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This paper presents an operational embedding of Differential dynamic logic in the Prototype Verifi-
cation System (PVS), for the formal verification of hybrid systems. Hybrid systems contain contin-
uously evolving and discretely evolving components, and arise in many safety- and mission-critical
applications. Differential dynamic logic (dL) is a framework for formally specifying and reasoning
about hybrid programs, where the specification allows modeling of hybrid systems, and its proof cal-
culus allows for reasoning about such potentially complex programs. The embedding of dL described
here is an operational embedding, meaning that it leverages the internal logic of PVS, resulting in a
version of dL whose proof calculus is not only formally verified, but is also executable within PVS
itself. This Properly Assured Implementation of Differential Dynamic Logic for Hybrid Program
Verification and Specification, Plaidypvs, supports standard dL style proofs, but further leverages
the capabilities of PVS to allow reasoning beyond the scope of traditional dL.

1 Introduction

Formal reasoning about systems that contain both discrete and continuous dynamics, known as hybrid
systems, has emerged in numerous mission- and safety-critical applications. It is often useful to model
hybrid systems as hybrid programs, where the discrete variables are given assignments similar to tradi-
tional programs, and the continuous variables are defined by a system of differential equations. The boon
of hybrid programs (HPs) is that they can model complex dynamics where the continuous and discrete
dynamics are largely intertwined, but due to their complexity, efficient and effective formal reasoning
about properties of such programs can be a challenge.

Differential dynamic logic (dL), allows specification and reasoning about HPs using a small set of
proof rules [45, 47, 53, 55]. Conceptually dL can be split into two parts: a framework for the logical
specifications of HPs and their properties, and a proof calculus that is a collection of axioms and rules
for the formalized reasoning about these logical specifications. The KeYmaera X1 theorem prover is
a software implementation of dL built up from a small trusted core that assumes the axioms of dL,
[18, 29, 25], with a web-based interface for specification and reasoning of HPs [28]. KeYmaera X has
been used for formal verification of several cyber-physical systems [21, 27, 23, 7, 6, 19, 26, 33].

This paper focuses on embedding dL in the Prototype Verification System (PVS). PVS is a fully
typed functional specification language with an integrated interactive theorem prover based on higher
order logic. The prover interface allows users to reason and prove type conditions and user-specified
lemmas with proof rules and strategies selected by the proof engineer. The main proof rules are built

*Institute at time of contribution.
1KeYmaera X webpage: https://keymaerax.org
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into the core of PVS, while strategies are written in a separate strategy language. Strategies only modify
the PVS sequent by choosing and calling a sequence of proof rules–so that no additional soundness
concerns are introduced by strategies. Users of PVS can use the definitions and lemmas from other PVS
specifications and libraries (as long as a logically sound hierarchy of imports is used) to build on top of
previously completed work. The largest such library, considered the standard library, is NASA’s PVS
Library of Formal Developments, NASAlib 2. NASAlib contains over 35,000 proven lemmas spanning
across 50 folders related to a wide range of topics in mathematics, logic, and computer science.

The primary contribution of this work is a Properly Assured Implementation of Differential Dynamic
Logic for Hybrid Program Verification and Specification, Plaidypvs3. Specifically, the contributions of
Plaidypvs are:

1. Specification of dL-style HPs and their properties through an embedding in the PVS specification
language.

2. Verification of the deduction rules of dL using the logical and mathematical scaffolding in PVS.

3. Implementation of these rules through the strategy language of PVS, resulting in a formally veri-
fied and interactive implementation of the proof calculus of dL within PVS.

While reasoning about HPs using a formally verified implementation of dL is already an achieve-
ment, the integration in PVS brings additional opportunities for extending the functionality of dL beyond
what is available in a stand-alone dL system, like KeYmaera X. For example, new or existing functions
and definitions in PVS can be used inside of the dL framework. This includes trigonometric and other
transcendental functions already specified in NASAlib, as well as the corresponding properties concern-
ing their derivatives and integrals. In addition, meta-reasoning about HPs and their properties can be
performed in PVS using the dL embedding. Examples include specifying HPs with a parametric number
of variables, which can be used to reason about situations with an unknown but finite number of actors;
and reasoning about entire classes of HPs or relationships between HPs, specified using the type and
subtype system in PVS.

