of the challenges in
making formality practical are currently found in
ameliorating its weaknesses and thus reducing its
costs. Not only are the weaknesses reducible, they
have on occasion been effectively overcome to make
formality a net contributor to project financial suc-
cess.

In industrial process engineering, one combines
differing methods, tools or procedures so the
strengths of some will always be offsetting the weak-
nesses of others. The goal is to yield products of
higher quality and better profitability than could have
been obtained through the use of any of the methods,
tools or procedures in isolation.

When formal methods are incorporated into the
industrial software development process, the formal
methods chosen must either be those whose weak-
nesses are most easily ameliorated, or those which
possess weaknesses to the least degree.

Then synergies must be found with non-formal
(at least, for now) methods or approaches to offset
the formal-method weaknesses. The formality must
be “framed” in such a way that, despite its low scale-
ability, large programs can still be created. Since
change is a primary characteristic of most product
developments, formal methods must be couched such
that system change propagates as little as possible
and thus has minimal effect on formal product ele-
ments. And so on.

This is the approach being taken on significant
portions of Boeing North American’s development
on the Brimstone missile system, as well as the ap-
proach taken on the mission software of the Lock-
heed Martin C-130J airlifter (in which the author also
participated [1]). Resonance with aspects of this
viewpoint have also been found on certain other
projects, primarily the NRL's (Naval Research Labo-
ratory) A-7 Avionics Upgrade Program [2], Allied
Signal’s TCAS system [3], and Rockwell Avionics

14

and Communications Software Requirements Engi-
neering Project [4].

Discussing these principles in a paper for a formal
methods conference can give the impression that the
rationale for creating such an approach is to bring
formal methods into the software development
mainstream. Nothing could be further from the truth.
The rationale is to make industry more productive
and competitive. Formal methods are of interest to
industry only inasmuch as they contribute to that
goal. Ultimately, the ability of formal methods to
now do so is one of the best things that has ever hap-
pened to the discipline of formality.

2 Process Guidelines

There are two overarching guidelines for creation of
a software lifecycle which supports the goal of indus-
try, i.e., that increases productivity and competitive-
ness. Those guidelines are:

e correctness by construction

e verification-driven development

2.1 Correctness by Construction

Software errors are one of the biggest cost drivers
in industry. Software errors have many kinds of
costs. Verification, with its associated activity of cor-
rection, is almost always the most costly and time-
consuming activity in software development.

The more errors there are present, the greater the
cost in finding, removing, and confirming removal of
them. Errors also cost in lost customer confidence
and good will, creation of an adversarial relationship
with regulators and government, and in the fallout
from failures in fielded systems. And since it is in
general impossible to detect all errors in a program,
the more errors injected as the code is produced, the
more that will remain at delivery.

Industry has historically assumed that error crea-
tion was unavoidable. This assumption is no longer
valid. Errors can be largely avoided through a
“correctness by construction” development process.

“Correctness by construction” means that the
process must create software that, to the maximum
extent practical, is inherently caused and constrained
to be correct by the development processes used.
Without formality, this would be impossible. With

formality alone, it is unaffordable. Only by an inte-
grated lifecyle of formal and other (currently non-
formal) methods, tools and procedures can correct-
ness by construction be implemented in the industrial
setting.

Experience has shown that such a lifecycle need
be no more expensive than the typical lifecycle; in-
deed, it has provided productivity above industry
norms on industrial programs like the Lockheed
Martin C-130J [S].

The selection and synthesis of complementary
lifecycle methods will be examined shortly.

2.2 Verification-Driven Develop-
ment

In the ideal world, a software development proc-
ess which reliably prevents any errors from being
injected into its developed systems need not spend
anything on verification. Since no real-world process
will anain such perfection, some errors will continue
to be found in newly-developed software. Therefore,
verification will continue to be required even in a
“correctness by construction” lifecycle.

Unfortunately, the nature of verification is not
changed by the correctness approach. Verification
continues to the most expensive task in the software
lifecycle. Correctness by construction simply lessens
the number of correction/reverification cycles re-
quired (which is nevertheless a great productivity
booster).

Verification therefore becomes the other great
opporunity to reduce costs. Formality is a great en-
abler for such savings, by playing a role in the effi-
cient static analysis and testing of software. The life-
cycle is then optimized to enable efficient “end-
game” verification, while not ignoring other concerns
such as execution efficiency.

Verification is so seldom addressed as part of
lifecycle process planning, that a little attention early
on can have dramatic effects late in the project.
While the remainder of this paper will give process-
wide steps which implement this guideline, smaller
things can also make a great difference. For instance,
restricting the coding standards to make the produced
code compatible with the best formal and test tools is
very important.

15

3 Principles of Practicality

We will now explore some principles for integrating
formality into the industrial software lifecycle, and
thus economically implementing correctness by con-
struction and verification-driven development.

These principles are presented without any claims
either that they are exhaustive or that they “the only
way” to use formality practically. However, these
principles have been proven to enable the rather ex-
tensive use of formality in real industrial programs
while yielding some very commercially significant
benefits: greater software productivity than tradi-
tional, non-formal development (by approximately a
factor of two), and much higher resulting software
quality (by a factor of ten fewer anomalies, which
includes both errors and inconsistencies).

These principles will be illustrated by naming
methods which support them, as well as examples
from industry.

The principles we will discuss are:

Factorization of product and process

Change-driven design

Closed-loop formality

3.1 Factorization

The main principle for dealing with formality’s
scale-up limitations is factorization. Factorization is
defined here as the decomposition of both product
and process into small, relatively self-contained ele-
ments that are of an efficient scale for both individual
human effort, and for use with formal methods. Fac-
torization applies to both the product and process.

The primary method used for product factoriza-
tion is domain engineering. Domain analysis allows
factoring a large problem space into relatively small,
manageable and naturally interrelated collections of
requirements.

The SPC’s (Software Productivity Consortium)
CoRE (Consortium Requirements Engineering)
method combines formal requirements specification
with mechanisms for factoring the problem space as a
result of domain analysis [6]. Few formal require-
ments methods support factoring so directly.

CoRE has other advantages in a practical indus-
trial setting. Requirements are recorded essentially in

an algebraic format whose use is easily learned, and
whose representation is easily understood even by
non-users. CoRE shares this characteristic with the
NRL (Naval Research Laboratory) SCR (Software
Cost Reduction) method [7], and the T-VEC method
originated at Allied Signal.

Figure 1 shows an example CoRE requirement,
captured in the syntax of a Cadre Teamwork control
specification table.

The “abstracted output” is a discontinuous func-
tion of the “abstracted inputs” (actually, it is literally
a relation, though the distinction is not critical to the
purposes of this paper). Therefore the output must be
defined across all combinations of subranges of the
inputs. Each row in the table (besides the top label
row) defines the function across one combination of
subranges. All rows together fully define the output.
The breaks between rows represent the points of dis-
continuity, often called “boundaries” in the testing
arena.

Some other common formal requirements meth-
ods, such as Z and VDM, lack support for factoring
and general communicability. This makes their use in
the industrial setting more problematic. Other ame-
lioration strategies would need to be found to over-
come their weaknesses in these areas.

An architecture should be factored according to
the nature of the solution domain, and not, in general,
the problem domain (as frequently happens in object
orientation). Problem-domain factorization leads to
systems inefficient to develop and to execute.

Process factorization divides the analysis through
verification of a system into a sequence of steps.

Each step produces its own well-defined product ac-
cording to very strict rules of production, with the
assistance and rule enforcement of software tools
tailored for the purpose. Because the steps are small,
confirmatory Verification and Validation (V&V) can
be performed for each step in an economical manner.

In an overall software lifecycle, these rules of
production can not as yet always be completely for-
mal. This is due primarily to the current immaturity
of early-lifecycle formal methods. In all cases, how-
ever, the production rules should be specified as rig-
orously as is practical, primarily to preserve the
quality of products as they pass from phase to phase.

Additional factoring of the process can be ob-
tained through means such as a spiral lifecycle proc-
ess (as in the SPC’s ESP or Evolutionary Spiral Proc-
ess [8]).

A variation on this theme, that fits within a more
typical waterfall of “V” lifecycle, is narrow-slice
development. In narrow-slice development, during
each lifecycle phase an example of the products of
the next phase is developed using the planned proc-
ess (not via an ad-hoc "prototype" approach). The
narrow slice takes a "trial run" at the development
process, and works out its problems "before the herd
arrives” to do the main work of that phase. This ap-
proach detects many blind alleys or simple ineffi-
ciencies that may hidden in the process (especially in
an unfamiliar formal process) before much effort has
been expended, and thus improves the overall effi-
ciency and mitigates the risks of adopting formality.

abstracted abstracted abstracted S S abstracted
input #1 input #2 in_put #3 3 ; output
(17) (“i2") (13") .
ppeupatuuiaiupapuiut MO P Su doboooooooozoooooooooo
""""""""""""""""""""" S it St oo
"X ”X” subrange 3.1 3 E f1(i1, i2, B)
X" subrange 2.1 subrange 3.2 i § f2(i1,i2)
subrange 1.1 subrange 2.2 subrange 3.2 : 3(i3)
HEH .
subrange 1.2 subrange 2.2 subrange 3.2 I f4(i1,i3)

figure 1: Example CoRE Requirement

16

3.2 Change-Driven Design

Formal methods are exceptionally sensitive to
changes. A mathematical approach will often take
longer to perform than a traditional heuristic one, at
least in the initial definition activity and in activities
like theorem proving. These costs can be more than
recouped during the other lifecycle activities as long
as the costly activities need not be repeated too often.

However, in real industrial projects change is the
rule. It is typically frequent, and often extreme. The
only way to retain the advantages of formality with-
out being overwhelmed by its weaknesses in this area
is to strictly limit the propagation of change through
the system...so that when change occurs, it affects
only the absolute minimum portion of the system
inherently necessary to implement the change.

The propagation of change can be strictly limited
by constructing “change scenarios”...identifying
across the expected lifecycle of the product and its
variants every type of change that could plausibly
occur. This should include changes likely to occur as
part of the initial development cycle.

Then different architectural organizations can be
postulated to attempt to encapsulate those changes as
severely as possible. The goal is to achieve an archi-
tecture which will only need to be changed in one
place (ideally,"one subprogram or data structure) for
each individual “change stimulus.”

This approach is consistent with the philosophy
behind certain domain design approaches (e.g.,
SPC’s Synthesis approach [9]).

For instance, a class structure could be con-
structed to encapsulate changes likely to occur in a
system that must communicate significantly with
other devices, systems or its environment, e.g., via
data bus, and must transform such information to
perform its tasks (a fairly generic type of processing).

At the highest level of abstraction, most of what
such a system does could be covered by three classes
(this is the approach planned for portions of Boeing
North American’s development on the Brimstone
program, and which also was used on the Lockheed
Martin C-130J mission software).

One class could handle the translation of bus-
encoded data into more abstracted information suit-
able for use by the system being developed, and vice

17

versa, from abstracted system information into low-
level bus data.

Another class could provide read-only access to
the abstracted information which would represent the
state of the outside systems or environment.

The third class would perform the transformations
of abstracted information about current state of the
external environment, into abstracted information
about the desired effect upon the external environ-
ment. Note the similarity of this class’s charter and
the components of a CoRE table (i.e., abstracted in-
puts, abstracted outputs, and discontinuous functions
relating them). This similarity is exploited in a way
which will be described shortly.

The three classes work together to form a com-
plete processing engine. There would be a group of
three instances, one of each class, for each external
system to which the system under design was inter-
faced.

These three classes could be called “device inter-
face,” “device current state,” and “device control,”
respectively. This is illustrated in figure 2, in a vari-
ant of Buhr notation. Note that dashed outlines of
classes (outer box) or methods (inner boxes) indicate
there can be multiple instances thereof.

There are several plausible change scenarios for
this type of system. Most of them distill to two basic
patterns: The external systems or environmental in-
terfaces could change, or the purposes of the system
could change. In the first case, change will usually
be limited to the instance of the device interface class
for the system which changed. In the second case,
change will usually be limited to a single procedure
in the control class.

Another design criteria, with benefits not just as
change occurs but also for traceability and testing, is
to localize the implementation of each formal (e.g.,
CoRE) requirement to a single method in an object of
the control class. This takes advantage, noted earlier,
of the similarity between the nature of CoRE re-
quirements and the charter of the control class.

This approach is in contrast to the typical design
decomposition process, which “smears out™ individ-
ual requirements across many design artifacts. Expe-
rience has shown that this approach is valid even on
large programs (>100 KSLOC, e.g., like the C-130J):
appropriate domain-oriented factorization is the key
to making this possible.

—— e e e s e e s . e e e e o

| <dev_id>device_control

r— " abstracted
| <dev_id>device_interface | output
— <«
prepare_output_message _g [
| il

process_input_message ﬁ :

B | J
Tabstracted o
input (

—_—————— gy
|<dev_id>device_cumnt_shte
} [el abstracied_input ~

O |

figure 2: Change-Tolerant

In this type of design structuring, changes to a
single requirement affect, in general, just one sub-
program. Tests of a single requirement become unit-
level tests(using the rows of the CoRE table as the
specifications for individual test cases!). Traceability
of requirements to design to code to test cases be-
comes trivial. All these factors dramatically decrease
costs.

By creating a class structure which reflects the
inherent repeatabilities in the solution domain, one
can craft a “syntax” for design. Each type of class
becomes a “part of design,” just as nouns, verbs and
adjectives are “parts of speech.” As the English lan-
guage includes strict syntactic rules for how its parts
may interact with one other to express meaning, so
also a strict set of syntactic rules can be constructed
between the classes. In general, this approach is
called an ADL or “Architecture Design Language”
[10].

If the choice of the “parts of design™ for such a
syntax is directed by a domain design methodology,
the result will be both factored and change-driven.
Such an ADL can be called a DSDL or “Domain-
Specific Design Language.”

This is a “semi-formal™ method in the sense that
syntax is often considered a mathematical construc-
tion, and can be subjected to mathematical verifica-
tion arguments. Further, tools (homegrown or com-
mercial, e.g., Rational Apex subsystems and views)
can enforce the restrictions on interactions between
the classes, and thus prevent the introduction of many
types of errors.

18

Class Structure

Finally, identification of change-driven classes
allows one to create “implementation templates.”
These templates provide the final implementors (e.g.,
detailed designers/coders) with the required structure
of their portion of the system. The pre-defined allo-
cation of formal requirements to detailed-design ele-
ments makes implementation much simpler, verifica-
tion much quicker (against the pre-defined
allocation), and control of unwanted interactions
between code elements easier (the “universe” of
possibilities has been strictly limited by the tem-
plates).

3.3 Closed-Loop Formality

Formal requirements provide benefits even when
used in isolation. However, the added costs of using
formality make it imperative to obtain every possible
benefit of formal requirements. The remaining
benefits come only through using formality in an
integrated way throughout the lifecycle.

Formality throughout the lifecycle must apply the
strong mathematical foundation provided by the for-
mal requirements to facilitate every lifecycle activity:
design, code, static analysis, and testing. By eliminat-
ing much of the “guess work” typically in these ac-
tivities, lifecycle formality increases their efficiency.

The relationships between formal requirements
and formality in the rest of the lifecycle are illus-
trated in figure 3.

FORMAL
SOFTWARE
REQUIREMENTS K—

FORMAL
DYNAMIC
TESTING
2N
3 FORMAL STATIC
PROGRAM ANALYSIS

— FORMAL SOFTWARE
DEVELOPMENT K

figure 3: Formal Requirements and Lifecycle Formality

Formal development takes advantage of formal
requirements, the DSDL syntax and associated tem-
plates, and the previously-mentioned architectural
strategy of implementing each formal method in a
specific procedure in the software, to simplify and
speed implementation. If the software is then coded
in a formal language like the SPARK Ada subset
[11], the code will largely be correct as constructed.

Formal verification begins with static analysis.
With formal requirements and formal code, static
analysis of correctness is more efficient than tradi-
tional unit testing. Thus, static analysis is performed
first, any errors found are corrected, and the code is
then submitted to test This also “closes the loop” of
code back to requirements.

Formal testing remains necessary because of in-
complete formalization of the software product, the
need to verify target-compiler correctness, and hard-
ware issues (e.g., was the original software specifica-
tion based on a correct understanding of the hardware
environment).

Formal testing derives the test cases from the
formal requirements. This provides very high state-
ment and path coverage compared to typical non-
formal requirements-based testing. Since require-
ments-based testing is often the most efficient testing
approach, high confidence is provided at relatively
low testing cost.

19

If the CoRE (or SCR) method is used to specify
requirements, black-box testing is as simple as setting
up the abstracted input values in a given table row,
and comparing the result to the abstracted output for
that row. If the architecture has applied the heuristic
of “one requirement to one procedure,” white-box
testing of the most semantically-significant modules
in the software system will also be directly driven
from the formal requirements. This too has proven to
be highly efficient.

Conclusion

Formal methods are the future of software devel-
opment. The sheer number of failed software systems
is proof of the need for more robust means of pro-
duction. Failed systems are intolerable in business;
mathematics provides the needed robustness. Busi-
ness and mathematics are a marriage made in heaven;
they will meet again in software as they have so often
before in other disciplines.

Business will not, however, embrace mathematics
to its own loss. Mathematics has always provided net
benefits in other endeavors, and must do so now in
software, This requires that the software theorist at
least consider the business perspective; i.e., asking
“why are companies developing software?” The an-

swer almost invariably reduces to “for the sharehold-

»

€rs.

Re-examining formality’s role in such a purpose-
ful software lifecycle leads to principles of practical-
ity. As those principles are identified and refined,
formality will take an ever-increasing role in for-
profit software development. And this, in the end,
will benefit everyone; the industrialist, by improving
the bottom line, the consumers and public, by provid-
ing them with more reliable and affordable systems,
and the theorists, by providing more compelling rea-
sons, a sharper focus, and a ready outlet for their
creativity and research.

Biographical

James Sutton is the lead software methodologist
and software safety criticality engineer for Boeing
North American’s Brimstone missile system devel-
opment. He previously served as lead methodologist
and architect on the mission software for Lockheed
Martin’s C-130J program, as well as safety critical
methods liaison with US and international regulatory
agencies, reuse IRAD principal investigator, and re-
use lead engineer for the F-22. He has authored a
college textbook entitled "Power Programming" for
Prentice Hall, and has presented and/ or published for
numerous conferences including NAECON, Tri-Ada,
ERA Avionics Conference (U.K.), Ada-Europe,
IEEE DASC, and Compass (safety critical software).

References

[1] James M. Sutton. Lean Software for the Lean
Aircraft. Proceedings of the IEEE DASC 96 Confer-
ence, Atlanta, Georgia, 1996.

[2] Thomas A. Alspaugh, Stuart R. Faulk, Kath-
ryn Heninger Britton, R. Allan Parker, David L. Par-
nas, John E. Shore. Software Requirements for the A-
7E Aircraft. NRL/FR/5530-92-9194, Washington
DC: Naval Research Laboratory, 1992.

[3] Mark R. Blackburn, Robert D. Busser. T-
VEC: A Tool for Developing Critical Systems. Pro-
ceedings of the IEEE Compass 96 Conference, 1996.

[4] Steven P. Miller, Carl F. Hoech. Specifying
the Mode Logic of a Flight Guidance System in
CoRE. Unpublished working paper of Rockwell Avi-
onics and Communications, 1997.

20

[5] B. Carre', J. Sutton. Achieving High Integrity
At Low Cost: A Constructive Approach. Proceedings
of the ERA Conference, London, 1995.

[6] S. Faulk, L. Finneran, J. Kirby, Jr., J. Sutton.
Experience Applying the CoRE Method to the Lock-
heed C-130J Software Requirements. Proceedings of
the Ninth Annual Conference on Computer Assur-
ance, 1994.

[7] C. Heitmeyer, A. Bull, C. Gasarch, B. Labaw.
SCR*: A Toolset For Specifying And Analyzing Re-
quirements. Proceedings of Tenth Annual Conference
on Computer Assurance, 1995.

[8] Process Engineering with the Evolutionary
Spiral Process Model. SPC-93098-CMC version
01.00.06; Software Productivity Consortium; Hern-
don, VA, US January, 1994.

[9] Reuse-Driven Software Processes Guidebook.
SPC-92019-CMC version 02.00.03; Software Pro-
ductivity Consortium; Herndon, VA, US November
1993.

[10] M. Graham, E. Mettala. The Domain-
Specific Software Architecture Program. Proceed-
ings of the 1992 DARPA Software Technology Con-
ference, 1992.

[11] B. Carre', J. Garnsworthy. SPARK - An An-
notated Ada Subset for Safety-Critical Programming.
Proceedings of Tri-Ada Conference, Baltimore, De-
cember 1990.

Proving Properties of Accidents

C.W. Johnson,

Glasgow Accident Analysis Group,
Department of Computing Science,
University of Glasgow,

Glasgow, United Kingdom, G12 8QQ.
E-mail:johnson@dcs.glasgow.ac.uk
WWW: http://www.dcs.gla.ac.uk/~johnson

Abstract

Accident reports are produced by regulatory and
commercial authorities, such as the UK Air Accident
Investigation Branch [1] and the US National
Transportation Safety Board [17], in response to most
major accidents. They, typically, contain accounts of
the human and system failures that lead to major
accidents. These descriptions are then used to
identify the primary and secondary causes of the
failure. Finally, recommendations are made so that
the operators and regulators of safety-critical systems
can avoid future accidents. Unfortunately, it is often
difficult for readers to trace the way in which
particular conclusions are drawn from many hundreds
of pages of evidence. Natural language arguments
often contain implicit assumptions and ambiguous
remarks that prevent readers from understanding the
reasons why a particular conclusion was drawn from a
particular accident. This paper argues that
mathematical proof techniques can be used to support
the findings of accident investigations. These
techniques enable analysts to formally demonstrate
that a particular conclusion is justified given the
evidence in a report. Conclusion, Analysis and
Evidence diagrams can then be used to communicate
the results of a formal analysis. The intention is not
to replace the natural argumentation structures that are
currently used in accident reports. Rather, our aim is
to increase confidence that particular conclusions are
well supported by the evidence that is presented within
areport.

1 Introduction

Accident reports are intended to ensure that major
failures do not recur. They are produced by a wide
range of national [4, 6] and international bodies [23].
Typically, these documents begin by providing a brief
synopsis of the events leading to an accident. The
synopsis is then followed by a number of expert
analyses. These identify and prioritise the failures
leading to the accident. Finally, conclusions are
drafted from the experts' findings. These form the
basis of any actions that companies or regulatory
authorities might take to prevent future failures.

21

1.1 Conventional Reporting
Techniques

Unfortunately, it is not always easy for readers to
understand the justifications that support particular
conclusions [8]. Accident reports are often many
hundreds of pages in length. The evidence that
supports a particular line of analysis may be lost
amongst the paragraphs of contextual detail. A
further problem is that natural language can be
ambiguous. For example, accident reports often refer
to situations of ‘high workload' and 'operator error'
without explaining the precise meaning of these terms
[20]. Many accident reports are also inconsistent in
the sense that the same term is used to refer to several
different objects or people [14]. Later sections of this
paper will argue that these problems create
considerable confusion for the reader and may even
lead them to doubt the accuracy of the final report.

1.2 Formal Methods and
Accident Analysis

Formal proof techniques can be used to avoid the
ambiguity and inconsistency of natural language [2].
A number of authors have also used these techniques
to support the design of dynamic, interactive systems.
For example, Dix [S] has used an algebraic notation to
reason about high level properties of multi-user
systems. Paterno, Sciacchitano and Lowgren [19]
have used the LOTOS notation to examine interaction
with complex multimedia applications. Palanque and
Bastide [18] have applied Petri Nets to examine safety
and liveness properties of distributed systems. None
of this work has been applied to reason about accident
reports. In particular, there has been no attempt to use
mathematical techniques to prove that conclusions are
well-founded with respect to the analysis that is
presented in an accident report.

2 The Case Study

This paper focuses upon an accident report that was
produced by the United States' Coast Guard in

response to a collision between the passenger vessel
Noordam and the bulk carrier Mount Ymitos [22].
We are interested in this case study because it typifies
the many different operator errors and organisational
failures that exacerbate accidents with complex,
interactive systems. The remainder of this section
brief outlines the course of the accident. The
Noordam collided with the Mount Ymitos at 20.42
(Central Standard Time) on November 6th, 1993.
The accident occurred two miles south of the
Southwest Pass Entrance Light Buoy in the Gulf of
Mexico. The exact location was recorded as 28
degrees, 50.0 minutes North and 89 degrees, 25.7
minutes West. Both ships were damaged in the
collision but there was no loss of life.

The Mount Ymitos was outbound from the
Mississippi River en route to St Petersburg, Russia. It
had cleared the Southwest Pass out of the River when
the Third Officer noticed an inbound passenger vessel
using their binoculars. At this stage, he estimated that
the vessel was approximately six miles from the
Ymitos. He did not immediately report his
observation as the Captain was busy with the Pilot
who was preparing to leave the Mount Ymitos. The
watch-standers re-established visual contact when the
Noordam had closed to two miles from the Mount
Ymitos. The Captain reduced their speed to dead
slow and expected the Noordam to alter its heading.
At this point the ARPA (Automatic Radar Plotting
Aid) showed that the closest point of approach was
under six hundred feet. The Captain made several
attempts to alert the Noordam. At 20:40:08 the Coast
Guard logged a Channel 16 VHF call: 'Passenger
Vessel, Passenger Vessel, Go to South Pass'. At
20:40:50 they logged 'Passenger Vessel Going to
South Pass, I Tum Hard Starboard’. The third officer
then attempted to communicate the warning using an
Aldis lamp. No response was received.

The Noordam was en route to New Orleans from
Cozumel, Mexico. At approximately 20:00:00,
Second Officer Smit called the Pilot Station and
learned that two other vessels were also in-bound
towards the Mississippi and could be overtaken. The
Pilot did not alert the Noordam to the presence of any
outward bound vessels. Quartermaster Salyo was the
designated lookout He left the bridge on two separate
occasions during the approach. Shortly after 20:00:00
he left, with the permission of Second Officer Smit, to
make sandwiches and coffee for the bridge crew. At
20:10:00 he unlashed the anchors in preparation for
entering port. He returned at 20:20:00 but did not
detect the Mount Ymitos until immediately prior to
the collision. A scheduled watch change took place at
20:30:00. Second Officer Smit performed navigation
checks using the radar, together with Chief Officer
Broekhoven, before handing over to Third Officer
Veldhoen. Veldhoen, in turn, handed over to the
Chief Officer at 20:36:00 when an 'end of sea voyage'
was declared. This is a point of convenience
determined by the watch officer and represents the
point at which the Chief Officer assumes control for
the manoeuvring watch prior to arrival in port. In
order to complete this hand-over Veldhoen had to fix

22

the vessel's position, complete the log and notify the
engine room. As the Noordam changed course to
enter the final leg of the approach, Fourth Officer
Kuiper, who was on the bridge but who was not on
duty, saw the lights of the Mount Ymitos and
immediately issued a curse. The manoeuvre was
halted while the crew determined the course and
position of the vessel that they had seen,
Approximately one minute before the collision, Chief
Officer Broekhoven ordered left full rudder to pull
away from the danger.

The Coast Guard's report argues that the principle
reason for the collision was the failure by the
Noordam's crew to keep an adequate watch.
Unfortunately, the report does not provide a detailed
explanation of why this failure occurred. The reader is
left to infer the causal relations that link the
observations about the accident and the conclusions
that are listed at the end of the document. The
following pages, therefore, show how formal
techniques can be used to explicitly link the findings
of an investigation to the account of an accident.

3 Formalisation of the Accident

In order to reason about the findings of an accident
report, it is first necessary to model the events leading
to the failure. The first stage in this process is to
identify the critical operators, tasks, roles,
communications, systems and locations that helped to
shape the course of the accident.

3.1 Critical Components

A limitation with natural language approaches to
accident reporting is that it can be difficult to identify
critical information from a mass of background detail.
For example, the Coast Guard's report into the
Noordam collision includes the following account:

"Fourth Officer Daniel Kuiper, who was not on
duty, was the first to notice the lights of a vessel off
the starboard side of the Noordam. This was
between one and two minutes before the time of
collision. He saw a red light that he estimated was
approximately 2 points off the NOORDAM's
starboard bow - a point being 11.25 degrees of arc.
First Officer Kuiper uttered a curse word that
attracted the attention of others on the bridge. Third
Officer Veldhoen, upon looking to starboard, also
saw lights." [Paragraph 42]

Additional information, such as the conversion
between points and degree of arc, is included to help
the reader form a picture of the accident.
Unfortunately, such details may actually obscure the
underlying causes of operator 'error' and system
'failure'. Our previous work on accident analysis has,
however, identified a number of categories that can be
used to identify critical components in an accident:

- operators. It is necessary to represent the people
involved in an accident so that readers can follow
the way in which operator intervention affects the
course of system failures;

« roles. It is important to distinguish particular
individuals from the roles that they perform during
an accident. For example, a number of individuals
performed the tasks associated with the role of
watch-stander during the Noordam collision;

« tasks. It is necessary to identify the tasks that
operators were or should have been performing
during accidents if readers are to understand the
ways in which human intervention safeguarded the
system or exacerbated any key failures;

« speech acts. It is vital to represent
communication between the operators that are
involved in an accident. Misunderstandings have a
profound impact upon the safety of many
applications;

« information and control systems. This type of
information is included because the quality of
information that is available to system operators is
often determined by the channel that is used to
support their observations. For instance, ARPA
radar provides more detailed and arguably less
reliable information than direct visual contact;

« physical locations. It is necessary to represent
the place in which an accident occurs because the
location of a failure can have a profound impact
upon an operator's ability to respond to an accident

[11].

Paragraph [42], cited above, can be used to identify
physical locations, such as the Noordam and the
Mount Ymitos. It is also possible to identify
operators such as Veldhoen and Kuiper who perform
the roles of First and Fourth Officers respectively.
We can identify observation channels; in this case the
visual observation of the Ymitos' lights as well as
critical speech acts such as Kuiper's curse. Table 1
shows the results that can be obtained by extending
this analysis throughout the Coast Guard's report. In
formal terms, the elements of this table define the
types that model the Noordam accident. The process
of building such a table helps to strip out irrelevant
detail that obscures critical properties of major
accidents.

Physical Locations Roles
captain veniamis lookout
pacific trident chief officer
mount ymitos first officer

noordam third officer

fourth officer

watch officer

Operators

Speech Acts

ilot station

inbound pacific trident

engine room.

inbound capt veniamis

smit. outbound mount ymitos
salyo curse
broekhoven take bearing on lights
veldhoen lights moving right
kuiper officer change

end of voyage

left full rudder
Tasks Information Systems
navigation radar check | arpa radar
collision radar check visual
correlate radar targets binoculars

declare end ofvoyage

fix vessel position

complete log

notify engine room

23

Table 1: Critical Entity Table for the Noordam
Accident

3.2 Axioms for the Accident System

The identification of operators, roles, tasks, speech
acts, information systems and locations is of little
benefit if analysts cannot represent and reason about
the relationships that exist between these components.
The following section uses a simple form of temporal
logic to demonstrate how this might be done for the
Noordam case study.

3.2.1 Operators and Roles

The previous sections argued that it is important to
identify the critical roles that operators play in an
accident. This affects the range of tasks that operators
are expected to perform. For example, Broekhoven
was the Noordam's Chief Officer during the incident,
Smit was the First Officer:, Veldhoen was the Third
Officer and Salyo was the lookout

role(chief officer, broekhoven). (1)

role(first_officer, smit). 2)
role(third_officer, veldhoen). ?3)
role(lookout, salyo). ©)

Such clauses gather together information that is,
typically, scattered throughout conventional, natural
language documents. The roles performed by key
individuals in the Coast Guard's report are listed in
paragraphs [13, 16, 25, 30, 37, 42]. Such a
formalisation is also important if an individual's role
changes during the course of an accident. For
example, the officer in charge of the watch on the
Noordam changed at 20:30 hrs:

at(role(watch_officer, smit) , 2029). (S)
at(role(watch_officer, veldhoen) , 2030). (6)

The previous clauses exploit a simple form of
temporal logic in which the binary at operator takes a
proposition and a term denoting a time such that at(p,
t) is true if and only if p is true atz. A number of
technical problems surround the general application of
this simple extension to propositional logic. In
particular, the philosophical issue of reification forces
analysts to clearly state the relationship between
particular terms and objects over time. This
theoretical problem is less of an issue for our purposes
because we are always referring to definite entities at
specific times during an accident. We, therefore,
retain this simple temporal framework rather than the
more elaborate temporal languages in our previous
work [7, 10, 21].

3.2.2 Operators and Communications

Communications problems exacerbate many major
accidents. It is, therefore, important to represent and
reason about this source of 'error'. During the
accident, Smit requested and received specific
information about the Captain Veniamis and the
Pacific Trident that were inbound towards the
Mississippi:

3 t: at(message(pilot_station, smit,

inbound_capt_veniamis), t). @)
3 t: at(message(pilot_station, smit,
inbound_pacific_trident), t). ®)

The existential 3 quantifier (read as 'there exists') is
used because the accident report does not represent the
precise times associated with each of these individual
communications. The following clause shows how
the same approach can be adopted to represent a lack
of communication. Smit did not receive information
about outbound traffic from the Pilot Station:

V' t: not at(message(pilot_station, smit,

outbound_mount_ymitos), t).)
The universal V quantifier (read as ‘'for all') is used
because it was never the case that Smit received
information from the Pilot Station about the Mount
Ymitos. Similar clauses can be used to represent more
complex verbal exchanges. For example, Kuiper first
observed the Ymitos' lights and issued a curse which
was heard by Veldhoen and Broekhoven.
Broekhoven then requested that Veldhoen take a
bearing on the lights. Veldhoen responded that the
lights were moving right. The following clauses
represent these individual speech acts:

Jt,t': at(message(kuiper,
[veldhoen, broekhoven], curse), 2040)
A at(message(broekhoven,

24

veldhoen, take_bearing_on_lights), t)
A at(message(veldhoen,
broekhoven, lights_moving_right), t')
A after(2040, t) A after(t, t').
(10)

It is important to note that the preceding clauses do not
represent the precise verbal components of each
speech act. This information could be introduced if it
were available, for instance through studying cockpit
voice recordings. In the case of the Noordam there
was no such record. Place holders, such as curse, are
used to capture the recollected sense of the
communication without specifying its exact form.

3.2.3 Operators and Locations

It is important to consider the physical location of
system operators during major accidents. For
example, the lookout left his position on the bridge at
critical moments during the lead-up to the Noordam
collision. Clause (11) states that salyo was in the
galley at 20:00hrs. Similarly, clauses (12) and (13)
describe Salyo's subsequent movements from the
galley back to the bridge at 20:10 hrs and from the
bridge down to the decks at 20:15 hrs. They do not
specify when Salyo moved from each of these
locations because the report does not provide accurate
journey times:

at(position(salyo, galley(noordam)), 2000). (11)
at(position(salyo, bridge(noordam)), 2010). (12)
at(position(salyo, decks(noordam)), 2015). (13)

The previous clauses do not specify the relative
position of the galley, bridge or decks. Such
information can be introduced by formalising a three-
dimensional co-ordinate scheme [11]. This was not
done because clauses (11,12,13) reflect the level of
detail in the Coast Guard's report. This illustrates an
important benefit of the formalisation. Logic
provides an explicit representation of the level of
abstraction that is considered appropriate for the
readers of the report. They do not need to know the
relative positions of the galley, bridge and decks in
order to understand the events leading to the collision.
Such decisions are extremely important. Too much
detail and readers will be swamped amongst a mass of
contextual information. Too little detail and it will be
difficult for them to reconstruct the flow of events
leading to disaster. Clauses, suchas (11,12,13), can
be used to represent and reason about appropriate
levels of abstraction. This helps to avoid the ad hoc
decisions that frequently seem to be made about the
amount of location information that is included in
accident reports [14].

3.2.4 Operators and Tasks

The Coast Guard's report contains the following
paragraph:

"Between 2030 and 2036, Broekhoven and
Veldhoen checked the radars occasionally, using the
six mile scale. Broekhoven was planning the turn
from 325 degrees to 000 degrees to coincide with
bringing the Racon 'T' platform abeam, at 1.5 miles
to port. Both Veldhoen and Broekhoven used the
10-centimetre and centimetre radars to check the
distance of the domino platforms, and particularly
the bearing and range of the Racon 'T'. They were
not using the radars for collision avoidance and
observation of moving targets, and did not attempt
to correlate every fixed target contact in the radar
with fixed platforms observed visually to see if any
were any underway contacts rather than fixed
platforms." [Paragraph 39]

From this it is possible to extract two critical
observations about the operation of the Noordam.
Firstly, that between 20:30, and 20:36 both
Broekhoven and Veldhoen were performing
navigation radar checks. Secondly, that during this
interval they did not correlate radar targets with visual
observations. The following clauses introduce a
during operator such that during(p, t) is true if and
only if the situation denoted by p occurs at sometime
during the interval denoted by ¢. Formally, this can be
given as follows:

Yt : during(p t) &
3t : at(p, t') A before(t', end(t)) A
before(begin(t), t'). (149
This assumes that before(t, t') is true if ¢’ occurs at
some time after ¢ or at the same instant as z. The
following clauses also introduce the operator, in, such
that in(t, t', ") is true if ¢ is wholly contained within ¢’
and ¢”. This can be formalised in a similar manner to
during. In contrast, the following clauses formalise
the observations made in paragraph [39] of the
accident report:

3t : during(perform(broekhoven,
navigation_radar_check), t)
A not during(perform(broekhoven,
correlate_radar_targets), t)
A in(t, 2030, 2036). (15)
3t : during(perform(veldhoen,
navigation_radar_check), t)
A not during(perform(veldhoen,
correlate_radar_targets), t)
A inf(t, 2030, 2036). (16)
An important benefit of the formalisation process is
that clauses, such as (15) and (16), can be translated
back into natural language sentences; between 20:30
hrs and 20:36 hrs Broekhoven and Veldhoen
performed navigation radar checks but did not
correlate radar targets. The formalisation process
helps analysts to focus upon critical aspects of an
accident, such as operator tasks. This benefit might
be obtained using a conventional task analysis

25

technique such as TAKD [15]. Later sections will,
however, argue that formal reasoning techniques can
be used to prove properties of accident reports. This
provides the additional degree of assurance that is
demanded by bodies such as NASA and the UK
Ministry of Defence [2].

The previous example describes a relatively simple
set of observations about operator tasks. Typically,
the co-ordination of group activities is more complex.
For example, Veldhoen declared an 'end of sea voyage'
between 20:34 and 20:38. This procedure handed
over control of the watch to the First Officer
Broekhoven. He was responsible for navigating the
Noordam into port. This change was not, however,
announced to the lookout:

3t : during(perform(veldhoen,
declare_end_of voyage), t)
A not during(message(broekhoven, salyo,
officer_change), t)
A during(role(watch_officer, broekhoven), t)
Ain(t, 2034, 2038). an

The failure to inform the lookout was important
because the task of declaring the ‘end of sea voyage'
involves the watch officer in a number of sub-tasks
that reduce the amount of time that they have available
for navigation and collision avoidance:

V't: during(perform(veldhoen,
declare_end_of voyage), t)
¢ during(perform(veldhoen,
fix_vessel_position), t)
A during(perform(veldhoen, complete_log), t)
A during(message(veldhoen, engine_room,
end_of voyage), t). (18)

Such clauses illustrate how the products of
hierarchical task analysis might be introduced into
formal models of major accidents. The higher order
task of declaring the 'end of sea voyage' is comprised
of three sub-tasks: fixing the vessel's position;
completing the log and notifying the engine room.

3.2.5 Operators and Observations

The entities that were identified in Table 1 are generic
in the sense that operators, roles, tasks, speech acts,
information systems and physical locations are central
to all of the accidents reports that we have examined
[8, 9, 14]. This does not mean that the list is
exhaustive. A related point is that the significance of
individual entities will vary from accident to accident.
For example, automated control systems did not have
a significant impact upon the course of the collision
between the Ymitos and the Noordam. In contrast,
information systems played a critical role in the
observations that operators made during the accident.
Veldhoen made visual observations of the ship but did
not use an azimuth circle to verify his observation:

3t: at(observe(veldhoen,

mount_ymitos, visual), t). (19)
Vt: not at(observe(veldhoen,

mount_ymitos, azimuth), t). (20)

As before, the existential 3 quantifier is used in clause
(19) because the accident report does not identify the
particular interval when Veldhoen made his
observation. All we know is that there exists a time at
which Veldhoen made a visual observation of the
Ymitos. The universalV quantifier is used in clause
(20) because Veldhoen did not use an Azimuth circle
at any time in the accident. This shows how an
analysts concerns can direct the formalisation process.
Clause (20) represents something that the officer did
not do. If it had not been formalised then readers
would not have been aware of this omission. In fact,
Veldhoen's failure to verify his visual observations
reinforced Broekhoven's judgement that the ships
would pass starboard to starboard. He had seen a
green (starboard) light shortly after the initial
observation made by Kuiper:

3t : at(observe(broekhoven,
green_light(mount_ymitos), binoculars), t). (21)

It was only when Broekhoven saw a red light that he
realised the imminent possibility of a collision with
the Mount Ymitos and took evasive action:

at(observe(broekhoven,
red_light(mount_ymitos), visual), 2041)
A at(message(broekhoven,
engine_room, left_full_rudder), 2041).
(22)

This section has used temporal logic to formalise the
events leading to an accident. This formalisation
process helps to strip out the contextual detail that
hides critical observations in the many hundreds of
pages that form conventional reports. We have not,
however, shown that this approach can be used to
reason about the conclusions that are drawn from an
accident report.