The paper proceeds as follows. Section 2 details the formal development of HP specifications in
Plaidypvs, while Section 3 gives an overview of the formal verification effort to prove dL in PVS, as well
the implementation of the proof calculus of dL in the PVS prover interface. Section 4 shows an example
of utilizing the features of Plaidypvs beyond the capabilities of dL alone, while related work is discussed
in 5. Finally, conclusions and future work are discussed in 6.

Threaded through the paper is a simple example of a Dubins curve modeling an aircraft turning and
then proceeding in a straight line, see Figure 1. This path is first defined implicitly as an HP in Example
2.2, with an invariant property specified in Example 2.3, proven in Examples 3.1, 3.2, and 3.3. Finally,
the equivalence between this implicit formulation of the program to its explicit formulation is shown in
Example 4.1, showing the reasoning abilities of Plaidypvs beyond a stand-alone implementation of dL.

2 Specification of hybrid programs

This section describes the syntax, semantics, and logical specifications of HPs developed in Plaidypvs.
Before these are introduced, a few preliminary concepts are needed.

2NASAlib Github https://github.com/nasa/pvslib
3Pronounced Platypus. Link: https://github.com/nasa/pvslib/tree/master/dL

https://github.com/nasa/pvslib
https://github.com/nasa/pvslib/tree/master/dL
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Figure 1: Dubins path modeling an aircraft turning

2.1 Environment, real expressions, Boolean expressions

For an HP, the state of the program at any moment is given by the values of the variables, captured in this
development by an environment type E : [N→ R]. The representation uses de Bruijn indices where the
variables are given as the index to a function, and the value is the function value at the particular index
[12].

With variable states E established, real expressions and Boolean expressions are defined by a shallow
embedding meaning they are characterized by their evaluation functions:

R := [E → R], B := [E → B].

Real expressions are real-valued functions on the environment of variables, for example:

val(i) = λ (e : E ) : e(i), cnst(c) = λ (e : E ) : c,

represent the “value” function that return the ith variable’s value, and the “constant” function that returns
the value c ∈ R regardless of input, respectively. While real expressions can be arbitrary functions,
Plaidypvs recognizes some basic combinations as real expressions. Given r1,r2 ∈ R and r ∈ R≥0 the
following are known to be real expressions:

r1 + r2, r1− r2, r1/r2, r1 · r2,
√

r1, rr
1.

Boolean expressions represent predicates on an environment, and Booleans in Plaidypvs, for exam-
ple:

>>>= λ (e : E ) : True, ⊥⊥⊥= λ (e : E ) : False,

are the Boolean expressions representing “True” and “False”, respectively, using the existing PVS Booleans
True and False. Arbitrary Boolean functions can be specified, but similar to real expressions, the com-
mon propositional logical operators are defined to allow combining Boolean expressions. Given Boolean
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expressions b1,b2 ∈B, the following are all recognized as Boolean expressions:

b1∧∧∧b2, b1∨∨∨b2, b1→→→ b2, b1↔↔↔ b2, ¬¬¬b1.

The use of basic real and Boolean expressions and their combinators assists in some automation
aspects of the system, but the ability for users to define arbitrary custom expressions is one of the unique
features of the Plaidypvs implementation of dL (see Section 4).

Example 2.1 (Environments, Real and Boolean Expressions) For x = 0, y = 1 and c ∈ R≥0, define
the environment e = λ (i : N)0 with x 7→ c/2,y 7→

√
3c/2. The real expressions val(x), val(y), cnst(c),

can be used to define the Boolean expression corresponding to a circle of radius c centered at (0,0):

val(x)2 + val(y)2 = cnst(c)2.

Furthermore

(val(x)2 + val(y)2 = cnst(c)2)(e) = True.

The form of the expressions is similar to the actual implementation in PVS, and highlights the fact that
these are indeed real-valued functions of an environment. However, for ease of presentation, the val and
cnst notation is suppressed in much of the remainder of the paper. The Boolean expression above, for
example, will be presented instead as x2 + y2 = c2.