4 Reasoning About
Accident Reports

This section argues that formal methods can be used to
establish the relationship between the evidence
presented in an accident report and the conclusions
which boards of enquiry use to draft future legislation.
Unless this can be done, it will be difficult for
commercial organisations to understand the reasons
why particular sanctions may be imposed in the
aftermath of major accidents [8]. For example, the
Coast Guard enquiry made the following observation
about the collision between the Noordam and the
Ymitos:

26

'The proximate cause of the casualty was the failure
of Chief Officer Broekhoven, the person in charge
of the watch on the NOORDAM at the time of the
casualty, to maintain a vigilant watch in that he did
not detect the presence of the MOUNT YMITOS
visually or on radar until the MOUNT YMITOS
was less than 1 mile away, less than 2 minutes
before the collision.' [Conclusion 1].

Such findings create a number of problems for
organisations that must prevent the recurrence of
future accidents. In particular, it does not explain the
reasons why Broekhoven failed to spot the Mount
Ymitos. Readers are left to piece together or infer
these justifications from the evidence presented in the
many previous pages of analysis. This can have
extremely serious consequences. Two readers might
easily infer two different reasons why Broekhoven
failed to keep an efficient watch. = Each might,
therefore, adopt quite different strategies for avoiding
future failures [20].

Formal proof techniques can be used to demonstrate
that a conclusion is valid given the evidence that is
presented in an accident report. For instance, the
following clause is derived from Conclusion 1 in the
Coast Guard report:

V't: not during(vigilant(broekhoven), t)
& not(during(observe(broekhoven,
mount_ymitos, visual), t)
v during(observe(broekhoven,
mount_ymitos, arpa_radar),t))
A before(t, 2040). (23)
We can re-write this clause as follows:

& not during(observe(broekhoven,
mount_ymitos, visual), t)
A not during(observe(broekhoven,
mount_ymitos, arpa_radar),t)
A before(t, 2040).
[DeMorgan's Law (23)] (24)
& (not during(observe(broekhoven,
mount_ymitos, visual), t) A before(t, 2040))
A (not during(observe(broekhoven,
mount_ymitos, arpa_radar), t) A before(t, 2040)).
[A Identity (24)] (25)

In order to justify Conclusion 1 we must consider two
different cases. The first concerns the reasons why
Broekhoven failed to make visual contact with the
Mount Ymitos. The second addresses the failure to
detect the Ymitos using the ARPA radar. In order to
establish the connection between the conclusion and
the evidence presented in the body of the report it is
necessary for analysts to explicitly state the reasons
supporting particular findings. For example, one of
the reasons why Broekhoven failed to observe the
Mount Ymitos was that he used the radar for
navigation and not for collision avoidance:

V t: not during(observe(broekhoven,
mount_ymitos, arpa_radar), t)
¢= during(perform(broekhoven,
navigation_radar_check), t)
A not during(perform(broekhoven,
correlate_radar_targets), t). (26)
We can now prove that the second part of our
formalisation of Conclusion 1 is satisfied by the
evidence in the accident report. This can be done by
applying the following inference rule to (15) and (26).

Ve P(t)=Q@), 3t:P(') = 3t:0(') 27)

Informally, this argument can be expressed as follows.
From clause (26), we conclude that Broekhoven failed
to observe the Mount Ymitos using the ARPA radar
during any interval in which he was performing a
navigation radar check and did not correlating radar
targets. From clause (15) we know that know that
Broekhoven was performing a navigation radar check
and was not correlating radar targets between 20:30
and 20:36. Clause (27) tells us that if, we have clause
(26) and clause (15) we can infer that Broekhoven
failed to observe the Mount Ymitos using the ARPA
radar during the interval between 20:30 and 20:36.

The previous proof illustrates a weakness in the
accident report. Our formalisation of Conclusion 1
stated that Broekhoven did not observe the Mount
Ymitos using the radar until 20:42. Our model has
been used to prove that Broekhoven was pre-occupied
with navigation checks between 20:30 and 20:36.
This leaves at least six minutes unaccounted for.
During that time, Broekhoven began turning the
Noordam to the North. The accident report makes no
reference to the use of the ARPA during this interval.
The reader has to assume that the system was not used
during this or subsequent operations prior to the
collision at 20:42. Such findings are significant
because they have important consequences for the
recommendations that might be drawn from the report.
For example, it is normal practice for officers to
correlate radar targets when approaching an unfamiliar
port. In the interval from 20:30 to 20:36 we can
clearly see that navigation problems explain why
Broekhoven did not perform these checks. We
cannot, however, explain the omission during the final
six minutes before the collision.

The second part of Conclusion 1 states that
Broekhoven did not make any visual observation of
the Mount Ymitos until 20:42. The justification for
this finding can be found in a subsequent conclusion,
rather than in the body of the accident report:

"The number of personnel (both watch-standing and
non-watch-standing) on the bridge of the
NOORDAM between 2020 and the time of the
collision may have raised the complacency level and
lowered the attentiveness of the bridge watch-
standers with regards to maintaining a dedicated
visual and radar watch.' [Conclusion 5].

27

The evidence for this conclusion can be found in
paragraph [41] which states that:

"There were seven other persons on the bridge of the
NOORDAM at this time (20:37hrs) in addition to
the chief officer, who was in control of the vessel -
three other licensed officers (one on duty, and two
off duty), one cadet, two quartermasters and the
chief officer's wife' [Paragraph 41].

This led to considerable confusion during our analysis
of the report. We initially identified eight, and not
seven, other individuals on the bridge in the final
minutes before the collision. This confusion arose
because Salyo was identified both by his name and by
his role as Quartermaster In order to form this
association, the reader must remember the allocation
of responsibilities that was introduced in paragraph
[25] when reading paragraph [41]:

V' t: not during(observe(broekhoven,
mount_ymitos, visual), t)

&= during(position(kuiper,
bridge(noordam)), t)

Aduring(position(veldhoen,
bridge(noordam)), t)

A during(position(helmsman,
bridge(noordam)), t)

A during(position(chief officers_wife,
bridge(noordam)), t)

A during(position(quartermaster_1,
bridge(noordam)), t)

A during(position(quartermaster_2,
bridge(noordam)), t)

A during(position(cadet,
bridge(noordam)), t)

A during(position(broekhoven,
bridge(noordam)), t). (28)

Paragraph [41] suggests that there were nine people on

the bridge at 20:37:

at(position(kuiper,

bridge(noordam)), 2037). (29)
at(position(veldhoen,

bridge(noordam)), 2037). (30)
at(position(helmsman,

bridge(noordam)), 2037). (31
at(position(chief officers_wife,

bridge(noordam)), 2037). (32)
at(position(quartermaster_I,

bridge(noordam)), 2037). (33)
at(position(quartermaster_2,

bridge(noordam)), 2037). (39
at(position(cadet,

bridge(noordam)), 2037). 35)
at(position(broekhoven,

bridge(noordam)), 2037). (36)

We can apply our definition of during, given in clause
(14), to re-write each of the clauses from (29) to (36)
in the following form:

3 t: during(position(kuiper, bridge(noordam)),t)
A before(2037, end(t)) A before(begin(t), 2037).
[Application of (14) to (29)] 37

By repeating the application of (14) in the manner
described above, we obtain the following:

3t : during(position(kuiper,
bridge(noordam)), t)

A during(position(veldhoen,
bridge(noordam)), t)

A during(position(helmsman,
bridge(noordamy)), t)

A during(position(chief officers_wife,
bridge(noordam)), t)

A during(position(quartermaster_1,
bridge(noordam)), t)

A during(position(quartermaster_2,
bridge(noordam)), t)

A during(position(cadet,
bridge(noordam)), t)

A during(position(broekhoven,
bridge(noordam)), t)

A before(2037, end(t))

A before(begin(t), 2037).

[Introduction of A
from application of (14) to (29..36)] (38)

Finally, by applying inference rule (27) we get the
following clause which corresponds to the second
condition in Conclusion 1. In other words, the
derivation of the following clause formally proves that
our conclusions are consistent with the information
contained in the body of the report:

3t : not during(observe(broekhoven,
mount_ymitos, visual), t)
A before(2037, end(t))
A before(begin(t), 2037).
[Application of (27) to (28) using (38)] (39)

This proof helps to identify a further problem with the
Coast Guard report We have previously cited
Conclusion 5 which states that the number of
personnel on the bridge between 20:20hrs and the time
of the collision may have lowered the attentiveness of
Broekhoven with regards to maintaining a visual and
radar watch. Our formal analysis reveals that the
evidence for this assertion only applies to the interval
from 20:37hrs until the time of the collision. This
poses a number of problems. We do not know why
Conclusion 5 mentions 20:20hrs rather than 20:37hrs
as stated in the body of the report. It can only be
speculated that a number of people arrived on the
bridge at this time earlier time. Alternatively, if
additional crew members gradually were arriving from
some time before 20:20hrs then we do not know why
this was chosen as the critical moment at which
collision avoidance tasks were impaired.

28

5 Communicating the Results of
Formalisation

Unfortunately, mathematical analysis provides non-
formalists with an extremely poor idea of the
argumentation processes that support particular
conclusions. It is difficult for people without some
mathematical background to understand the various
proof rules that are applied during the formal
derivation of particular conclusions. This section,
therefore, describes how literate specification
techniques can be extended from the field of software
engineering to support the formal analysis of accident
reports.

5.1 Literate Specification

Communicating the results of mathematical analysis is
a general problem for the application of formal
methods. It affects the techniques described in this
paper. It also affects the development of safety
-critical systems. For example, designers might use
the following clause to specify that a control system
automatically removes a warning at some time after a
failure has occurred. This is an important requirement
if users are not to be over-whelmed by obsolete error
messages. Unfortunately, it is not easy for non-
formalists to understand the natural language
requirement from its formal statement. A related
point is that the formal expression of the requirement
provides no clues as to the motivation or justification
behind the requirement. In other words, it describes
what the system should do, it does not describe why it
should do it:

V't, 3t': at(automatically_remove_warning(
blow_back_error), t')
¢ at(state(blow_back, failed), t)
A at(display(blow_back_error_icon), t)
A at(sys_cancel(blow_back_error_icon), t')
A before(t, t'). (40)

In previous papers, we have addressed these problems
by developing literate specification techniques [12,
13]. This approach uses the semi-formal
argumentation of design rationale to support the use of
formal methods during the systems development.
Figure 1 illustrates this approach. Rank Xerox's
Questions, Options and Criteria (QOC) notation is
used to document the reasons why the previous clause
might be adopted within the design of a particular
system. QOC diagrams are built by identifying the
key questions that must be addressed during the
development of an interactive system [3].

Q: How should the
blow back failure
warning be cancelled?

O: automatically,_remove_warning

C: automatic cancellation of
the warning reduces the
burdens on the operator

+

(blow_back_error)

.

“. C: the automatic cancellation
of the warning increases the
designers’ confidence that the
operator has observed
warning

Figure 1: Literate Specification for the Warning Cancellation.

A: Broekhoven failed to make a visual
observation of the Ymitos because

of the number of people on the bridge.

(Clause 28) [Conclusion 5]

C:Broekhoven failed to
maintain an adequate watch.
(Clause 25) [Conclusion 1]

\ A:Broekhoven didn't detect the Ymitos

using ARPA because radar was used for
navigation and not collision avoidance.
(Clause 26) [Paragraph 39]

E:there were seven other people
on the bridge at 20:37hrs
(Clause 38) [Paragraph 41]

E:Broekhoven and Valdhoen were

‘both preoccupied with navigation
tasks from 2030 to 2036hrs.

(Clause 15) [Paragraph 39]

Figure 2: Conclusion, Analysis, Evidence (CAE) Diagram for the Noordam Collision

29

The options that answer a particular question are
then linked to it using the lines shown in Figure 1.
Finally, options are linked to the criteria that
support them, using solid lines, or weaken them,
using broken lines. In Figure 1, the question of
how to cancel blow-back warnings is answered by
the design option that is specified by clause (40).
This is justified by the criteria that the automatic
cancellation of warnings reduces burdens on
system operators. This does not help the operator
to observe the warning.

The diagram shown in Figure 1 is relatively

simple in that it only shows a single option for the
design question. In practice, these diagrams tend
to show a number of alternative clauses each of
which represents a different design option for the
problem being considered. The interested reader is
directed to Johnson [13] for more detail on the
application of this approach.
This blend of formal and semi-formal notations can
also support the formal analysis of accident reports.
Natural language annotations of the Questions and
Criteria provide non-formalists with an entry-point
into the clauses that represent particular Options.
In literate specification, these annotations provide
the justifications for and against formal design
requirements. In accident analysis, they link
source material to the clauses that describe the
relationship between evidence and conclusions.

5.2 Conclusion, Analysis and Evidence
(CAE) Diagrams

The Questions, Options and Criteria notation can be
translated into a form that directly supports the formal
analysis of accident reports. Instead of using
questions to represent critical design issues, diagrams
can represent the conclusions that are presented in a
report. The options of a QOC diagram correspond to
alternative interpretations of the events leading to a
conclusion. Criteria can be compared to the evidence
that supports or weakens the interpretation of an
accident. Figure 2 presents a Conclusion, Analysis
and Evidence (CAE) diagram for the Noordam
collision. Broekhoven failed to maintain a vigilant
watch. This is supported by [Conclusion 1] in the
report and is formalised in clause (25). The
conclusion relies upon an analysis which suggests that
the number of people on the bridge prevented
Broekhoven from visually detecting the Mount
Ymitos. This is supported by the analysis in
[Conclusion 5] of the report and is formalised in
clause (28). The analysis rests upon evidence
presented in [Paragraph 41] of the report. The
conclusion also depends upon an analysis of the way

30

in which Broekhoven used the radar. In this analysis,
he was preoccupied with navigation rather than
collision avoidance, from [Paragraph 39] represented
in clause (26). This is supported by evidence in
[Paragraph 39].

There is an important difference between
Conclusion, Analysis and Evidence diagrams and the
Question, Options and Criteria notation. Options
represent alternative design choices in QOC. In
contrast, the analysis components of a CAE diagram
support a single conclusion. They are not mutually
exclusive. It should also be noted that the evidence
shown in Figure 2 supports the analysis. It is possible
to use dotted lines and '-' signs to indicate evidence
which might contradict a particular line of enquiry.

CAE diagrams are not intended to replace the
formal proof techniques that are used in their
construction. The vernacular labels that represent the
conclusions, analysis and evidence are open to the
same problems of inconsistency and mis-
interpretation that weaken the use of natural language
in accident reports. For instance, it is perfectly
possible to link a conclusion to a line of analysis that
has little or no relationship to the conclusion. The use
of formal proof techniques helps to ensure that this
does not happen. It should also be emphasised that
none of the techniques presented in this paper are
intended to replace the use of natural language in
accident report. Our use of discrete mathematics is
similar to that of forensic scientists who frequently use
continuous mathematical models, for instance of
combustion. Both sorts of model can be used to
represent and reason about the events leading to
failure.

The United Kingdom Engineering and Physical
Sciences Research Council has recently funded a three
year investigation into the integration of formal
reasoning and Conclusion, Analysis and Evidence
diagrams for accident reports. We are particularly
concerned to provide tool support for these
techniques. For example, Figure 3 illustrates how
CAE diagrams can be extended to represent the
clauses that are used within the proof of a conclusion.
This illustrates the mathematical relationship between
the underlying evidence, at the bottom of the diagram,
and the higher level conclusions. The task of
constructing and maintaining such diagrams for
complex accidents clearly requires some form of tool
support, especially when one realises that key
components of the proof, such as clause (27), are not
shown. This problem could be addressed by
exploiting hierarchical, graphical representations of
formal proofs, such as tableaux . Hypertext display
strategies might also be used to filter out the
associated prose, or conversely, the mathematics at
different stages during the analysis [13].

C: The proximiate cause of the casualty was the failure of Chief Officer Broekhoven, the person in charge of the
watch on the NOORDAM at the time of the casualty, to maintain a vigilant watch in that he did not detect the
presence of the MOUNT YMITOS visually or on the radar until the MOUNT YMITOS was less than 1 mile
away and less than 2 minutes before the collision. [Conclusion 1]

forall t: not during(vigilant(broekhoven, t) iff
not(during(observe(broekhoven, mount_ymitos, visual), t), before(t, 2040)),
not(during(observe(broekhoven, mount_ymitos, arpa_radar), t), before(t, 2040)). (25)

A:The number of personnel (both watchstanding and l
non-watchstanding) on the bridge of the Noordam betwee:
2020 and the time of the collision may have raised the
complacency level and lowered the attentiveness of the
bridge watchstanders with regards to maintaining a
dedicated visual and radar watch. [Conclusion 5].

A: Between 2030 and 2036, ... Veldhoean and Broekhoven
used the 10-centimeter and centimeter radars to check the
distance to the domino platforms, and particularly the bearing
and range of the Racon't. They were using the radars for
collision avoidance and observation of moving targets, and did
not attempt to correlate every fixed target contact in the radar
with fixed platforms observed visually to see if any were
underway contacts rather than fixed platforms [Paragraph 39])
forall t:

during(perform(broekhoven, navigation_radar_check, t),
not(during(perform(broekhoven, correlate_radar_taregts, t) (26)

forall t:
not during(observe(broekhoven, mount_ymitos, visual), t)
iff during(position(kuiper, bridge(noordam), t),
during(position(veldhoen, bridge(noordam), t),
during(position(helmsman, bridge(noordam), t),
during(position(chief_officers_wife, bridge(noordam), t),
during(position(quartermaster_1, bridge(noordam), t),
during(position(quartermaster_2, bridge(noordam), t),
during(position(cadet, bridge(noordam), t),
during(position(broekhoven, bridge(noordam), t). (28) !
l E:Between 2030 and 2036, ... Veldhoean and Broekhoven used thel
10-centimeter and centimeter radars to check the distance to the
domino platforms, and particularly the bearing and range of the
Racon't'. They were using the radars for collision avoidance and
observation of moving targets, and did not attempt to correlate
every fixed target contact in the radar with fixed platforms observex
visually to see if any were underway contacts rather than fixed
platforms [Paragraph 39]

E:There were seven other persons on the bridge

of the NOORDAM at this time (2037hrs) in addition
to the chief officer, who was in control of the vessel -
three licensed officers (one on duty and two off duty),
one cadet, two quartermasters and the chief officer's
wife [Paragraph 41).

exists t:

during(position(kuiper, bridge(noordam), t),
during(position(veldhoen, bridge(noordam), t),
during(position(helmsman, bridge(noordam), t),
during(position(chief_officers_wife, bridge(noordam), t),|
during(position(quartermaster_1, bridge(noordam), t),
during(position(quartermaster_2, bridge(noordam), t),
during(position(cadet, bridge(noordam), t),
during(position(broekhoven, bridge(noordam), t),
before(2037, end(t)), before(begin(t), 2042). (38)

exists t:

during(perfrom(broekhoven, navigation_radar_check, t),
not during(perform(broekhoven, correlate_radar_targets, t),
in(t, 2030, 2036) (15)

Figure 3: Conclusion, Analysis and Evidence diagram Integrating Formalisation and Informal Material

bridge. Some of this detail can be inferred from other
sections of the report. This is dangerous because
incorrect inferences may lead readers to form
inappropriate conclusions. For example, it would be
wrong to assume that the number of crew members on
the bridge at 20:20 should be used as a limit to the
number of people allowed on the bridge of another
ship [16]. Formal methods can be used to avoid such
problems. We have shown how proof techniques can
be used to establish that an accident report contains all
of the evidence that is needed to support particular
conclusions.

6 Conclusions and Further Work

This paper has argued that formal methods can support
the use of natural language in accident reports. In
particular, we are concerned to demonstrate that the
recommendations of a report can be justified in terms
of the events that are described in these documents.

6.1 Identifying Missing Information

A key point in this paper has been that informal
argumentation is weakened by the omission of critical
information. For example, the Noordam report did

not explicitly state the reasons why Broekhoven failed
to perform collision checks using the ARPA radar
between 20:36 and 20:42. Similarly, it did not
explain why 20:20 was cited as the critical moment
when other crew members impaired operations on the

31

6.2 Structuring Critical Information

An additional benefit from the application of formal
proof techniques is that they help analysts to present
supporting evidence in a coherent format. By this we

mean that there is a clear distinction between the
axioms that model the accident and the theorems that
represent the conclusions which can be made from that
model. This is critical because many accident reports
mix these two different types of information. For
instance, the Noordam case study presents evidence
about the number of people on the bridge in the body
of the report [Paragraph 41]. It also presents further
evidence about this in the closing sections of the report
[Conclusion 5]. This gradual presentation of
information forces the reader to piece together the
events leading to the accident over the hundreds of
pages that, typically, form an accident report. Formal
proof techniques can help with this because they
require that the model is built before inferences can be
drawn.

6.3 Avoiding Ambiguity.

Natural language argumentation structures frequently
make effective use of ambiguity. This is useful when
it is difficult or impossible to provide exact
information about particular events during an accident.
For instance, the Coast Guard report does not
represent the particular words that were uttered by
Kuiper when he first observed the lights on the Mount
Ymitos. It is important to note that this form of
ambiguity can be modelled through the abstraction
mechanisms of formal languages. Terms such as
curse can be used in place of the precise words uttered
by an operator. However, there are times when
unnecessary ambiguity can have disastrous
consequences- for an accident report. A detailed
analysis of the Noordam case study has shown
considerable problems in identifying the seven
individuals who were present on the bridge of the
Noordam immediately before the collision [paragraph
41]. We initially identified eight people who
contributed to the events leading up to the accident.
This inconsistency can be explained in terms of the
ambiguity of roles, such as quartermaster. They are
ambiguous in the sense that they cannot easily be
matched against the names of the individuals involved
in the accident, such as the lookout Salyo, from
lengthy natural language accounts. Formal analysis
helps to avoid this problem by forcing analysts to
explicitly represent the relationships between the terms
of Table 1.

6.4 Defining Relevance

A final benefit from our formalisation is that it helps to
define a notion of relevance for the material in an
accident report. Information must be included if it is
necessary in explaining the conclusions that are
reached in the report. This is not to say that any
details which are not called upon in the conclusions
ought to be omitted. Much of the detail in an accident
report helps to establish the context of failure rather
that just the events that led to the accident. In the

32

Noordam, this includes detailed consideration of the
'rules of the road' for maritime navigation. In
contrast, we argue that information must be included if
it supports the conclusions that are drawn from an
investigation. This does not just relate to factual
information, such as the missing timings mentioned in
Section 6.1. It also refers to the supporting inferences
that help to link the factual analysis to the conclusions.
For example, in order to prove Conclusion 1, we were
forced to explicitly state the reasons why Broekhoven
failed to maintain a vigilant watch, see clause (23).
Unfortunately, our work has shown that readers are
often expected to infer the arguments that support the
conclusions in accident reports.

6.5 Future Work

The techniques that are described in this paper can be
applied to represent and reason about the bias that is
often embodied in accident reports. This is achieved
by examining the factual information and the
inferences that are presented in each account. Formal
analysis can then be used to identify the impact that
factual omissions have for the reader. For example,
very different interpretations might have been
produced if the Coast Guard's report had removed
information about the number of people on the bridge
of the Noordam. Such an omission not only affects
the timeline of events leading to failure, it also restricts
the valid inferences that can be made about an
accident. For instance, readers would have been
forced to find alternative explanations for
Broekhoven's failure to visually observe the Mount
Ymitos. Formal analysis can identify these differences
because it would no longer be possible to prove
theorem (23). We have already demonstrated that this
approach can be used to identify 'biases' in the
reporting of nuclear power accidents [21]. It remains
to be seen whether these techniques can be applied to
accident reports from other domains. An important
pre-requisite for this work is the tool support
mentioned in the previous section. CAE diagrams
quickly become unmanageable for the more complex
proofs that are required to demonstrate the impact of
bias between different accident reports.

It is important to emphasise that CAE diagrams and
formal proof techniques are not intended to replace the
natural language presentation of accident reports. In
contrast, our intention is to provide a clear and
coherent structure for the argumentation in accident
reports [20]. This additional degree of precision is
required if companies are to use these documents as a
means of guiding future development and investment
decisions.

Acknowledgements

The research reported in this paper has been supported
by UK Engineering and Physical Sciences Research
Council grants GR/J07686, GR/K55042 and

GR/K69148. I would like to thank the members of
the Department of Computing Science, University of
Glasgow for their support and encouragement in this
work.

References

[1] Air Accidents Investigations Branch, Department of
Transport. Report On The Accident To Boeing 737-
400 G-OBME Near Kegworth, Leicestershire on
8th January 1989, number 4/90, Her Majesty's
Stationery Office. London, United Kingdom,
1990.

[2] S. Austin and G.I. Parkin. Formal Methods: A
Survey, Division Of Information Technology
And Computing, The National Physical
Laboratory, Sponsored by the United Kingdom
Department of Trade and Industry,
Teddington, United Kingdom, 1993.

[3] S. Buckingham Shum, Analysing The Usability
Of A Design Rationale Notation. In T.P.
Moran and J.M. Carroll (eds.) Design
Rationale Concepts, Techniques And Use,
Lawrence Erlbaum, Hillsdale, New Jersey,
United States of America, 1995.

[4] Cullen, Proceedings Of The Public Enquiry Into The
Piper Alpha Disaster. The Department of Energy,
Her Majesty's Stationery Office, London, United
Kingdom, 1990.

[5]1 A.J. Dix, Formal Methods For Interactive
Systems, Academic Press, London, United
Kingdom, 1991.

[6] D. Fennel, Investigation Into The Kings' Cross
Underground Fire. Department of Transport,
Her Majesty's Stationery Office, London,
United Kingdom, 1988.

[7] C.W. Johnson, A Probabilistic Logic For The
Development of Safety-Critical Interactive Systems.
International Journal of Man-Machine Systems,
39(2):333-351, 1993.

(8] C.W. Johnson, The Formal Analysis Of Human-
Computer Interaction During Accident
Investigations. In G. Cockton, S.W. Draper and
G.R.S. Weir, editors, People And Computers IX,
285-300. Cambridge University Press, Cambridge,
1994.

[9] C.W. Johnson, The Application of Petri Nets to
Represent and Reason about Human Factors
Problems During Accident Analyses InP.
Palanque and R. Bastide, editors, The Specification
And Verification Of Interactive Systems, 93-112,
Springer Verlag, Berlin, 1995.

33

[10] C.W. Johnson, Using Z to Support the Design of
Interactive, Safety-Critical Systems Software
Engineering Journal, (10)2:49-60, 1995.

[11] C.W. Johnson, Impact of Working Environment
upon Human-Machine Dialogues: A Formal Logic
for the Integrated Specification of Physical and
Cognitive Ergonomic Constraints on User
Interface Design. Ergonomics (39)3:512-530,
1996.

[12] C.W. Johnson, Literate Specification. Software
Engineering Journal, (11)4:225-237, 1996.

[13] C.W. Johnson, Literate Specification: Using
Design Rationale To Support Formal Methods In
The Development Of Human-Machine Interfaces.
Human Computer Interaction Journal, (11)4;291-
320, 1996.

[14] C.W. Johnson, J.C. McCarthy and P.C.
Wright, Using A Formal Language To Support
Natural Language In Accident Reports.
Ergonomics, (38)6:1265-1283, 1995.

[15] P. Johnson, D. Diaper and J. Long, Task,
Skills And Knowledge: Task Analysis For
Knowledge Based Descriptions. In B.
Shackel (ed.) Human-Computer Interaction -
INTERACT' 84, Elsevier Science
Publications, North Holland, Netherlands, 23-
27, 1984.

[16] B.H. Kantowitz and P.A. Casper. Human
workload in aviation. In E.L. Wiener and
D.C. Nagel, editors, Human Factors In
Aviation, 157-187. Academic Press, London,
United Kingdom, 1988.

[17] National Transportation Safety Board, Aircraft
Accident Report, American Airlines Inc. DC-10 at
Chicago Illinois, May 25, 1979, NTSB AAR-79-
17, Washington DC.

[18] P. Palanque and R. Bastide, Formal Specification
and Verification of CSCW Using The Interactive
Cooperative Object Formalism, In M.A.R. Kirby,
AlJ. Dix and J.E. Finlay (eds.), People and
Computers X, 213-232. Cambridge University
Press, Cambridge, 1995.

[19] F. Paterno, M.S. Sciacchitano and J. Lowgren, A
User Interface evaluation, Mapping Physical User
Actions to Task-Driven Formal Specifications. In
P. Palanque and R. Bastide (eds.), Design,
Specification and Verification of Interactive
Systems '95, 35-53, Springer Verlag, Berlin, 1995.

[20] J. Reason, Human Error, Cambridge University
Press, Cambridge, United Kingdom, 1990.

[21] A.J. Telford and C.W. Johnson, Extending the
Application of Formal Methods to Analyse Human

Error and System Failure During Accident
Investigations. Software Engineering Journal,
(1106:355-365, 1996.

[22] United States Coast Guard, Investigation into the
Circumstances Surrounding the Collision Between
the Passenger Vessel Noordam (NA) and the
Freight Vessel Mount Ymitos (MT), United
States Department of Transport, Washington DC,
1993.

[23] N. Worley and J. Lewins (editors), The Chernobyl
Accident And Its Implications For The United
Kingdom, Report Number 19 Of The Watt
Committee On Energy, Elsevier Science, North
Holland, 1988.

34

Formalization and Analysis of the Separation Minima for Aircraft
in the North Atlantic Region

Nancy A. Day
day@cs.ubc.ca
Department of Computer Science
University of British Columbia
2366 Main Mall, Vancouver, BC, Canada V6T 174

Abstract

The formalization and analysis of an air traffic control
separation minima serves in this paper as an
illustration of an approach that wuses formal
operational semantics to drive the automated analysis
of specifications. This contrasts with the approach of
translating one notation into the input format for an
analysis tool, or hard-coding the semantics of a
particular notation into the implementation of an
analysis technique.

The semantic functions capture the structure of the
specification and can be directly evaluated to map a
notation to a rigourous mathematical foundation. This
work contributes to a greater appreciation of how the
structure of a specification (e.g., the organization of a
table), not just the semantics, is an important input to
many analysis functions. Building upon a common
mathematical foundation, different notations can be
combined to support an integrated approach to the
analysis of a formal specification. A related issue is
the importance of being able to reverse the effect of the
semantic functions so that analysis results are
provided to users at the same level of abstraction used
in the input specifications.

The formalization of the separation minima combines
the use of a tabular style of specification with predicate
logic. This paper discusses how automated analysis
functions were applied to the specification to check for
the properties of consistency, completeness and
symmetry. The benefit of doing this analysis is
demonstrated by the discovery of an ambiguity in the
separation minima.

1. Introduction

This paper describes work carried out at the University
of British Columbia in collaboration with Hughes
International Airspace Management Systems to
formalize and validate a specification of the separation

35

Jeffrey J. Joyce, Gerry Pelletier
{jjoyce,gpelletier} @ccgate.hac.com
Hughes International Airspace Management Systems
13951 Bridgeport Rd,
Richmond, BC, Canada V6V 1J6

minima for aircraft in the North Atlantic (NAT)
region. Our formalization is based on a description
provided in a source document published by Transport
Canada on behalf of ICAO'. This document describes
the official North Atlantic Separation Minima as
published by ICAO. This description provides
guidance to air traffic controllers managing the region
of oceanic airspace between Europe and North
America. It is also used as the basis for the
development of software based systems that support
the management of the NAT region. For example, it
would be used during the planning of a flight from
New York to London to check whether the route is
free from separation conflicts with other aircraft
expected to be in the NAT region at the same time.

This collaboration has directly involved domain
experts (not just formal methods experts) in the
process of developing and analyzing a formal
representation of a complex “real” description. The
source document is an informal specification that has
been scrutinized by the NATSPG (NAT Systems
Planning Group) members who are ATC specialists
from the NAT countries, and most of them maintain
and use automated systems that implement these rules.

Our formal representation of these separation minima
is given in a mixture of a tabular style of specification
and a variant of higher order logic called “S” [11].

'This document, “Application of Separation Minima
for the NAT Region” (3rd edition, effective December
1992), was published by Transport Canada on behalf
the ICAO North Atlantic Systems Planning Group.
ICAO is the International Civil Aviation Organization
with headquarters in Montreal, Canada. This
separation minima document was developed by the
COMAG (Communications and ATM Automation
Group), now called the CADAG (Communication,
Automation and Data Link Applications Group) .

Combining multiple notations makes it possible to
choose the notation best suited to the various parts of
the specification. The tabular style was chosen
because the rules consist of complex decision logic
describing predicates and functions. To unite the
various parts, including environmental assumptions,
in a common framework for analysis, the tables are
considered a “style” of specification in the S notation.
A “style” of specification includes associated semantic
functions for the constructs that are introduced, which
makes it possible to capture the structure of the
specification and give meaning to the notation.

Once in a common environment, the specification can
then be analyzed for various properties. These range
from “style” independent properties, such as
typechecking and symmetry, to properties particular to
the notation being used. This paper describes the
analysis of the completeness and consistency of the
tabular specifications. Symmetry is a particularly
desirable property of the separation minima, so we
also describe how the same analysis mechanisms used
for completeness and consistency are used to-do this
check. The most significant result of the analysis was
the discovery of two tables in the specification with
inconsistencies, where, for the same scenario, the
specification indicated two different amounts of
aircraft separation.

The formal specification and related analysis results
can be found on-line at
http://www.cs.ubc.ca/spider/day/Research/
SeparationMinima/SeparationMinima.html .

This work tests the doctoral thesis hypothesis of the
first author, Day. This hypothesis is that explicit
definitions of the operational semantics of a notation
can be used directly in the analysis and that this
method retains the domain knowledge captured by the
structure of the specification, which can be exploited
in analysis. This structure can be used to help convert
the specification to a finite model and to determine
the correct level of abstraction for presentation of the
results of analysis. This paper outlines the framework
for using operational semantics for analysis. We have
implemented this framework, including the analysis
techniques described in this paper in a tool called
Fusion. The overall goal of this work is to make it
possible to perform fast, automatic, lightweight checks
to streamline the validation of specifications. The
automated checks do not provide absolute assurance,
but they isolate details that can be reviewed
independently. The individual analysis checks
described here usually took about 1 second of

36

execution time on a Pentium-120 with 16 MB running
Linux.

2. Related Work

2.1 Notation

Since the separation minima is a specification of
combinations of conditions that produce different
outcomes, a tabular style of specification seemed
suitable. Previous successful efforts of using tables
provide a good precedent for the readability of a
tabular style of specification. These efforts include the
AND/OR tables of the TCAS II project[12] and the
Software Cost Reduction (SCR) notation used in the
A-7 aircraft Operational Flight Program(9]. Initially,
we considered using either AND/OR tables, or the
style of tables presented by Parnas [16]. SCR tables
are typically for system specifications that involve
“modes” of operation and the separation minima does
not have this characteristic.

An AND/OR table consists of a series of rows labeled
by predicates. The columns to the right of the label
contain “T” for true, “F’ for false, or “.” for “don’t
care”. The cell is meant to represent the case where
the condition given by the label is true or false. A
“don’t care” value means that the cell could contain
either true or false. The table represents a predicate
that is true if the conjunction of the cells in any
column results in true.

A difficulty with AND/OR tables is that they only
represent predicates. In the separation rules, sets of
conditions are used to describe cases for different
return values of functions.

The other approach considered was the tabular style
presented by Parnas [16] which allows for the
grouping of related conditions along a row. Grouping
is achieved by allowing each different argument of the
predicate (or function) represented by the table to have
its own dimension. Hence, this style is best suited for
capturing functions of a small number of dimensions
which is not the case for the tables we expected to
construct in our formal representation of the NAT
separation minima.

2.2 Analysis

In the TCAS II specification, a table can be used to
describe the condition for taking a transition in a state
machine. - In the completeness and consistency
analysis carried out by Heimdahl and Leveson[6], the

specification is considered complete if a transition is
always enabled from a state. It is consistent if the
specification is deterministic, i.e., if no two transitions
can be enabled at the same time.

In the TCAS II AND/OR tables the cells in the rows
can contain only true, false, or “don’t care”. In the
analysis, a Boolean variable is associated with each
row label. The meaning of each cell in the row is the
condition of whether this Boolean variable is true or
false. This allows for an efficient implementation
using Binary Decision Diagrams (BDDs) [2].
Completeness analysis checks that the disjunction of
the columns of all the tables used to describe
transitions from a given state is a tautology.
Consistency analysis checks that there is no overlap in
the conditions between multiple tables describing
transitions from the same state, i.e., the conjunction of
the meaning of two tables is a contradiction.
Checking if the BDD representation of an expression
is a tautology or a contradiction takes constant time.

A difficulty with AND/OR tables is that related
conditions such as “x < 280” and “x > 450" are listed
on separate rows and therefore the structure of the
table does not capture the relationship between these
terms. Related conditions are associated with different
Boolean variables. This can result in the analysis
producing false negatives. For example, it might
return a bogus result indicating that no table covers
the case where both the conditions “x<280” and
“x>450” are true. The tool created by Heimdahl and
Leveson catches false negatives with respect to
enumerated types, but not those arising from the use of
mathematical functions. They are investigating
linking their analysis with a theorem prover [6].

Although SCR tables are not applicable to the
separation minima, their analysis techniques are
relevant. Heitmeyer, Jeffords and Labaw [7,8]
describe work on checking the completeness and
consistency of condition tables given in the SCR
‘notation. They also define completeness as a coverage
property - that the disjunction. of the conditions in a
row is a tautology. Currently, they limit themselves to
conditions ranging over Boolean values or those that
have been converted by hand to Boolean variables.
Expressions involving relations are also converted
manually into Boolean variables. They are working on
techniques to reason about conditions involving
mathematical functions. Their analysis of the
condition tables for the Operational Flight Program of
the US Navy’s A-7 aircraft found 17 legitimate errors
in 36 tables with a total of 98 rows. Two false errors

37

were found due to their strictly Boolean interpretation
of the specification. Given the manual encoding to
Boolean variables, these results must have been
mapped by hand back to the correct level of
abstraction for interpretation.

Both of these previous examples are control-oriented
systems. In systems that contain a great deal of data
complexity, such as these separation minima, it
becomes more important to capture and utilize the
relationships among data values.

Our work is similar to that carried out by Owre,
Rushby, and Shankar where they have added a table
construct to the PVS theorem prover[14,15]. The
theorem prover is used to address some of the
deficiencies of a strictly BDD-based approach. They
follow the same approach as us of semantically
embedding decision tables within higher order logic.
The checks for completeness and consistency are
carried out by proving type correctness conditions for
the tables. This requires minimal theorem proving
effort when the tables are complete and consistent but
it appears that some effort is required to extract the
cases not covered or the inconsistent cases.

Our effort documented here also attempts to address
the difficulties of a strictly BDD-based approach while
staying within the realm of lightweight, fully
automatic techniques. In particular, we show how the
structure of the table often can be utilized to eliminate
the need for a more heavyweight tool such as a
theorem prover. Our approach to executing the
semantic definitions using symbolic functional
evaluation as is done in functional programming
languages also differentiates this work. Finally we
demonstrate the value of including environmental
constraints in the analysis process and present a
simple approach for dealing with quantification to
make this possible.

3. Specification Notation

At the beginning of this project, the first author was
presented with an interpretation of the separation
minima expressed as pseudo code (a draft documented
dated 20 Sept 95). This interpretation was created by a
third party to provide software developers with an
algorithmic interpretation of the English text and
diagrams contained in the NAT region separation
minima specification. This pseudo code imposed an
order of evaluation on the conditions as well as other
implementation details. The imperative
programming style of specification used involves

Default

A Flightl evel _<=280 | . _>450 | _ >450
B.FlightLevel _<=280 | _>450 | _ >450
IsSupersonic (A) -=

IsSupersonic (B) _=T

VerticalSeparationRequired (A,B) 1000

1000 4000 4000 2000

Figure 1: Vertical Separation

assignments of default values to variables followed by
if-then-else statements to modify these variables, as
well as procedure calls. Most of the conditions of the
if-then-else statements were expressed in terms of
English phrases.

Our goal became to formalize the separation minima
using a notation that did not impose implementation
constraints and that was amenable to analysis so we
could determine which cases were being covered by
the default values. This effort also required sorting
out the variety of English phrases used to describe
various conditions to yield a “dictionary” of primitives
that were then introduced in the formal representation
as uninterpreted functions and predicates.

Our review of previous work using tabular
specifications led to the use of a variation of AND/OR
tables. This variation allows related conditions to be
captured within a row in a style closer to the idea of
decision tables given in the structured analysis
methodology of DeMarco [3]. A row isolates one
dimension of the decision and the columns relate the
different dimensions to produce a case. A table can
also represent functions through the addition of a row
of return values.

Figure 1 is an example of our tabular style of
specification; this particular table specifies the
minimum vertical separation (in feet) that must exist
between two aircraft for them to be . considered
separated in the NAT region. The name of the
function and the arguments to the function are given
in the last row of the table which gives the return
values of the function. Except for the last row of the
table, the label of a row (the leftmost column) is an
expression. The cells of the row are predicates that
can be applied to this label to produce the condition
that the cell represents. The parameter of the
predicate is given by the “_” in the cell. A “.” means
“don’t care”, i.e., the predicate is always true. Then, as
with AND/OR tables, the conjunction of the cells in

38

any column is the cas¢ where the function returns the
value in the last row for that column.

A semantically equivalent representation in S of the
function given in Figure 1 is:

VerticalSeparationRequired(A:flight, B:flight) :=
if (A.FlightLevel <= 280) then 1000
else if (B.FlightLevel <= 280) then 1000
else if ((A.FlightLevel > 450) AND
(B.FlightLevel > 450) AND
(IsSupersonic (A) =T)) then 4000
else if ((A.FlightLevel > 450) AND

(B.FlightLevel > 450) AND
(IsSupersonic (B) =T)) then 4000
else 2000;

The arguments A and B represent flights. In S, the
“dot” notation as used in the expression
“A.FlightLevel” is merely syntactic sugar for function
application. “A.FlightLevel” is interpreted by an S
parser as “FlightLevel (A)” to allow for the
representation of static information about an item in
the familiar “record” type of notation.

In addition to standard, “built-in” predicates such as -
“<=" and “>”, the formalization also involved the
introduction of uninterpreted types and constants. An
uninterpreted constant has a type but no definition.
For example, the following S declarations introduce an
uninterpreted type’ (“flight”), an uninterpreted
function (“FlightLevel”’) and an uninterpreted
predicate (“IsSupersonic™):

flight;
FlightLevel : flight -> num;
IsSupersonic : flight -> bool;

Z Uninterpreted types are analogous to “basic types” in
a Z specification[17].

The use of uninterpreted terms allowed us to phrase
the specification in domain terminology and to match
the level of abstraction appropriate for this
specification.

The table for vertical separation in Figure 1 specifies a
function. In the case of a predicate (i.e., a function
that returns a Boolean value) the bottom row of return
values can be omitted and the cases designated by the
columns are assumed to return true for the predicate.
Any other cases are assumed to return false.

These tables also allowed us to match the modular
nature of the decomposition of the separation minima.
For example, longitudinal separation between two
aircraft that are both turbojet depends on the current
airspace (MNPS or WATRS?) of the aircraft. These
cases are given in separate tables.

Since we were working within the S environment, we
were also able to use definitions of functions in
predicate logic rather than tables in some cases. These
function could reference tables and tables could
reference functions defined in S. This illustrated the
benefits of being able to combine multiple notations.

4. Formalization Process

Figure 2 illustrates our formalization and analysis
process. An important element in gaining industry
acceptance of any formal method is the form in which
the specification is presented for review to non formal
methods experts. We chose to use HTML so that
changes to the specification could be quickly viewed
by all authors and so that cross references in the
document between the use and definition of terms
could be given using hyperlinks. This made it possible
to give supplementary text to describe the formal
tables. The top-down presentation given by this
document also has advantages over the bottom-up
order (i.e. declaring or defining terms before they are
used) which is expected by analysis tools. However, it
was also necessary to have a version of the
specification that could be input to the analysis tools.
To eliminate the difficulty of having to maintain
versions of the specification existing in different
forms, we created one document that is a mixture of
HTML and formal notation. We used a preprocessor
that produces the specification in pure HTML (using
HTML tables for the formal tables) and automatically

> MNPS is Mininum Navigational Performance
Specification. WATRS is West Atlantic Route
System.

39

generates links from references to the declarations and
definitions of terms*. It also produces a separate file
containing only the representation in formal notation
in the correct order which is used as input to the
analysis tool. ‘

The first draft of the formal specification was created
by the first author based on a pseudo code
representation of the separation minima. The first step
in the formalization process was to determine the
primitives of the specification and introduce these as
uninterpreted functions and predicates in S. The
pseudo code is modular so parts of it can be matched
to individual tables. For each table, the relevant
“inputs” were determined and used as the labels for
the table rows. Columns in each table were then
created as given by the logical combinations of these
inputs. Typechecking was used to validate the first
draft of our formal representation of the separation
minima.

The first draft of the specification was handed off to
the third author who is the domain expert. The only
explanation of the tables that he was given was one
paragraph of text with-an example at the beginning of
the document. From this, he edited the HTML version
of the document and supplied the first author with a
revised draft of the specification. This included
smaller changes, such as terminology, and more
meaningful changes, such as clarification of
ambiguous phrases identified by the first author, such
as, “a portion of the routes of both aircraft are within
OR above OR below MNPS airspace”. The correct
interpretation of this phrase is that each aircraft is
considered independently with respect to MNPS
airspace, as opposed to both aircraft having to be
within MNPS airspace or both having to be above
MNPS airspace, etc. Relationships between various
primitive terms were also identified.

* This preprocesser was developed in the course of this
work but is a separate tool that could be used for
various specification notations. Information is
available at http://www.cs.ubc.ca/spider/day/
Research/hpp.html .

NAT Separation Minima
(English and diagrams)

manual translation

pseudo code interpretation

Core process

HTML

pure HTML format
(for viewing by a browser)

..

generate pure

Fusion
(analysis functions)

extract S

S
(i.e., typed predicate logic)

- ——— —— " ——

4—

...

input for other tools
(e.g.,PVS,HOL, ..))

output of analysis
(e.g., completeness checking)

Figure 2: Process Overview

The most notable absence from the pseudo code was
the top level requirement stating what separation
means. Two aircraft are separated if they satisfy the
separation minima for at least one dimension, i.e.
vertical, lateral, or longitudinal. The criteria for each
of these is given in different units. The top level
requirement as stated in S is given in Figure 3. In this
requirement, “ABS” takes the absolute value of its

40

argument. Vertical separation is measured in feet.
Lateral separation is measured in miles (or
equivalently in degrees of latitude). Longitudinal
separation is measured in minutes. Two aircraft on
opposing tracks cannot be considered longitudinally
separated during a certain range of time when the
aircraft are close to crossing. Vertical or lateral
separation must exist during that time.

AreSeparated(A:flight,B:flight,t:time) :=

OR
(if (LatitudeEquivalent(A,B)) then

(A,B))
else

OR
approximate same or opposite direction */
/* opposite direction */

else /* same direction */

NOT (WithinOppDirNoLongSepPeriod(A,B,t))

/* A and B are vertically separated based on flight level */
(ABS(A FlightLevel- B.FlightLevel) > VerticalSeparationRequired(A,B))

/* A and B are laterally separated based on either position in degrees of latitude or position in miles */

(ABS(A.LateralPositionInDegrees - B.LateralPositionInDegrees) >LateralSeparationRequiredInDegrees

(ABS(A.LateralPositionInMiles - B.LateralPositionInMiles) > LateralSeparationRequiredInMiles (A,B)))
/* A and B are longitudinally separated based on time, depending on whether the two flights are in the

(if (AngularDifferenceGreaterThan90Degrees(A.RouteSegment,B.RouteSegment)) then

ABS(A.TimeAtPosition - B.TimeAtPosition) >LongSameDirSepRequired(A,B));
Figure 3: Top level Specification of Separation

The addition of the top level requirement pointed out
that the proper distinction had not made between
minima for aircraft on opposing tracks and those on
same direction tracks. The requirement on aircraft
flying the same direction is a minimum number of
minutes of separation. The requirement for aircraft
flying in opposing directions is that some other form
of separation must exist during the time period when
the aircraft cross. This change mainly affected the
statement of the top level requirement.

The resulting specification consisted of 15 tables, 16
definitions in S, and 47 uninterpreted constants. The
largest table consisted of 8 rows and 6 columns.

5. Analysis

Our goal was to analyze the completeness,
consistency, and symmetry of the tables in the
separation minima specification. Completeness
checking -automatically determines the cases that are
covered by the default column, or if no default is
given, the cases that are not covered in the table.
Consistency analysis returns pairs of columns with
different return values that both include a set of
conditions that can be true at the same time.
Symmetry analysis determines if the table has the
same meaning when its arguments (the pair of flights)
are given in the opposite order.

41

All of these forms of analysis are based on the possible
combinations of entries in the rows of the table. They
cannot determine if some aspect of the decision given
by the table has been omitted.

The framework for specification and analysis proposed
in the thesis work of the first author is illustrated in
Figure 4. Requirements specifications, possibly given
in multiple notations are placed within a common
logical framework using an embedding that closely
matches the original notation and does not lose the
structure of the specification. Semantic functions
define the meaning of the embedded notation in logic.
The semantic functions also indicate explicit join
points for how multiple notations fit together, such as
a predicate table being used to describe the condition
on a transition in a statechart [5] similar to what is
done in RSML (Requirements State Machine
Language) [12].The keywords used in the embedding
and their associated semantic functions are called a
“style” of specification in S.

These semantic functions are executable in the sense
that they map a structured specification, such as a
table, into an expression in logic. The expression in
logic is called the semantic representation in the
diagram. One method of executing these semantics is
to use rewrite rules within a theorem prover.
However, this is a more general mechanism than is
needed for functions known to be executable.
Drawing on techniques from functional programming
language implementations, Fusion includes a symbolic

i

Figure 4: Specification and Analysis Framework

functional evaluator which can execute statements in
S, stopping when it reaches uninterpreted constants.
This engine carries out evaluation in place for
efficiency, as is done in the implementation of a
functional programming language.

Separately, clues -given in the structure of the
specification can be wused to help determine
simplifications to map the semantic representation
into a finite model that can be efficiently represented
using BDDs and analyzed using automatic means.
Sometimes the simplification implied by the structure
is not a valid abstraction. If the tool can not determine
the validity of the simplifications these are stated to
the user as “assumptions”. This serves to the reduce
the review process to one of evaluating isolated
assumptions.

The results of the analysis map the simplifications
back into the terms of the specification for the user to

examine.

We regard tables to be a “style” of specification in the

S language where the textual specification of the table
in S is structurally close to the tabular presentation.
Figure 5 shows the S representation of the table for
“VerticalSeparationRequired” given in Figure 1. Our
preprocessor turns this representation into an HTML
table.

The keyword “Row” is a semantic definition that
substitutes the label of each row into the list of
predicates. The “_” describing the parameter of the
predicate in the HTML version is given by a lambda
variable. “DC” is a predicate that always returns the
value true. This takes the place of the “.” in cells in
the HTML representation. “TRUE” is a predicate that
states that its parameter must have the value “true”.
The result of applying the “Row” function is a list of

elements with Boolean values.

The keyword “Table” gives meaning to the table,
matching the conjunctions of values in the columns
with return values. These semantic functions are
defined in S and given in Appendix A.

VerticalSeparationRequired (A,B) := Table

[Row (A.FlightLevel)

Row (B.FlightLevel) [DC;

Row (IsSupersonic (A))[DC;

Row (IsSupersonic (B)) [DC;
[1000;1000;4000;4000;20001;

[(\x.x <= 280);

Figure 5: VerticalSeparationRequired Table in S

DC,; (\x. x >450); (\x.x >450)];
(\x.x <= 280); (\x. x > 450); (\x.x >450)];
DC; TRUE; DC 1;

DC; DC; TRUE 1]

42

A FlightLevel

_<=280 | (280< _)AND (_<=450) [450< _

Figure 6: Example Row

Having related conditions in a row uses the structure
of the table to show how the user views the possible
values of the row label. For example, in the table
found in Figure 1 for vertical separation, the flight
level of each aircraft is only important in how it
compares to flight levels 280 and 450 for the purposes
of the function given by the table. Therefore the
analysis can assume that the specifier would like the
analysis results given in these terms as well. This is in
keeping with our goal of returning results at the same
level of abstraction as the specification.

The simplification engine uses the entries in a row to
partition the state space for the aspect of the problem
given by the label of that row. This partition can then
be encoded in Boolean variables just as an enumerated
type can be encoded for automatic verification (as seen
in [1,10]). For example, if a row contained the entries
found in Figure 6, there are three conditions given by
the cells in this row:

A FlightLevel <= 280
(280 < A FlightLevel) AND (A.FlightLevel <=450)
450 < A. FlightLevel

The flight levels of A have been divided into three
ranges. To represent these ranges, we need two
Boolean variables, say al and a2. We can use the
encoding given in Figure 7. The use of structure
eliminates the need for the more heavyweight
reasoning of a theorem prover in this instance.

This encoding results in one leftover possible encoding
for the Boolean variables of al=true and a2=true.
Since this does not correspond to any possible real
case, we add this to the final expression to check in
the analysis to ensure that this artifact does produce an
extraneous result.

This technique does make the assumption that the

partition the user provides is complete and consistent.
This is not always the case. Some readers may have
noticed that for the table
“VerticalSeparationRequired” in Figure 1, using only
the elements in the first row leaves out the case for
when the flight level is between 280 and 450. An
earlier version of the tool stated these assumptions
about the partition to the user. This approach isolated
details of the specification to review separately. The
conditions given by the partition could also be
evaluated by an automated decision procedure in a
theorem prover such as PVS [13].

After noting that these assumptions are incorrect (i.e.,
a range is missing), one possible remedy is to modify
the table. However, in all cases for the tables in this
specification, the predicates over numeric values
consist of a comparison to a concrete value. To
improve the accuracy of the analysis results, we added
a simple interval checker which checks the partition of
the range given by the elements of the row and adds
any ranges not mentioned explicitly in the row. After
this addition, one table remained with overlapping
ranges in the elements of the row. The interval
checker identified this case and we modified the table
to separate the ranges into multiple rows and used
environmental assumptions to relate the rows.

There are many times when the possible values given
by the element labeling the row are known. An
example is a Boolean condition such as “IsSupersonic”
found in the “VerticalSeparationRequired” table. This
element can take on the values true and false even
though the row for it in this particular table never has
a false case. The checker automatically recognizes
these situations and considers both true and false as
possible values in the analysis. This is applicable for
any values of finite types. Enumerated types can be
declared using S declarations.

A FlightLevel <= 280 NOT(al) AND NOT(22)
(280 < A FlightLevel) AND (A FlightLevel <=450) | al AND NOT(a2)
450 < A. FlightLevel NOT(al) AND a2

Figure 7: Example Encoding

43

>%include minima.s

Including rules.s

>%comp VerticalSeparationRequired
VerticalSeparationRequired is:

(
(Table

[

((Row (FlightLevel A))

[(x.(x <= 280));DC;(\x.(x > 450));(\x.(x >450))]);
((Row (FlightLevel B))

[DC;(\x.(x <= 280));(\x.(x >450));(\x.(x > 450))])
;((Row (IsSupersonic A)) [DC;DC;TRUE;DC));
((Row (IsSupersonic B)) [DC;DC;DC;TRUE])])

[1000;1000;4000;4000;2000])

Invoking interval checker...

Interval checker partitions the range into:

((FlightLevel A) > 450)

((280 < (FlightLevel A)) AND ((FlightLevel A) <= 450))
((FlightLevel A) <=280)

Invoking interval checker...

Interval checker partitions the range into:

((FlightLevel B) > 450))

((280 < (FlightLevel B)) AND ((FlightLevel B) <= 450))
((FlightLevel B) <= 280)

The following cases
yield the default value of 2000

Case 1
Row 1
Row 2
Row 3
Row 4

Case 2
Row 1
Row 2
Row 3
Row 4

Case 3
Row 1
Row 2
Row 3
Row 4

Case 4
Row 1
Row 2
Row 3
Row 4

: ((280 < (FlightLevel A)) AND ((FlightLevel A) <= 450))
: ((280 < (FlightLevel B)) AND ((FlightLevel B) <= 450))

:DC
:DC

: ((FlightLevel A) >450)

: ((280 < (FlightLevel B)) AND ((FlightLevel B) <= 450))
:DC

:DC

: ((280 < (FlightLevel A)) AND ((FlightLevel A) <= 450))
: ((FlightLevel B) > 450)

:DC

:DC

: ((FlightLevel A) >450)
: ((FlightLevel B) > 450)
: ((IsSupersonic A) =F)
: ((IsSupersonic B) =F)

Stats for VerticalSeparationRequired completeness checking:
Number of cases identified: 4
Total time: 1 sec

>

Figure 8: Completeness Checker Output

5.1 Completeness Checking

Checking the completeness of a table means
determining if all possible cases are covered by the
specification. The meaning of a column is the
conjunction of the predicates in the row cells. For the
tables, completeness checking involves checking
whether the expression denoting the disjunction of the
columns is a tautology. By applying the semantic
function for the meaning of a predicate table and using
the Boolean encodings identified by the simplification
engine described above, we can evaluate this check
efficiently.

Figure 8 shows a Fusion session in which the
completeness analysis function “comp” is applied to
the table “VerticalSeparationRequired”. Every line
shown in Figure 2 is generated by Fusion except for
the two user commands which appear on the lines that
begin with the user prompt, “>”. The first command
“%include minima.s” causes the S representation of
the separation minima to be parsed and typechecked.
The second command “I%comp
VerticalSeparationRequired” causes the completeness
analysis function to be applied to the table
“VerticalSeparationRequired”.

The completeness analysis function first invokes the
interval checker for the first two rows. It correctly
determines the missing range for the possible values of
the “FlightLevel” of the aircraft.

The completeness analysis function then generates a
list of the cases covered by the default column. The
analysis reveals four of these cases. In order to
minimize the amount of output generated by the
checker, the results are given in an approximation of
minimal sum-of-products form. This can be seen in
the use of “don’t care” (“DC”) values for some of the
rows. It was important that these results were given in
terms of the unexpanded row label in cases where the
row label was an application of a function defined
elsewhere. This meant the reviewer could easily
match the cases given in the results to the original
table in HTML after substituting the row label into the
blank.

In reviewing this session output, the domain expert
would decide whether the default value, 2000, is
appropriate for the listed cases. The maximum
number of default cases revealed by the completeness
analysis for this specification was 50 - for a table of
eight rows and six columns. A table is not necessarily
flawed because it has default cases — but it is

important for the default cases to be enumerated and
reviewed by a domain expert. This kind of analysis
would be performed by some means in a disciplined
system development process. However, the use of an
automated completeness analysis function, as
illustrated here, streamlines and systematizes the
review process by enumerating the default cases
explicitly. A possible method of evaluating these
would be to iteratively examine a single case,
determine whether it is an error or not, and then add
it, likely in a generalized format (i.e., with “don’t
care” values in some of the cells) to the table. This
approach would mean that the default cases would
gradually be fully specified. Thus, the use of Fusion
for this purpose can also be seen as a way to measure
the quality of a specification.

In Heimdahl and Leveson’s work [6], they are able to
draw conclusions about the overall completeness of a
specification by referring to a functional definition of
the semantics. For this specification, we can ask
whether the completeness of individual tables ensures
the completeness of the overall specification. Given
that the tables represent functions, if the other parts of
the specification (including the uninterpreted
functions) represent total functions then we can
conclude that the specification is complete, assuming
the scope of each table is complete.

5.2 Environmental Assumptions

In reviewing the output of the completeness checker,
our domain expert pointed out that some of the cases
produced were impossible. These were situations
where the rows within a table were related to each
other. For example, an aircraft cannot satisfy both of
the constraints “InCruiseClimb” and “IsLevel” at the
same moment.

These constraints are information about the physical
limitations of the items involved in the specification.
They can be considered. assumptions about the
environment. We documented these in S using
expressions such as:

forall (F:flight).
mutually_exclusive(InCruiseClimb F, IsLevel F)

where “mutually_exclusive” is defined to mean only
one of its arguments can be true.

These expressions are evaluated using the symbolic
functional evaluator as for the tables. However in

45

order to reduce these expressions to the terms used in
the tables, we substituted any existing items of the
correct type as the parameter in the “forall”
expression. Most of the tables involve two flights, A
and B. The above environmental assumption would
evaluate to:

mutually_exclusive(InCruiseClimb A, IsLevel A)
AND
mutually_exclusive(InCruiseClimb B, IsLevel B)

Substitutions determined by the simplification engine
for the table, along with some additional Boolean
variables (since all environmental assumptions are not
relevant to every table) are used to encode the
environmental assumption.

The addition of environmental constraints slightly
changed the method of evaluating the completeness of
a table. Instead of checking whether the meaning of
the table was a tautology, we had to check whether the
environment conjoined with the negation of the
meaning of the table was a contradiction.

In the output, the environmental assumptions are not
listed. They are existentially quantified out of the
results.

5.3 Consistency Checking

Consistency checking involves comparing each
column of a table to all other columns within the table
that have a different return value to see if the cases
denoted by the columns overlap. The same evaluation

>cons otherSameDirLongSep env
otherSameDirLongSep is:
(
(Table
[((Row (ReportedOverCommonPoint (A , B))) [TRUE;DC});
((Row (SameOrDivergingTracks (A , B))) [TRUE;DC));
((Row ((AlIOf [A;B]) (\x.((IsOnRoute Routes3) x))))
[DC;TRUE}D)]) [15;20;30])

Columns 1 and 2 conflict in the following:

Case 1

Row 1 : ((ReportedOverCommonPoint (A , B)) =T)

Row 2 : ((SameOrDivergingTracks (A , B)) =T)

Row 3 : (((A11Of [A;B]) (\x.((IsOnRoute Routes3) x))) = T)

Stats for otherSameDirLongSep consistency checking:
Number of cases identified: 1
Total time: O sec

>

Figure 9: Output of Consistency Checker

and simplification process used for completeness |>%sym ssOppDirNoLongSepPeriod
checking is used for this analysis. However, here we

. . . ssOppDirNoLongSepPeriod is:
check whether the conjunction of the meaning of the (Orp P '
two columns is a contradiction. If the result is a (Table [((Row (ReportedOverCommonPoint (A , B))
contradiction, the checker indicates the two columns [T;‘UE?FALSE])]
involved and lists the case(s) where they overlap in the

. [((ept (A, B)), ((ept (A , B)) + 10));
same form as the output for completeness checking. ((ept (A, B)) - 15), ((ept (A, B)) + 15))])

The table is symmetric if the following condition(s) hold

The results of analyzing the separation minima (some conditions may overlap):

revealed that two tables are inconsistent. After
consulting the official specification (i.e. not the pseudo |(
code representation), our domain expert concluded

that these are cases where the specification is (&eponedmemommonpoint (FST (B, A)),(SND(B,A)))=T)
ambiguous.)

. . (
Figure 9 shows the result of analyzing one of the ((ReportedOverCommonPoint (FST (A , B)), (SND (A , B)))) = F)

tables that is inconsistent. The table =
“otherSameDirLongSep” specifies the number of | ((ReportedOverCommonPoint (FST (B, A)).(SND (B, A))=F)
minutes of time that must exist between two aircraft)

(that are not both turbojet or both supersonic) flying in | Total time: 1 sec

the same direction for them to be considered
longitudinally separated. The checker identified that,
for the case where two aircraft have reported over a Figure 10: Output of Symmetry Checker
common navigation point, are on the same or
diverging tracks, and are both on a particular set of

((ReportedOverCommonPoint ((FST (A,B)),(SND(A,B))=T)

>

routes that have special criteria, the table is ambiguous To carry out symmetry checking, two versions of the
as to whether there should be 15 or 20 minutes of table are created — one with each ordering of the
separation between them. parameters. The meaning of the disjunction of all
columns within each table that return the same result
The second table with inconsistencies describes is compared to the other table.
requirements for lateral separation’. This table has .
eight rows and four columns. This case again involves If these expressions are not equlva}ent, Fhe symmetry
special provisions for particular routes that overlap checker returns constraints, that .1f satisfied, would
with the more general criteria. The results clearly mean the table is symmetrical. Figure 10 shows an
reveal cases. in the official specification that are example of the output of the symmetry checker applied
ambiguous as to the amount of lateral separation to a simple table.

required between aircraft . o . . A
The initial results of this analysis (as seen in Figure

5.4 Symmetry Checking 10) pointed out that the symmetry of a table is often
) dependent on the symmetry of the primitive terms
used in the table. Environmental assumptions of the
form,

Symmetry is a desirable property of this specification.
It is important that the separation criteria are the same
regardless of the order of the parameters (i.e., the two
flights) given to the functions and predicates that the forall A B.

tables describe. ReportedOverCommonPoint (A,B) =
ReportedOverCommonPoint(B,A)

were added to make this analysis more accurate.

> There were actually two other tables with

inconsistencies but these two tables While this analysis did not reveal any errors in the
“Lateral SeparationRequiredInMiles” and specification, it did point out information about the
“LateralSeparationRequiredInDegrees” represent the primitive terms which mlght not be'known by an
same sets of conditions, but have different return implementor of the separation minima in software.

values for the functions.

46

6. Future Work

This work is the first attempt to validate the thesis
ideas of the first author. The operational semantics
integrate the “style” of specification with the predicate
logic environment, and are used directly in analysis to
map the specification (possibly in multiple notations)
into a form that can be automatically analyzed using
state space exploration analysis techniques. The use
of the explicit semantic definitions retains the
structure of the specification for analysis so that
structure can be used to help create a finite model for
analysis.
predicate logic along with a tabular notation, and
using the structure given in the rows to partition the
state space. The continuation of this thesis work will
look at how the techniques used in this example can be
generalized for other notations and other state space
exploration analysis techniques, such as model
checking.

A particular issue in this work is the use of constants
with semantic definitions as the keywords that capture
the structure of the table, such as “Row” and “Table”.
This means that the notation associated with the
semantics no longer has to be “lifted” from the base S
notation. If the more traditional path of defining
keywords like “Row” and “Table” as constructors had
been chosen, any place one table references another
table, the reference would need to be “wrapped” with
its semantic function to refer to the meaning of the
table. However, the execution of the semantic
functions expands the definitions used in the
specification. For the most efficient execution,
evaluation must be done in place, which eliminates the
original expression. This makes it difficult to return
the appropriate level of abstraction in the results. In
the case of the tables, the output had to be given in
terms of the labels of the rows to be useful to the
reviewer. We have already implemented a method of
maintaining the original expression that works for the
results given here. We are working on formally
defining this method generally so that it is possible to
retain the appropriate original expression while still
taking advantage of evaluation in place.

Another important point in this work is the use of the
general purpose interface language, predicate logic.
State space exploration analysis techniques are geared
toward model-oriented specification methods. While
the form of the specification used in this example is
functional, we have illustrated how data aspects of the
problem can aid in the analysis. Having a general-

47

This was illustrated here in the use of

purpose interface made it possible to integrate the
functional and data aspects of the specification for
analysis. Rather than taking the approach of only
allowing specifications that definitely can be analyzed
using finite means, we have started from general-
purpose logic interface and applied particular
techniques when the specification fit a particular form.
This opens a door to the possibility of using formal
specifications created primarily by domain experts as
input to more specialized analysis techniques such as
theorem proving performed by formal methods
experts. It would be straightforward to convert the S
representation of our tabular style of specification into
input for other analysis tools such as PVS [13] and
HOL [4].

Recently, a 4th edition of the document “Application
of Separation Minima for the NAT Region” has been
produced. This document has some significant
additions including reduced vertical separation
minima. It would be interesting. to see if this
document corrects the ambiguities found in this work
through consistency checking.

7. Conclusion

This paper is perhaps most notable for the example of

applying formal methods to the ICAO standard for

separation between aircraft over the North Atlantic.

The ease with which a domain expert was able to

review and edit the specification and analysis results is

a favourable data point in the struggle to make formal

methods acceptable to industry. Beyond documenting

this collaborative effort as an instance of the industrial
use of formal methods, this work illustrates:

e the integration of the tabular style into a general-
purpose predicate logic environment which
allowed the specification of uninterpreted
functions, and environmental assumptions;

e a framework for analysis which uses the explicit
operational semantics directly, allowing different
notations to be combined, and making it possible to
exploit the structure of a given notation in analysis
and to return results at the correct level of
abstraction; '

e the advantages of using a presentation format in
HTML and how it is possible to integrate this with
a format that can be used as input to analysis tools.

Although it rests upon a solid mathematical
foundation, we believe that the approach illustrated in
this paper could be fully integrated into an industrial
system/software engineering process without causing
the domain experts to be excluded or extensively re-

trained in formal methods. The automated analysis
provided by Fusion streamlines the manual review
process by automating some of the processing that
would otherwise need to be done manually.

Acknowledgments

The authors would like to thank Richard Yates of
MacDonald Dettwiler for comments on an early draft
of the specification. The first author would also like to
acknowledge the input of her thesis committee in
focusing these ideas. Reviewers for this workshop
made helpful comments. The university based
component of this collaborative research is supported
by funding from Hughes International Airspace
Management Systems, MacDonald Dettwiler, and the
BC Advanced Systems Institute.

References
[1] Joanne Marie Atlee. Automated analysis of

software requirements. PhD thesis, University of
Maryland, 1992.

[2] Randal E. Bryant. Graph-based algorithms for
Boolean function manipulation. IEEE Transactions
on Computers, C-25(8):677-691, August 1986.

[3] Tom DeMarco. Structured analysis and system
specification. Yourdon Press, Englewood Cliffs,
New Jersey, 1979.

[4] M.J.C. Gordon and T.F. Melham. Introduction to
HOL. Cambridge University Press, Cambridge,
1993.

[5]David Harel. Statecharts: A visual formalism for
complex systems. Science of Computing, 8:231-
274, 1987.

[6] Mats P.E. Heimdahl and Nancy G. Leveson.
Completeness and consistency in hierarchical state-
based requirements. IEEE Transactions on Software
Engineering, 22(6):363-377, June 1996.

[7] C.L. Heitmeyer and B.G. Labaw. Consistency
checks for SCR-style requirements specifications.
Technical Report NRL/FR/5540-93-9586, United
States Naval Research Laboratory, Washington,
D.C., December, 1993.

[8] Constance L. Heitmeyer, Ralph D. Jeffords, and
Bruce G. Labaw. Automated consistency checking
of requirements specifications. ACM Transactions

48

on Software Engineering and Methodology, 5(3):
231-261, July, 1996.

[9] K.L. Heninger. Specifying software requirements
for complex systems: New techniques and their
applications. IEEE Transactions on Software
Engineering, 6(1):2-13, 1980.

[10] Alan J. Hu, David L. Dill, Andreas J. Drexler,
and C. Han Yang. Higher-level specification and
verification with BDDs. In Computer-Aided
Verification: Fourth International Workshop, 1992.

[11] J. Joyce, N. Day, and M. Donat. S: A machine
readable specification notation based on higher
order logic. In 7th International Workshop on
Higher Order Logic Theorem Proving and lIts
Applications, pages 285-299, Valletta, Malta,
September, 1994.

[12] Nancy G. Leveson, Mats P.E. Heimdahl, Holly
Hildreth, and Jon D. Reese. Requirements
specification for process control-control systems.
IEEE Transactions on Software Engineering,
20(9):684-707, September, 1994.

{13] S. Owre, J.M. Rushby, and N. Shankar. PVS: A
prototype verification system. In /Ith International
Conference on Automated Deduction (CADE),
pages 748-752, Saratoga, NY, 1992.

[14] Sam Owre, John Rushby, and Nataranjan
Shankar. Analyzing Tabular and State-Transition
Requirements Specifications in PVS. Technical
Report CSL-95-12, Computer Science Laboratory,
SRI International, Menlo Park, CA, April, 1996.

[15] Sam Owre, John Rushby, and Natarajan Shankar.
Integration in PVS: Tables, Types, and Model
Checking. In Proceedings of the Conference on
Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pp. 336-383,
Enschede, The Netherlands, Springer-Verlag
Lecture Notes in Computer Science, Vol. 1217,
April, 1997.

[16] David Lorge Parnas. Tabular representations of
relations. Technical Report 260, Communications
Research Laboratory, Faculty of Engineering,
McMaster University, October 1992.

{177 JM. Spivey. Understanding Z. Cambridge
University Press, Cambridge, 1988.

Appendix A

The S notation is very similar to the syntax for the
term language used in the HOL theorem prover [4].
But unlike HOL, S does not involve a meta-language
as part of the specification format for declarations and
definitions. Instead, the syntax for declarations and
definitions is an extension of the syntax used for
logical expressions. (In this respect, S more closely
resembles Z and other similar formal specification
notations.) For example, the symbol “:=” is used in S
for a definition, e.g., “TWO := 2”, in contrast to an
assertion, e.g., “TWO = 2".

Another difference that will likely be noticed by
readers familiar with HOL is the explicit type
parameterization of constant declarations and
definitions. Type parameters, if any, are given in a
parenthesized list which prefixes the rest of the
declaration or definition. This is illustrated in the
definitions given below by the parameterization of
“EveryAux” by a single type parameter, “ty”.

Many of the definitions shown below are given
recursively based on the recursive definition (not
shown here) of the polymorphic type “list”. These
recursive definitions are given in a pattern matching
style (similar to how recursive functions may be
defined in Standard ML) with one clause for the
“NIL” constructor (i.e., the non-recursive case) and
another clause for the “CONS” constructor (i.e., the
recursive case). Each clause in this style of S
definition is separated by a “I”. The functions “HD”
and “TL” are standard library functions for taking the
head (i.e., the first element) of a list and the tail (i.e.,
the rest) of a list respectively.

Type expressions of the form, “:tyl->ty2”, are used in
the declaration of parameters that are functions from
elements of type “tyl” to elements of type “ty2”.
Similarly, type expressions of the form, “:(ty) list”,
indicate when a parameter is a list of elements of type
“ty”.

Lambda expressions are expressed in S notation as,
“Xx.E” (where E is an expression) .

The semantic definitions for the tabular notation given
in the S notation are shown below.

(:ty)
EveryAux (NIL) (p:ty->bool) :=T
EveryAux (CONS e tl) p :=

49

(p e) AND EveryAux tl p;

(:ty)
Every (p:ty->bool) | := EveryAux 1 p;

(:ty)
ExistsAux (NIL) (p:ty->bool) := F |
ExistsAux (CONS e tl) p := (p) OR ExistsAux tl p;

(:ty)
Exists (p:ty->bool) 1 := ExistsAux 1 p;

‘(:ty) UNKNOWN : ty;

(:ty)DC :=\(x:ty).T;
TRUE :=\x.x=T;
FALSE :=\x.x=F;

(:tyl)

RowAux2 (CONS (p:tyl->bool) tl) label :=
CONS (p label) (RowAux2 tl label) |

RowAux2 (NIL) label := NIL;

(:ty)Row label (plist:(A->bool)list) :=
RowAux2 plist label;

Columns t :=
if ((HD t)=NIL) then NIL
else CONS
(Every (HD) t)
(Columns (Map t (TL)));

(ity)
TableSemAux2 (NIL) (retVals:(ty)list) :=
if (retVals=NIL) then UNKNOWN
else (HD retVals) |
TableSemAux2 (CONS col colList) retVals :=
if col
then (HD retVals)
else TableSemAux2 colList (TL retVals);

(:ty)
Table t (retVals:(ty)list) :=
TableSemAux2 (Columns t) retVals;

PredicateTable t :=
Exists (\x.x) (Columns t);

Modeling and Validating SAFER in VDM-SL

Sten Agerholm and Peter Gorm Larsen
IFAD
Forskerparken 10, DK-5230 Odense M, Denmark
Email: {sten,peter}@ifad.dk

Abstract

Formal methods can be applied with different levels
of rigor. The more rigorously used, the more confi-
dence is obtained in a formal model of a computer
system. However, rigorous development using for-
mal verification requires skilled personnel and is
costly. Based on our experience of introducing for-
mal specification to some European industrial com-
panies, e.g. British Aerospace [7] and Aerospatiale
[3], we believe that a less rigorous approach using
validation by testing is a complement to formal ver-
ification, which engineers can use cost-effectively
early in their formal methods careers. When they
become more confident with constructing formal
models, it would be natural to take the next step
and introduce verification. In this paper we illus-
trate how testing-based validation can be applied
to the SAFER example used throughout [9].

1 Introduction

Historically, NASA’s involvement in formal meth-
ods has concentrated on formal verification using
mechanical theorem provers [1, 2, 9]. In technology
transfer projects supported by NASA such formal
verification has been in focus. This is clearly under-
standable considering the criticality of the systems
being developed in the avionics sector. However, we
believe that the technology transfer process is more
likely to have significant effect if the formal meth-
ods technology is incorporated in smaller “deltas”
into the existing practice [5]. We only consider the
transfer fully successful when the engineers nor-
mally developing the avionics systems, rather than
the formal methods experts, feel that the technol-
ogy is accessible to them and can be applied in a
cost-effective manner.

With formal methods, engineers construct ab-
stract models of computer systems before they start
coding them. Among others, many of NASA’s tech-

51

nology transfer projects have shown that benefits
can be obtained already by formally specifying a
system, but validation by testing and verification
can increase confidence in models. Software engi-
neering practice is heavily based on testing, and
so this technique is well-known to engineers. We
therefore advocate the use of testing to validate
formal models. If animation is supported by tools,
this prototyping activity also supports the presen-
tation of models to others. A further advantage is
that the formal specification can also be used as a
basis for verifying interesting properties. Verifica-
tion requires more skilled personnel than specifica-
tion, and thus we see the technology transfer as a
two step process. When the engineers feel confident
in using formal specification and testing, it seems
feasible to introduce verification.

In this paper we illustrate how a testing-based
validation approach can be applied to the SAFER!
example from [9] using VDM-SL [10] and the IFAD
VDM-SL Toolbox [8, 4]. In [9], SAFER is specified
in the PVS notation and properties are proved us-
ing the PVS theorem prover [11]. The VDM-SL
notation is quite close to the PVS notation, but it
is not the notational differences we find interest-
ing. Instead, we focus on the kind of analysis that
can be performed using a validation by testing ap-
proach rather than formal verification. This analy-
sis reveals some interesting “unclarities” in [9]. To
support the testing approach, we exploit the Dy-
namic Link facility of the Toolbox for rapid pro-
totyping [6], linking graphical visualization models
(compiled code) with our executable specification.
We believe that this kind of animation support is
very useful, in particular for presenting a specifi-
cation to customers and non-trained staff members
(e.g. management).

The remaining part of this paper starts with an
overview of the SAFER system and the VDM-SL

ISAFER is an acronym for “Simplified Aid For EVA (Ex-
travehicular Activity) Rescue”.

Figure 1: Front and back views of SAFER system
worn by NASA crewmember.

specification of SAFER. This is followed by a sec-
tion in which we illustrate how a validation ap-
proach can be used to investigate different prop-
erties. Finally, a few concluding remarks are pro-
vided. The reader is assumed to have a basic knowl-
edge of VDM-SL or a similar notation such as PVS.

2 Overview of the SAFER
System

This overview of the SAFER system is based on,
and partly copied from, the NASA report [9], which
describes a cut-down version of a real SAFER sys-
tem.

SAFER is a small, lightweight propulsive back-
pack system designed to provide self-rescue capabil-
ities to a NASA space crewmember separated dur-
ing an EVA (Extravehicular Activity). This type
of contingency can arise if a safety tether breaks,
or if it is not correctly fastened, during an EVA
on a space station or on a Space Shuttle Orbiter
docked to a space station. SAFER attaches to
the underside of the Extravehicular Mobility Unit
(EMU) primary life support subsystem backpack
and is controlled by a single hand controller that
is attached to the EMU display and control mod-
ule (see Figure 1). SAFER provides an attitude
hold capability and sufficient propellant power to
automatically detumble and manually return a sep-
arated crewmember.

The SAFER system works by firing 24 gaseous-
nitrogen (GN3) thrusters, four in each of the posi-
tive and negative X, Y and Z directions. These
are placed on the upper and lower edges of the
grey part of the backpack in Figure 1 (see also

52

fore (+3)

Piten Dome {PitN)

Cow R (o Yaw)
—

1\\

Pieer W (Fiven)
ars (-7

St} Sigm (]}

Figure 2: SAFER hand controller.

Figure 13). The main focus of our specification
is on the thruster selection logic, for example tak-
ing into account that translational hand controller
commands are prioritized, with the priority order
being X, Y and Z. Other aspects of the SAFER
are ignored, e.g. the calculation of control output in
the Automatic Attitude Hold (AAH), and various
display units and switches on the hand controller
which are not directly related to the selection of
thrusters.

The hand controller is a four-axis mechanism
with three rotary axes and one transverse axis us-
ing a certain hand controller grip (see Figure 2). A
command is generated by moving the grip from the
center null position to mechanical hardstops on the
hand controller axes. Commands are terminated
by returning the grip to the center position. The
hand controller can operate in two modes, selected
via a switch, either in translation mode, where X,
Y, Z and pitch commands are available, or in rota-
tion mode, where roll, pitch, yaw and X commands
are available (see Figure 3). Note that X and pitch
commands are available in both modes. Pitch com-
mands are issued by twisting the hand grip around

pitch roll

yaw

z

Figure 3: Six degree-of-freedom commands. Arrow
direction is positive.

its transverse axis, while the other commands are
obtained around the rotary axes.

A push-button switch on top of the grip initiates
and terminates AAH according to a certain proto-
col. If the button is pushed down once the AAH
is initiated, while the AAH is deactivated if the
button is pushed down twice within 0.5 seconds.

As indicated above there are various priorities
among commands. These make the thruster selec-
tion logic slightly complicated. Translational com-
mands issued from the hand controller are priori-
tized to provide acceleration along a single trans-
lational axis, with the priority being X first, Y
second, and Z third. When rotation and transla-
tion commands are present simultaneously from the
hand controller, rotations take priority and trans-
lations are suppressed. Moreover, rotational com-
mands from the hand grip takes priority over con-
trol output from the AAH, and the corresponding
rotation axes of the AAH remain off until the AAH
is reinitialized. However, if hand grip rotations
are present at the time when the AAH is initiated,
the corresponding hand controller axes are subse-
quently ignored, until the AAH is deactivated.

In Appendix C.2 of the NASA report, a num-
ber of requirement properties for SAFER are listed.
Below we list a few relevant ones for our specifica-
tion of the SAFER, and in Section 4.3 we discuss
some scenarios which, among others, could be used
to test that the specification satisfies the require-
ments.

(18) The pushbutton switch shall activate AAH
when depressed a single time.

(19) The pushbutton switch shall deactivate AAH
when pushed twice within 0.5 seconds.

(37) The avionics software shall disable AAH on
an axis if a crewmember rotation command is
issued for that axis while AAH is active.

(38) Any hand controller rotation command
present at the time AAH is initiated shall sub-
sequently be ignored until a return to the off
condition is detected for that axis or until
AAH is disabled.

(39) Hand controller rotation commands shall
suppress any translation commands that are
present, but AAH-generated rotation com-
mands may coexist with translations.

(40) At most one translation command shall be
acted upon, with the axis chosen in priority
order X, Y, Z.

53

(41) The avionics software shall provide acceler-
ations with a maximum of four simultaneous
thruster firing commands.

These may seem straightforward and clear, but the
discussion in Section 4.3 below will show that in
fact they are not.

3 VDM-SL Specification of
SAFER

In [9], a PVS specification is provided of a cut-down
version of SAFER. We have translated this speci-
fication to VDM-SL, a relatively straightforward
task since the two notations share many constructs.
We have further simplified the model by cutting out
parts which are irrelevant to the thruster selection
logic, such as display units and interface functions
to external sensors. These parts were only mod-
eled in a very implicit way in PVS anyway, using
e.g. uninterpreted functions.

We present some excerpts from the VDM-SL
specification. We will make this presentation in-
dependent of the module structure of the specifica-
tion, which contains five modules: AUX (auxiliary
definitions), HCM (hand controller module), AAH
(automatic attitude hold), T'S (thruster selection)
and SAFER (main control cycle). Modules may use
definitions from other modules by prefixing with
the module name, e.g. HCM‘HandGripPosition
and AUX‘RotCommand.

3.1 Main Control Cycle

The SAFER system works by calculating thruster
settings very frequently. As in the PVS model we
assume that this happens by iteratively calling the
main control operation, called ControlCycle. The
main purpose of this operation is to calculate the
thruster settings according to the hand controller
commands and AAH control output, and to main-
tain the state of the AAH protocol. The operation
is defined as shown in Figure 42.

VDM-SL supports both a functional subset,
where a state can only be modeled indirectly in
the signature of functions, and an imperative sub-
set which supports states, operations and program-
ming language statements directly. Here, Control-
Cycle is defined as an operation and not a function,
since it depends on the AAH state (see Section 3.3)

2The notation mk-R(...) is used to construct an element
of a record type R.

ControlCycle : HCM ‘SwitchPositions x HCM‘HandGripPosition x AUX‘RotCommand -
TS* ThrusterSet

ControlCycle (mk- HCM ‘SwitchPositions (mode, aah), raw-grip, agh-cmd) &
let grip-cmd = HCM'GripCommand (raw-grip, mode),
thrusters = TS‘Selected Thrusters (grip-cmd, aah-cmd, AAHActiveAzes (), AAH IgnoreHem ()) in
(AAH*Transition(aah, grip-cmd, clock) ;
clock := clock + 1;
return thrusters)

Figure 4: The ControlCycle operation.

SelectedThrusters : AUX'SizDofCommand x AUX‘RotCommand x AUX"RotAzis-set x
AUX‘RotAzis-set — ThrusterSet

Selected Thrusters (hcm, aah, active-azes, ignore-hcm) 2
let mk-A UX‘SizDofCommand (tran, rot) = IntegratedCommands (hcm, aah, active-azes, ignore-hcm),

bf-thr = if rot (ROLL) = ZERO
then bf-optional U bf-mandatory
else bf-mandatory,

else lrud-mandatory in
bf-thr U lrud-thr

mk- (bf-mandatory, bf-optional) = BF Thrusters (tran (X), rot (PITCH), rot (YAW)),
mk- (Irud-mandatory, lrud-optional) = LRUD Thrusters (tran (Y), tran (Z), rot (ROLL)),

lrud-thr = if rot (PITCH) = ZERO A rot (YAW) = ZERO
then Ilrud-optional U lrud-mandatory

Figure 5: The Selected Thrusters function.

and the SAFER state, which is simply a natural
number valued clock (as in [9] we do not use a real-
time clock):

state SAFER of
clock : N

init s & s = mk-SAFER (0)
end

The result of a call to ControlCycle is a set of
thruster settings, i.e. a set of thruster names to
be turned on. The arguments of ControlCycle are:
(1) switch positions on the hand controller, telling
whether the mode is translation or rotation and
whether the AAH button on the grip is up or down,
(2) hand grip positions, a record containing four
fields corresponding to the transverse axis and the
three rotation axes, and (3) external input from
the AAH control laws whose calculation is based
on data measured by sensors. This AAH control
function in (3) is not modeled either in the PVS
specification of [9], though it is mentioned in a very
implicit way.

The control cycle first transforms the “raw” grip
commands to translation and rotation commands.
Next it calculates the thruster settings and then

54

the AAH state is updated in the body of the let-
statement. We treat each of these steps in separate
subsections below. Note that values of AAH state
variables are fetched by calling the operations Ac-
tiveAzes and IgnoreHcm, which both return sets of
rotation axes.

3.2 Thruster Selection

The six degree-of-freedom of the translation and
rotation commands is modeled using a record type:

SizDofCommand :: tran : TranCommand
rot : RotCommand;

whose two fields are finite maps, i.e. a kind of ta-
bles, from translation and rotation axes respec-
tively to axis commands. For example, the type
of translation commands is defined as follows:

ThrusterSet x ThrusterSet

BFThrusters (A,B,C) &
cases mk-(4, B, C):

mk- (ZERO, ZERO, ZERO) = mk- ({},{}),

mk- (Pos, NEG, ZERO) — mk- ({F1,F2},{}),
. - ...

end;

ThrusterSet x ThrusterSet
LRUDThrusters (A,B,C) &
cases mk-(4, B, C) :
mk- (NEG, NEG, ZERO) — mk-({},{}),

.. - ...
end;

BFThrusters : AUX‘AzisCommand x AUX‘AzisCommand x AUX‘AzisCommand —

mk- (NEG, ZERO, ZERO) — mk- ({B1, B4},{B2,B3}),

LRUD Thrusters : AUX‘AzisCommand x AUX ‘AzisCommand x AUX‘AzisCommand —

mk- (NEG, ZERO, ZERO) — mk- ({L1R,L3R}, {L1F,L3F}),
mk- (Pos, ZErRO, Pos) — mk-({R2R}, {R2F,R4F}),

Figure 6: Extracts from BFThruster and LRUD Thrusters.

TranCommand = TranAzis — AzisCommand
inv emd & dom emd = {X,Y,Z};

where the invariant ensures that command maps
are total. The type of rotation commands is de-
fined similarly. Enumerated types are used for axis
commands and translation and rotation axes:

AzisCommand = NEG | ZERO | Pos;
TranAzis =X | Y | Z;

RotAzis = ROLL | PITCH | YAw;

In the SelectedThrusters function in Figure 5
grip commands from the hand controller (with six-
degree-of freedom) are integrated with the AAH
control output. Then thrusters for back and for-
ward accelerations and left, right, up and down
accelerations are calculated by two separate func-
tions. These represent a kind of look-up tables,
modeled using cases expressions. Note that they
return two sets of thruster names, representing
mandatory and optional settings respectively. Cut-
down versions of the functions are presented to save
space, see Figure 6. Note that thrusters are named
according to which direction they provide acceler-
ation for, and the number indicates which of four
quadrants they are positioned in. The third letter
indicates whether the thruster is positioned to the
rear or front in a quadrant (see Figure 13 below).

55

The first case in LRUD Thrusters yields two empty
sets since it is a “Not Applicable” case.

The more interesting parts of the specification
can be found in the IntegratedCommands function
and the auxiliary functions it uses. Together these
define the selection logic, modeling for instance the
various priorities among translation and rotation
axes. Below, null translation and rotation com-
mands map all axes to ZERO.

The IntegratedCommands function is presented
in Figure 7. The function treats two cases, de-
pending on whether or not the set of active axes in
the AAH is empty (tested in AllAzesOff). If there
are rotation commands from the hand controller
then these take priority over translation commands
using the PrioritizedTranCmd function (see Fig-
ure 7). Otherwise translation commands are pri-
oritized in the order X, Y, Z.

If there are rotation commands from both the
AAH and the hand controller then these must be
combined such that the hand controller commands
take priority, unless they were also issued when the
AAH was initiated (recorded in ignore-hcm). This
is done by the CombinedRotCmds function (see
Figure 7). Note that the | operator used in the
CombinedRotCmds function is simply a union be-
tween maps. AUX ‘rot-azis-set is defined as the set
of all rotation axes. This completes the description
of the thruster selection logic.

IntegratedCommands : AUX‘SizDofCommand x AUX‘RotCommand x AUX‘RotAzis-set x
AUX‘RotAzis-set — AUX‘SizDofCommand

IntegratedCommands (mk-AUX ‘SizDofCommand (tran, rot), aah, active-azes, ignore-hcm) 2

if AAHAllAzesOff (active-azes)
then if RotCmdsPresent (rot)

then mk-AUX*‘SizDofCommand (AUX ‘null-tran-command, rot)

else mk-A UX ‘SizDofCommand (Prioritized TranCmd (tran), AUX ‘null-rot-command)
else if RotCmdsPresent (rot)

then mk-A UX ‘SizDofCommand (A UX ‘null-tran-command,

CombinedRotCmds (rot, aah, ignore-hcm))
else mk-AUX ‘SizDofCommand (PrioritizedTranCmd (tran), aah);

Prioritized TranCmd : AUX‘TranCommand — AUX‘TranCommand

Prioritized TranCmd (tran) 2
if tran (X) # ZERO
then AUX ‘null-tran-command t {X — tran (X)}
elseif tran (Y) # ZERO
then AUX ‘null-tran-command t {Y ~ tran (Y)}
elseif tran (Z) # ZERO
then AUX ‘null-tran-command { {Z — tran (Z)}
else AUX ‘null-tran-command;

CombinedRotCmds : AUX ‘RotCommand x AUX‘RotCommand x AUX‘RotAzis-set -+ AUX‘RotCommand

CombinedRotCmds (hcm-rot, aah, ignore-hem) &
let agh-azes = ignore-hcm U {a | a € AUX‘rot-azis-set - hem-rot (a) = ZERO} in
{e ~ aah(a) | a € ach-azes} [J {a — hem-rot (a) | a € AUX ‘rot-azis-set \ aah-azes};

Figure 7: The IntegratedCommands function and its auxiliary functions.

down

up

down

Figure 8: The AAH protocol state machine.

56

Transition (button-pos, hem-cmd, clock) &

then clock + click-timeout
else timeout;
toggle : = engage);

. Transition : HCM ‘ControlButton x AUX‘SizDofCommand x N = ()

let engage = ButtonTransition (toggle, button-pos, active-azes, clock, timeout),
starting = (toggle = AAH_OFF) A (engage = AAH _STARTED) in
(active-azes := {a | a € AUX ‘rot-azis-set - starting V
(engage # AAH_OFF A a € active-azes A
(hem-cmd.rot (a) = ZERO V a € ignore-hcm))};
ignore-hem := {a | a € AUX ‘rot-azis-set - (starting A hem-cmd.rot (a) # ZERO) V
(- starting A a € ignore-hcm)};
timeout := if toggle = AAH_ON A engage = PRESSED_ONCE

Figure 9: The Transition operation.

3.3 AAH Transitions

Finally, we present excerpts from the AAH module.
The AAH push-button protocol can be viewed as a
state machine, presented in Figure 8. In VDM-SL,
the state of the AAH is represented by:

state AAH of
active-azes : AUX‘RotAzis-set
tgnore-hcm : AUX ‘RotAzis-set
toggle : EngageState
timeout :N

init s & s = mk-AAH ({}, {}, AAH_OFF, 0)
end -

where the actual state machine states are presented
as an enumerated type:

EngageState = AAH_OFF | AAH_STARTED |
AAH_ON | PRESSED_ONCE |
AAH_CLOSING | PRESSED_-TWICE

The main operation in the AAH module is Transi-
tion which is defined in Figure 9. It uses the func-
tion ButtonTransition, a direct encoding of Fig-
ure &, to calculate the next state. Note that Tran-
sition uses a starting predicate for the situation
when the AAH is initiating. The starting predi-
cate is used to calculate the active axes and axes
for which the hand controller must be ignored.

4 Validation Using Testing

The NASA guidebook [9] focuses mainly on for-
mal verification as a method for analysis of re-
quirements and high-level design. However, we find
that alternative approaches to validating specifica-
tions based on testing techniques are also beneficial,
though they should not replace verification. From a

57

technology transfer viewpoint, testing is cheaper to
introduce, but in most situations it is also cheaper
to apply than verification and would therefore, in
particular, be suitable for the early stages of anal-
ysis like model construction.

In this section we illustrate the use of test-
ing techniques to validate the VDM-SL model of
SAFER presented above. Our specification is writ-
ten in the executable subset of VDM-SL, which is
supported by the interpreter of the IFAD VDM-SL
Toolbox. We shall illustrate the use of a test cover-
age facility of the Toolbox, and we shall try to use
testing techniques and the Dynamic Link facility to
investigate the properties listed in Section 2.

4.1 Test Coverage of Specifications

In addition to basic facilities for checking speci-
fications, such as syntax and type checking, the
IFAD Toolbox supports a large executable subset
of VDM-SL. This means that the Toolbox supports
validation techniques such as testing which are usu-
ally not encouraged by theorem provers. We shall
not turn this into an exercise in test case selection,
but limit our attention to just a few test cases for
illustration.

In testing, the focus is often on more concrete
properties than in verification; given some input we
test whether some function computes the desired
result. This kind of testing, which to a large extent
also could be performed by theorem provers, e.g.
if rewriting is available, is not considered nor men-
tioned in [9). However, it does make sense to test,
for instance, that thrusters are fired correctly ac-
cording to hand grip commands. The actual selec-
tion is based on some fairly large tables which have

SAFER'ControlCycle (mk- HCM ‘ SwitchPositions (TRAN, UP),
mk-HCM‘ HandGripPosition (ZERO, POS, ZERO, ZERO), A UX ‘null-rot- command)

{mk- (mode, a, b, c, d) = SAFER‘ControlCycle (mk-HCM ‘SwitchPositions (mode, UP),
mk-HCM ‘¢ HandGripPosition (a, b, ¢, d), AUX ‘null-rot-command)
| mode € {TRAN,ROT}, @, b, ¢,d € {NEG, Pos, ZER0}}

Figure 10: Compact test expressions.

ThrusterSet x ThrusterSet

LRUDThrusters (A,B,C) &
cases mk- (A, B, C):

mk- (NG, NEG,[ZERO) | mk- ({}, {}) ,

end;

LRUDThrusters : AUX‘AzisCommand x AUX‘AzisCommand x AUX‘AzisCommand —

mk- (NEG, ZERO, ZERO) — mk- ({L1R, L3R}, {L1F, L3F}),
mk- (Pos, ZEro,Pos) — mk- ({R2R}, {R2F,R4F}),

Figure 11: Extracts from LRUDThrusters with test coverage information.

been translated by hand to the specification, and
of course such translation could have introduced
€rrors.

Test expressions can be typed in manually for the
interpreter. For example, in the first expression in
Figure 10 a call of ControlCycle with a forward
acceleration command is issued. The interpreter
will immediately evaluate this to the correct result,
which is the set {F1,F2,F3,F4}.

If one wishes to test all hand grip commands
without typing all combinations in by hand, then a
compact test expression could be written in VDM-
SL using a map comprehension expression as shown
as the second expression in Figure 10. Assuming
that the AAH is switched off, this will cover all
hand grip translational and rotational commands,
in total 2 * 3* = 162 cases. This is executed in
seconds. The result is a large map from vari-
able values to results (thruster settings). Inter-
estingly, this test only yields 17 different settings
and does not cover the functions BF Thrusters and
LRUDThrusters very well; recall these convert six
degree-of-free commands to thruster names. A
test coverage facility is provided with the Tool-
box, which computes basic statistical information
and colors uncovered parts of specifications as il-
lustrated in Figure 11. The two thruster functions
are both called 162 times, but they are only covered
41% and 46% respectively.

The reason for this bad coverage is due to prior-

58

ities for hand controller translational axes and for
rotation and translation commands from the hand
controller. A larger test where the AAH pushbut-
ton and rotation command output are also variable
(8748 cases, executed in 7 minutes) yields 189 dif-
ferent thruster settings and covers the BF Thrusters
function 100%. However, the LRUD Thrusters
function is still only 72% covered. But the uncov-
ered parts are precisely those that have the “Not
Applicable” label in the requirement specification
from [9], so this is good. The test coverage coloring
shows this very clearly in the boxes in Figure 11 (we
have cut the specification down to the same cases
as in Section 3.2). The sub-expressions written in
grey have never been reached in the interpretation
of the test argument(s). Note that in principle it
would be possible to manually inspect the 8748 test
results to check that the thruster settings are cor-
rect, but this may not be feasible in all situations.
Also note that the tests mentioned above only test
the AAH state machine protocol in an arbitrary
way, and therefore the AAH transition function is
not fully covered by this kind of testing.

4.2 Using Dynamic Link Modules

Such tests as described above could be difficult to
understand for staff members who have not been
trained in the notation used for the formal specifi-
cation. The value of the model would also increase

] SAFER Animation Control [EuRRRER

Hand grip
Mode
& Transtation 0 A {1 Ferward 0 Left g up {1 PFitch down
& Rotation {1 Backward {1 Right £1 Down {1 Pitch up
AAH control output
0 Rofl left 0 Fitchdown | 0 Yaw left f Run control cycle |
0 Roliright | O Fitchup 0 Yaw right [cear settings |

Figure 12: The interface model of the hand controller.

in the discussion with someone outside the devel-
opment team, such as a customer, if some kind of
prototype could be produced where the interface to
the formal model is easier to understand.

In order to ease this kind of testing we can exploit
the Dynamic Link facility of the IFAD Toolbox for
combining compiled code and VDM-SL specifica-
tions [6]. We have made a simple interface model
of the hand controller using Tcl/Tk and linked this
with the SAFER specification. Figure 12 shows
a screen dump of the interface, where the mode
(translational or rotational) and the AAH switch
together form the first parameter to ControlCycle.
The hand grip positions form the second parame-
ter, and the AAH control outputs form the third
parameter simulating the external input from the
AAH control laws whose calculation would be per-
formed from sensor data of movements of the as-
tronaut.

Moreover, a simplified model of the SAFER
backpack in a 3D Graphics tool called Geomview®
is also linked to the specification and used to vi-
sualize thruster settings (see Figure 13). This sim-
ple figure could naturally be enhanced significantly,
but our purpose here is simply to illustrate the fea-
sibility of this approach. For example, if we move
the hand grip forward, we expect to see the for-
ward thrusters fire in the backpack model. Hence,
we can very easily make basic tests of the SAFER
thruster selection logic. This animation approach
is useful for testing many requirement properties of
SAFER (see Section 4.3).

If effort would be put into calculating how the
astronaut would be moving depending upon the
thrusters fired then naturally a more advanced Dy-

3Geomview is available at http://www.geom.umn.edu/
docs/software/viz/geomview/geomview.html.

59

namic Link module could be made to show the
movement in 3D. We have a naive solution to this
based on a simple model of astronaut movements
in space.

4.3 Validating Properties

We shall now discuss a testing approach to validat-
ing, i.e. checking but not verifying, that some of the
requirement properties listed in Section 2 hold in
our VDM-SL model; we do not have room in this
paper to consider all of them. The testing raised in-
teresting questions regarding the requirements and
found various omissions/problems in our specifica-
tion as well as in the PVS specification.

4.3.1 Automatic Checking of Property (41)

Recall property (41):

The avionics software shall provide accel-
erations with a maximum of four simulta-
neous thruster firing commands.

Consider also:

E1 Thruster firing consistency: No two selected
thrusters should oppose each other, i.e., have
canceling thrust with respect to the center
of mass. (Mentioned in Section C.4.1 of the
NASA report.)

These are properties that should hold for all
thruster settings output from the SAFER Control-
Cycle and therefore they can conveniently be stated
as a post-condition on ControlCycle, see Figure 14.

The Toolbox interpreter can be requested to au-
tomatically check that the post-condition holds for

Carmnera (Euclidean view)

Figure 13: The interface model of the SAFER backpack.

ControlCycle : HCM*SwitchPositions x HCM‘HandGripPosition x AUX‘RotCommand = TS ThrusterSet

ControlCycle (mk-HCM ‘SwitchPositions (mode, aah), raw-grip, agh-cmd) &
let grip-cmd = HCM*GripCommand (raw-grip, mode),
thrusters = TS‘SelectedThrusters (grip-cmd, aah-cmd, AAH*ActiveAzes (), AAH ‘IgnoreHcm ()) in
(AAH‘Transition(aah, grip-cmd, clock) ;
clock := clock + 1;
return thrusters)

post card RESULT < 4A
ThrusterConsistency (RESULT) ;

ThrusterConsistency : TS ThrusterName-set — B

ThrusterConsistency (thrusters) 2

- ({B1,F1} C thrusters) A

- ({B2,F2} C thrusters) A

- ({B3,F3} C thrusters) A

- ({B4,F4} C thrusters) A

= (thrusters N {L1R,L1F} # {} A thrusters N {R2R,R2F} # {}) A
= (thrusters N {L3R,L3F} # {} A thrusters N {R4R,R4F} # {}) A
= (thrusters N {D1R,D1F} # {} A thrusters N {U3R, U3F} # {}) A
- (thrusters N {D2R,D2F} # {} A thrusters N {U4R, U4F} # {})

Figure 14: The ControlCycle operation and the ThrusterConsistency function.

60

all results from ControlCycle (this feature is op-
tional). Hence, if a result failed the check, the in-
terpreter would give a run-time error with position
information (line and column) in the specification
document. This never happened in any of our tests
(including the big test mentioned above).

In [9] a proof of the maximum thruster property
(41) is given. The validation made here is not as
strong as that, because we would have to test it
with all values in a model-checking fashion. How-
ever, the validation carried out here has definitely
increased our confidence in the maximum thruster
property being satisfied with our model.

Point: In cases where a property does not hold,
the validation technique can be an efficient way of
discovering counter-examples. It can also increase
confidence in a model.

4.3.2 Property (18)

The pushbutton switch shall activate
AAH when depressed a single time.

This property is related to the protocol of the
AAH given in Figure 8, and thus it may be a good
idea to revisit this figure to be able to follow the
possible test scenarios. Assume the hand grip is
in center position throughout this test; this means
that no translation or rotation commands are
issued from the hand grip. Initially, the AAH is in
the “off state”. Thus, initially any AAH control
rotation output must be ignored. Using various
arbitrary examples we can test that the thruster
settings are empty. The AAH is activated by
pushing the AAH button down. The AAH goes
to the “started state”, but it does not go to the
“on state” until the button is released. We can
run the same and other AAH rotation commands
to see that they are now taken into account (and
are performed correctly). Note that property (38)
would affect this test if a rotation command from
the hand grip was issued at the same time as the
AAH was initiated.

Point: In this case the test has increased our con-
fidence that property (18) is satisfied, such that it
is sufficient to push the AAH button without re-
leasing it again.

4.3.3 Property (19)

The pushbutton switch shall deactivate
AAH when pushed twice within 0.5 sec-
onds.

61

This property is also related to the AAH protocol
so Figure 8 must be used again. The timeout of
0.5 seconds is for test purposes represented as 10
control cycles in our specification. As in [9] we
do not represent a real-time clock. We first turn
the AAH on by pressing and then releasing the
AAH button. We then press and release the AAH
button twice within 10 cycles and check that the
AAH is turned off by running a number of tests
with rotation commands from the AAH. Turn
AAH on again, press and release the AAH button
once, wait at least 11 cycles, press and release
again and check that the AAH still works. Finally,
press, release and press the AAH button within
10 cycles. The report [9] is unclear here: Strictly
speaking, property (19) says that this should
deactivate the AAH while the PVS specification
and the AAH state diagram does not deactivate
the AAH until the button is released.

Point: Since the word “pushed” (rather than
“pushed and released”) is used in property (19) our
validation have discovered a discrepancy between
requirement (19) and both the PVS model and the
state transition diagram from Figure 8.

4.3.4 Property (37)

The avionics software shall disable AAH
on an axis if a crewmember rotation com-
mand is issued for that axis while AAH is
active.

This property is related to the combination of the
AAH protocol and the thruster selection logic for
rotation commands. We can test this by first in-
specting how SAFER behaves when the AAH is
switched on and the AAH control output wishes
to rotate over an axis. Afterwards we can inspect
what happens if the hand grip controller issues a
rotation command on the same axis. In this case
property (37) requires SAFER to disable the AAH
for that axis.

One possible first test scenario for this property
could be: Assume the hand grip is in center posi-
tion (all directions are ZERO). Turn the AAH on
(button down and then up) and issue an AAH rota-
tion (control output) on an axis, e.g. roll left. Keep
this rotation while making a rotation command on
the hand grip, e.g. roll right (in rotation mode).
Check the output to see that this takes precedence
over AAH. Keep the AAH rotation but center the
hand grip. The AAH axis should remain off, as

stated explicitly in Section C.4.1 of the NASA re-
port.

However, when executing the test scenario on
our specification, this appears not to be the case.
The test shows that the AAH axis still has influ-
ence on the selected thrusters, in fact, the result
is exactly the same as before the axis was deac-
tivated. The problem is that our model (like the
PVS model) implicitly assumes that the AAH con-
trol output does not provide a rotation command
for an axis which is not active. In our manu-
ally generated AAH output, this may however be
the case. We could capture this problem using a
pre-condition on the SAFER. ControlCycle opera-
tion. In the PVS specification, an obvious place to
take this into account would be in a post-condition
of the AAH_control_out function, which could be
done using the subtype facility in PVS, but in [9]
this function is implicitly defined and does not give
any information whatsoever about implementation
requirements. When translating the PVS specifi-
cation to VDM-SL, we cut out the very implicit
AAH_control_out and modeled this as the third ar-
gument of ControlCycle instead. A post-condition
on the PVS AAH_control_out would therefore have
been translated to a pre-condition on ControlCycle
in our model.

As a consequence of the implicitness concern-
ing the AAH control output, it is not possible
to verify property (37) in a black-box fashion in
PVS, as discussed above. However, a white-box
approach of showing that the “active” flag is prop-
erly reset and stays off is possible. But in the
NASA report it is not documented anywhere that
the AAH_control_out should take this flag into ac-
count, which then seems to be an omission, at least.
As mentioned above, this requirement would be
easy to specify in a post-condition, which would
enable black-box verification. The verification of
other properties is also weakened by this omission.
For example:

Once AAH is turned off for a rotational
axis it remains off until a new AAH cycle
is initiated.

which appears in Section C.4.1 of the NASA report.

Point: In validating this property we discovered
that neither our model nor the PVS model in [9] is
sufficiently strong to prove certain desirable prop-
erties.

62

4.3.5 Property (38)

Any hand controller rotation command
present at the time AAH is initiated shall
subsequently be ignored until a return to
the off condition is detected for that axis
or until AAH is disabled.

A question raised immediately here when trying
to design a test scenario was: what do they mean
by “a return to the off condition”? If one carefully
reads the PVS specification, and in particular
looks at the way that ignore-hecm is updated in
Transition, it seems clear that the only way for
a hand controller rotation command to become
reconsidered is by manually disabling the AAH.

Point: This is an example where seeking to come
up with a test case for a certain situation discovered
an ambiguity in the meaning of this requirement.

5 Concluding Remarks

In this paper we have illustrated the analysis of a
formal specification using a testing-based approach
to validation. We believe that the ratio between the
insight gained by this kind of analysis and the effort
spent on the analysis is promising, in particular in
a technology transfer context, because less skilled
engineers are required for this kind of validation
than if formal verification was applied. Moreover,
many errors can be found (relatively) cheaply using
testing which otherwise might require a great deal
of effort to single out using formal verification.

The kind of tool support demonstrated in this
paper, including the combined use of a specification
executor and Dynamic Link modules, can in our
opinion help in making the formal methods technol-
ogy accessible to more engineers. Specifically with
respect to the SAFER example, we believe that
the prototyping and animation facilities provide an
easy way for a specifier to demonstrate the con-
sequences of the thruster selection logic to some-
one unfamiliar with formal notations. Moreover,
in the SAFER example there is very little trade-
off in going from the PVS model to an executable
VDM-SL model, because the PVS model is already
relatively concrete and essentially executable. Gen-
erally speaking, models for verification might be
more abstract than executable models to ease ver-
ification, and so there could be a trade-off.

We see validation using simulation and formal
verification as complementary techniques which
can be fruitfully applied in the same project. Given

that the system is sufficiently critical to justify the
costs, we imagine that the most productive ap-
proach would be to use the validation technology
first, and to continue with a formal verification of
the properties which cannot simply be tested, after
the worst bugs in the model have been removed.
These different kinds of analyzes tend to discover
different kinds of problems. Hence, though some
verification of the PVS specification of SAFER had
already been carried out in [9], we were still able to
detect a few points that need further clarification
using the validation approach (see Section 4.3).

Throughout this paper, we have assumed that
verification is costly. However, for certain
restricted domains automatic verification using
model checking has proved to be feasible, and hence
potentially very cheap to apply. One might view
the use of such automatic verification tools as a
compromise towards fully verified models. Typi-
cally, the price for this compromise is a more re-
strictive notation increasing the effort required to
produce models.

In fact, we have continued the experiment above
together with Arne Borilv from Logikkonsult, in
order to investigate the potential power of auto-
matic verification. Arne Boralv has taken our VDM
description and manually translated it to a model
in NP-Tools [12], using only propositional logic
extended with integer arithmetic and enumerated
types. Using this model it was possible to automat-
ically prove the maximum thruster and the thruster
consistency requirements, as well as some other
properties. Proof execution times were within the
order of seconds (45 seconds for the hardest require-
ment, maximum thruster). For rather finite sys-
tems like the SAFER example we envisage that it
would be possible to automatically translate VDM
models to models in NP-Tools and in this way be
able to automatically verify properties fast. This
approach seems appealing and will be further in-
vestigated.

Acknowledgments

We would like to thank Erik Toubro Nielsen, Ole
Storm Pedersen and Anders Sgndergaard for de-
veloping the different parts of the Dynamic Link
modules. We are also grateful for the constructive
comments we got on earlier versions of this paper
from Hanne Carlsen, Benny Graff Mortensen, Paul
Mukherjee and Anne Berit Nielsen. Finally PGL
would like to thank John Kelly for asking for review
comments on [9].

63

References

[1] Ricky W. Butler, James L. Caldwell, Vic-
tor A. Carreno, C. Michael Holloway, Paul S.
Miner, and Ben L. Di Vito. Nasa lang-
ley’s research and technology transfer pro-
gram in formal methods. In Tenth Annual
Conference on Computer Assurance (COM-
PASS 95). Gaithersburg, MD, June 1995.
(expanded version available from http://atb-
www.larc.nasa.gov/fm.html).

[2] James L. Caldwell. Formal methods
technology-transfer: a view from nasa. In
S. Gnesi and D. Latella, editors, Proceedings
of the ERCIM Workshop on Formal Methods
for Industrial Critical Systems, Oxford Eng-
land, March 1996.

[3] Lionel Devauchelle, Peter Gorm Larsen, and
Henrik Voss. PICGAL: Lessons Learnt from a
Practical Use of Formal Specification to De-
velop a High Reliability Software. In DA-
SIA’97. ESA, May 1997.

[4] René Elmstrgm, Peter Gorm Larsen, and
Poul Bggh Lassen. The IFAD VDM-SL Tool-
box: A Practical Approach to Formal Speci-
fications. ACM Sigplan Notices, 29(9):77-80,
September 1994.

[5] J.S. Fitzgerald and P.G. Larsen. Formal spec-
ification techniques in the commercial devel-
opment process. In M. Wirsing, editor, Po-
sition Papers from the Workshop on Formal
Methods Application in Software Engineering
Practice, International Conference on Soft-
ware Engineering (ICSE-17), Seattle, April
1995. ftp://ftp.ifad.dk/pub/papers/icse.ps.gz.

(6] Brigitte Frohlich and Peter Gorm Larsen.
Combining VDM-SL Specifications with C++
Code. In Marie-Claude Gaudel and Jim Wood-
cock, editors, FME’96: Industrial Benefit and
Advances in Formal Methods, pages 179-194.
Springer-Verlag, March 1996.

[7] Peter Gorm Larsen, John Fitzgerald, and Tom
Brookes. Applying Formal Specification in
Industry. IEEE Software, 13(3):48-56, May
1996.

[8] Paul Mukherjee. Computer-aided Validation
of Formal Specifications. Software Engineering
Journal, pages 133-140, July 1995.

[9] NASA. Formal methods, specification and ver-
ification guidebook for software and computer
systems - a practitioner’s companion. Techni-
cal Report Draft 2.0, Washington, DC 20546,
USA, November 1996.

[10] P. G. Larsen and B. S. Hansen and H.
Brunn N. Plat and H. Toetenel and D. J.
Andrews and J. Dawes and G. Parkin and
others. Information technology — Program-
ming languages, their environments and sys-
tem software interfaces — Vienna Develop-
ment Method — Specification Language —
Part 1: Base language, December 1996.

[11] PVS World Wide Web page.

http://www.csl.sri.com/pvs/overview.html.

[12] Gunnar Stalmarck. A System for Determin-
ing Propositional Logic Theorems by Applying
Values and Rules to Triplets that are Gener-
ated from a Formula, 1989. Swedish Patent
No. 467 076 (approved 1992), U.S. Patent No.
5 276 897 (1994), European Patent No. 0403
454 (1995).

64

Requirements Analysis of Real-Time Control Systems using PVS

Bruno Dutertre

Victoria Stavridou

bruno@dcs.qmw.ac.uk, victoria@dcs.gmw.ac.uk
Department of Computer Science,
Queen Mary and Westfield College,

University

Abstract

This paper presents a practical application of the
PVS theorem prover involving requirements analy-
sis of real-time control systems. This work was con-
ducted within the SafeFM project and relied on a
real world avionics case study. We show how PVS
was used to formalize the software requirements for
the system and to verify safety-related properties.
We also present the main result of the experiment.
We give an overview of PVS libraries which were de-
veloped after the case study experiment and are in-
tended to facilitate the specification and verification
of similar systems.

1 Introduction

The SafeFM project! investigated the practical ap-
plication of formal methods to the development and
assessment of high integrity systems [17]. Within the
project, we investigated the use of formal methods
and theorem proving in requirement analysis of real-
time control systems. A major part of this work
involved an experiment applying the PVS theorem
prover to the analysis of an avionics control system.
The case study was a substantially complex exam-
ple based on an existing system developed by GEC-
Marconi, one of our SafeFM partners.

This paper presents the main results of SafeFM in
the domain of formal requirement specification and
analysis. Section 2 gives an overview of the verifica-
tion method. Section 3 presents the formal notations
we used and shows how PVS can provide mechanical
support to formal requirements analysis. Section 4 is
an overview of the case study experiment; it describes
the successive phases of the formalization and verifi-

!'This work was partially funded under the UK Department
of Trade and Industry SafelT programme by EPSRC Grant
No GR/H11471 under DTI Project No IED/1/9013.

65

of London

cation using PVS, and presents the main experimen-
tal results. Section 5 describes further work dealing
with one of the limitations of PVS identified during
the case study: the lack of general purpose libraries.

2 Methodology

2.1 Applications Considered

SafeFM focused on a specific class of high-integrity
systems, namely digital controllers. In particular, we
were interested in medium size applications encoun-
tered in avionics such as air-data computers or store
managers. These applications have several important
characteristics:

e They are usually fault tolerant systems with a
redundant architecture. Because of the need for
high reliability, avionics controllers incorporate
multiple processors so that hardware failures can
be tolerated.

e They are real-time applications. Digital con-
trollers interact with an active environment
which imposes timing constraints. For example,
input signals have to be sampled and processed
at a sufficient rate for the system to maintain an
accurate image of its environment. Commands
have to be produced at the right time and may
have to accommodate various externally defined
mechanical constraints.

e They are hybrid systems. They may receive in-
put both from discrete or from analogous sources
and have to implement complex control laws
which mix logical and numerical computations.

All these characteristics are related to a major ele-
ment of all control applications: the system under
control. Real time digital controllers cannot be un-
derstood and analyzed without taking into consid-

eration the controlled system, its behavior, and its
properties.

2.2 Method of Analysis

Our primary objective within SafeFM was to design
a methodology for the formal analysis of software re-
quirements for real-time digital controllers. Our in-
vestigation was guided by the SafeFM case study and
we started from the following point of view:

e The control system consists of various processing
units and the general architecture of the system
(processors, communication links, interface, etc.)
is given.

The requirements describe functional modules to
be implemented by each of the processors. Typ-
ically, each module defines a control function or
some other task such as failure detection or mon-
itoring. The requirements may include real-time
and temporal constraints as well as purely func-
tional aspects.

In order to get confidence in the validity of require-
ments, we want first to check that the description of
each module is internally consistent. This assumes
that the requirements can be specified formally and
that various consistency checks can be performed on
the formal specification. Verification might include
type checking, the detection of out-of-range values, or
the proof of general semantic properties. The preser-
vation of invariants in state-based formalisms such as
B[1] or VDM[10] is a typical example of such semantic
verification. Although it is not exactly a consistency
property, checking total coverage of the input domain
is another important example of semantic validation
[9, 13).

The class of applications we consider are often
safety critical or safety related. In this context, check-
ing only the internal consistency of functional require-
ments is not sufficient. We also need to be able to ver-
ify that critical properties are satisfied. Such prop-
erties are global constraints on the behavior of the
system under control. Verifying that a system sat-
isfies these high-level properties requires more than
knowing the functional requirements of each module.
Additional information, such as the architecture of
the controller and a model of the system under con-
trol, is necessary.

In summary, we assume that specifications for real-

time control applications can be structured into three
broad classes: the functional requirements, a list of

66

assumptions about the controlled system, and the
critical properties to be verified. Coherence can be
demonstrated by applying various consistency checks
to individual functional modules and by proving that
the critical properties are satisfied by the functional
requirements.

3 Requirements Analysis with
PVS

In order to perform the different kinds of verification
mentioned above, some form of mechanical support is
necessary. The tool must provide a rich formal nota-
tion able to cover the various classes of requirements
of real-time control systems. It must also support
reasoning about numerical as well as logical proper-
ties.

PVS was the tool chosen for SafeFM. PVS offers
both a very expressive specification language based
on higher order logic and a powerful theorem prover.
A description of the system and examples of appli-
cations of PVS can be found at the PVS world-wide
web site’ and elsewhere [4, 13, 14, 16].

PVS is a general system and we had to define a
specification approach for real-time systems require-
ments. We used a straightforward and easy to im-
plement approach with explicit time. Time is mod-
eled by the non-negative real numbers, time varying
quantities are manipulated explicitly as functions of
time, and temporal properties are written using ex-
plicit time indices.

There are two kinds of time dependent variables.
The first kind is used to specify the requirements of
discrete components; functions are defined on a sub-
set of the time domain which represents a clock. The
second is total function of time and models the con-
tinuous variables of an application.

3.1 Functional Requirements

In order to specify functional requirements, we used
a data flow approach inspired from the synchronous
languages LUSTRE and SIGNAL (8, 11]. Every module
is assumed to be activated at regular intervals by a
clock of known frequency. In PVS, such clocks are
defined as follows:

clocks[K:posreal]: THEORY
BEGIN

IMPORTING time

2http:/ /www.csl.sri.com /pvs.html

t: VAR time
n: VAR nat
clock: TYPE =

{t | EXISTSn : t = n * K}.

A clock is a parameterized subtype of time, charac-
terized by a positive real K — the period of the clock.
An element x is of type clock[K] if it is a multiple
of the period.

The specification for each functional module in-
cludes a clock and a list of input, output and inter-
nal variables. All these are time dependent and are
represented as functions of the module’s clock. For
example, an output WSCMD of a module of clock H is
of type

WSCMD : [H -> ws_range].

The elements of H represent the instant when the
module is activated, the input signals processed, and
the output produced. The clock forms an increasing
sequence of instant

to<ti<th<...<t; <...

and WSCMD(¢;) is the command computed at the i-th
activation.

With this approach, requirements can be specified
as alist of function definitions. For example, we could
have the following definition for WSCMD:

t: VAR H

WSCMD(t): ws_range = max(X(t), Y(t)),

where X and Y are other variables of the same mod-
ule. Since we want the specifications to be imple-
mentable in software, certain restrictions are imposed
on the form of the definitions. Roughly, we require
that the value of an internal or output variable X at
time ¢; only depends on values of other variables at
t; or at t;_; and possibly on X (¢;—;). Intuitively, in
case where X (t;) depends on X(t;—;), the variable
X is kept in memory for use in the subsequent step;
the corresponding PVS definition uses recursion. For
example a definition such as

F(t): RECURSIVE real =
IF init(t) THEN A(t)
ELSE F(pre(t)) + A(t)
ENDIF

MEASURE rank

means that F accumulates the successive values of A.
The predicate init and the functions pre and rank

67

are generic and defined for every clock. init(t)istrue
if ¢ is the first element of the clock, pre(t;) is equal to
t;—1 and rank(t;) is equal to 7. The measure clause in
the definition is required by PVS for every recursive
function and is used to ensure that the function is
well defined so that the recursion always terminates.

In most points, this model is similar to an abstract
state machine, as used in [3, 5] for example. The
state at time ¢; is a vector Xi(¢;),..., X, (t;) where
Xi1,...,X, are variables of the module. The transi-
tion function and the initial state are implicitly con-
tained in the definition of all these variables. The
restricted form of recursive definition shown above
ensures that the state at time ¢; depends on the value
of input variables at ¢; and on the state at ¢;_;.

Using this form of data flow specifications, the
functional requirements are all expressed in a purely
definitional style. This is strong evidence concerning
the consistency of requirements. When type checking
the specifications, PVS may generate various proof
obligations known as TCCs. For example, a PVS
specification such as

cmd_range : TYPE =
{x: reall 0 <= x AND x < M }

CMD(t): cmd_range = A(t) * A(t),

defines a data flow CMD of range cmd_range. When an-
alyzing this specification, PVS will generate a TCC to
ensure that the expression A(t) * A(t) is effectively
within the allowed range:

CMD_TCC1: OBLIGATION
FORALL t:
0 <= A(t) * A(t) AND A(t) * A(t) < M.

Provided all such TCCs are discharged, we know that
all the data flows are well defined functions; there
is no risk of inconsistency. Since PVS requires that
all functions are total, this style of specification also
ensures the total coverage of input domains.

3.2 Assumptions and Critical Proper-
ties

Assumptions about the system under control and
the critical properties to be verified are written as
PVS axioms and conjectures, respectively. Unlike
the functional requirements, assumptions and prop-
erties may be related to non-discrete quantities such
as external physical parameters or the position of me-
chanical components. For example, assuming a sys-
tem receives input signals Pt and Ps from a probe
measuring atmospheric pressure then the two inputs
might be declared as

Pt, Ps: [time -> pressure_range]
and we can write assumptions such as

pressure_constraint: AXIOM
FORALL (t:time): Ps(t) <= Pt(t).

In the same way, a critical property is written as a
conjecture using explicit time indices and quantifiers.

For example, a typical response property could look
like:

response: CONJECTURE
FORALL t : P1(t) IMPLIES
EXISTS u :
t <= u AND u <= t + D AND P2(t);

P2 is expected to hold within a delay D after P1 is
true.

3.3 Verification

Once formalized, the requirements for a real-time
controller consist of one or several functional modules
specified as a set of data-flow definitions, a collection
of axioms which describe assumptions about the con-
troller’s environment, and a list of conjectures which
specify critical properties. There are also other ele-
ments such as the communication between the mod-
ules or between functional modules and the controlled
system.

The verification of requirements is then a theorem
proving exercise; we have to prove the conjectures us-
ing the axioms and the data flow definitions. In prac-
tice, the proofs of critical properties can be complex
and require the introduction of many intermediate
theorems and lemmas.

It is also useful to prove simple properties of the
specifications (so-called putative theorems). Such
properties are intended to check that the formaliza-
tion of assumptions or functional requirements is rea-
sonable. They are typically simple properties one ex-
pects to be true of the system which may or may not
help prove the main results.

4 The Case Study

This methodology and formalization approach have
been applied within SafeFM to a realistic case study.
The system is based on an air-data computer which
controls the flaps and variable geometry wings of an
aircraft. The example is typical of the target appli-
cations. It is a real-time system with a redundant
architecture and it performs complex control func-
tions as well as failure detection tasks. Originally,

68

Backup cb:

Wing Sweep

————= Primary
i Auxiliary
=1 Servos t Control
Surfaces

T]

Figure 1: ADC architecture

the requirements were expressed in a mixture of En-
glish description, mathematical formulas and various
graphs. The requirements were produced by software
engineers with previous experience with systems sim-
ilar to the case study and were inspired from a large
subset of an existing air-data computer.

The remainder of this section gives an overview of
the air-data computer and of its formalization and
verification. A more detailed description of the case
study appears in [7].

4.1 Architecture

The architecture of the controller is shown in Fig. 1.
The system includes two channels with different
clocks, each channel being composed of up to four
functional modules. A primary channel performs all
the controller’s function during normal operation and
a backup channel with restricted functionality takes
over when the primary fails. The two channels do
not synchronize; they have two independent clocks of
different frequencies. The only cross channel commu-
nication is a discrete signal which indicates failures
of the primary channel to the backup channel.

The commands from the two channels are transmit-
ted to servos which control the wing sweep actuators.
Feedback signals from the servos and actuators are
continuously monitored by the two channels in order
to detect mechanical failures. The controller receives
other input signals from the pilot, from various sen-
sors and probes, and from other avionics systems in
the plane.

wing_sweep_primary[
(IMPORTING time, types)

ALTITUDE : [time-> altitude_range],
MACH [time-> mach_range],
..] : THEORY
BEGIN

t : VAR clock [PRIMARY_PERIOD]

AUTO_MODE(t) : RECURSIVE bool =

if DESELECT_AUTO(t)

then FALSE

elsif SELECT_AUTO(t) or init(t)
then TRUE

else AUTO_MODE(pre(t))

endif

MEASURE rank

WSCMD1(t) : RECURSIVE ws_range = ...

END wing_sweep_primary.
Figure 2: Example of functional module

4.2 Functional Requirements

The PVS formalization of the functional requirements
consists of six modules describing the six main func-
tions of the controller. Each of these functional mod-
ule is specified as a separate PVS theory. Fig. 2
gives an overview of such a functional module. The
theory specifies the wing sweep control function per-
formed by the primary channel. The theory param-
eters ALTITUDE, MACH, etc. specify the input signals
received by the module. The theory contains a list
of data-flow definitions which are all functions of the
same clock, the clock of the primary channel. The fig-
ure shows two examples of data-flows; AUTO_MODE cor-
responds to an internal boolean variable and WSCMD1
specifies the wing sweep commands produced by the
primary channel.

4.3 Assumptions and Safety Proper-
ties

The assumptions give a (crude) model of mechanical
and electro-mechanical components of the controlled
system (sensors, actuators, and interlocks). For ex-

69

ample, the axiom cmd.wings below relates the wing
sweep angle (WSPOS) and the wing sweep commands
(CMD) when certain mechanical interlocks are not ac-
tive. The value CMD(t) depends on the wing sweep
command produced by the active channel.

cmd_wings : AXIOM
constant_in_interval(CMD,t,t+eps)
and
not wings_locked_in_interval(t,t+eps)
implies
CMD(t) = WSPOS(t+eps)
or
CMD(t) < WSPOS(t+eps) and
WSPOS(t+eps) <= WSPOS(t) - eps*min_rate
or
CMD(t) > WSPOS(t+eps) and
WSPOS(t+eps) >= WSPOS(t) + eps*min_rate

Other axioms describe the evolution of the wing
sweep angle when the locks are active, the initial posi-
tion of the wings, and various contraints about other
components of the system.

The air-data computer has to satisfy two main
safety properties related to constraints on the posi-
tion of the wings when various sets of flaps are ex-
tended. Our first attempt to verify these properties
failed because of a lack of information about the sys-
tem under control. In particular, our first model did
not include mechanical interlocks which ensure that
the flaps do not extend at the wrong time. Other me-
chanical locks limit the extension of the wings when
the flaps are not retracted.

After several iterations and consultation with
GEC-Marconi engineers, we reformulated the initial
safety requirements in order to take the mechanical
locks into account. We defined the safe states of the
two channels as those where the wing sweep com-
mands issued cannot force the wings against the me-
chanical interlocks. We then specified three safety
properties:

o While the primary channel is in control, the sys-
tem stays in a safe state.

e After the backup channel assumes control, it
converges to a safe state within a specified pe-
riod of time.

e If the backup channel is in control and in a safe
state, it will stay in a safe state.

These three constraints are expressed easily in PVS.
The first property ensures that the system is in a safe
state until a possible failure of the primary channel.
The second corresponds to a transitory period from
the instant the primary channel fails to the instant
the backup channel reaches a safe state. The third
property ensures that once the backup channel has
reached a safe state, the system remains in a safe
state.

The second property indicates that the backup
channel may not be immediately in a safe state when
the primary channel fails. This is due to the absence’
of synchronization between the two channels. Be-
cause the two subsystems have different clocks and
receive input from separate sources, there can be a
substantial difference between their internal states
and between the wing sweep commands they com-
pute. If the backup channel takes control while the
difference is large, it may momentarily produce com-
mands which force the interlocks but the latter ensure
that the wings remain in a safe position.

4.4 Results

The formalization of the system consisted of approx-
imately 4500 lines of PVS specifications. This in-
cluded basic theories and definitions for time and
clocks, a collection of general purpose functions and
theorems (background knowledge), and the specifica-
tion of the case study proper. The amount of effort
involved in formalization and verification is estimated
at around 18 person months. Approximately half of
this time was spent on the verification of the three
main properties. As a whole, a total of 385 proofs
were performed. These include 106 TCCs most of
which were discharged automatically by the prover;
the rest was proved by hand. The verification of the
three top-level critical properties required the proof
of a total of 124 propositions. The other properties
we verified were putative theorems whose proofs did
not pose any major difficulty.

During the proof of a putative theorem, an error
was found in our formalization of the functional re-
quirements. This corresponded to an unexpected sit-
uation where a “lower limit” gets larger than an “up-
per limit” and the resulting commands are wrong.
This error is triggered by an exceptional combina-
tion of input parameters. It can be traced back to
the original informal requirements where the possible
inversion of the two limits is completely overlooked.
This was the only error discovered in the functional
requirements. After a simple correction, all the pu-
tative theorems were proved.

70

The main difficulty we encountered was a lack of in-
formation about the system under control and the im-
precision of the informal safety requirements. There
was only limited information about these aspects in
the original requirements which were destined pri-
marily for software engineers and focused on func-
tionality. As a result, our first attempts to prove the
safety properties were unsuccessful. The solution was
to consult with systems engineers who have a wider
view of the system including hardware and software
as well as safety mechanisms. We also got more infor-
mation about the expected behavior of the controller
from various documents including the pilot’s manual.
The interaction with systems engineers and the new
sources of information helped us clarify the safety re-
quirements and formulate the correct assumptions.
Once the precise requirements were established, we
were able to prove the safety properties.

The experiment clearly demonstrated the advan-
tage of the PVS specifications over the original in-
formal document; the formal requirements are con-
cise, precise, and unambiguous. In this respect, the
SafeFM case study has confirmed other authors’ con-
clusions about the value of formal requirements spec-
ifications [3, 5].

However, the main benefits of the formal approach
were realised during the validation stages. Proofs
are an essential means of detecting errors in require-
ments. The proof process requires a thorough analy-
sis and gives a profound understanding of the system
behavior. In particular, proofs can help understand
the subtle interactions between the components of a
complex control system.

An important conclusion of the case study is that
formal methods can be applied in practice to the re-
quirement analysis of real industrial systems. By the
size of its specification and the number of proofs per-
formed, our experiment represents a major effort in
formal verification. Such large scale verification is
feasible and beneficial provided adequate tool sup-
port is available. In this respect, SafeFM has corrob-
orated other reports on industrial uses on PVS, such
as [12].

However, another lesson of the experiment was that
the proof process can be expensive and difficult to
estimate. It took us eighteen months to complete the
work instead of the six we had originally planned.
Some of these delays can be attributed to our lack of
familiarity with PVS. Other factors can also explain
this time overrun:

e There was little guidance on how to apply PVS
effectively to real-time control applications. A

non-negligible part of the work was taken up in
writing PVS theories defining the basic notions
of clocks and time.

¢ We had to spent time in developing and proving
various general purpose results. For example, we
had to prove properties of sets of real numbers
or of finite sets.

e The initial requirements document was written
from a software engineering point of view and
contained little information about the system
under control. Several iterations were required
before formulating the correct assumptions and
getting the precise safety requirements.

5 Building PVS Libraries

Some of the difficulties encountered were due to a
lack of maturity of the PVS prover. In order to re-
duce the effort involved in formal specification and
in verification, it is necessary to provide general pur-
pose PVS libraries. Fortunately, this need has been
identified and the current version of PVS comes with
more predefined notions and with better support for
libraries®. An important issue for the PVS commu-
nity is to develop and make available further libraries.

In order to contribute to this effort, we have de-
veloped various PVS libraries during the last months
of the SafeFM project. The main one includes basic
results of real analysis [6]. Some aspects of the case
study specification could have been simpler to model
if such a library had been available. Other PVS de-
velopments were related to finite sets and have been
incorporated in a more general library [2]. In more
recent work, we defined a smaller set of PVS theo-
ries for manipulating roots and square roots of real
numbers?.

The main objectives when building such libraries
are generality and usability. We need to define no-
tions as generally as possible to make them applicable
to many classes of problems. We also need to present
the results in a convenient form to ease their use in
PVS proofs.

In developing the SafeFM libraries, we used the
following principles:

¢ For the notion of continuity to be useful in prac-
tice, we cannot restrict ourselves to the case of

3Most of the SafeFM work was done with an older version
which did not include these facilities.

4These PVS libraries are accessible at
http://www.cs.rhbnc.ac.uk/research /formal/safefm-pvs.html
or ftp://ftp.cs.rhbnc.ac.uk/pub/safefm/pvs/roots.dmp.gz

71

total functions from R to R; we must be able
to consider continuous functions defined on sub-
types of the reals. '

e The most convenient and powerful way of using
lemmas in proofs is using the rewriting capabili-
ties of PVS. The mechanism takes lemmas which
have the syntactic form of a “rewrite rule” or of
a “conditional rewrite rule”. The user can either
apply these rules selectively or install them as
automatic rules which will be used internally by
the theorem prover.

Another important capability is the general
proof commands PVS provides for reasoning by
induction. These commands use (explicitly or
implicitly) lemmas which must have a particular
form. We need to provide such induction rules
when necessary.

e PVS relies on a powerful type system and type
checking mechanism. The latter can generate
proof obligations to ensure that specifications
are consistent. As far as possible we need to re-
duce the number of proof obligations that might
be generated when using lemmas and functions
from the library. A new feature of PVS - the
Judgements — can be of great help in this respect.

e Taking advantage of the decision procedures is
another way of making lemmas and theorems
simpler to use; we need to provide results in a
form such that the decision procedures can be
applied.

This can sometimes work against the principle of
generality. For example, the following important
property is proved in the continuity library: from
any sequence of reals, one can extract a mono-
tonic subsequence. This property is also true for
sequences of any type T, provided T is totally
ordered. Unfortunately, manipulations of order
relations on general, non-numerical types are ex-
tremely tedious because no decision procedures
apply.

There are simple pragmatic rules one can adopt
which can make libraries both easier to use and
widely applicable:

e Generality can be achieved by using parameter-
ized theories and the subtyping structure. For
example, parameters allowed us to define conti-
nuity of functions of type [T -> real] where T
is any subtype of the reals.

¢ Usability can be improved by writing lemmas
and properties in certain syntactic forms.in or-
der to make them usable as rewrite or induction
rules. The possible forms of rewrite rules are pre-
sented in [16]; a few examples are given below

sqrt_def : LEMMA
sqrt(x) =y IFF y * y = x

square_sqrt : LEMMA
sqrt(x) * sqrt(x) = x

sqrt_square : LEMMA
sqrt(x * x) = x.

The two variables x and y are non-negative reals.

It is convenient to offer several variants of the
same theorem, even if they look redundant. For
example, it does no harm to have the following
lemmas about square roots even though any-
thing provable with the last three lemmas is
provable from the first one alone.

both_sides_sqrt_1t : LEMMA
sqrt(x) < sqrt(y) IFF x < y

both_sides_sqrt_le : LEMMA
sqrt(x) <= sqrt(y) IFF x <=y

both_sides_sqrt_gt : LEMMA
sqrt(x) > sqrt(y) IFF x > y

both_sides_sqrt_ge : LEMMA
sgrt(x) >= sqrt(y) IFF x >= y.

With these four variants, many properties can be
proved by automatic rewriting. A single lemma
would require much more tedious manual inter-
vention to instantiate the variables.

The judgement clauses are extremely useful for
simplifying type checking and reducing the num-
ber of proof obligations. This mechanism is de-
scribed in [13, 4]; it allows us to specify for ex-
ample that the square root of a positive number
is positive:

JUDGEMENT sqgrt
HAS_TYPE [posreal -> posreal].

It may be sometimes necessary to reduce gen-
erality in order to improve usability. This is in
particular the case when notions are defined on
types too general for the decision procedures to
apply.

72

All the above rules provide only partial answers to
the difficult problem of building usable libraries. It
is hard to anticipate what results and lemmas can be
useful in practice and to know how to present them in
a convenient form. Such issues can only be resolved
by acquiring more experience in library development
and by learning from users of libraries.

6 Conclusion

One main objective of SafeFM was to investigate
practical methods of producing coherent software re-
quirements for digital controllers, using a formal ap-
proach and theorem proving. The case study exper-
iment has confirmed the potential benefits of formal
requirements analysis. A formal specification pro-
vides clear advantages such as clarity and precision,
but the main benefit in our experiment was the fea-
sibility of thorough analysis via proofs.

The project showed that PVS provides adequate
tool support for such an analysis. A relatively large
and complex system was completely formalized and
verified with PVS. We believe that the theorem prov-
ing technology is mature enough to be applied to real-
life, industrial applications. The main practical issue
is to provide guidance on the use of theorem provers
to specific classes of problems and in developing li-
braries to facilitate specification and verification.

Acknowledgements

The work described in this paper would not have been
possible without the support of the project partners.
We are indebted to Tim Boyce, Jonathan Draper,
Bob Smith and our other GEC-Marconi colleagues
who have had to educate us in avionics systems.

References

(1] J. R. Abrial. The B Book: Assigning Programs
to Meanings. Cambridge University Press, 1996.

[2] R. W. Butler. The NASA Langley PVS
Library, March 1996. This note and the
library it describes can be accessed via

http://atb-www.larc.nasa.gov/ftp/larc.
[3] J. Crow and B. Di Vito. Formalizing Space Shut-
tle Software Requirements. In ACM SIGSOFT
Workshop on Formal Methods in Software Prac-
tice, January 1996.

4]

(8]

[9]

[10]

[11]

[12]

13]

J. Crow, S. Owre, J. Rushby, N. Shankar, and
M. Srivas. A tutorial introduction to PVS. In
WIFT’95 Workshop on Industrial-Strength For-
mal Specification Techniques, April 1995.

B. Di Vito. Formalizing New Navigation Re-
quirements for NASA’s Space Shuttle. In
FME’96, March 1996.

B. Dutertre. Elements of Mathematicl Anal-
vsis in PVS. In Theorem Proving in Higher
Order Logics: 9th Intermational Conference,
TPHOLs’96, pages 141-156. Springer-Verlag,
LNCS 1125, August 1996.

B. Dutertre and V. Stavridou. Formal re-
quirements analysis of an avionics control sys-
tem. IEEE Transactions on Software Engineer-
ing, 23(5), May 1997.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pi-
laud. The Synchronous Data Flow Programming
Language LUSTRE. Proceedings of the IEEE,
79(9):1305-1321, September 1991.

M. S. Jaffe, N. G. Leveson, M. P. E. Heimdahl,
and B. E. Melhart. Software requirements anal-
ysis for real-time process-control systems. IEEFE
Trans. on Software Engineering, 17(3):241-258,
March 1991.

CIliff B. Jones. Systematic Software Development
using VDM. Prentice-Hall International, 1986.
2nd Edition.

P. Le Guernic, T. Gautier, M. Le Borgne, and
C. Le Maire. Programming Real-Time Applica-
tions with SIGNAL. Proceedings of the IEEE,
79(9):1321-1336, September 1991.

S. P. Miller and M. Srivas. Formal Verification
of the AAMPS5 Microprocessor: A Case Study
in the Industrial Use of Formal Methods. In
WIFT’95 Workshop on Industrial-Strength For-
mal Specification Technigues, April 1995.

S. Owre, J. Rushby, N. Shankar, and F. von
Henke. Formal verification for fault-tolerant
architectures: Prolegomena to the design of
PVS. IEEE Transactions on Software Engineer-
ing, 21(2):107-125, February 1995.

S. Owre, N. Shankar, and J. M. Rushby. The

PVS Specification Language. Computer Science
Lab., SRI International, April 1993.

73

[15]

[16]

(17]

D. L. Parnas. Some theorems we should prove. In
Proc. of 1993 International Meeting on Higher
Order Logic Theorem Proving and Its Applica-
tions, pages 156-163. The University of British
Columbia, Vancouver, BC, August 1993.

N. Shankar, S. Owre, and J. M. Rushby. The
PVS Proof Checker: A reference Manual. Com-
puter Science Lab., SRI International, March
1993.

V. Stavridou, A. Boothroyd, T. Boyce,
P. Bradley, J. Draper, B. Dutertre, and
R. Smith. Developing and Assessing Safety
Critical Systems with Formal Methods: the
SafeFM Way. Journal of High Integrity Systems,

1(6):541-545, 1996.

Reuse of a Formal Model for Requirements Validation

Robyn R. Lutz*

rlutz@cs.iastate.edu
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109-8099

Abstract

Abstract

This paper reports experience from how a project
engaged in the process of requirements analysis for
evolutionary builds can reuse the formally specified
design model produced for a similar, earlier project in
the same domain. Two levels of reuse are described
here. First, a formally specified generic design model
was generated on one project to systematically cap-
ture the design commonality in a set of software mon-
itors onboard a spacecraft. These monitors period-
ically check for faults and invoke recovery software
when needed. The paper summarizes the use of the
design model to "validate the software design of the
various monitors on that first project. Secondly, the
paper describes how the formal design model created
for the first project was reused on a second, subsequent
project. The model was reused to validate the evolu-
tionary requirements for the second project’s software
monitors, which were being developed in a series of
builds. Some mismatches due to the very different ar-
chitectures on the two projects suggested changes to
make the model more generic. In addition, several
advantages to the reuse of the first project’s formal
model on the second project are reported.

1 Introduction

In some application domains, successive software
projects tackle many of the same problems. In such
applications, software design from prior projects in the
same domain or product family is sometimes used to

*Mailing address is Dept. of Computer Science, Iowa State
University, Ames, IA 50011. The research described in this pa-
per was carried out by the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with NASA.

75

guide the requirements for a current project. At the
informal level this occurs when “Lessons Learned” on
earlier projects are collected and considered during the
requirements phase of a subsequent project. In other
cases, reuse of existing software components or design
patterns from a previous project may be mandated on
a new project, with the reuse sometimes driving the
requirements [20].

This paper investigates how a project engaged in
the process of requirements analysis can exploit the
formal design modeling and analysis done on a simi-
lar past project in the same application domain. The
approach is outlined in Figure 1.

The paper describes two applications of reuse:

1. A formally specified design model was generated
on Project 1 to systematically capture the de-
sign commonality in eighteen software monitors.
This generic model was then reused to validate
the software design of each of the eighteen moni-
tors.

2. The formal model created for Project 1 (the
Cassini spacecraft) was subsequently reused to
analyze the requirements for similar software (i.e.,
fault monitors) on a second project in the same
application domain.

Each element (data item or function) of the
generic formal model produced for Project 1 was
either traced to the requirements for the monitors
in Project 2 (the Deep Space-1 spacecraft) or the
discrepant element was noted and investigated.

In addition to the anticipated benefit of validating re-
quirements in the current build of Project 2, the work
also clarified the allocation of requirements among the
software elements, provided a structured way to cap-
ture design constraints and design assumptions during

Project 1:

Design Mode.lindg of SMT f& PVS Design Design
generic design | Specifications analysis issues
features

Project 2:
Initial Trace features Requirements issues &
requirements | . design model | future builds’ requirements>
to current build’s
requirements

Figure 1: Reuse of Project 1’s Formally Specified Design Model for Requirements Validation on Project 2

requirements analysis, and guided the identification of
requirements to be added in later builds during the
evolutionary software development process.

The need for rapid, low-cost requirements analy-
sis and the planned, steady evolution of requirements
on the new project motivated the reuse of the ear-
lier design model. The goal was to import some of
the lessons learned about system-level fault protection
monitor design on the earlier project into the subse-
quent project in a structured but informal way. The
results show that, although the software architectures
and the development processes for the two systems
are very different (see Section 4), the design model
from the earlier project provided some guidance for
validating a specific build’s requirements and identify-
ing future builds’ requirements in the second project.
By tracing each element of the earlier formal design
model to the preliminary requirements for the later
system, additional insights into the assumptions un-
derlying the requirements, the design constraints of
the new system, and the criteria for design choices
were gained.

The assumption underlying the experimental reuse
of the first project’s formal model on the second
project’s requirements is that similar behavior and
similar data must occur in each monitor in this do-

76

main. This assumption turned out to be largely true.
The data items and functions in the formal specifi-
cation can often be mapped directly to a data or be-
havioral requirement in the second project’s monitors,
adding some assurance that the requirements are com-
plete and correct. This mirrored the experience apply-
ing the generic formal model to the eighteen monitors
in the first project. In that case, flagging deviations
of particular monitors from the norm (i.e., the generic
model) was a quick way to identify areas of concern for
additional analysis or testing. Similarly, identification
of instances in which the second project’s monitors
deviated from the first project’s generic formal model
provided insights into currently missing requirements
(to be required in later builds) and into implied design
constraints.

Both projects involved fault-monitoring software in
the same domain. Project 1 is the Cassini space-
craft, set for an October, 1997 launch to Saturn and
its moon, Titan. Project 2 is the Deep Space-1 (DS-
1) spacecraft, which will be launched in 1998 to ren-
dezvous with an asteroid and a comet [7]. The soft-
ware described here was, on both projects, the system-
level fault-protection monitoring software. In the
spacecraft domain, a monitor is software that period-
ically checks for malfunctions and initiates a process

leading to recovery when appropriate. The monitors
are the “eyes and ears” of the spacecraft [15].

In both projects the software monitors are required
to display similar behavior (e.g. ignoring transient
faults) and to use similar data (e.g., fault thresholds
against which the input data is measured to deter-
mine if a fault exists). A fault is defined to be ei-
ther “a defect in a hardware device or component”
or “an incorrect step, process, or data definition in a
computer program” [9]. Monitors are safety-critical
software in that they must autonomously detect on-
board threats to the spacecraft’s health and mission.
Since fault monitoring software in other applications’
control systems frequently displays many of the same
behavior and data dependencies represented in the for-
mal model here, the approach described in this paper
may have application beyond the spacecraft domain.

The rest of the paper is organized as follows. Sec-
tion 2 describes the formal specification and analy-
sis of the generic model. Section 3 summarizes the
results from its use on the first project. Section 4
surveys some relevant commonalities and differences
between the two projects in terms of their software
development processes (waterfall vs. spiral) and their
architecture (centralized vs. remote agents). Section
5 describes the results from the application of the de-
sign model to the requirements analysis of the soft-
ware builds on the second project. Section 6 briefly
discusses related work and future directions. Section
7 summarizes the lessons learned from the experience
reported here.

2 The Formal Model

In previous work we used two technologies, formal
methods and object-oriented modeling, to analyze the
software design for portions of the Cassini spacecraft’s
software [1, 12]. The two tools that were used were
OMT, the Object Modeling Technique [17], and PVS,
the Prototype Verification System tool (SRI). PVS is
an integrated environment for developing and analyz-
ing formal specifications using support tools and a the-
orem prover [18]. These tools allowed the modeling,
formal specification, and analysis of the monitors’ de-
sign in the Cassini system-level fault protection soft-
ware [11].

There are eighteen monitors in the system-level
fault protection onboard the Cassini spacecraft. Eight
of these are overtemperature monitors that are nearly
identical in their logic. The other ten fault monitors
detect loss of commandability (uplink), loss of teleme-
try (downlink), heartbeat loss (i.e, communication be-

77

tween computers), overpressure, overtemperature, un-
dervoltage, and selected other failures.

These monitors share many of the same functions
and attributes. One of the roles of the OMT mod-
els in the design analysis was to explicitly represent
these common features in a way that could be read-
ily reviewed by the Cassini engineers. This approach
worked well. The OMT approach provides three view-
points from which to represent the software design.
The design of the fault protection monitor was thus
represented in three OMT design diagrams [11]:

e The object-oriented design approach was repre-
sented in a object diagram. At the design phase,
the object model of the monitor provided insight
into the common behavior, properties, and rela-
tionships that the various monitors share. The
OMT diagrams allowed the similarities in the
monitors to be compactly represented.

e The functional viewpoint was represented in a
data flow diagram. The data flow diagram char-
acterized the data and data transformations com-
mon to all Cassini system-level fault protection
monitors.

e The dynamic viewpoint was represented in a state
diagram (Fig. 2). The state diagram for the de-
sign contained a sequence of six states that an
active monitor can reach. Monitors commonly
(1) test the validity of the input measurements
that they receive from the sensors, (2) detect the
existence of a fault condition in the various in-
put data, (3) decide whether a fault condition in
fact exists (perhaps by voting), (4) disregard tran-
sient anomalies, (5) determine whether a recov-
ery response is appropriate, and (6) update state
data, including possibly a request for a recovery
response.

The formal specification in PVS of the design for
the monitor software drew on the OMT diagrams to
guide the formal specification of the design model.
This was consistent with our earlier experience that
creating OMT diagrams prior to formally specifying
the requirements enhanced the accuracy of the initial
formal specifications and reduced the effort required
to produce them [12]; see also [2]. The formal speci-
fication in PVS of the design for the monitor consists
of two theories (five pages of typechecked PVS spec-
ifications). The first theory, called mon, specifies the
design of a system-level fault protection monitor (Fig.
3). Voting behavior (among inputs on whether a fault
exists) was not represented in the formal model, al-
though it would be a desirable addition.

Passes
test

Passes

Activated test

Test data
validity

Determine if
fault indicated

Test for fault in
sensor data

Passes

Passes

Request
Update state response

values

Test for fault
persistence

test Check if output

enabled

Figure 2: Dynamic Model

% Generic Cassini System-Level Fault Protection Monitor
% Monitor requests recovery response.

request_response (i, x, threshold, low_filter, high_filter, enabled,
prev_persist_ctr, persist_limit, sensor_input): bool =
valid_data_exists (i, low_filter, high_filter)

ARD cond_exists (i, x, threshold, low_filter,
high_filter, sensor_input)

AND cond_persists (i, x, threshold, low_filter,
high_filter, prev_persist_ctr, persist_limit,
sensor_input)

AND enabled

Figure 3: Excerpt from the Formal Model

78

The second theory, called monlem, states seven lem-
mas that specify the monitor’s behavior. Two of these
lemmas describe basic safety properties that the mon-
itor is expected to obey, as documented in the project
requirements (“A response is requested by a monitor
only if the detected fault is not a transient fault” and
“If a fault is not detected by a monitor, then the mon-
itor doesn’t request a response”). The other five lem-
mas concern the monitor’s interfaces, i.e., the validity
of the input data it uses to make a control decision as
to whether to request a recovery attempt. The seven
lemmas were proven, several by Martin Feather.

The conformity of the OMT representation and
the formal specifications to the actual, final soft-
ware design was checked against the eighteen system-
level fault protection monitors in the post-Critical
Design Review document [3, 4]. One step in evalu-
ating that the model accurately represented the de-
sign was to classify the Data Lists provided in [3]
for each of the monitors, and then to map those
data classifications to the model. Toward this goal,
the 162 data items in the Data Lists were classi-
fied into eight categories. In descending order of fre-
quency, the eight categories were: Measurements (in-
put data from sensors), Enabled/Disabled flags (moni-
tors can be disabled), Thresholds (limits beyond which
a fault condition exists), Filters (persistence require-
ments so that transient faults are ignored), State
Updates (e.g., “high-water”~the highest measurement
seen to date), Validity ranges (measurements out-
side these ranges are assumed to be from failed sen-
sors), Heartbeat/Messages (from other software), and
State Currently Commanded (information about the
current configuration). The eight categories of data
found in the document were reflected in the OMT de-
sign model and the formal specifications.

3 Reuse of the Formal Model on

Project 1

The design analysis involved in constructing the
model, in formally specifying the design of the moni-
tor, in stating and proving the lemmas, and in confirm-
ing the accuracy of the model and specifications, iden-
tified eight deviations of Project 1’s individual fault
monitors from the formal specification of the generic
design. Four of the eight discrepancies were found
through the design analysis needed to develop the for-
mally specified generic model. The other four of the
eight discrepancies were found by comparing the Data
Lists for each of the eighteen fault monitors with the

79

data in the formal specification. The issues found were
reported back to the Cassini project. In each case, ei-
ther a decision was made to retain the current design
for the reason listed below or the issue was still being
worked when this phase of the analysis ended.

None of these discrepancies involved errors in the
design logic, but several yielded discussions about the
most robust way to design the software or how best to
flag these items for attention during testing. Among
the more interesting issues found by the analysis were:

e Unnecessary coupling. In a single case, a monitor
cancels a response. This appears to be unnec-
essary coupling of the monitor and the response,
since in all other cases, the Fault Protection Man-
ager performs this supervisory function. Conver-
sations with the software designers indicated that,
since there is no known problem with the current
unique design for this monitor, that it will be re-
tained.

e Unique design. In a single case, a monitor dis-
ables itself (permanently or until ground opera-
tors interfere) if it even once receives bad data.
In all other cases, the response disables its related
monitor. The design ratonale is that past flight
data indicates that once a transducer (the hard-
ware component providing the data) provides un-
healthy data, that it is likely to be unrelative from
then on. However, other monitors do not cease to
accept data from transducers that have once pro-
vided unhealthy data.

e Missing data validity checks? Inputs from the
transducers on the propellant tanks and temper-
ature transducers are checked for validity (i.e.,
whether the values are outside a range of cred-
ible values, which would indicate a failed trans-
ducer); however, inputs from other sensors do not
undergo similar validity checks. At the time the
study ended, this design issue was being worked
as an action item by the design team.

e Misleading data name. In one monitor, the mon-
itor can update the value of two global variables
even when the monitor’s “Enabled flags” indicate
that its output is disabled. Thus, in this one case,
a disabled monitor can produce output, contrary
to what the flags’ names suggest.

Several other discrepancies involved inconsistent doc-
umentation practices (e.g., a passed variable was in
one case inaccurately listed as a global variable). By
raising these issues while the design was still being de-
fined, the Cassini design team was able to resolve them

(by change or by documenting a rationale for the in-
consistency) prior to implementation and testing.

The key benefit of abstracting from the documen-
tation of individual monitors to model and formally
specify the design: of a general-purpose monitor in
this study was to support design analysis. Flagging
the design deviations of specific monitors from the
general pattern was useful to the design verification
process. These deviations are more likely to be de-
sign errors, more likely to be implemented incorrectly
(because they are exceptions to the norm), and more
likely to be overlooked in the selection of test cases
than other software. For example, Software FMEA’s
(Failure Modes and Effects Analyses) that were being
performed at the same time on the Cassini system-
level fault protection software incorporated the design
deviations found via the formal methods analysis into
the SFMEA process [13].

4 Similarities and Differences in the
Two Projects

The fault monitors on the two spacecraft have much
in common. In both systems the fault protection soft-
ware is divided into software monitors, that detect
when a fault condition exists, and software responses,
that take autonomous action to command the space-
craft to a known_safe state.

Despite the similarities in the responsibilities of the
fault monitors in the two systems, there are major dif-
ferences in both the software architectures and in the
development processes. System-level fault protection
on Cassini is managed by a Fault Protection Executive
that runs in a separate virtual machine. This is con-
sistent with the basic fault protection design of prior
spacecraft from which Cassini inherited portions of its
fault-protection architecture. DS-1, currently under
development, instead uses an innovative architecture
based on recent advances in remote agent software,
artificial intelligence, and robotics to monitor and re-
cover from faults.

The software development process on Cassini is es-
sentially a waterfall software development process tai-
lored to the needs and constraints of the overall sys-
tem development. The software development process
on DS-1 uses an evolutionary model, similar to the
spiral process model, with rapid development of an
initial system and three subsequent builds to add in-
cremental functionality. The requirements for a next
build are derived in large part from the testing of the
previous build. Consequently, the distinction between

80

requirements and design is blurred. Risk identification
during testing, and risk resolution during the defini-
tion of the next build’s goals and constraints, drive
the evolution of the requirements.

This evolutionary development of requirements, to-
gether with the shift from a familiar to a relatively
new spacecraft architecture, motivated the decision
to reuse the Cassini design model. Concerns with
requirements completeness and consistency for each
build’s baseline could be addressed in part by reference
to the previous project’s formally specified generic
model.

On DS-1, two monitors have been established as
C++ classes which can be reused by various subsys-
tems [5, 14, 15, 16]. The two monitors are a Thresh-
old Monitor, which closely parallels the functionality
of the generic Cassini monitor in detecting when a
persistent fault occurred, and a Transaction Monitor,
which reports on the status of a transaction (e.g, the
successful or failed attempt to take a picture). On
Cassini the generic monitor model was created strictly
for independent design validation; on DS-1 the moni-
tor class is incorporated directly into the implementa-
tion. The two DS-1 monitors are specified by means
of state transition diagrams, supplemented by descrip-
tions of the data. It is these specifications of mon-
itors to which the Cassini generic design model was
mapped.

One difficulty in mapping the generic formal model
to DS-1’s requirements was that the states in DS-
1’s monitors represent the software’s knowledge of the
hardware device it is monitoring, whereas the states in
Cassini’s monitors represent the monitor’s own state
of execution. This difference complicated the mapping
since the same condition may lead to different states
in the two systems. For example, on Cassini when the
predicate “sensor surpasses threshold” becomes true,
the software changes state from “Determine if fault
indicated” to “Test for fault persistence.” In DS-1 the
same predicate causes the state to change from, e.g.,
the nominal state (“Looks-OK”) to the state indicat-
ing that a fault may exist.

5 Reuse of the Formal Model on

Project 2

Nine threshold monitors and seven transaction
monitors are included in a recent, intermediate build
of DS-1 [15, 16]. An early estimate was that there
will be at least thirty monitor instances in the final
launch code [6]. In addition, aggregate monitors will

be composed from several Threshold Monitors.

The formal specification in PVS of the generic de-
sign model of the Cassini system-level fault protection
monitors was used to build two tables, one for the
data items in the formal model and one for the func-
tions in the formal model. In these tables each element
of the formal generic model (data and functions) was
traced to the current DS-1 build’s requirements for the
Threshold and Transaction monitors.

The tables list nineteen elements of the design
model (the external inputs to the monitor, the prior
state inputs and next state outputs, the external out-
puts, and the functions). Some simple data items and
functions needed only for correct PVS specification or
to simplify proofs (e.g., a variable that specifies the or-
dinal number of an input within a set), but that were
not present in the OMT models, are excluded from
the tables. Figure 4 shows an example from the Data
Table of the input data item, “persistence_limit”. Fig-
ure 5 shows a sample function, “condition_persists”.
In the tables, “S” is a structure holding the internal
monitor state, with S.Persistence being the limit on
the number of unacceptable values, beyond which an
error is declared; and S.Count being the number of un-
acceptable values.[15]. (The actual tables are turned
sideways with each row of the table describing a data
item or function, and the Transaction and Thresh-
old monitors described separately, but are reformatted
here for readability of the excerpts.) in a paper.)

Those elements that are present in the Cassini de-
sign model but are neither in a current DS-1 build nor
have a clear rationale for being excluded are candi-
dates for software requirements for future DS-1 builds.
On the other hand, because the monitors in DS-1
have less spacecraft redundancy to manage, some data
and behavior present in Cassini monitors are not re-
quired on DS-1. For example, the DS-1 monitors do
not receive redundant sensor data, so do not need the
“num.sensors” data item present in the Cassini design
model.

The following types of issues arose during the de-
velopment and inspection of the tables:

1. Evolutionary requirements. The tables were
most useful in identifying some requirements that
needed to be added in later builds. The tables al-
lowed the current status of the requirements to
be tracked against the generic design model for
similar software. The tables thus serve as a par-
tial checklist against which the evolving require-
ments can be measured. The tables also allow
some possible requirements for future builds to be
inferred. For example, the collection of data re-

81

quired for ground diagnosis of the monitor’s state
was explicitly deferred to a later build (e.g., the
collection by the Threshold Monitors of the high-
est and lowest values that each monitor ever sees
for downlinked telemetry). The tables capture
this intent for later builds’ requirements.

. Validation of requirements in the current build.

Instances in which the DS-1 monitors were not
required to exhibit behaviors that were present in
the generic model were fed back to the project for
confirmation. In most cases investigation yielded
a rationale for the exclusion (e.g., there is not the
same redundancy in sensor input on DS-1 as on
Cassini, so DS-1 monitors do not need the “num-
ber of sensors” data item that the Cassini monitor
used) or a better understanding of the spacecraft
interfaces (e.g., that on DS-1 some lower-level fil-
tering of the data occurs before the data are made
available to the monitors). In a few cases devia-
tions of a DS-1 monitor from the generic model
led to continued discussions of some requirements
decisions. For example, the use of dual thresh-
olds (“too-high” and “too-low”) in the Thresh-
old Monitor raised questions about whether a
single persistence counter suffices, since it masks
whether the upper threshold, lower threshold, or
some combination of both thesholds has been re-
peatedly surpassed.

. Clarifications of requirements allocation. Given

DS-1’s innovative architecture and increased au-
tonomy, there is an ongoing focus by the project
on providing clean interfaces among software
components and on avoiding the possibility that
requirements drop through the cracks. The pro-
cess of systematically either mapping each ele-
ment of Cassini’s design model elements to DS-1’s
monitors or of documenting why that element was
not needed in DS-1 assists in this effort. The pro-
duction of the tables prompted several questions
about requirements allocation that crossed sub-
system boundaries, leading to useful clarification
by project personnel. Examples are where valid-
ity checks and noise filtering on input data are
performed (externally or internally to the moni-
tor); how outdated sensor inputs are handled; and
where and under what conditions various data
items should be reinitialized (e.g. should one
good reading reset the fault counter to zero?).

. Design constraints/rationales. The tables which

trace Cassini’s generic formal model of the fault
monitor to DS-1’s requirements for the monitors

Information for each Data Element

Ezample of a Data Eniry

Data Item in Formal Specification

persist_limit

Data Type in Formal Specification nat

Explanation

Fault must persist for a specified duration

Cassini Design Rationale/Assumptions

Transient faults should be ignored

Data Item in DS-1 Transaction Monitor

S.Persistence

Data Item in DS-1 Threshold Monitor

S.Persistence

DS-1 Build in which Implemented, and/or
Rationale for Inclusion/Exclusion

Build x

Figure 4: Reuse of Formal Model for Requirements Validation of Data

Information for each Function

Ezample of a Function Entry

Function Name in Formal Specification

cond_persists

Cassini Design Rationale/Assumptions

Ignores transient fault condition

Function in DS-1 Transaction Monitor

S.Count >= S.Persistence

Function in DS-1 Theshold Monitor

S.Count > S.Persistence

DS-1 Build in which Implemented and/or
Rationale for Inclusion/Exclusion

Build y; note that difference in trigger
mechanism reflects individual requirements
of the two monitors on DS-1

Figure 5: Reuse of Formal Model for Requirements Validation of Functions

document both the rationale and assumptions
made by Cassini in adopting their design, and
the reason for deviations of DS-1’s requirements
from that baseline. For example, on Cassini there
was a design decision to allow monitors to remain
enabled but to disable their output under some
circumstances. The table notes that this distinc-
tion has no meaning for DS-1, where the design
is constrained to handle monitors as subsystem
function calls.

Initially an effort was made to trace each element
in the OMT diagrams to the DS-1 monitors. This was
useful for better understanding the DS-1 monitors, es-
pecially with regard to requirements allocation. How-
ever, the subsequent tracing of the PVS elements to
the DS-1 monitors subsumed this earlier work. More-
over, the imprecision and repetition in the OMT dia-
grams was removed by focusing on the PVS specifica-
tions. The tracing of the OMT diagrams to the DS-1
monitors is thus omitted here.

6 Discussion

The discussion up to this point has primarily de-
scribed the reuse of the formally specified generic
model from the first project on the requirements val-
idation of the second project’s fault monitors. This

82

effort at reuse was also instructive for validating the
formal model itself and for pointing toward possible
areas of future work.

6.1 Evaluating the formal model

There were data items in DS-1’s monitors that did
not appear in the generic design model, namely dual
upper and lower thresholds for detecting fault condi-
tions. On Cassini only one threshold was tested in
any single monitor—e.g., overpressure and underpres-
sure would be tested in separate monitors since differ-
ent responses would be triggered. However, the devia-
tion of the DS-1 Threshold Monitor from this pattern
was a reminder that any extension of this generic de-
sign monitor to other applications should also handle
a design decision to test dual thresholds in a single
monitor.

Similarly, although the value of the fault persis-
tence counter in Cassini never exceeds the value of
the persistence limit, in DS-1’s Transaction Monitor
the counter can increase beyond this limit. Again,
any further generalization of the generic design mon-
itor should take this possibility into account. Most
interesting is the inclusion in the DS-1 monitors of a
confidence level, a number against which the number
of successful or non-failed iterations of the monitor is
compared. Too few successful iterations lead the mon-

itor to report that it knows too little to accurately re-
port the situation, i.e., the status is “unknown” [16].

Several of these mismatches between the second
project’s requirements and the model could be re-
solved by revisions or extensions to the formal model.
Such work is currently underway by others in antici-
pation of reuse on subsequent projects.

Other mismatches are not readily resolvable due to
the very different architectures on the two projects.
For example, the second project’s transaction mon-
itors must report all changes, good or bad, rather
than just faults, due to the increased on-board state
modeling required by the remote agents. The formal
model did a better job of validating the requirements
for the Threshold Monitor on DS-1 than the Transac-
tion Monitor on DS-1, since the Threshold Monitor’s
requirements were closer to the behavior of the Cassini
monitors. This suggests that a set of generic models
of fault monitors, rather than the single monolithic
model developed for Cassini, may be needed if the
generic model is to be reused for design (rather than
requirements) validation.

Despite these limitations, the reuse of the for-
mal model performed well in providing an early rea-
sonableness check on the completeness and the cor-
rectness of the requirements for the second project’s
monitors. At the fairly high level of abstraction in
the model, a high degree of correspondence between
the required behaviors or responsibilities of the two
project’s monitors, and between the data they need
to do their jobs, was evident. Required functionality
currently deferred to later builds in the second project
became evident and could be made explicit in the ta-
bles.

Architectural differences, which will lead to very
different implementations of the fault monitors on the
two spacecraft are, for the most part, masked at the
model’s high level of abstraction. A more detailed
formal model might be less appropriate for reuse in
requirements validation of the second project since it
might be more likely to contain architectural depen-
dencies.

Of the seven lemmas that were formally specified
and proved in PVS for the Cassini generic design
model, five involved the validity of the input data used
for the control decision of whether to request a re-
covery response. All five of the properties specified
in these lemmas (e.g., “The valid data from a sensor
is within the range low-filter to high-filter”) are re-
quired behavior of the lower-level “reflex” or fault de-
tection behavior incorporated into each component in
DS-1. One of the remaining two lemmas (“A response

83

is requested by a monitor only if the detected fault is
not a transient fault”) describes required behavior of
the Threshold and Transaction Monitors. The other
lemma (“If a fault is not detected by a monitor, then
the monitor doesn’t request a response”) describes re-
quired behavior of the Threshold Monitor but not of
the Transaction Monitor. This is because the Trans-
action Monitor reports any change in status, including
the first successful transaction after a string of failed
transactions.

6.2 Related Work

Recent work in design patterns contains much in
common with the process of defining and reusing the
generic model described in this paper. Both ap-
proaches emphasize the specification of “the core of
a solution to a recurring problem” [10]. However, the
use of the generic model differs in two significant ways
from the use of design patterns.

First, the reuse of the generic model provided a
mechanism for requirements validation rather than a
design mechanism. The formally specified and vali-
dated components of the generic model were traced
to the components of the second project to check for
gaps in functionality, robustness, and environmental
assumptions. The generic model thus provided a rea-
sonableness check on requirements rather than a de-
sign pattern for the new project’s software.

Secondly, design patterns are often tightly linked
to an architectural model. In contrast, one of the in-
teresting features of the reuse of the generic model
is that the second project had a significantly differ-
ent architecture (remote agents) from the first project
(centralized control). This is discussed in more detail
in Section 4.

6.3 Future Work

Future work on generic monitors may involve iden-
tifying and specifying one or more multimission fault
protection monitor for use in future spacecraft devel-
opment. Since monitoring software similar to that on
the spacecraft is part of many other safety-critical con-
trol systems, the monitor is also being investigated as
a possible design pattern [19]. Possible benefits of such
an effort include:

e Reducing design complexity. The specification of
a generic design supports functional abstraction
by identifying shared properties. It supports data
abstraction by identifying the common objects

and classes, and operations on them. By organiz-
ing similiar objects into classes and similar classes
into superclasses, a generic design can help un-
cover underlying similarities and promote gener-
alization and inheritance of shared attributes. In
general, a common design specification keeps the
internal logic of the individual modules as simple
and general-purpose as possible.

e Encouraging gradual design refinement. Use of a
generic design may encourage hierarchical design
development (successive refinement). For exam-
ple, some monitors vote on whether a fault exists,
but the voting strategy (2 of 3, etc.) varies among
the monitors. Design updates often change the
voting strategy in a particular monitor. With a
generic design the details of the different voting
strategies can be cleanly deferred to the detailed
design stage of each monitor.

e Tracking and evaluating design changes. The ex-
istence of a model and formal specification may
allow more rapid response to proposed design
changes by keeping the program structure evi-
dent. This might help avoid “design recovery”
problems in the maintenance of existing software.

e Reducing test time by reducing coupling and in-
creasing cohesion. General-purpose designs keeps
the interfaces simple and the interdependence
among modules minimal. The attention paid to
abstraction creates more tightly bound modules
with a clear sequence of tasks.

Work is underway to investigate whether a similar
strategy for requirements reuse in a software product
family offers these same advantages.

7 Conclusion

Formally modeling and analyzing the design of a
generic fault protection monitor articulated the many
commonalities among the data and functions of the
eighteen Cassini software monitors. Having a formally
specified design of a general-purpose fault protection
monitor then allowed the occasional design deviations
of individual monitors from the general pattern to be
readily flagged for further analysis. This was useful be-
cause the discrepancies (1) may be design errors, (2)
may need additional documentation of their design ra-
tionale (to preserve project awareness of their unique-
ness), and (3) may require special attention during

84

testing (since erroneous implementation of these ex-
ceptions from the pattern is easy).

The formally specified design model provided a
baseline against which to measure the completeness
of the requirements for similar fault-monitoring soft-
ware on DS-1. Tracing data items and functions in the
PVS design model to the requirements for the moni-
tors in the second project helped (1) validate require-
ments in the current build, (2) identify requirements
for future builds, (3) clarify the allocation of require-
ments among software components, and (4) document
possible design rationales and constraints.

Acknowledgments

The author thanks Martin Feather, Gary Leavens,
Judy Crow, and Jack Callahan for their insightful
comments on an earlier draft of this paper, and Sarah
Gavit, John Kelly, and Nicolas Rouquette for their as-
sistance and suggestions. The work described in this
paper was carried out at the Jet Propulsion Labora-
tory, California Institute of Technology, under a con-
tract with the National Aeronautics and Space Ad-
ministration.

Reference herein to any specific commercial prod-
uct, process, or service by tradename, trademark,
manufacturer, or otherwise, does not constitute or im-
ply its endorsement by the United States Government
or the Jet Propulsion Laboratory, California Institute
of Technology.

References

[1] Y. Ampo and R. Lutz, “Evaluation of Soft-
ware Safety Analysis Using Formal Methods”,
Workshop for Foundation of Software Engineer-
ing (FOSE), Hamana-Ko, Japan, Dec, 1995.

[2] R. H. Bourdeau and B. H. C. Cheng, “A Formal

Semantics for Object Model Diagrams,” IEEE

Transactions on Software Engineering, 21(10):

pp- 799-821, October, 1995.

[3] Cassini Orbiter Functional Requirements Book,

System Fault Protection Algorithms, CAS-3-

331, Jet Propulsion Laboratory, June 7, 1995.

[4] Cassini System Fault Protection Final Design

Review, Jet Propulsion Laboratory, Pasadena,

CA, June, 1995.

[5] D. Dvorak, N. Rouquette, Q. Vu, “Monitors:
How To Design, Build, Test,” JPL internal post-
ing, August, 1996.

[6] L. Fesq and D. Bernard, “DS-1 Fault Protec-
tion,” in New Millenium Interim Design Con-
currence DS1 Autonomy/FSW,” June, 1996.

[7] L. Fesq, A. Aljabri, C. Anderson, R. Connerton,
R. Doyle, M. Hoffman, and G. Man, “Space-
craft Autonomy in the New Millenium,” Pro-
ceedings of the 19th AAS Guidance and Control
Conference, Advances in the Astronautical Sci-
ences, ed. R. D. Culp, Breckinridge, CO, Febru-
ary, 1996.

[8] E. Gamma, R. Helm, R. Johnson, and
J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-
Wesley, 1995.

[9] IEEE Standard Glossary of Software Engineer-
ing Terminology, IEEE Std 610.12-1990, IEEE,
New York, 1990.

[10] N. Islam and M. Devarakonda, “An Essential
Design Pattern for Fault-Tolerant Distributed
State Sharing,” CACM, Special Issue on Soft-
ware Patterns, 39(10): pp. 65-71, October, 1996.

[11] R. Lutz, “Design Analysis of Cassini Fault-
Protection Montiors Using Formal Methods,”
JPL Document D-13431, May 1, 1996.

[12] R. Lutz and Y. Ampo, “Experience Report: Us-
ing Formal Methods for Requirements Analy-
sis of Critical Spacecraft Software,” Proceedings
of the 19th Annual Software Engineering Work-
shop, NASA Goddard Space Flight Center, pp.
231-248, Greenbelt, MD, December, 1994.

[13] R. Lutz and R. Woodhouse, “Requireménts
Analysis Using Forward and Backward Search,”
Annals of Software Engineering, Special Vol-

ume on Requirements Engineering, forthcoming,
1997.

[14] “Mode Identification, Reconfiguration, and
Monitoring: Problem Statement ,” JPL inter-
nal posting.

[15] N. Rouquette, JPL internal posting.

[16] N. Rouquette, “R2S3 Monitors Design Review,”
July, 1996, JPL internal document.

85

[17] J. Rumbaugh, M. Blaha, W. Premerlani, F.
Eddy, and W. Lorensen, Object-Oriented Model-
ing and Design, Prentice Hall, Englewood Cliffs,
New Jersey, 1991.

[18] N. Shankar, S. Owre, and J. M. Rushby, The
PVS Specification and Verification System, SRI,
March, 1993.

[19] A. Shiflet, “Draft: MonitorReport Pattern,”
JPL internal document, July 24, 1996.

[20] Software Productivity Consortium, Reuse-
Driven Software Processes Gutidebook, SPC-
92019-CMC, v. 02.00.03, November 1993.

Applying the SCR Requirements Method to a Simple Autopilot*

Ramesh Bharadwaj and Constance Heitmeyer
Center for High Assurance Computer Systems (Code 5546)
Naval Research Laboratory

Washington, DC

20375

{ramesh,heitmeyer}@itd.nrl.navy.mil
http://www.itd.navy.mil/ITD/5540/personnel/heitmeyer.html

Abstract

Although formal methods for developing com-
puter systems have been available for more than a
decade, few have had significant impact in practice.
A major barrier to their use is that developers find
formal methods difficult to understand and apply.
One ezception is a formal method called SCR for
specifying computer system requirements which, due
to its easy-to-use tabular notation and demonstrated
scalability, has achieved some success in industry.

To demonstrate and evaluate the SCR method
and tools, we recently used SCR to specify the re-
quirements of a simplified mode control panel for the
Boeing 737 autopilot. This paper presents the SCR
requirements spectfication of the autopilot, outlines
the process we-used to create the SCR specification
from a prose description, and discusses the problems
and questions that arose in developing the specifica-
tion. Formalizing and analyzing the requirements
specification in SCR uncovered a number of prob-
lems with the original prose description, such as
incorrect assumptions about the enwvironment, in-
completeness, and inconsistency. The paper also
introduces a new tabular format we found useful in
understanding and analyzing the required behavior
of the autopilot. Finally, the paper compares the
SCR approach to requirements with that of Butler
[5], who uses the PVS language and prover [14] to
represent and analyze the autopilot requirements.

1 Introduction

Although formal methods for developing com-
puter systems have been available for more than
a decade, few of these methods have had significant
impact in the development of practical systems. A
major impediment to the use of formal methods in
industrial software development is the widespread
view that the methods are impractical. Not only

*This work was supported by the Office of Naval Research.

87

do developers regard most formal methods as dif-
ficult to understand and apply; in addition, they
have serious doubts about the scalability and cost-
effectiveness of the methods.

A promising approach to overcoming these prob-
lems is to hide the logic-based notation associated
with most formal methods and to adopt a notation,
such as a graphical or tabular notation, that devel-
opers find easy to use. Specifications in the more
“user-friendly” notation can be translated automat-
ically to a form more amenable to formal analysis.
In addition, the formal method should be supported
by powerful, easy-to-use tools. To the extent fea-
sible, the tools should detect software errors auto-
matically and provide easy-to-understand feedback
useful in tracing the cause of an error.

By providing a “user-friendly” tabular notation
with demonstrated scalability, a formal method
called SCR for specifying the requirements of com-
puter systems has already achieved some success in
practice. Since the publication more than 15 years
ago of the requirements specification for the A-7 air-
craft’s Operational Flight Program (OFP) [12, 1],
many industrial organizations, including Rockwell-
Collins, Lockheed, Grumman, and Ontario Hydro,
have used SCR to specify requirements. To support
the SCR method, we have recently developed a. for-
mal state machine model to define the SCR seman-
tics [9, 11] and a set of integrated software tools to
support validation and verification of SCR require-
ments specifications [8, 10, 4]. The tools include
an editor for creating and modifying a requirements
specification, a simulator for symbolically execut-
ing the specification, a consistency checker which
checks the specification for well-formedness (e.g.,
syntax and type correctness, no missing cases or
unwanted nondeterminism), and a verifier based on
model checking for analyzing the specification for
application properties.

To demonstrate and evaluate the SCR method
and tools, we recently used SCR to specify the re-
quirements of a simplified mode control panel for
the Boeing 737 autopilot based on a description
in a report by Butler [5]. Butler initially presents
an incomplete prose description of the autopilot,
and then adds prose to clarify the description. He
also represents the required behavior in the PVS
language [14] and verifies certain properties of the
model using the PVS prover. This paper outlines
the process we used to create the SCR requirements
specification of the mode control panel, presents the
SCR specification, and discusses the problems and
questions that arose in developing the specification.
Formulating the requirements specification in SCR
exposed a number of problems with the prose de-
scription of the requirements, such as missing ini-
tial values, missing type definitions, missing units
of measurement, lack of specificity, incorrect re-
quirement, and several instances of inconsistency.
The paper also introduces a new tabular format we
found useful in understanding and analyzing the be-
havior of the autopilot. Finally, the paper compares
the SCR approach to requirements with Butler’s
PVS approach.

2 The SCR Method: Background
2.1 SCR and Other Approaches

A recent article by Shaw [16] presents and dis-
cusses a number of different “specifications” of an
automobile cruise control system. Each is con-
structed to satisfy different objectives. For example,
Atlee and Gannon use a language based on logic to
model the required behavior of a cruise control sys-
tem [3] and a model checker to detect violations of
selected properties. Below, we refer to their logic-
based description as an abstract model.

The abstract model in [3] differs from an SCR
specification in an important respect—namely, in
the specific information it contains about the re-
quired behavior. Because its purpose is verifica-
tion, the abstract model omits many details. For
example, it does not describe the system outputs.
Omitting this information in an abstract model is
appropriate because the properties analyzed in [3]
are independent of the system outputs and because
a model useful in verification should only include in-
formation needed to reason about selected proper-
ties. Eliminatingirrelevant information is especially
important in verification. Without dramatic reduc-
tions in the size of the state space to be analyzed,
model checking is usually infeasible. Moreover, the
elimination of irrelevant facts is also beneficial in

88

mechanical theorem proving where the model to be
analyzed should only include those facts needed to
establish the properties of interest.

In contrast to the abstract model of the system
described in [3], the SCR requirements specification
is a repository for all information that developers
will need to construct the system software. Hence,
it is necessarily more detailed and less abstract than
a model useful in verification. An advantage of the
SCR approach to requirements is that it not only
provides detailed guidance on exactly what infor-
mation belongs in a requirements document, but in
addition provides a conceptual model of the system
to be developed as well as special language con-
structs for representing the system requirements.
This detailed guidance, system model, and language
constructs specialized for requirements specification
are lacking in more generic languages such as State-
charts [7] and PVS which, unlike SCR, are not cus-
tomized for requirements specification.

2.2 The SCR Model

In the SCR approach, the system requirements
are specified as a set of relations that the system
must maintain between quantities of interest in its
environment. In SCR, a requirements specifica-
tion provides a “black box” description of the re-
quired behavior as two relations, REQ and NAT,
from monitored variables, representing environmen-
tal quantities that the system monitors, to con-
trolled variables, representing environmental quan-
tities that the system controls [15]. NAT describes
the natural constraints on the system behavior, such
as constraints imposed by physical laws and the sys-
tem environment. REQ describes the relation the
system must maintain between the environmental
quantities represented by the monitored and con-
trolled variables. In SCR, these relations are speci-
fied concisely using a tabular notation.

To provide a precise and detailed semantics for
the SCR method, the SCR model represents a sys-
tem as a finite state automaton and describes the
monitored and controlled variables and other con-
structs that make up an SCR specification in terms
of that automaton [11, 9]. To concisely describe the
required relation between the monitored and con-
trolled variables, the model uses four constructs—
modes, terms, conditions, and events. A mode class
is a partitioning of the system states. Each equiva-
lence class in the partition is called a system mode
(or simply mode). A term is any function of mon-
itored variables, modes, or other terms. A condi-
tion is a predicate defined on a system state. An

event occurs when the value of any system variable
changes (a system variable is a monitored or con-
trolled variable, a mode class, or a term). The nota-
tion “@T(c) WHEN 4” denotes a conditioned event,
defined as

@T(c) WHEN d % —cAd A d,

where the unprimed conditions ¢ and d are evalu-
ated in the “old” state, and the primed condition
¢’ is evaluated in the “new” state. Informally, this
denotes the event “predicate ¢ becomes true in the
new state when predicate d holds in the old state”.
The notation “@F(c)” denotes the event QT(NOT
¢). During the operation of the system, the envi-
ronment changes a monitored variable, causing an
input event. In response, the system updates terms
and mode classes and changes controlled variables.

3 Developing the SCR Requirements

Figure 1 illustrates the simplified mode control
panel for the Boeing 737 as described in [5]. The au-
topilot monitors the aircraft’s altitude (ALT), flight
path angle (FPA) and calibrated air speed (CAS)
and controls three displays which, depending on the
mode, show either the current or desired value of
the aircraft’s altitude, its flight path angle, and its
airspeed. The pilot enters (i.e., preselects) a new
value into a display by using one of three knobs
next to the displays and engages or disengages the
autopilot by pressing one of four buttons at the top
of the panel. Appendix A contains a prose descrip-
tion of the system adapted from [5]. The reader
should note that the prose presented by Butler in
[5] was intended as an example and is therefore (in-
tentionally) incomplete. In the prose presented in
this paper, we have (to the best of our knowledge)
eliminated all intended incompleteness. Also, the
variable names have been changed slightly to con-
form to the naming conventions of SCR specifica-
tions.

3.1 Environmental Variables

In the autopilot specification, we use the pre-
fix “m” to indicate the names of monitored vari-
ables. The type of a monitored variable indicates the
range of values that may be assigned to the variable.
The autopilot system monitors the current altitude
(represented by monitored variable mALTcurrent),
the current flight path angle (mFPAcurrent), and
the current calibrated air speed (mCAScurrent).
Each of these monitored variables is of type inte-
ger. We assume that the autopilot measures the

89

ATTsw CASsw

FPAsw ALTsw
ALTdisplay @ ALTknob
FPAdisplay @ FPAknob
CASdisplay @ CASknob

Figure 1: Mode Control Panel

altitude mALTcurrent in feet, the flight path an-
gle mFPAcurrent in degrees, and the calibrated
air speed mCAScurrent in feet per second. The
monitored variables mALTsw, mATTsw, mCASsw, and
mFPAsw represent the positions of the four buttons,
and each is either on or off. Finally, the mon-
itored variables mALTdesired, mCASdesired, and
mFPAdesired represent the values indicated by the
three knobs and range over the integers.

The controlled variables are assigned names with
the prefix “c”. Just as for monitored variables,
each controlled variable has an assigned type. As
in [5], we only model the mode control panel, omit-
ting commands sent to the flight control computer.
We represent the three controlled quantities of the
mode control panel as cALTdisplay, cFPAdisplay,
and cCASdisplay and assume each is of type inte-
ger. We further assume that cALTdisplay displays
the altitude in feet, cFPAdisplay displays the
flight path angle in degrees and cCASdisplay dis-
plays the calibrated air speed in feet per second.

3.2 System Modes

The SCR specification includes a single mode
class mcStatus containing modes in the set
{ALTmode, ATTmode, FPAarmed, FPAunarmed}. When
the system is in FPA mode and the altitude engage

mode is “armed”, we say the system is in mode
FPAarmed. When the system is in the “normal”
flight path angle selected mode, we say the sys-
tem is in mode FPAunarmed. Thus, the system is
in FPAmode when mcStatus is either FPAarmed or
FPAunarmed. Because the system can be in the cal-
ibrated air speed mode independently of whether it
is in ALTmode, ATTmode, or FPAmode, we exclude the
calibrated air speed mode from mcStatus and use a
term to describe whether the system 1is in this mode
(see below).

3.3 Terms

»

Terms are assigned names with the prefix “t
The autopilot specification contains five terms,
each of type boolean. The terms tALTpresel,
tCASpresel, and tFPApresel indicate whether the
pilot has preselected the altitude, the calibrated air
speed, or the flight path angle using one of the
three knobs. The term tNear denotes when the
difference between the desired altitude and the cur-
rent altitude is less than or equal to 1200 feet, i.e.,
mALTdesired — mALTcurrent < 1200. Finally, the
term tCASmode indicates whether the system is in
the calibrated air speed mode.

3.4 Relation REQ

The relation REQ is specified by a set of tables,
one for each controlled variable, term, and mode
class.

Mode Transition Table. The mode transition
table in Figure 2 specifies the behavior of the
mode class mcStatus. In the table, the expres-
sion CHANGED(x) denotes the event “variable x has
changed value”. The table defines all events that
change the value of the mode class mcStatus. For
example, the fourth row of the table states: “If
mcStatus is ALTmode, and mATTsw is switched on, or
the setting of knob mALTdesired is changed, then
mcStatus changes to ATTmode.” An assumption is
that events omitted from the table do not change
the value of the mode class. For example, when
the system is in ALTmode, pressing the button la-
beled “ALTsw” (that is, the occurrence of the input
event @T(mALTsw=on)) does not change the value of
mcStatus.

Each row in the mode transition table in Figure 2
corresponds to certain parts of the prose description
in Appendix A. We describe this correspondence
below by associating each row of the table with the
number of a paragraph in the prose description in
Appendix A. In some cases, two rows of the table
are derived from the same paragraph; for example,

90

rows R3 and Rb5 are both derived from paragraph 1.

R1 The pilot engages a mode by pressing the cor-
responding button on the panel (paragraph 1),
i.e., pressing ALTsw engages ALTmode. How-
ever, the altitude must be preselected before
ALTsw is pressed (paragraph 4). If the pi-
lot dials an altitude that is more than 1200
feet above ALTcurrent and then presses ALTsw,
then ALTmode will not directly engage (para-
graph 3).

R2 If the pilot dials into ALTdesired an altitude
that is more than 1200 feet above ALTcurrent
and then presses ALTsw, then ALTmode will not
directly engage. Instead, the altitude engage
mode will change to “armed” and FPAmode is

engaged (paragraph 3).

R3 The pilot engages a mode by pressing the cor-
responding button on the panel (paragraph
1), i.e., by pressing FPAsw the pilot engages

FPAunarmed.

R4 The pilot engages a mode by pressing the cor-
responding button on the panel (paragraph 1),
i.e., pressing ATTsw should engage ATTmode,
OR if the pilot dials in a new altitude while
ALTmode is engaged, then ALTmode is disen-

gaged and ATTmode is engaged (paragraph 7).

R5 Same as row R3.

R6 Combination of scenarios for rows (4) and (3)
above.

R7 FPAmode will remain engaged until the air-

craft s within 1200 feet of ALTcurrent, then
ALTmode s automatically engaged (paragraph
3).

R8 The pilot engages a mode by pressing the cor-
responding button on the panel (paragraph 1),
le., by pressing mATTsw the system enters
ATTmode, OR FPAsw toggles on and off every

time it is pressed (paragraph 5).
R9
R10

Same as row R1.

Same as row R2.

Term and Controlled Variable Tables. Each
of the three terms, tALTpresel, tCASpresel, and
tFPApresel, is true when the corresponding dis-
play, cALTdisplay, cCASdisplay, or cFPAdisplay,
shows the “preselected” value and is false when the
corresponding display shows the “current” value.

Table Edit View Tosols

38 @T(mALTsw = on) WHEN (tALTpressl AND tNear)

] GTCWALTsw = on) WHEN (tALTpresel AND NOT tNear)

3§ CT<nFPAsW = on)

38 BT<mATTsw = on) OR CHANGED(mALTdesired)

GT{nFPAsw = on)

1 CT(MATTsu = on) OR CHANGED(mALTdesired) OR GT(nFPAsu = on)

1§ QT(tNear)

3 QT(mATTsw = on) OR @T(mFPASw = on)

1 QT(ALTsu = on) WHEN (tALTpresel AND tNear)

33 @T<mALTsw = on) WHEN (tALTpresel AND NOT tNear)

Figure 3: Condition Table for cCASdisplay

Figure 3 is a condition table which specifies the
behavior of the display cCASdisplay. This table
states: “If tCASpresel is true, then cCASdisplay
has the value mCASdesired; otherwise, it has the
value mCAScurrent”. The behavior of displays
cALTdisplay and cFPAdisplay are specified sim-
ilarly (see Appendix B).

The event table in Figure 4 specifies the behav-
ior of tALTpresel. Like mode transition tables,
event tables make explicit only those events that
cause the variable defined by the table to change.
For example, the first entry in the first row states:
“If mcStatus is ATTmode and mALTdesired changes
value, then tALTpresel becomes true.” The entry
“NEVER” in an event table means that no event can
cause the variable defined by the table to assume

91

CHANGED(mALTdes1ired)

QT(WFPR3w = on)

QT(mATTsw = on) OR @T(nFPRsw =
on) OR

T(MALTdesired = mALTcurrent)

Q(mATTsw = on) OR QT(wFPRsv =
on)

CHANGED(mALTdesired)

Figure 4: Event Table for tALTpresel

the value in the same column as the entry; thus, the
entry “NEVER” in row 2 of the table means, “When
mcStatus is ALTmode or FPAarmed, then no event
can cause tALTpresel to become true.” Figure §
shows the event table for tFPApresel.

4 Questions and Issues

Developing the SCR specification raised a num-
ber of questions about the required behavior of the
mode control panel described by the prose in [5].
In a few cases (noted below), the problems were
corrected in Butler’s PVS formulation. These ques-
tions arose because applying the SCR method ex-
poses instances of incompleteness and inconsistency

2 Tabte fdit View fools

welp |
}

QT(nALTsw = on) WHEN
(tALTpresal AND tNear)

QT(mATTsv = on) OR
CHANGED(mAL Tdesired)

(QT(mATTsw = on)) OR
(QT(wFPRsw = on)) OR
{@T(tNear)) OR
CHANGEd(mALTdesired) OR
@T(WFPRdesired =

(QT(nALTsw = on) WHEN

(tAlTpresel AND tNear)) OR

(QT(mATTsw = on)) OR

(QT(wFPRsw = on)) OR
WFPAdesired

Figure 5: Event Table for tFPApresel

in the specification. This section presents these
problems and describes how we resolved them. In
resolving each problem, we made an educated guess
about the actual requirement. Appendix B contains
our revised SCR specification. For this specifica-
tion to be acceptable, however, our decisions would
need to be reviewed by system engineers with ex-
pert knowledge of the Boeing 737 autopilot.

4.1 Incompleteness

Developing the SCR specification exposed nu-
merous instances of incompleteness in the prose de-
scription. First, the prose provides no informa-
tion about the types, ranges, and units of mea-
surement of the monitored variables that repre-
sent the current and desired altitude, (mALTcurrent
and mALTdesired), the current and desired flight
path angle (mFPAcurrent and mFPAdesired), and
the current and desired calibrated air speed
(mCAScurrent and mCASdesired). In addition, the
ranges and units of measurement of the three con-
trolled variables cALTdisplay, cFPAdisplay, and
cCASdisplay are also omitted. This information is
also missing in Butler’s PVS model due to its ab-
stract level. As noted above, the SCR specification
represents these quantities as integers. In the final
specification, even more precise information about
the types would be required. For example, what are
the minimum and maximum values of each moni-
tored quantity? Are negative integers acceptable?

In addition, the prose description does not indi-
cate the initial state of the autopilot. Butler’s PVS
description, however, does provide this information.
Our SCR specification states that in the initial state

92

mcStatus is ATTmode, tCASmode = false, the de-
sired and current altitude are 0, etc. Appendix B
shows the initial values and types of the monitored
and controlled variables, terms, and mode class in
the SCR specification. (In a specification produced
by our toolset, the variable and mode class dictio-
naries, omitted here due to space limitations, would
contain this information.)

4.2 Lack of Specificity

Paragraph 5 of the prose description states:
“FPAsw toggles on and off every time it is pressed.”
Paragraph 1 states: “One of the three modes
ATTmode, FPAmode, or ALTmode should be engaged at
all times.” From these two sentences one can infer
that if FPAmode is toggled off by FPAsw, then one of
ATTmode or ALTmode is engaged; but not which one.
In our specification as well as Butler’s, the decision
is to engage ATTmode.

4.3 Wrong Interpretation

Paragraph 3 of the prose description states: “If
the pilot dials an altitude that is more than 1200
feet above ALTcurrent and then presses ALTsw,
then ALTmode will not directly engage. Instead,
the altitude engage mode will change to armed and
FPAmode is engaged.” This sentence is either incor-
rect, or is misinterpreted by Butler—the PVS model
in [5] sets the altitude engage mode to armed also in
the case where the pilot dials a value for desired alti-
tude that is more than 1200 feet below ALTcurrent
and then presses ALTsw.

4.4 Incorrect Requirement

Paragraph 6 of the prose description states:
“Whenever a mode other than CASmode is en-
gaged, all other preselected displays should return
to current.” However, consider the scenario where
CASmode is engaged, CASdisplay shows the pre-
selected value, and the pilot engages ATTmode.
Clearly, returning CASdisplay to show the cur-
rent value would be wrong in this situation since
CASmode remains engaged. Therefore, the above
sentence should read instead, “Whenever a mode
other than CASmode is engaged, ALTdisplay and
FPAdisplay, if preselected, should return to cur-
rent.” The PVS model does the right thing for this
scenario; however, Butler does not point out the
error in the prose.

4.5 Inconsistent Requirement

Paragraph 6 of the prose description states:
“Whenever a mode other than CASmode is engaged,

ALTdisplay [...], if preselected, should return to
current.” For the scenario of paragraph 7 “If the
pilot dials in a new altitude while ALTmode is en-
gaged or the altitude engage mode is “armed”, then
ALTmode is disengaged and ATTmode is engaged.”
This suggests that tALTpresel is set to false (be-
cause ATTmode is engaged). On the other hand, the
sentence “However, the pilot can enter a new value
into a display by dialing in the value using the knob
next to the display” of paragraph 2 suggests that
tALTpresel is set to true for this scenario (because
the pilot has dialed-in a new altitude). We resolved
this inconsistency by setting tALTpresel to false.
Butler does not point out this inconsistency in the
prose. Unlike the SCR specification, his PVS model
resolves the inconsistency by preselecting the dis-

play.
5 Consistency Checking, Simulation

After creating the requirements specification, we
used our automated consistency checker [8, 9] to
check for proper syntax, type correctness, miss-
ing cases, nondeterminism, and other application-
independent properties. Then, we used our simula-
tor to symbolically execute the requirements specifi-
cation [10] to ensure that the specification captures
(what we assume is) the “customers’ intent”. For
the autopilot specification, our consistency checker
detected three instances of inconsistent require-
ments. Whereas we detected the inconsistency de-
scribed in Section 4.5 by inspection, we overlooked
the following three cases of inconsistency. Butler’s
PVS model, being too abstract, failed to detect any
of these problems.

1. Consider the two sentences in paragraph 2 of
the prose description: (1) However, the pi-
lot can enter a new value into [FPAdisplay]
by dialing in the wvalue wusing the knob
[FPAdesired] and (2) Once the target value
is achieved [...], the display reverts to showing
the “current” value. These sentences are incon-
sistent in the situation where the pilot enters
a new value into FPAdisplay that is the same
as FPAcurrent. In this situation, should the
display show the dialed-in value or the current
value?

Butler! answers this question as follows: The
phrase ... “will this affect the preselected value
(i.e., change it to current)” is difficult to inter-
pret. I assume you meant “will this affect the
status of the corresponding display (i.e., change

1Private communication.

93

it to current)”. Interestingly in this case the
status distinction is an artifact of the formal-
1sm because the target and current are the same
value. So the “status” is merely a matter of
choice/taste.

While we agree with Butler that the status dis-
tinction does not affect the current value of
the display, we note that it does affect the
future values displayed. For instance, sup-
pose FPAcurrent proceeds to diverge from
FPAdesired immediately following the above
scenario. The sentence marked (1) specifies
FPAdisplay to continue to show FPAdesired,
whereas the sentence marked (2) specifies that
FPAdisplay should track the “current” value.
We resolved this issue by assuming that sen-
tence (2) takes precedence over sentence (1).
The table defining tFPApresel in Appendix B
reflects this decision.

2. A similar scenario may be constructed for the
calibrated air speed display. We resolved the is-
sue in the same way as above. The table defin-
ing tCASpresel in Appendix B reflects this de-
cision.

3. The first sentence of paragraph 7 states: If the
pilot dials in a new altitude while [..] the alti-
tude engage mode ts “armed”, then ALTmode is
disengaged and ATTmode is engaged. However,
dialing in a new altitude in mode FPAarmed can
cause tNear to simultaneously become true,
which leads to inconsistency. We ignore the
event QT (tNear) in this situation. The revised
specification for mcStatus in Appendix B re-
flects this decision.

6 Application Properties

After applying the consistency checker and the
simulator, we wanted to check the requirements
specification for critical application properties, such
as safety properties. Verification may be carried out
using an interactive theorem prover such as PVS
[14, 5], or by using “lightweight” analysis tools such
as model checkers. The SCR toolset supports proof
of safety properties of requirements specifications
using model checking based on state exploration [4].
The following sentences in paragraph 1 of the prose
description are examples of properties of the autopi-
lot mode control panel:

1. Only one of the three modes ALTmode,
ATTmode, or FPAmode can be engaged at any
time.

2. One of the three modes, ALTmode, ATTmode, or
FPAmode should be engaged at all times.

3. Engaging any of the three modes will automati-
cally cause the other two to be disengaged since
only one of these three modes can be engaged
at a time.

4. The mode CASmode can be engaged at the same
time as any of the other modes.

The type definition of mode class mcStatus
is {ALTmode, ATTmode, FPAarmed, FPAunarmed}, and
by definition, the system is in FPAmode if mcStatus
is FPAarmed or FPAunarmed. We denote the system
being in CASmode by the boolean term tCASmode
whose value is independent of mcStatus. By this
choice of the domain for mode class mcStatus, and
the definition of tCASmode, the above properties are
trivially satisfied (and verified automatically by a
type checker).

5. Whenever the altitude engage mode is
“armed”, FPAmode is engaged.

For the SCR autopilot specification, this follows
directly from the definition of FPAmode, i.e., the
system is in FPAmode if mcStatus is FPAarmed or
FPAunarmed. Therefore, if mcStatus is FPAarmed,
the system is in FPAmode.

We used the Spin model checker to verify the
requirements specification for two additional prop-
erties stated in [5] which are listed below. These
properties could not be checked using simple type
checking.

P1 When FPAmode is disengaged, the FPA display
reverts to showing the “current” value.

P2 When ALTmode is disengaged, the ALT display
reverts to showing the “current” value.

We currently check two classes of properties:
state invariants, which assert the truth of a pred-
icate formula for all reachable states of a system,
and transilion invariants, which assert the truth of
a predicate formula (on two states) for all pairs of
consecutive states of a system. Both P1 and P2 are
transition invariants. Model checking can be inef-
fective in practice due to state ezplosion. By their
very nature, the number of reachable states of prac-
tical systems is usually very large in relation to their
logical representation. Several techniques have been
proposed in the literature for limiting state explo-
sion. The technique we use is abstraction—instead
of model checking the whole SCR specification, we

94

model check a smaller, more abstract model. To
obtain the abstraction, we exploit the structure of
the formula and the structure inherent in all SCR
specifications. We use the two correctness preserv-
ing reductions of [4] to derive the abstract specifica-
tion. Finally, we translate the abstract specification
to PROMELA, the language of Spin [13], and run
Spin on the PROMELA model.

When we initially attempted to check property
P1, Spin detected a violation. The counterexample
generated by Spin had 4867 states (which trans-
lates to 811 SCR “steps”). The shortest counterex-
ample had only 73 states (12 SCR “steps”). By
running the counterexample through the simulator
of our toolset, we were able to pinpoint the cause
of the property violation—a typographical error in
the mode transition table for mcStatus.

7 A New Tabular Format

In [5], Butler presents two different PVS mod-
els of the panel requirements. In his initial model,
he identifies the different input events (e.g., chang-
ing the ALT button to on, setting the knob labeled
ALT to a new value, etc.) and then specifies the
required behavior by describing the state changes
and the changes in the displays that each input
event causes. Thus, his initial model is organized
by the input events. His second model defines a
set of modes and describes the required behavior in
terms of those modes. Butler claims that the lat-
ter organization, which is the organization used in
SCR specifications, results in “a more complex for-
mulation for this example problem.” Moreover, he
notes that his initial model is smaller, containing
373 words in contrast to 761 words.

We agree that understanding the overall system
behavior can be difficult when that behavior is spec-
ified in numerous tables. This problem is overcome
to some extent by the dependency graph produced
by our toolset (see Appendix B), which shows all
the variables in the specification and their depen-
dencies. In initially creating the SCR specifica-
tion, we developed individual tables for the mode
class, the terms, and the three control variables. To
enhance our understanding, we introduced a new
tabular format that combines several smaller tables
into a larger table. This larger table, which speci-
fies the values of several variables each defined by
either a mode transition table or an event table, is
similar to the “selector table” used in the original
A-T requirements specification?.

2A similar tabular format was also used in Lockheed’s
SCR specification of the OFP for the C-130J aircraft.

The specification in Appendix B contains two ex-
amples of the new tabular format. The first exam-
ple defines the values of the terms tCASmode and
tCASpresel. The other defines the values of the
mode class mcStatus and the terms tALTpresel
and tFPApresel. The new tabular format is useful
because it collects in a single place all events that
change a set of related variables. For example, the
table defining mode class mcStatus and the terms
tALTpresel and tFPApresel shows that when the
system is in mode FPAarmed, pressing either mATTsw
or mFPAsw causes the system to enter ATTmode and
sets both tALTpresel and tFPApresel to false. Al-
though the new table format is useful, the three sep-
arate tables defining mcStatus, tALTpresel, and
tFPApresel are also useful, but for answering a dif-
ferent set of questions: for example, the table defin-
ing the mode class mcStatus identifies all events
that can change the current mode but does so with-
out the clutter of the extra information in the new
table. Further, in a large application, merging ta-
bles together into a single table could produce very
large tables that would be difficult to understand.
As a result, we plan to support both our original
tables, which define individual variables, and the
new table, which defines two or more variables—
and to automatically generate the larger table from
selected tables that define individual variables.

In our view, the SCR specification in Appendix B
is both easy to understand and concise. The
complete specification is contained in two pages.
Moreover, the SCR specification has an advantage
over Butler’s PVS model: it is easier to change.
For example, our initial version of the specifica-
tion defined a term called tArmed and only three
modes, FPAmode, ALTmode, and ATTmode, in the
mode class mcStatus. Our revised version removed
the term tArmed and replaced mode FPAmode with
two modes FPAarmed and FPAunarmed, thus pro-
ducing a specification that was more concise and
easier to understand. Making the change was quite
straightforward—we simply eliminated the table for
tArmed, revised the table for mcStatus, and modi-
fied the tables for tALTpresel and tFPApresel to
describe the required behavior in modes FPAarmed
and FPAunarmed. The tables defining the displays
as well as all rows of tables that did not involve
FPAmode were unchanged.

8 SCR versus PVS

Although PVS was not specifically designed to
specify requirements, Butler advocates the use of
the PVS language and prover for requirements spec-

95

ification [5]. In his report [5], Butler presents two
PVS models of the mode control panel and ver-
ifies properties of the model organized by inputs
using the PVS prover. As noted in the introduc-
tion, different formal models serve different pur-
poses. While the PVS model of the panel allowed
Butler to verify certain properties of interest, in our
view, PVS is not a good notation for expressing
requirements specifications to be used by software
developers. This is because PVS, a language based
on higher-order logic, produces specifications that
are less readable by practitioners than specifications
in alternative, more user-friendly languages. More-
over, because PVS is not part of a requirements
method but is a general-purpose language designed
to specify mathematical models, most PVS models
omit (abstract away) information needed in a re-
quirements specification—that is, PVS models are
usually incomplete. Many of the questions that
arose in our development of the SCR specification
emerged because an SCR specification requires in-
formation that is lacking in Butler’s PVS model.

Below, we compare the SCR approach to require-
ments specification and verification with the ap-
proach used by Butler. Although some of the prob-
lems we discuss are intrinsic to PVS, others are the
result of decisions Butler made in developing the
PVS model.

8.1 What are the requirements?

In the SCR approach, a requirements specifica-
tion is complete when the specification contains all
the information software developers will need to de-
sign and implement the software. To accomplish
this, the specification must identify the quantities of
interest in the system’s environment, in particular,
the monitored and controlled quantities, and specify
the required relation between them. Butler’s PVS
model does not clearly identify the environmental
quantities of interest. Nor does the PVS model
clearly delineate monitored and controlled quanti-
ties. The result is that one cannot infer from the
PVS model the required relationships among these
quantities.

The PVS model makes use of actions or events
as undefined (primitive) elements. In SCR, in con-
trast, the system inputs and outputs are modeled
as variables, thus capturing more semantic infor-
mation about the system behavior. This seman-
tic information can be exploited in analyzing the
specification for errors. For example, the PVS
model assumes that certain input events are mu-
tually disjoint, which results in the omission of an

input event from the model (see Section 8.2). Since
the SCR specification explicitly defines the environ-
mental quantities of interest, this incompleteness in
the specification was automatically detected during
consistency checking.

The requirements specification presented in Ap-
pendix B is closer than the PVS model to a “real”
requirements specification useful to developers. We
note, however, that it is still incomplete in at least
three respects. First, the I/O devices (or subsys-
tems) that the autopilot uses to measure and com-
pute the monitored and controlled quantities must
be specified. Second, the required timing and ac-
curacy of the system is yet unspecified. Third, the
constraints imposed by NAT need to be specified.
Once these aspects of the required software behav-
ior are provided, developers would have all the in-
formation necessary to design, implement, and test
the system.

8.2 What are the constraints?

To be complete, a requirements specification (in-
cluding ours) should model the constraints that
physical laws and the system’s environment im-
pose on the environmental quantities. For exam-
ple, changes in altitude are limited by physical laws
(e.g., the laws of gravity) and by the maximum rate
at which the Boeing 737 can gain or lose altitude.
Inclusion of such constraints in the specification can
be used later in software development to do sanity
checks on the specification—and the code—and to
indicate when some fault has occurred (e.g., a sen-
sor measuring altitude has failed).

Relations NAT and REQ are specified separately
in the SCR method (see Section 2.2). The PVS
model, on the other hand, does not distinguish re-
lationships that arise from existing physical or other
constraints (relation NAT of SCR) and relation-
ships that are to be enforced by the system (relation
REQ of SCR). This gap leads to two related prob-
lems: overspecification and incompleteness.

Overspecification. It is useful (and simpler) to ig-
nore impossible situations (i.e., situations ruled out
by NAT) in the definition of relation REQ. For ex-
ample, the PVS model defines the following events:

alt _reached the altitude reaches the pres-
elected value
alt_gets_near the altitude is now near, but

not equal to the preselected

value
On page 12 of [5], Butler addresses the scenario
where the system is in mode FPAarmed (i.e., predi-
cate tNear is false) and the event alt reached oc-

96

curs without alt_gets near occurring first. This
situation is clearly ruled out by relation NAT (if
tNear is false, the current altitude cannot reach
the preselected value without tNear becoming true
first). Therefore, when specifying relation REQ),
one need not deal with the above scenario.

Incompleteness. The PVS model considers the
following events to be mutually disjoint:

input._alt the action of dialing a value
using mALTdesired

alt _reached the altitude reaches the pres-
elected value

alt_getsnear the altitude is now near, but

not equal to the preselected
value
But, these events are not disjoint. For exam-
ple, the action of dialing a value (denoted by event
input._alt) can simultaneously cause either of the
other two events to occur. The PVS model fails to
consider these cases.

8.3 What is the level of abstraction?

The PVS description of the autopilot may be
viewed as an abstract model of the mode con-
trol panel. For example, the monitored quan-
tity ALTcurrent is denoted abstractly by two
boolean variables alt_reached and alt_gets_near;
boolean variable input_alt abstractly denotes the
pilot dialing in the desired altitude using knob
ALTdesired; etc. Once the model is constructed,
one can use deductive reasoning to check that the
model satisfies specified properties of interest, such
as the application properties described above. Al-
though such an approach is a good way to detect
errors in the system requirements, our claim is that
such abstract models must be transformed into a
more concrete requirements specification, such as
the one we present in Appendix B. Without a re-
quirements specification, one cannot determine the
monitored and controlled quantities of interest, and
the required relationship between them. If the cor-
respondence between the abstract model and the
requirements specification is informal (and the re-
quired relation REQ is never specified explicitly),
developers may misinterpret the requirements.

8.4 Role of tool support

The major strength of PVS is verification: using
PVS, a user can analyze a specification for complex
properties. In another task, we have used PVS to
detect serious errors in the specification of a hybrid,
real-time system [2]. However, because PVS was
not designed for specifying and analyzing require-

Problem Description Location Phase Reference
Formulating| Consistency| Model Checking
SCR Spec | Checking
Missing initial values prose many 4.1
Missing ranges, types, and | prose, PVS many 4.1
units of measurement
Lack of specificity prose 1 4.2
Incorrect requirement prose 1 4.4
Inconsistent requirements | prose, PVS 1 3 4.5, 5
Transcription error SCR 1 6
Wrong interpretation PVS 1 4.3
Overspecification PVS 1 8.2
Incompleteness PVS 1 8.2

Table 1: Detected Problems

ments, it lacks a requirements method. Without
such a method, users have little guidance in devel-
oping a requirements specification. In contrast, the
SCR method has been specifically designed to pro-
duce precise and complete requirements specifica-
tions. In our experience, tools that support a spe-
cific conceptual model and method are more effec-
tive than general-purpose tools. If a formal model
lacks a strong underlying method, the benefits of
automation are likely to be minimal ([6] provides
more details). Since the SCR method focuses on a
limited class of systems and standardizes the con-
ceptual model, the notation, and the process, sig-
nificant automated tool support is possible.

9 Analysis

Table 1 summarizes the problems we detected in
applying the SCR method to the autopilot specifi-
cation and identifies the specification in which the
problem occurs. Some of the problems listed (miss-
ing initial values, lack of specificity, and incorrect
prose) were corrected by Butler. All the other prob-
lems, except the typographical error, were addi-
tional problems detected when we applied the SCR
method to Butler’s (presumably correct) prose spec-
ification. All but four of them were detected in for-
mulating the SCR specification. Of the remaining
four problems, the typographical error was detected
by model checking and the remaining three cases
of inconsistency were detected by our consistency
checker.

It is clear from Table 1 that merely specifying
a system using the SCR method without any auto-
mated analysis can expose many problems. It may
be argued that some of these problems might even-
tually be detected by the PVS prover. To do this,
however, users must formulate properties that will

97

expose the problems. It has been our experience
that formulating correct properties for a large re-
quirements specification can be non-trivial. More-
over, in our opinion, the effort needed to analyze
the specification with PVS would be significantly
greater than the effort involved in formulating the
specification in SCR and analyzing it with the SCR
tools.

Our experience can be compared to that of
Miller®, who reports that the SCR method helped
uncover 18 errors in a specification of an autopi-
lot at Rockwell-Collins. Of the errors, one-third of
them were detected during formulation of the SCR
specification, one-third by the consistency checker,
and one-third during simulation. (Since we used
the simulator to a much smaller degree than Miller,
we found no significant errors using the simula-
tor.) Our two efforts clearly demonstrate that light-
weight methods are highly effective in uncovering
errors in requirements specifications. It is also im-
portant to note that most of these errors, including
those that were detected by formulating the spec-
ification in SCR, would have probably gone unde-
tected without appropriate tool support.

10 Conclusions

In this paper, we outlined a process for creat-
ing an SCR requirements specification of a simpli-
fied mode control panel for the Boeing 737 autopi-
lot, based on the prose description of the system
presented in [5]. Developing an SCR specification
of the autopilot uncovered a number of problems
that were undetected in Butler’s formalization of
the problem using PVS. While PVS is useful for ver-
ifying deep properties of specifications, this study

3Private communication.

provides evidence that PVS is not well suited for
formulating and analyzing requirements specifica-
tions, especially during the initial stages. This is
due to a number of factors: the logic-based PVS
language which software developers find difficult to
apply, the mathematical sophistication and theo-
rem proving skills that developers need to verify
properties using the PVS prover, and the lack of a
requirements method for PVS.

We envision a process for developing high-quality
requirements specifications that combines the SCR
technology and a mechanical prover, such as PVS.
This process would rely on the light-weight SCR
tools during the initial part of the requirements
process—specification using a formal yet “user-
friendly” notation to capture the requirements, au-
tomated consistency checking and model checking
to detect violations of simple properties, and simu-
lation to ensure that the specification captures the
customers’ intent. Once sufficient confidence in the
specification is developed, a mechanical proof sys-
tem, such as PVS, may be used to verify deep prop-
erties of the complete requirements specification
or, more likely, safety-critical components. While
software developers themselves will have the skills
needed to apply the light-weight SCR tools, apply-
ing heavy-duty theorem proving is likely to require
formal methods experts with the requisite mathe-
matical sophistication and theorem proving skills.

Acknowledgments

We gratefully acknowledge Ricky Butler for pro-
viding helpful insights and for his prompt answers to
all our questions about the autopilot mode control
panel. We thank Todd Grimm and Bruce Labaw for
implementing support for our verification method
in the SCR toolset. We also acknowledge the very
helpful comments of our colleagues Myla Archer and
Bruce Labaw on earlier drafts of this paper.

References

[1] T. Alspaugh, S. Faulk, K. Britton, R. Parker,
D. Parnas, and J. Shore. Software Requirements
for the A-TE Aircraft. Technical Report NRL-9194,
NRL, Washington DC, 1992.

[2] M. Archer and C. Heitmeyer. Verifying hybrid sys-
tems modeled as timed automata: A case study.
Proc. 1997 International Workshop on Hybrid and
Real-Time Systems (HART’97), Grenoble, France,
March 1997.

(3] J. M. Atlee and J. Gannon. State-Based Model
Checking of Event-Driven System Requirements.

98

IEEE Transactions on Software Engineering, pp 22—
40, January 1993.

[4] R. Bharadwaj and C. Heitmeyer. Verifying SCR
requirements specifications using state exploration.
In Proc. First ACM SIGPLAN Workshop on Auto-
matic Analysis of Software, Paris, France, January

14, 1997.

R. W. Butler. An Introduction to Requirements
Capture Using PVS: Specification of a Simple Au-
topilot. NASA Technical Memorandum 110255.
NASA Langley Research Center, May 1996.

(5]

S. R. Faulk. Software Requirements: A Tutorial.
Technical Report NRL/MR/5546-95-7775, Naval
Research Laboratory, Washington DC, 1995.

D. Harel. Statecharts: A Visual Formalism for Com-
plex Systems. Science of Computer Programming,
8(3), 231-274, June 1987.

C. Heitmeyer, B. Labaw, and D. Kiskis. Consis-
tency checking of SCR-style requirements specifica-
tions. In Proc. 1995 Int’l Symposium on Regquire-
ments Engg., York, England, March 1995.

C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw.
Automated Consistency Checking of Requirements
Specifications. ACM Trans. on Software Engg. and
Methodology, 5(3), 231-261, July 1996.

[10] C. Heitmeyer, J. Kirby, and B. Labaw. Tools
for formal specification, verification, and validation
of requirements. In Proc. 12* Annual Conference
on Computer Assurance, NIST, Gaithersburg MD,
June 1997.

[11] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw.
Tools for analyzing SCR-style requirements speci-
fications: A formal foundation. Technical Report,
Naval Research Laboratory, Washington DC, 1997.
In preparation.

(8]

(9]

[12] K. L. Heninger. Specifying software requirements
for complex systems: New techniques and their ap-
plications. IEFEE Transactions on Software Engi-
neering SE-6(1), Jan 1980.

[13] G. J. Holzmann. Design and Validation of Com-
puter Protocols. Prentice-Hall, 1991.

[14] S. Owre, J. Rushby, and N. Shankar. PVS: A pro-
totype verification system. In 11" International
Conference on Automated Deduction, LNCS-607, pp
748-752, 1992.

[15] D. L. Parnas and J. Madey. Functional documents
for computer systems. Science of Computer Pro-
gramming, 25(1), pp 41-62, Oct 1995.

[16] M. Shaw. Comparing architectural design styles.
IEEE Software, November 1995.

A

1.

Description of the autopilot

The mode-control panel contains four buttons for selecting modes and three displays for dialing in or
displaying values, as shown in Figure 1. The system supports the following four modes: attitude control
wheel steering (ATTmode), flight path angle selected (FPAmode), altitude engage (ALTmode), and calibrated
air speed (CASmode).

Only one of the first three modes can be engaged at any time. The mode CASmode can be engaged at the
same time as any of the other modes. The pilot engages a mode by pressing the corresponding button
on the panel. One of the three modes, ATTmode, FPAmode, or ALTmode should be engaged at all times.
Engaging any of the first three modes will automatically cause the other two to be disengaged since only
one of these three modes can be engaged at a time.

There are three displays on the panel: altitude (ALTdisplay), flight path angle (FPAdisplay), and cali-
brated air speed (CASdisplay). The displays usually show the current values of altitude (ALTcurrent),
flight path angle (FPAcurrent), and air speed (CAScurrent) of the aircraft. However, the pilot can
enter a new value into a display by dialing in the value using the knob next to the display (ALTdesired,
FPAdesired, or CASdesired). This is the target or “pre-selected” value that the pilot wishes the air-
craft to attain. For example, if the pilot wishes to climb to 25,000 feet, he will dial 25,000 (using the
knob ALTdesired) into ALTdisplay and then press ALTsw to engage ALTmode. Once the target value is
achieved or the mode is disengaged, the display reverts to showing the “current” value.

. If the pilot dials into ALTdesired an altitude that is more than 1,200 feet above the current altitude

(ALTcurrent) and then presses ALTsw, then ALTmode will not directly engage. Instead, the altitude
engage mode will change to “armed” and FPAmode is engaged. The pilot must then dial in, using the
knob FPAdesired, the desired flight-path angle into FPAdisplay, which will be followed by the flight-
control system until the aircraft attains the desired altitude. FPAmode will remain engaged until the
atrcraft is within 1,200 feet of ALTcurrent, then ALTmode is automatically engaged.

. CASdesired and FPAdesired need not be pre-selected before the corresponding modes are engaged—the

current values displayed will be used. The pilot can dial-in a different target value after the mode is
engaged. However, the altitude must be pre-selected before ALTsw is pressed. Otherwise, the command
ts ignored.

. CASsw and FPAsw toggle on and off every time they are pressed. For ezample, if CASsw is pressed while

the system is already in CASmode, that mode will be disengaged. However, if ATTsw is pressed while
ATTmode is already engaged, the command is ignored. Likewise, pressing ALTsw while the system is
already in ALTmode has no effect.

Whenever a mode other than CASmode is engaged, all other pre-selected displays should return to current.

If the pilot dials in a new altitude while ALTmode is engaged or the altitude engage mode is “armed”, then
ALTmode is disengaged and ATTmode is engaged. If the altitude engage mode is “armed” then FPAmode
should be disengaged as well.

99

B SCR Specification of the autopilot

Monitored Variables:

mALTcurrent, mCAScurrent, mFPAcurrent : Integer initially all 0;
mALTsw, mATTsw, mCASsw, mFPAsw : {on,off} initially all off;
mALTdesired, mCASdesired, mFPAdesired : Integer initially all O;

Controlled Variables:
cALTdisplay, cCASdisplay, cFPAdisplay : Integer initially all 0;

Terms:

tALTpresel, tCASpresel, tFPApresel : Boolean initially all false;
tCASmode : Boolean initially false;

tNear * mALTdesired — mALTcurrent < 1200;

Mode Class:
mcStatus : {ALTmode, ATTmode, FPAarmed, FPAunarmed} initially ATTmode;

“{ cALTdisplay

Figure 6: Variable Dependency Graph

100

Term = tCASmode
| Events | tCASmode | tCASpresel
NOT tCASmode | €T (mCASsw=on) true
CHANGED (mCASdesired) true
tCASmode 0T (mCASsw=on) false false
QT (mCASdesired=mCAScurrent) false
CHANGED (mCASdesired) AND mCASdesired’ # mCAScurrent’ true
Mode Class = mcStatus
01d Mode | Events | New Mode | tALTpresel | tFPApresel
ATTmode QT (mALTsw=on) WHEN (tALTpresel AND tNear) ALTmode false
QT (mALTsw=on) WHEN (tALTpresel AND NOT tNear) | FPAarmed
QT (mFPAsw=on) FPAunarmed | false
CHANGED (mALTdesired) true
CHANGED (mFPAdesired) true
ALTmode QT (mATTsw=on) ATTmode false false
QT (mFPAsw=on) FPAunarmed | false
CHANGED (mALTdesired) ATTmode false false
CHANGED (mFPAdesired) true
QT (mALTdesired = mALTcurrent) false
FPAarmed QT (mATTsw=on) OR Q@T(mFPAsw=on) ATTmode false false
CHANGED (mALTdesired) ATTmode false false
CHANGED (mFPAdesired) AND mFPAdesired’ # mFPAcurrent’ true
QT (tNear) AND mALTdesired = mALTdesired’ ALTmode false
QT (mFPAdesired = mFPAcurrent) false
FPAunarmed | @T (mALTsw=on) WHEN (tALTpresel AND tNear) ALTmode false
QT (mALTsw=on) WHEN (tALTpresel AND NOT tNear) | FPAarmed
QT (mATTsw=on) OR @T(mFPAsw=on) ATTmode false false
CHANGED(mALTdesired) true
CHANGED (mFPAdesired) AND mFPAdesired’ # mFPAcurrent’ true
QT (mFPAdesired = mFPAcurrent) false
Conditions
tALTpresel NOT tALTpresel
cALTdisplay = | mALTdesired | mALTcurrent
Conditions
tCASpresel NOT tCASpresel
cCASdisplay = | mCASdesired | mCAScurrent
Conditions
tFPApresel | NOT tFPApresel
cFPAdisplay = | mFPAdesired | mFPAcurrent

101

A Tabular Language for System Design

Steven D. Johnson*

sjohnson@cs.indiana.edu
Computer Science Department
Indiana University
Bloomington Indiana 47405-4101

Abstract

A tabular language for describing synchronous be-
haviors is developed as a visual representation for
formalized design derivation. A sketch of behavior
table syntax and semantics is given. An example
illustrates the kinds of formal manipulations inves-
tigated by the research. Evidence is accumulating
that tables are perspicuous for specification, design,
and verification, but graphical support is essential to
their effective use.

1 Introduction and background

The tabular specification language described in this
article emerged as a visual representation for inter-
active system design. We started using tables in a
casual way, generating them from the underlying ex-
pressions of a formal system for design derivation
[13]. Behavior tables emerged as a bridging nota-
tion between control oriented and architecture ori-
ented modes of description.

With better graphical support, we think tables
such as these can assume a prominent role in system
specification, verification, and synthesis. In our case
studies of design derivation, we began using tables
to visualize formal transformations on design expres-
sions. Over time, notational features evolved that
we have not found in other hardware description lan-

*This research is supported, in part, by the National Science
Foundation under Grants MIP-9208745 and MIP96-10358.

guages. Even though we intimately understand the
underlying formalism, we believe that the tables are
more expressive than the underlying modeling ex-
pressions they represent because they offer additional
visual structure.

This realization prompted us to consider our ta-
bles more seriously as a formal design notation, and
we began exploring features that are useful in system
design applications [28, 25]. We comtemplated direct
realizations in VLSI [20]. Other encouraging influ-
ences have been the emerging tools and techniques
for using tables in requirements specification, verifi-
cation, and synthesis. These are reviewed in the next
section.

In Sections 3 through 5 we present a syntax and
representative semantics for the tables we use. We
think of behavior tables as denoting persistent, com-
municating processes rather than procedures or func-
tions. The substance of the difference is that behavior
tables cannot themselves be entries in other behav-
ior tables. Instead, they are composed by connect-
ing their I/O ports. Thus, behavior tables represent
typed, synchronous transition systems, which we be-
lieve are closer to the intended high-level synthesis
models than the “synthesizable subsets” of VHDL
and Verilog now in use.

Section 6 illustrates the kind of manipulations we
perform in design derivation. The example was con-
structed manually, but a corresponding derivation
was performed using an existing transformation tool.
Section 7 reviews additional syntactic features con-
templated and topics of further research, including

103

manipulations that we have mathematically formal-
ized but not automated. We believe that the most
urgent task of this line research is to develop graph-
ics interface facilities.

An apology about terminology. The term “behav-
ior table” arose spontaneously in our laboratory. In
Section 3 we adopt “decision table” from [9] and “ac-
tion table” from [18] for fragments of our forms. But
these fragments are not identical to the previously
published objects. Furthermore, there are other ob-
jects in the literature with similar names, including
“behavior table,” that have different, possibly incom-
patible forms and interpretations. We hope this ter-
minology will stabilize in the future.

2 Related work

The work on decision tables by Hoover, Chen, and
others [9, 8] inspired us to think more seriously about
the behavior tables developed in our case studies of
design derivation. Their Tablewise specification tool
was developed for avionics software development, but
clearly applies to reactive systems in general. In ad-
dition to a graphical front end, there are functions for
verifying exclusivity and completeness of decision ta-
bles and for performing structural analyses to aid in
obtaining these properties. Future topics mentioned
in [9] include connections to state-machine and stat-
echart based specification. This connection is the fo-
cus of our interest.

The Software Cost Reduction system of Naval Re-
search Laboratories is also a requirements specifica-
tion tool set with graphics support and aids for anal-
ysis and verification [7]. A formalization in PVS by
a group at SRI is based on SCR* constructs and
also contains an extensive review of tabular speci-
fication notations [19]. Their treatment is a shallow
embedding, supported by tabular syntax contained
in the PVS surface language. One immediate bene-
fit of this approach is exploitation of the PVS type
system, in particular, its management of type correct-
ness conditions. Our experience integrating design
derivation with PVS verification suggests a somewhat
deeper embedding will needed to support reasoning
about transformations. One reason for this is that

the underlying semantic domain of streams is not well
founded [14].

Leveson’s Requirements State Machine Language
[16] is based on Harel’s state charts [6], but uses and-
or tables to specify hyper-edges. She echos Hoover’s
observation that decision tables are readily accepted
and used by practicing engineers.

Li and Gupta introduce timed decision tables as an
HDL [18, 17]. Their results on optimizations exploit-
ing don’t care entries are directly applicable to the
forms we use in our work. Their work is also evidence
of the utility of a tabular specification language for
CAD tool development. Behavior tables have been
proposed as an interchange format by Gajski, Dutt,
et. al. [5, 4]. The intermediate synthesis language
BLIV-MV contains a very rich syntax for the tab-
ular specification of multi-valued boolean functions
[15]. We find it very encouraging that research in
high-level synthesis and formal methods finds com-
mon ground in these tabular representations; it re-
flects new opportunities for synergy between commu-
nities that frequently encounter problems with each
others’ notations.

3 Syntax of behavior tables

Behavior tables are arrays of terms over an amalga-
mated abstract type giving ground syntax for con-
stants and operations and equational laws for rea-
soning about them. Our examples will involve com-
monly understood types, but a type system is in-
tended to support conceptual hierarchies, parameter-
ization, and other structuring capabilities. A useful
tool must have built-in reasoning for concrete types,
but must also have facilities for reasoning about and
between user specified type complexes.

The notion of term evaluation used here is stan-
dard. The value of a term, t, is written o [[¢], where ¢
is an assignment or association of values to variables.
A generic don’t-care constant is written as ‘Y’

A finite extension of propositional logic is
assumed—Hoover calls it finite logic [8]. Arbitrary
collections of enumerated values, or tokens, can be
formed. These finite sets come with a polymorphic
selection operation. A behavior table can be thought

104

of as a parallel composition of selection expressions.

Behavior tables are closed expressions whose terms
contain variables from three disjoint sets: I (inputs),
S (data state), and C (combinational signals). Fix
these sets for the remainder of this section. We will
write ISC for TU S U C and SC for SUC. We
use the term ‘register’ for an element of S, but this
is a euphemism that should be interpreted very ab-
stractly. There is no assumption that these variables
denote finite values, nor are tables intended only for
register-transfer specification. The form of a behav-
ior table is

| Name: Inputs — Outputs
| Conditions

|

Registers and Signals |

Guard Computation Step

Inputs is a list of input variables and Outputs is a set
of terms over I.SC; for simplicity, assume O C ISC.
Conditions is a set P of predicates over ISC, that is,
terms ranging over finite types, such as truth values,
token sets, etc. A guard is a set of constants indexed
by the condition set P: g = {cp}pep. We say g holds
for an assignment o to ISC when, for each p € P,
either ¢, =Y or op] = ¢p.

A decision table D = [P, G], consists of a condition
set and a list of guards. Following [9], we say a de-
cision table is functional when G describes a proper
partitioning of the possible assignments to ISC. In
other words, the guards are “exclusive and exhaus-
tive.” A computation step or action is a set of terms,
one for each register and signal: a = {t,}yesc. An
action table is an indexed set of actions.

A behavior table for I — O consists of a decision
table, D, with guards G = {g1, - .. gn}, and an action
table indexed by G, A = {t,r | v € SC and g; €
G}.

4 Synchronous semantics

A behavior table [D, A] for O C ISC denotes a rela-
tion between infinite input and output sequences. We

105

call these sequences streams because in prior work
we obtain a semantics by interpreting a table as
a (co)recursive system of stream-defining equations
[13]. More directly, suppose we are given a set of
initial values for the registers, {zs}ses and a stream
for each input variable in I. Construct a sequence of
assignments, (09,01 ...) for ISC as follows:

(a) on(i) is given for all i € I and all n.
(b) For each s € S, oo(s) = zs.
(¢) ont+1(8) = on[ts,i] if guard gi holds for op,.

(d) For each ¢ € C, on(c) = onftcx] if guard g
holds for o,.

The stream associated with each o € O is
{(00(0),01(0),...). This semantic relation is well de-
fined if there are no circular dependencies among the
combinational actions {t.x | ¢ € C, gr € G}. The
relation is a function (i.e. deterministic) if decision
table D is functional.

This semantics is at odds with both TDTs and
Tablewise (Section 2), but the differences are rec-
oncilable, and are by no means special to tabular
notations. We think of behavior tables as denoting
persistent, communicating processes rather than pro-
cedures to be invoked.

In other words, behavior tables cannot themselves
be entries in other behavior tables, but instead are
composed by interconnecting their I/O ports. Com-
positions give rise to hierarchical network descrip-
tions in which the “leaves” are tables. This is closer
to the intended high-level synthesis models than the
“synthesizable HDL subsets” now in use. For exam-
ple, Borrione, et.al., have recently proposed hierar-
chical finite state machines (HFSMs) as a common
basis for HDL interoperability [1]. The semantic rela-
tionship between HFSMs and behavior tables is very
close.

Composition is specified by giving a connection
map that is faithful to each component’s arity. Valid
maps must preserve I/O directionality, excluding
both combinational cycles and output conflicts. In
our function-oriented modeling methodology, such
compositions are expressed as recursive systems of

equations,
A(Us,...,Upn).(Va, ..., V) where

(X11,---,X14,) Ty (Wi, ..., Wie,)

(Xp15- -+, Xpg,)
in which the defined variables X;; are all distinct,
each 7}, is the name of a behavior table or other com-
position, and the outputs V; and internal connec-
tions W;; are all simple variables coming from the
set {Ul} U {Xjk}.

Provided they are well formed, deterministic sys-
tems are readily animated in modeling languages that
allow recursive stream networks to be expressed [10].
As long as each register has an initial value, the
streams are constructed head-first as a fixed-point
computation. Translation to event-based simulation
languages is also relatively straightforward for sys-
tems expressed over concrete types.

A synchronous semantics is simple and suited to
the clocked implementation models most high-level
synthesizers use. In fact, behavior tables will acquire
a range of semantics, depending on their applications,
just as HDLs and programming languages do. Even
with a variety of interpretations, their inherent struc-
ture helps reduce the mathematical bookkeeping that
often obscures semantic definitions.

T, (Wpts- s Wpe,)

5 Examples of behavior tables

The behavior table shown in Figure 1 describes a pro-
cess that computes the Fibonacci function: The in-
puts are control signal go and data input in; the
outputs are control signal done* and the data signal
v. The ‘¥’ is a notational convention for distinguish-
ing combinational signals from state-holding regis-
ters. Three other representations in Figure 1 depict
various aspects of the design. The labeled transition
diagram is keyed to the table’s rows; its labels consist
of a condition under which the transition is taken, the
outputs associated with the transition, and an update
to the data state; the same information as a row of
the table. The control automaton is represented in

106

the table by the now register. Throughout this paper,
we reserve the name now for this purpose. A timing
diagram shows the interface abstraction. The textual
expression of the algorithm at the lower left of Figure
1 describes is the well-known iterative computation
of fib(n), where

£ib(0) = 0
fib(1) = 1
fib(k+2) = fib(k)+ fib(k + 1)

The behavior table in Figure 2 describes the
garbage collector of a list processing computer [2].
It is representative of the tables we work with in our
case studies. Its level of specification is more ab-
stract, with two of the registers of type memory. An
implementation of this table was realized in about
5,000 ACTEL FPGA cells, of which 1,500 4-input
MUX elements compute the behavior. A behavior ta-
ble for the same computer’s CPU is about twice as
big, when expressed at a level where garbage collec-
tion is an abstract operation. A table closer the the
register transfer level, as in Figure 2, would be more
than ten times larger, but even at that scale the tables
are useful in our derivation methodology—and would
be even more useful with better display automation.

As these examples may illustrate, behavior tables
are not the best representation for understanding the
specification of an algorithm. However, they seem
(in our experience) to serve well as a bridging no-
tation for simultaneously contemplating control and
architecture. Furthermore, studies (e.g. [16]) suggest
that complicated control functions are clearer when
presented as decision tables. In hardware design, the
intuitive sense of control flow is quickly overwhelmed
when processes are composed.

6 Table manipulations

Let us explore some basic transformations, starting
with the table in Figure 1. As in any derivation,
the order of presentation is not necessarily the or-
der in which the transformations were conceived. In
practice, backtracking is involved as the architectural
goals develop and concrete representations are intro-

2

2

[(go, in) — (domex, v) |

[now | go u=0 || now [donex | u [v] w |
1 < > 3 1| wait | true] work | false in | O 1
2 " false 1] wait true] i [
3| work b true || wait true 3] v [
Q 4 " b false || work | false u-1 | w | v+w
4
await go; go
u,v,w := input(in),0,1;
while (u # 0) do done
{v = fib(ing — u) Aw = fib(ing — u + 1)}
ou?z;;);(zfj): u—1,w,v+w; in { n)
assert dt;ne* out @—
10 tl

Figure 1: A behavior table and related diagrams

duced. The final derivation is just a residual proof of
the design.

This example was carried out and formatted by
hand, but Tuna was able to mimic the entire deriva-
tion [12] using the DRS mechanized transformation
system [3] which operates on recursive systems of
functional expressions. That exercise exposed one
significant error in the manual derivation.

The now and done* columns suggest an assignment
of concrete values 0 to work and 1 to wait. To reduce
clutter, let us also assign 1 to true and 0 to false.

[(go, in) — (donex, v)]

[now [go [u=0 [now [domex | u [v] v |
1 1 f donex* —go in | O 1
" 0 i ! —go h b &
I W w0 | 1§ v]| 1
" [0 " u=0 u-1 | w | viw

With these changes, the first and second rows have
become identical up to don’t-cares, so we can merge
them to obtain

| (go, in) — (done*, v)

[now | go [u=0 || mow donex* u v
1 3] 1] donex* -go in | 0 1
0 b 1 " u=0 b v h
"] 0 " u=0 u-1 | w | vw

The predicate go has become irrelevant will be re-
moved. We note in passing that the last two rows
could be merged by replacing the term for v with
select (u=0,v,w). Behavior tables seem especially
useful for this kind of interplay between control and
computation—all the more so with the provisions for
indirection discussed in Section 7.

Next is a scheduling transformation on the third
row that puts the arithmetic terms u-1 and v+w into
different computation steps. The goal is to assign
these operations to a single arithmetic component.

Lgo, in — donex, Vv |

[now | u=0 || now donex* u | v v |
1] donex* —go in | 0 1
0 1 " u=0 v | 8
0 0 2 false [u-1 | v w
2 h donex* u=0 u w | viw

107

10309[[0) 98eqIex) ® 10] BqR], I01ARYdg ‘g oINS

(((H 3d-ad) @
0| (v e-tppe) n (0 1ans) | (H Q@10 PI) 13d-TppeR) a10 Kdoo Jlo| Y 4 IR ERERLEE "
o5 v MAN 38)
T Uy (© e ®
o e | i a0 0 a H ¥ Gl 38) a1 zoatap LT (0| 4 | b [4fa|h[h]| Kdoo
(((H 3d-ad) ®
o| (v e-tpPR) n b) (H @10 p1) 13d-Tppe) a10 £doo bl [} borafajufn "
V MAN 38)
H w?mW
((1 umd) (0 (C((H 3c-2 ®
0| (VE-TPP®) | toiooy o 4)) a SM-MHW V KGN a8 a1 zonvap (14T 4 LR RRAR oan
dxd (G 3d-3d) ((V paeAzoy
0 v n P e a nd-epe) | Han teo) i oen |lq|u|oenal o |ufufuly "
-1030)
H M?mv T a1o In)
doxd AAAI 1d-X v Y pIealoy
0 v n Zvuw:o”aW a 13d-1ppe) MaN 1102) H| oea hih| @ea | o [H|HO|b]NY "
H 1T°2) a10_an)
(i (((n 3d-xd) ((V paeAaoy
0 v n 221S-paxTy) a 13d-1ppe) MaN 1182) H| £doo Bl pextr| o |Ufh 0| "
. 7-1PpR) H 1189) 2 5 a10 3#)
T U P H 1190
0 v 3su02) 0 1) o a H 0_HEN 38) a0 zoatap (P 0| & | v |B]h]H|Y]edhsfao
0 v 15W00)) 4)) (# Q10 P3) H Han a1 zoatap || 0| h| 4 i [o]o|b]|l "
(T u1d)
d-1d
0 v :::wamnw 0 (1 a10 P) H han a1 zoatap (1 9|0 b hojrfofufn "
n+) -
0 v n) (H @10 PI) H ZN M%Huzw a10 edfafqo |l b | & 4 g fh] vt Caoaxau
0 v n) a (0 MAN PI) MaN a10 Cqoaxeufl § | f [] ho[4]Yjofh u
1 v n) a 0 a10 MaN oTpT (I H|HW] B Jhif]jl] xeatap
T i [} i [} H MaN a10 orpT | hH[H| f h {4jhjbjfo u
0 0 (H Q10 pX) 0 a H HAN a10 xeatap [[1 K [h jyfgjbfe eTpt
W[«4ppoiy Juo0d:q 4ppo:) Ju02:q U0} wawL AN wWaULQT0 wn (== 2 Teslelalzlz MON
aQja oﬂ (.hw. m w. a
»lo ==} | m -
w | < ~ vl o |~
LR L]
o -
3=
BI~E
o
“«
o
[}

sr
rr

&I

al

I

or

-, 0

108

The newly created control token, ‘2’, induces a type
mismatch with boolean done* in the now column.
This is a problem to be resolved by underlying type
inference system. In addition to implicit coercions,
this transformation’s validity depends both on the
fact that the sequence of two steps preserves the orig-
inal computation and the fact that the surrounding
synchronization protocol is preserved. Verifying the
latter of these conditions is not automatic, in general.
In this case, we are relying on the interface specifica-
tion of Figure 1, which says that the result is ready
only when donex* is asserted.

The next table is a simple example of system fac-
torization, a decomposition technique that is central
to the derivation formalism. As desired, terms u-1
and v+w are allocated to a single combinational arith-
metic component, called ALU.

[FIB: (go, in, ao) — (domex, v, x*, y*, zx) |

x| ©
[=] n
s | 3 now donex* u v w X* | yx | z*
1| h || donex —go in | 0 | 1 b i b
01 " u=0] v]] b]
0 0 2 false | ao | v w sub u 1
2| h donex* u=0 u |w|ao | add | v w
ALU: (x,y,2) l ‘
— ao* go in X X
x ao* FIB y Y oaw
z z
add x+y done* Vv @0 ao
sub x-y ¢

A system factorization encapsulates a set of subject
terms in a new table and generates residual interface
signals [11]. Here, the interface signal x* generates
instruction tokens, sub and add, telling ALU which
operation to perform. The transformation tool keeps
track of the connectivity. In particular, factorizations
preserve well-formedness even when one of the factors
is entriely combinational, as is ALU in this case.

To finish the example, we make some assignments
to the don’t-care entries whose ultimate effect is to
isolate control. As a second example of system fac-
torization, we decompose into a control process gen-
erating an encoded command signal, cmd, to the data
path DP, as shown in Figure 3.

109

7 Directions

We are encouraged by the number of recent papers
centering on tabular specification languages. It is
usually reported that such tables are a good “engi-
neering notation,” and they seem also to be relatively
easy to represent formally. If this consensus grows,
the most urgent task may be the mundane one of
building tools to manipulate table syntax. It is our
hope that such graphics tools will be general enough
to accommodate the range of applications tables are
finding in the design community.

At this stage, we are investigating a number of ad-
ditions to and variations of behavior table syntax.

7.1 Assertions

Both Tablewise and TDTs (Section 2 have provisions
for assertions that are not yet in our behavior tables,
but which should be included in any graphics sup-
port. Tablewise incorporates type-declarative fields
that we would defer to a background type system
in our applications. TDTs contain time parameters
used in optimization. In Tablewise the primary in-
tent seems to be the verification of invariant proper-
ties, but assertions could also be used to state con-
straints, measures, and, for that matter, computa-
tional actions.

The algorithmic specification in Figure 1 contains
a loop invariant that might be attached to row 4 of
the corresponding behavior table. It is interesting
to contemplate how subsequent manipulations, es-
pecially decompositions, might affect this assertion.
Since system design verification often involves live-
ness, safety, and other eventualities, assertions would
likely take the form of temporal logic predicates on
the current state (i.e., row).

7.2 Decompositions

Our notion of system factorization, involving both
data abstraction and interface specification, has yet
to be fully reflected in our behavior tables. The un-
derlying ideas are more general than the example
shows, having evolved over several years of research.

| CTL: (go, u) — (done*, cmd*, x*)]

[now [u=0 [now [dome* [cmd* [x* |
1 b donex —go 0 b
0 1 " u=0 1 sub
0 0 2 false 1 sub
2] donex* " 2 add
DP: (cmd, in, ao)
— (u, v, y*, z*)

([ulv]w s [o]
0 an|O] £] 8§] &
1 ao | v w v w
2 u w | ao u 1

[ALU: (x,y,z) — ao* |

Lx 1 ao* |
add ytz
sub y-z

(v] [v] [w]
(9=l 1L

Figure 3: Final decomposition of the example

As an illustration, let us consider a two-phase ALU
that takes operands sequentially.

[ALU2: (op,in) — (phase, outx) |

[phase | op [phase | hold | out*
1 b 2 in b
2 add 1 in hold + in
2 sub 1 in hold - in

We wish to use ALU2 to determine a factorization of
the table below, a variant of the specification in Fig-
ure 1. A reset input, r, has been added to illus-
trate why tables are sometimes better than algorith-
mic languages at expressing features of global control
flow. Row 1 of the table says that whenever r is as-
serted the FSM moves to state A.

[FIB:(r, go, in) — (a*, v)]
[r [now [goJu0 [mow [a*x [u [v][w |
1ol § [0 & A ol o [&] &
o 1| & [1 | 1 B | 0| im [0 1
s+] 0 B A 1 [b]
410" B] T A 1 i v b
5 " " b F B 0 u-1 w v+w

A targeted factorization has to instantiate the proto-
col ALU2 expects, synchronizing with its phases, and

110

presenting the operands sequentially. First, we seri-
alize the arithmetic as before:

[FIB:(z, go, in) — (a*, V) J
[r [now [go Ju=0 [mow [ax [u v] w |
Il 0] & h i A 0 b B b
21| & | 1] & B | 0] in |O | 1
3 " " 0 h A 1 h h h
4 "] B h T A 1 h v]
S5a| " "] F C 0 u w | vtw
56 " ¢ b b B 0 |ul|v w

To decompose according to ALU2, add a wait state to
get into phase and graft the addition and subtraction
paths into the control low. One possible factoriza-
tion is shown in Figure 4. We have have investi-
gated several constructive approaches to this family
of decompositions [21, 23, 30, 29, 24]. We cannot yet
claim a universal construction, but we do have trans-
formations general enough to handle many common
interface specifications [22]. Performing simultane-
ous decompositions—which is necessary for practical
application of formal derivations—remains a topic of
research.

[FIB:(r, go, in) — (dx, v)]

[r[now|[goJu0J[mow [a*x] u [v] w | [ALU2:(op,in) — (phase, out*)]
0 h]] A 0 b B h . | phase | op phase | hold out* |
1 A 1 b B 0 in [0 1 -~ 1 b 2 in b
N T R A | 1| 8§ |6 & 2 add 1 in | hold + in
" B | § | T A |18 |v| & 2 sub 1 in | hold - in
" "] F B 0 [u-1 | w | véw

FIB:(r, go, in, ph, alu) — (d*, v, op, opd)

r [nov [go Ju=0 [ph [[mow [d* [u [v]| w | op | opd
I 0] & i b b A]oO B8] 8 i i
%l 1] & | 1] 4§ |21 B8]0 im0l 1 B h
2b " " 1 1] 1 D 0 in 0 1]]

= 3 A 0 f i A 1 bl b | 8 f i

6| " D 1] 1] B 0 u v w h b
4 " | B h T i A 1 b | v | & g i
S5aa| " " 1] F b C 0 u v w] v
5ab| " C []] E 0 u w | alu | add w
Sba| " E b]] F 0 1 v w h u
5bb| ¢ F]] 3] B 0 | alu | v w sub u

Figure 4: The factorization developed in Section 7.2

7.3 Other syntax

The tabular languages we have seen exhibit a great
variety of abbreviation techniques. Typically, these
serve to condense decision conditions by specifying
sets of values. BLIF-MYV, for example, allows sub-
range, subset, and complementation expressions in
its table specifications [15].

We have added syntax for bounded indirection
which often significantly reduces the size of action
tables [25] and is novel for hardware description lan-
guages. If r is a signal or register, then #r denotes
a token referring to r. If register s contains such a
token, then @s denotes the entity to which s refers;
that is,

@s = casesof ... #r:r. ..

In [28] we show how a behavior table describing a bus
reduces to one row when indirection is used to specify
sources and destinations. In [27] we explore control
indirection.

The behavior FSMs proposed by Takach, Wolf, and
Leeser contain constructs to constrain events to oc-
cur within sets of transitions. BFSM are intended
to serve as specification models for high-level syn-
thesis. Any implementation of a BFSM refines this

111

constraint by assigning particular transition to each
event, subject to the constraints [26]. As the example
of Section 6 suggests, one row of an action table can
represent a number of transitions at a finer time scale.
However, BFSMs are more expressive than behavior
tables in the sense that unstructured programs are
more expressive than structured ones. This suggests
to us that action tables may need provisions to relax
their output behaviors.

References

(1] Dominiquie Borrione, Fredrik Vestman, and
Hakim Bouamama. An approch to Verilog-
VHDL interoperability for synchronous de-
signs. In Procedings of the IFIP WG 10.5 Ad-
vanced Research Working Conference on Cor-
rect Hardware Design and Verification Methods
(CHARME’97). To appear.

[2] Robert G. Burger. The scheme machine. Tech-
nical Report 413, Indiana University, Computer

Science Department, August 1994. 59 pages.

(3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

Derivation Systems, Inc., Carlsbad, Cali-
fornia. = DRS: Derivational Reasoning Sys-
tem, 1.2.1 edition, December 1995. Contact
drs@derivation.com.

Nikil D. Dutt and Daniel D. Gajski. Exel:
A language for interactive behavioral synthesis.
In John A. Darringer and Franz J. Rammig,
editors, Computer Hardware Description Lan-
guages and their Applications, pages 3—18, 1989.

D. Gajski, N. Dutt, A. Wu, and S. Lin. High-
level Synthesis: Introduction to Chip and System
Design. Kluwer Academic Publishers, 1992.

D. Harel. Statecharts: a visual formalism for
complex systems. The Science of Computer Pro-
gramming, 8:231-274, 1987.

Constance Heitmeyer, Alan Bull, Carolyn
Gasarch, and Bruce Labaw. SCR*: a toolset
for specifying and analyzing requirements. In
Proceedings of the Tenth Annual Conference on
Computer Assurance (COMPASS ’95), pages
109-122, 1995.

D. N. Hoover and Zewei Chen. Thbell: A
mathematical tool for analyzing decision tables.
Contractor Report 195027, NASA /LRC, Hamp-
ton VA 23681-0001, November 1994.

D. N. Hoover, David Guaspari, and Polar Hu-
menn. Applications of formal methods to
specification and safety of avionics software.
Contractor Report 4723, NASA/LRC, Hamp-
ton VA 23681-0001, November 1994.

Steven D. Johnson. Synthesis of Digital Designs
from Recursion Equations. MIT Press, Cam-
bridge, 1984.

Steven D. Johnson. Manipulating logical organi-
zation with system factorizations. In Leeser and
Brown, editors, Hardware Specification, Veri-
fication and Synthesis: Mathematical Aspects,
volume 408 of LNCS, pages 260-281. Springer,
July 1989.

112

[12]

[13]

[14]

[17]

[20]

Steven D. Johnson. A tabular language for sys-
tem design, Appendix A. Technical Report 485,
Indiana University Computer Science Depart-
ment, June 1997.

Steven D. Johnson and Bhaskar Bose. A sys-
tem for mechanized digital design derivation. In
IFIP and ACM/SIGDA International Workshop
on Formal Methods in VLSI Design, 1991. Avail-
able as Indiana University Computer Science De-
partment Technical Report No. 323 (December
1990).

Steven D. Johnson and Paul S. Miner. inte-
grated reasoning support in system design: de-
sign derivation and theorem proving. In IFIP
WG 10.5 Advanced Research Working Confer-
ence on Correct Hardware Design and Verifica-
tion Methods (CHARME’97), 1997. To appear.

Yuji Kukimoto. BLIF-MV.
http://www-cad.eecs.berkeley.edu/~/vis/.

Nancy G. Leveson, Mats Per Erik Heimdahl,
Holly Hildreth, and Jon Damon Reese. Re-
quirements specifiation for process-control sys-

tems. IEEE Transactions on Software Engineer-
ing, 20(9):684-707, September 1994.

Jian Li. Timed decision tables: A behavioral
model for embedded system specification and
optimization. Technical Report UTUCDCS-R-
96-1971, Univeristy of Illinois Department of
Computer Science, 1304 West Springfield Ave,
Urbana IL 61801, 1996.

Jian Li and Rejash K. Gupta. HDL optimization
using timed decision tables. In 33rd ACM/IEEE
Design Automation Conference, 1996.

Sam Owre, John Rushby, and N. Shankar. In-
tegration in PVS: Tables, types, and model
checking. In Tools and Algorithms for the Con-
struction and Analysis of Systems TACAS 97,
Springer LNCS. To appear.

K. Rath, I. Celis, and R. M. Wehrmeister.
RTBA: A generic bit-sliced bus architecture for

[21]

[22]

23]

[24]

[26]

[27]

datapath synthesis. Technical Report 321, De-
partment of Computer Science, Indiana Univer-
sity, December 1990.

Kamlesh Rath. Sequential System Decomposi-
tion. PhD thesis, Computer Science Depart-
ment, Indiana University, USA, 1995. Technical
Report No. 457, 90 pages.

Kamlesh Rath, Bhaskar Bose, and Steven D.
Johnson. Derivation of a DRAM memory in-
terface by sequential decomposition. In Proceed-
ings of the International Conference on Com-
puter Design (ICCD), pages 438-441. IEEE, Oc-
tober 1993.

Kamlesh Rath, Venkatesh Choppella, and
Steven D. Johnson. Decomposition of sequential
behavior using interface specification and com-
plementation. VLSI Design Journal, 3(3-4):347-
358, 1995.

Kamlesh Rath and Steven D. Johnson. To-
ward a basis for protocol specification and pro-
cess decomposition. In D. Agnew, L. Claesen,
and R. Camposano, editors, Proceedings of IFIP
Conference on Hardware Description Languages
and their Applications, pages 157-174. Elsevier,
April 1993.

Kamlesh Rath, M. Esen Tuna, and Steven D.
Johnson. Behavior tables: A basis for system
representation and transformational system syn-
thesis. In Proceedings of the International Con-
ference on Computer Aided Design (ICCAD),
pages 736-740. IEEE, November 1993.

Andre§ Takach, Wayne Wolf, and Miriam
Leeser. An automaton model for scheduling
constraints in synchronous machines. IEEFE
Transactions on Computers, 44(1):1-12, Jan-
uary 1995.

M. Esen Tuna, Steven D. Johnson, and Bob
Burger. Continuations in hardware-software
codesign. In Proceedings of the International
Conference on Computer Design (ICCD), pages
264-269. IEEE, October 1994.

113

28]

[29]

(30]

M. Esen Tuna, Kamlesh Rath, and Steven D.
Johnson. Specification and synthesis of bounded
indirection. In Proceedings of the Fifth Great
Lakes Symposium on VLSI, pages 86—89. IEEE,
March 1995.

Zheng Zhu and Steven D. Johnson. Automatic
synthesis of sequential synchronizations. In
D. Agnew, L. Claesen, and R. Camposano, ed-
itors, Proceedings of IFIP Conference on Hard-
ware Description Languages and their Applica-
tions, pages 285-301. Elsevier, April 1993.

Zheng Zhu and Steven D. Johnson. Captur-
ing synchronization specifications for sequential
compositions. In Proceedings of the 199/ IEEE
International Conference on Computer Design
(ICCD 94), pages 117-121. IEEE, October 1994.

Verifying Communication Related Safety Constraints
| in RSML Specifications*

Mats P.E. Heimdahl
University of Minnesota, Institute of Technology
Department of Computer Science, 4-192 EE/CS Bldg.
Minneapolis, MN 55455
heimdahl@cs.umn.edu

Abstract

Languages based on hierarchical finite state ma-
chines, such as, Statecharts, SCR (Software Cost
Reduction), and the Requirements State Machine
Language (RSML), are suitable for specification of
software for embedded systems. The languages are
relatively easy to use, allow automated verification
of properties such as completeness and consistency,
and support execution and dynamic evaluation of
the specifications. However, the support to rigor-
ously specify and analyze the communication between
physically distinct components in a system is cur-
rently not well supported in any of the approaches.

We know that the interfaces between the software
and the embedding environment are a major source
of costly errors. For example, Lutz reported that 20%
- 35% of the safety related errors discovered during
integration and system testing of two spacecraft were
related to the interfaces between the software and the
embedding hardware.

In this paper we introduce a formal approach to the
specification of system level inter-component commu-
nication and show how this formalism can be used to
prove safety constraints and a limited notion of live-
ness constraints. The interface definitions and the
constraints are translated to PVS (Prototype Ver-
ification System) proof obligations, and the proofs
of compliance with the constraints are performed in
the PVS domain. To demonstrate the feasibility of
the approach we have implemented a prototype tool
and used the tool to prove some desirable properties
of the inter-component communication of an avionics
system.

*This work has been partially supported by NSF grants
CCR-9624324 and CCR-9615088, and University of Minnesota
Grant in Aid of Research 1003-521-5965.

1 Introduction

Writing and validating software requirements for em-
bedded systems present particularly difficult prob-
lems, for example, the software is required to interact
with a variety of analog and digital components in its
environment, the software must be able to detect and
recover from error conditions in the environment, and
the software is often subject to rigorous safety and
performance constraints.

Languages based on hierarchical finite state ma-
chines, for instance, Statecharts [9, 10, 11], SCR
(Software Cost Reduction) [15, 17], and the Require-
ments State Machine Language (RSML) [20], are
powerful modeling languages suitable for specifica-
tion of software for these types of systems. The lan-
guages are relatively easy to use, allow automated
verification of properties such as completeness and
consistency, and support some execution and dy-
namic evaluation of the specifications [7, 8, 11, 14,
15, 17, 20]. However, the support for rigorous specifi-
cation and analysis of the communication between
physically distinct components in a system is cur-
rently not well supported in any of the approaches.

We know that the interfaces between the software
and the embedding environment are a major source
of costly errors. For example, Lutz reported that 20%
- 35% of the safety related errors discovered during
integration and system testing of two spacecraft were
related to the interfaces between the software and the
embedding hardware [22, 23]. The problems often in-
volve, for example, misunderstandings about how the
hardware operates, failure to detect and respond to
inputs outside the normal operating regime, and fail-
ure to prevent undesirable outputs from being gener-
ated [18, 19, 22, 23, 24]. Thus, it is imperative that
a requirements specification for an embedded soft-
ware system rigorously captures the interfaces and

115

the communication between the software and its em-
bedding environment.

The specification of high-level inter-component
communication poses many interesting challenges.
Since the components may represent software, dig-
ital hardware components, or analog hardware com-
ponents, the interface descriptions must be able to
capture, for example, expected arrival rate, expected
minimum and maximum values, and the unit the
value represents. Furthermore, a specification lan-
guage should support encapsulation of communica-
tion specific aspects of a model. Encapsulation in
this context serves two purposes, (1) it helps shield
the rest of the model from the inevitable changes in
the embedding system and (2) it captures commu-
nication related properties in one place for ease of
inspection and ease of analysis.

In this paper, we introduce a formal approach
to the specification of system level inter-component
communication and show how this formalism can be
used to prove certain types of safety and liveness con-
straints related to the communication. The formal-
ism is influenced by our previous experiences with
using RSML to capture the requirements of a large
avionics system [20]. We encapsulate information
about the physical properties of the communication
in an interface specification, for example, properties
such as timing assumptions, and encapsulate the def-
inition of how incoming and outgoing messages are
treated in communication handlers associated with
the interfaces, for instance, under which conditions
we are allowed to generate a specific output.

The formality of the specification allows us to au-
tomatically verify certain types of communication re-
lated constraints. Since many of the properties re-
lated to communication are encapsulated in the in-
terface definitions, we attempt to prove that the con-
straints are satisfied by only considering the infor-
mation in the interface definitions. This approach
greatly simplifies the proofs of safety constraints and
simple liveness constraints in complex state-based
models.

The interface definitions and the constraints are
translated to PVS [6, 25, 26] proof obligations and
the proofs of compliance with the constraints are per-
formed in the PVS domain. To demonstrate the fea-
sibility of the approach we have implemented a pro-
totype tool and used the tool to prove some desirable
properties of the inter-component communication of
an avionics system called TCAS II. TCAS II is an
airborne, collision-avoidance system required on all
commercial aircraft carrying more than 30 passengers
through U.S. airspace.

1.1 Previous and Related Work

Both SCR and RSML allow a specification to be auto-
matically checked for consistency (there are no con-
flicting requirements) and a notion of completeness
(all possible input scenarios are handled by the spec-
ification) [14, 15]). Although this analysis has been
used to detect problems in large specifications, the
analysis procedures are rather limited. For exam-
ple, the procedures used to determine if large Boolean
formulas are mutually exclusive do not interpret the
terms in the formula and, thus, may generate large
numbers of spurious error reports. To overcome such
problems, many approaches to static analysis en-
force restrictions on the modeling language to facili-
tate accurate analysis, such as restricting variables to
Boolean [4, 5] or enumerated types [16]. Recently, we
have addressed this problem in RSML by using PVS
for the analysis and in that way enable interpreta-
tion of all terms in the Boolean expressions, includ-
ing terms using linear and non-linear arithmetic. In
our work we want to avoid enforcing unnecessary con-
fining restrictions on our modeling language. RSML
was successfully used to model a complex avionics
system [20] and our experience from that effort con-
vinced us that enforcing restrictions, such as the re-
strictions mentioned above, will limit the usability of
the modeling language to a point where practitioners
will find the language too restrictive to use.

Nevertheless, the approaches discussed above only
address the issues of completeness and consistency
in state-based models. To assure that more com-
plex properties hold in a specification, more power-
ful analysis approaches are needed. Several groups
have attempted to apply model checking techniques
to RSML and SCR.

Atlee et al. reported success with applying the
SMYV model checker to SCR style specifications [3, 2].
In a similar effort, Anderson et al. have applied the
SMYV model checker to a part of the TCAS II RSML
specification [1]. Both efforts, however, either limit
the analysis to models only containing enumerated
input and output variables or limit the analysis to
subsets of the model not involving, for example, arith-
metic expressions.

In this investigation we take a different approach
to analysis. We encapsulate some behavior related to
communication in the input and output interface defi-
nitions, define assertions we are interested in verifying
in an easy to read notation, and automatically gen-
erate proof obligations for PVS. If the specification
is properly structured, the assertions can be proven
by only considering the communication specifications
and we can disregard the rest of the model.

116

This approach to enforcement of constraints is not
unique to our work. Leveson et al. discussed the use
of a safety kernel to enforce safety policies in safety
critical systems [21]. The kernel centralizes the en-
forcement of safety policies and detection/recovery
of safety violation in one small easily verifiable com-
ponent. The notion of safety kernels responsible
for policy enforcement has been further discussed by
Wika and Knight [29, 30]. These approaches, how-
ever, mainly address the design and implementation
stages of development and do not discuss verifica-
tion of safety properties in the high-level specification
stage.

Rushby has provided a detailed and formal discus-
sion of the suitability of a kernel approach for safety
enforcement [27]. He concluded that a kernel archi-
tecture is most suited to enforce negative properties,
for example, that certain actions are not taken in
some situations. A kernel approach is more limited
when it comes to enforcing positive properties, for
instance, that an action is always performed under
certain conditions. The work presented in this paper
uses the communication definitions as a simple ker-
nel architecture and is largely inspired by Rushby’s
discussion.

Our approach is built on our previous work using
PVS to prove consistency and completeness in RSML
specifications [13]. In that project we developed a
tool that automatically generates PVS proof obliga-
tions for the completeness and consistency criteria in
RSML. In the project described in this paper, we have
extended our tool to accept assertions related to the
communication with the external world and to gen-
erate proof obligations to verify that the assertions
hold in the RSML specification. These assertions can
express both safety constraints, for example, that a
certain output can never be produced under certain
conditions, and simple liveness properties, such as,
that a certain input will always lead to a shutdown
event.

The paper is organized as follows. The next section
provides an overview of RSML. Section 3 presents our
approach to system-level inter-component communi-
cation and Section 4 outlines how safety and sim-
ple liveness constraints can be expressed and verified.
Section 5 illustrates how we generate PVS proof obli-
gations from the RSML specification and from the
constraints. Section 6 provides a summary and con-
clusions.

2 RSML Overview

RSML was developed as a requirements specification
language specifically for embedded systems. The lan-
guage is based on hierarchical finite state machines
and is in many ways similar to David Harel’s Stat-
echarts; for example, RSML supports parallelism,
hierarchies, and guarded transitions borrowed from
Statecharts (Figure 1) [9, 12].

I Controller |

(Parallel-1

Paralle]-2

ylc6)/-

x[c2Vy

x[clly

SuperState-1 yIeS)-
x[c3)y

x[c4)ly

Figure 1: An example of an hierarchical state ma-
chine.

T
'
1
1
'
'
[}
1
1
1
1
l
1
1
1
1
1
1
1

J/

One of the main design goals of RSML was read-
ability and understandability by non computer pro-
fessionals such as, in our case, pilots, air frame man-
ufacturers, and FAA representatives. During the
TCAS project, we discovered that the guarding con-
ditions required to accurately capture the require-
ments were often complex. The prepositional logic
notation traditionally used to define these conditions
did not scale well to complex expressions and, thus,
quickly became unreadable. To overcome this prob-
lem, we introduced a tabular notation for defining
the guarding conditions (Figure 2). We call these
tables AND/OR tables. The tables are read column-
wise and were found to be very readable. To further
increase the readability of the specification, we intro-
duced many other syntactic conventions in RSML; for
example, we allow expressions used in the predicates
to be defined as mathematical functions (e.g., Other-
Tracked-Relative-Alt-Rater.o46), and familiar and fre-
quently used conditions to be defined as macros (e.g.,
100-Ft-Crossingm.195)!. A macro is simply a named
AND/OR table defined elsewhere in the document. A
detailed description of the full notation can be found
in [20].

1The subscript is used to indicate the type of an identifier
(f for functions, m for macros, and v for variables) and gives
the page in the TCAS II requirements document where the
identifier is defined.

117

Transition(s): |ESL-4|— |ESL-2|
Location: Own-Aircraft > Effective-SLs.30

Trigger Event: Auto-SL-Evaluated-Evente.279
Condition:

Auto-SLg.30 in state ASL-2

Auto-SLg.30 in one of {ASL-2,ASL-3,ASL-4,ASL-5,ASL-6,ASL-7}

Oz

Lowest-Grounds.o4; = 2

Mode-Selector = one of {TA/RA,TA-O

nly,374’5:6,7}

Mode-Selectory.34 = TA-Only

Output Action: Effective-SL-Evaluated-Evente.279

Figure 2: A transition definition from TCAS II with the guarding condition expressed as an AND/OR table.

(=]

|TCAS I Altioseter
e——1
Moede Selector
IM l
J At Duts Comp.|
—

Figure 3: The components and channels in an avion-
ics system.

In RSML we view a system as a collection of physi-
cally distinct components communicating over unidi-
rectional communication channels. The components
represent physically separate pieces of the system, for
example, a software controller, sensors and actuators
(analog or digital), and physical processes. A graph-
ical representation (using the RSML notation) of a
collection of system components and communication
channels can be seen in Figure 3. We define the be-
havior of the components in the system using the
state machines discussed above. The same language
can be used either to capture the required behavior
of a component, for example, the TCAS component,
or it can be used to model assumed behavior of com-
ponents, such as, altimeters and display units com-

118

municating with the software.

The components are connected to the channels
through interfaces and can send messages over the
channels. A message is a collection of fields holding
the atomic pieces of information communicated be-
tween the components.

In the next section we provide an overview of the
communication mechanism we are using in in this
investigation.

3 Communication Model

In our formal definition of the RSML communica-
tion mechanisms we use a layered approach. We use
Alan Shaw’s Communicating Real-Time State Ma-
chines [28] to define the semantics of a collection of
low-level RSML communication primitives. We then
provide a high-level notation that supports the en-
capsulation of the inter-component communication in
interface specifications. Due to space constraints, we
cannot included the full definition of all primitives;
we are limited to showing how interrupt driven com-
munication is defined.

3.1 Low-Level Foundation

Shaw’s notation is based on communicating finite
state machines. Transitions in the state machines are
defined as guarded commands; the guard is a Boolean
expression and the command is an IO event (send or
receive data) or an internal command (variable as-
signment or computation, see Figure 4). The guarded
commands and synchronous communication mecha-
nism are simplified versions of CSP. The communi-

expr < 56> Temp(expr)!

true—>Temp(x)?

e
<o

Figure 4: Synchronous communication example.

cation occurs through channels between components.
The channels are considered perfect (no loss and no
propagation delay) and model 1-1 communication be-
tween two state machines. The guarded commands
used to control the state transitions have the syntax

(guard) — (command)

where (guard) is a Boolean expression and (command)
can be an input, output, or internal command. A
transition is taken if the guard evaluates to true and
the command can be executed. The (command) may
be coupled to a time-limit. The time-limit is ex-
pressed as (command)|(t;, 2], meaning that the com-
mand must be.performed at the earliest ¢; time units
after it was enabled and at the latest ¢, units after it
was enabled. Input and output are synchronous and
modeled directly after CSP. An input command has
the syntax:

(channel-name)({target))?

where (channel-name) is a channel and (target) is a
list of input variables that is compatible with the
fields in the message passed over the channel. Output
has the syntax:

(channel-name)({message-components))!

An IO event can occur only when the names of
the communication channels match and the mes-
sage components are compatible with the variable(s)
in the target. For example, M; sends an out-
put Temp(expr)! and M, issues an input command
Temp(z)? (see Figure 4). This communication is pos-
sible if z and expr are of the same type. Note that
any of the machines may have to wait until communi-
cation is possible. The result of the IO is equivalent
to z := expr in the input machine M.

119

Relationship to Hierarchical State Machines:
RSML has a trigger[condition]/action defining the se-
mantics of the transitions (as described in Section 2).
The guarded command notation in Shaw’s model can
be used to model the trigger/condition]/action seman-
tics. The events can be viewed as Boolean variables,
and the trigger[condition]/action transition predicate
rewritten as (trigger A condition) — action in Shaw’s
notation (assuming that we always can perform the
action). Thus, we can use the well understood com-
munication mechanisms from Shaw and CSP to define
the semantics of the directed inter-component com-
munication in RSML.

Inter-Component Communication in RSML:
Two basic types of communication are commonly en-
countered in physical systems. First, asynchronous
communication with a non-blocking send and no
buffering. Second, asynchronous communication
with non-blocking send but with the information be-
ing persistent on the channel. That is, the sender can
send data at any time, the data is buffered (buffer
size one), and the receiver can read the data from
the buffer at any time. With these two basic com-
munication mechanisms we can implement any other
communication scheme we may be interested in, for
example, stimulus response. This paper is limited to
the discussion of the first communication mechanism.

In RSML, we are using two primitives to model
non-persistent (or interrupt driven) communication;
SEND({(channel), (message)) and RECEIVE((channel),
(message)). In terms of RSML’s and Statecharts’
trigger-action semantics, SEND is an action that sends
the message (message) over the channel (channel).
RECEIVE is a trigger event that occurs when the mes-
sage (message) is received over the channel. The use
of these two primitives is illustrated in Figure 5. The
behavior of the SEND-RECEIVE pair is defined using
Shaw’s formalism (Figure 6). The constant d defines
how long the message is available on the channel and
can be arbitrarily defined depending on the system
being modeled.

3.2 Readable Communication Specifi-
cations ‘

The RSML communication primitives introduced in
the previous section, together with the other con-
structs in RSML, are adequate to fully model system
level inter-component communication. Indiscrimi-
nate use of the communication primitives, however,
may lead to unstructured and difficult to understand
models. A state-based model that has its communi-

trigger [guard) SEND(Channel, Message)
Sender

RECEIVE(Channel, Message) [guard-2]/ action
Receiver

Figure 5: The SEND-RECEIVE action-event pair.

Inw—b SEN'D-Ch:meI(Masase)’ -

(Input State Machine Input State Machine }
‘_for Channcl-A - for Channel-B o

Main RSML
specification modeling
the behavior of the
control software

Own-Aircraft

- Gther Arciafii 30] .

Gt Siaid Mackine
_for Display-Channel)

Figure 7: Dedicated communication state machines
shield the RSML specification.

Racavr,r 2ge)'(0, d)
Channel

mue-» [ded

trigger guard-> SEND-Channel(Message)!

o]

Sender

guard-2-» RECEIVE-Channel(Message)? : action

Receiver

Figure 6: SEND-RECEIVE formally modeled using
Shaw’s notation.

cations with the environment distributed throughout
the model can be very difficult to understand and
maintain. Thus, the communication with the envi-
ronment should be encapsulated in well defined com-
munication modules within each component. For ex-
ample, in TCAS II, all communication with the RA-
Display should be confined to a small state machine
dedicated to this task. By encapsulating the commu-
nication in dedicated state machines, the main parts
of an RSML specification will be shielded from the in-
evitable changes in the embedding environment (Fig-
ure 7).

To facilitate ease of specification and encapsula-
tion we supply a high-level language based on our
communication primitives. As a high-level interface
description language we chose to use simple textual
forms (Figure 8). Leveson et al. successfully used
a similar approach when specifying the communica-
tion mechanisms for TCAS II [20]. The definitions in
this paper are an extension and refinement of their
approach.

3.3 Send-Receive Communication

The interface definition in Figure 8 is adopted from
TCAS II and defines how the TCAS box communi-
cates with the pilot’s display.

Interface definitions consist of two parts, (1) a
physical interface definition that captures properties
related to the physical aspects of the communication,
for example, the channel name and simple timing as-
sumptions, and (2) a collection of handlers that de-
termine under which conditions we can send/receive
messages over this channel (the example in the figure
only has one handler, the example will be extended
to three handlers later in the paper). The physical
interface definition is used to assure that components
connected together have compatible properties, for
example, that the expected arrival rate at the RE-
CEIVE side is greater than or equal to the expected
send rate at the SEND side.

Our interface definition is an abstraction of a sim-
ple state machine using the basic RSML communi-
cation primitives. Figure 9 shows how the textual
definition in Figure 8 is defined with a state machine.
Naturally, the state machine could be directly used
to specify the inter-component communication. But,
since the state machine is very simple and only adds
visual noise to the graphical RSML model, we have
chosen to use a purely textual notation to abstract
away the simple state machines defining the commu-
nication. Also, the textual notation forces encapsula-
tion of all communication information in the textual
interface definitions.

The output interface in Figure 8 is interpreted as
follows. When a state machine in the main part of the
specification generates the interface’s trigger event
and the handler guarding condition is satisfied, the
output action in the handler is performed. In this ex-

120

Output Interface: Display-Unit-Interface

Channel: Display-Channel

Trigger: Send-Traffic-Eventli]
Max Separation: 1.2 second
Min Separation: 0.8 second

Handler-1
Condition:
For all j in {1..30}:

A LE]

Traffic-Display-Status|i

N

in state Waiting-To-Send

D | Traffic-Display-Status

j

in state Waiting-To-Send

Traffic-Score(Other-Aj

rcraft(i]) > Traffic-Score(Other-Aircraft[j])

Action: SEND(Advisory-Codeli])

Figure 8: Original definition of the communication with the pilot’s display.

Ve

Display-Unit-Interface

_Send-Traffic-Event[i] [guard-1}/
SEND(Display-Channel, Advisory-Code[i]
J

Figure 9: Definition of the communication with the
pilot display using an RSML state machine.

ample taken from TCAS II, the state machine model
was required to model 30 intruding aircraft (mod-
eled with state machines named Other-Aircraft). The
model of each Other-Aircraft contains a state ma-
chine called Traffic-Display-Status. When TCAS has
detected an intruder and has determined that the pi-
lot needs to be notified, the state machine Traffic-
Display-Status associated with that intruder will en-
ter the state Waiting-To-Send. This indicates that
TCAS is ready to send an advisory regarding this
particular intruder to the pilot’s display?. If TCAS
tracks several intruders and needs to notify the pilot
about more than one intruder (more than on Other-

2 An advisory is a notification to the pilot, for example, if
the intruder is very close a resolution advisory will be displayed

121

Aircraft model is in state Waiting-To-Send), the in-
truder model with the highest priority (Traffic-Score)
takes precedence. The advisory relating to an in-
truder is contained in the variable Advisory-Code.
The communication handler in Figure 8 is parame-
terized. Any Other-Aircraft model can generate a
trigger event for this handler. The handler will sim-
ply be instantiated with the index of that intruder
(the index is indicated with the 7 in the definition).
Thus, the interface in Figure 8 tells us that Other-
Aircraft[i] can only send an advisory to the pilot if
there are no Other-Aircraft models ready to send (col-
umn 1) or there are no Other-Aircraft models with a
higher traffic score (column 2).

4 Constraints and Constraint
Verification

Since all communication is encapsulated in the inter-
faces, the guarding condition in a handler is effec-
tively a precondition for the handler’s communica-
tion to take place. This encapsulation acts as a sim-
ple kernel architecture; through these preconditions
we can assure that no undesired outputs leave our
model and that no damaging inputs enter our model.
The formality of the communication definition allows
us to (1) assure that the input and output defini-
tions are consistently and completely defined and (2)
prove that communication related safety assertions
and simple liveness assertions hold in the model.

4.1 Completeness and Consistency

In a previous investigation, we defined a collection of
analysis procedures that assures that an RSML spec-
ification is complete and consistent [14]. The notion
of completeness and consistency extends to the inter-
face definitions. In this paper it suffices to state the
completeness and consistency rules informally:

1. Within an interface definition, every pair of han-
dlers must have mutually exclusive guarding con-
ditions; exactly one handler can be used at any
time.

. The logical OR of the guarding conditions on all
handlers within an interface definition must form
a tautology; if an input arrives on a channel, it
is always defined how this input will be handled

Analysis procedures assuring that the criteria are sat-
isfied are straightforward to automate: the guarding
conditions on any two distinct handlers must be con-
tradictory and the disjunction of the guarding condi-
tions on the handlers within each interface must form
a tautology. Clearly, the interface in Figure 8 is in-
complete since it only handles the case when we are
actually allowed to send an advisory. On the other
hand, the interface is by definition consistent since
there is only one handler. A refined interface defini-
tion that is both complete and consistent can be seen
in Figure 12. Our tool automatically generates the
proof obligatiens for completeness and consistency.
This, however, is not the focus of the paper and the
interested reader must be referred to [13, 14] for a
rigorous treatment of this topic.

4.2 Safety and Liveness Verification

In TCAS, a safety constraint may be that we cannot
remove a Resolution-Advisory from the pilot’s display
as long at the intruder that caused the advisory to be
generated is declared to be a Threat (Other-Aircraft
in state Threat)3. An intruding aircraft is declared
to be a threat when a near mid air collision (NMAC)
is considered imminent. We may, however, display a
Resolution-Advisory against an intruder that is not
a threat. An example of such a situation would be
when a resolution advisory has only been displayed
for a short time, the intruder passes and is no longer
considered a threat, but we want to keep the advisory
for a few more seconds to provide a sense of continuity
to the pilot.

The safety constraint above can be formalized as in
Figure 10. Informally, the constraint states that if we

3Note that, although a reasonable constraint, this con-
straint was created for illustration only.

122

Output Invariant:

The following output: Advisory-Code]i]
can only be sent if
Condition:

1‘% Other-Aircraft(i] in state Threat

D | Advisory-Code[i] = Resolution-Advisory

OR
EREN

Figure 10: Safety constraint limiting when we can
remove a resolution advisory from the pilot’s display.

attempt to output an advisory regarding an intruder
that is a threat to our own aircraft, that advisory
must be a resolution advisory. If all interactions with
the environment are encapsulated in the interfaces,
we will be able to verify constraints of this type by
only considering the interface specifications.

The verification approach progresses in two simple
steps. First, we determine which handlers that can
output the variable we are interested in. Second, we
show that the guarding condition (g) in those han-
dlers imply the constraint (c), that is, that (g = ¢).

A similar approach can be used to prove simple
liveness constraints. For example, if a certain input
arrives and its value is outside the expected bound-
aries, we may always want to initiate a system shut-
down or some recovery procedure. An example of
a liveness constraint derived from TCAS II can be
seen in Figure 11. All aircraft are supposed to have
a unique transponder identification number known
as the Mode-S-Address. The address is assigned
by a central regulatory agency before an aircraft is
taken into operation. Unfortunately, some aircraft,
for example, prototypes in test flight, may not have
a proper address and fly with the default address as-
signed to the transponder by the manufacturer. This
default address is commonly all zeros or all ones (0
or MaxID). If such an aircraft is detected, it should
always receive special treatment. The invariant in
Figure 11 captures this simple liveness property; if
TCAS receives an invalid Mode-S-Address, it will al-
ways generate an exception event. This is an ad-
mittedly weak assertion, but we found places in the
TCAS 1II specification where such assertions would
have been helpful. In fact, failure to properly detect
and handle invalid Mode-S-Addresses was a problem
with early TCAS II implementations.

Verification of liveness is similar to the verification
of the safety constraints discussed above. In this case,
however, we want to show that all handlers that have

Input Invariant:

The following input: Mode-S-Addressi]
when
Condition:

A OR
N Other-Mode-S-Address|i| = 0 -]
D [Other-Mode-S-Address|i] = MaxID | | - |

always leads to:
Action: Invalid-Intruder-ID-Event

Figure 11: Safety constraint indicating that when we
receive an invalid Mode-S-Address we must always
raise an exception.

Mode-S-Address as an input and have a guarding con-
dition g that is implied by the constraint ¢ always
generate the Invalid-Intruder-ID-Event as an action
(c=9)

To evaluate our approach, we have augmented an
existing execution environment and analysis tool for
RSML with the capability to take communication re-
lated safety and liveness assertions as input. The
tool generates proof obligations based on the rules
discussed in this section. We generate proof obliga-
tions in the PVS specification language and use the
PVS theorem prover to perform the proofs. The next
section gives an example of the translation approach.

5 Generating Proof Obliga-
tions for PVS

The Prototype Verification System (PVS) is a veri-
fication system that provides an interactive environ-
ment for the development and analysis of formal spec-
ifications [25, 26]. PVS consists of a specification lan-
guage, a parser, a type-checker, an interactive theo-
rem prover, and various browsing tools.

To illustrate our approach, consider the interface
definition in Figure 8 and the assertion in Figure 10.
Clearly, we cannot prove the assertion from the infor-
mation provided in this interface specification. Fur-
thermore, as mentioned above, the interface is incom-
plete. Figure 12 shows the same interface extended
to handle the normal case when we are allowed to
send an advisory, the case where we are not allowed
to send an advisory, and the case where we have a
safety violation. The rest of this section illustrates
how we prove that this interface complies with the
assertion.

Our tool generates a PVS theory for each handler

123

and assertion in an RSML specification. We do this
in a two stage process. First, we define each predicate
in the AND/OR table as a predicate in the PVS spec-
ification language?. Second, a predicate representing
the full guarding condition (or assertion) is built from
the individual predicates defined in the first stage. In
PVS, the assertion in Figure 10 would be defined by
the theory shown in Figure 13. The constants in the
system are defined as a separate theory and imported
to the theory defining the assertion (or handler).

Since we are interested in proving that an
Advisory-Code[i] with the value Resolution-Advisory
can only be generated under certain circumstances,
our analysis algorithm will identify Handler-1 in Fig-
ure 12 and generate the PVS theory in Figure 14.

The actual proof obligations are generated based
on the criteria described in the previous section. Fig-
ure 15 shows the proof obligation for this example.
In this case we want to show that the precondi-
tion (guarding condition) for the communication im-
plies that the assertion is true (Figure 15). PVS
proved this property automatically with one prede-
fined strategy.

6 Summary and Conclusion

In this paper we discussed a formal approach to the
specification of inter-component communication in
RSML specifications. The approach is based on com-
municating finite state machines. The formalism al-
lows encapsulation of communication related prop-
erties in well defined interface specifications. The
encapsulation enables us to use the interface speci-
fications as simple safety kernels and enforce certain
safety and liveness constraints in these kernels

Furthermore, we described how safety and liveness
constraints related to inter-component communica-
tion can be formalized using a simple and easy to
understand constraint language. To formally verify
that the constraints are satisfied in an RSML model,
we attempt to prove that the constraints are satisfied
by only looking at the interface specifications. If the
constraints are enforced in the interface definitions,
the proofs are relatively small and easy to perform.
If we did not encapsulate the communication related
properties in the interfaces and instead had the com-
munication distributed throughout the model, veri-
fication of the constraints could be overwhelmingly
complex. We illustrated the approach with an exam-
ple from TCAS II.

To evaluate the potential of the approach, we

4 A predicate in PVS is a function with return type Boolean.

Output Interface: Display-Unit-Interface

Channel: Display-Channel

Trigger: Send-Traffic-Event/[i]
Max Separation: 1.2 second
Min Separation: 0.8 second

Handler-1
Condition:
For all j in {1..30}:

1#]

Traffic-Display-Status(i] in state Waiting-To-Send
Traffic-Display-Status|j] in state Waiting-To-Send
Traffic-Score(Other-Aircraft(i]) > Traffic-Score(Other-Aircraft|j])
Other-Aircraft[i] in state Threat

Advisory-Code[i] = Resolution-Advisory

Action: SEND(Advisory-Codel[i])

Oz

EEREEES
BEERER
EECHRER

HEREEE

Handler-2
Condition:
Exists at least one j in {1..30}:

1#]

Traffic-Display-Status|i| in state Waiting-To-Send
Traflic-Display-Status|j] in state Waiting-To-Send
Traffic-Score(Other-Aircrafti]) > Traffic-Score(Other-Aircraft(j])
Other-Aircraft[i] in state Threat

1 Advisory-Code[i] = Resolution-Advisory

o=z

EREREEN
BERREE
BEEEER

HEBEEE
CEEREEE

EHEEER

Action: None

Handler-3

Condition:

J‘% Other-Aircraft|i] in state Threat

D | Advisory-Code[i] = Resolution-Advisory

Action: Assertion-Violation-Event

Figure 12: Modified definition of the communication with the TCAS display. This description is complete,
consistent, and enforces the assertion in Figure 10

124

% Definition of the safety invariant 1 for the %

% output variable Advisory-Codel[i]

Output_Invariant: THEORY

BEGIN

IMPORTING TypeDefs

AdvisoryCode: VAR AdvisoryCodeType
OtherAircraft: VAR OtherAircraftType
i: VAR i_type

predi?(0therAircraft, i): bool = Threat?(OtherAircraft(i))
pred27?(AdvisoryCode, i): bool = ResolutionAdvisory?(AdvisoryCode(i))
OutputInvariant?(AdvisoryCode, OtherAircraft, i): bool =

(NOT pred1?(OtherAircraft, i)

OR (predi?(OtherAircraft, i) & pred2?(AdvisoryCode, i)))

END Output_Invariant

Figure 13: A PVS theory for the safety assertion in Figure 10.

have looked at the interfaces and possible safety con-
straints in TCAS II. From this limited study we iden-
tified several cases in TCAS II (two of which are men-
tioned in this paper) where the capability to capture
and prove simple communication related assertions
would have been helpful.

Although we believe the approach holds great po-
tential, there are several questions that must be ad-
dressed. First, a more thorough investigation is
needed to determine how useful the assertions we are
capable of expressing really are. As mentioned above,
our experience with TCAS II indicate that they are
quite useful, but a more thorough case study is clearly
needed. Second, since the assertions must be enforced
in the interface definitions, the interface definitions
may become unnecessarily complex. We do not want
to sacrifice readability, clarity, and ease of use of the
interface definitions for the sole purpose of verifica-
tion. The effect of encapsulation of communication
constraints in the interfaces is currently not clear and,
again, further case studies are needed.

In summary, we believe the verification approach
outli<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>