2.2 Hybrid programs

Hybrid programs are syntactically defined as a datatype H in PVS according to the grammar

α ::= x := ` | x′ = `&P | ?P | x := ∗&qP | α1;α2 | α1∪α2 | α∗1 .

Here, x := ` is a list of elements of N×R where the first entries are unique, intended to represent a
discrete assignment of the variables indexed by these first elements. The expression x′ = ` is another
such list, and P ∈B is a Boolean expression. The differential equation x′ = `&P is meant to symbolize
the continuous evolution of the variables in x′ according to the first order differential equation described
by `, while guaranteeing that the solution satisfies P along the evolution. To reference a variable used in a
discrete assignment or differential equation the notation i∈ x (i∈ x′) will be used, and the analogous real
expression associated with i will be denoted `(i). The expression ?P represents a check of the Boolean
expression P. In x := ∗&qP, qP ∈ [R→B] is a Boolean expression with one free real variable, and the
expression is meant to arbitrarily (discretely) assign the variable x a real value r such that qP(r) holds.
Note that use of the symbol & is distinct from Boolean conjunction, and is used here purely syntactically.
The expression α1;α2 represents sequential execution of the sub-programs, while α1∪α2 symbolizes an
nondeterministic choice between two subprograms. Finally, α∗1 represents repetition of a HP a fixed but
unknown (possibly zero) number of times.

Formally, the function s_rel defines the semantic relation for a hybrid program. For environments
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ei,eo ∈ E , s_rel(α)(ei)(eo) is true exactly when:

∀k : k /∈ x→ eo(k) = ei(k) if α = (x := `),

∧k ∈ x→ eo(k) = `(k)(ei)

∃D : s_rel_diff(D,x′, `,P,ei,eo) if α = (x′ = `&P),
eo = ei∧P(ei) if α =?P,
∃r : eo(x) = r∧Q(r)(ei) if α = (x := ∗&Q),

∃e : s_rel(α1)(ei)(e) if α = α1;α2,

∧s_rel(α2)(e)(eo)

s_rel(α1)(ei)(eo) if α = α1∪α2,

∨s_rel(α2)(ei)(eo)

eo = ei∨ if α = α∗1 .

∃e : s_rel(α1)(ei)(e)
∧s_rel(α)(e)(eo)

The correspondence between the informal description of semantics and the s_rel function is fairly stan-
dard in all cases except the differential equation branch. For differential equations, the domain D is R≥0,
or some closed interval starting at 0, and the semantics is given by the function

s_rel_diff(D,x′, `,P,ei,eo) =∃r,∃! f : D(r)∧ sol?(D,x′, `,ei)( f )∧
eo = e_at_t(x′, `, f ,ei)(r)∧
∀t : (D(t)∧ t ≤ r)

→ P(e_at_t(x′, `, f ,ei)(t)).

Unpacking this further,

e_at_t(x′, `, f ,ei) = λ (r : R)λ ( j : N)

{
ei( j) if j /∈ x′,
f ( j)(r) if j ∈ x′,

is a function that characterizes the environment ei, with the continuously evolving variables x′ replaced
by values from a function f : [Rk→ [R→ R]]. The definition

sol?(D,x′, `,ei)( f ) =∀(i ∈ x′, t ∈ D) :

( f (i))′(t) = `(i)(e_at_t(x′, `, f ,ei)(t))

ensures that f is the solution to the k-dimensional differential equation x′ = ` throughout the domain D.
Note in the definition of s_rel_diff this solution f is further assumed to be unique on the domain D.
Example 2.2 (HP) For x = c, y = 0, and c ∈ R≥0, the HP

((?(x > 0);(x′ =−y,y′ = x,&x≥ 0))∪
(?(x≤ 0);(x′ =−c,y′ = 0)))∗,

represents the dynamics where x and y progress according to the differential equation x′ = −y, y′ = x
when x > 0, but when x≤ 0 the variables progress according to the differential equation x′ =−c, y′ = 0.
Note that the test ? statements determine which branch of ∪ in the HP is applicable, and the domain
x ≥ 0 in the first differential equation prevents the dynamics from continuing when x = 0, forcing the
other branch of the HP to take place. The ∗ allows repetition to happen in order to carry out both
branches of the dynamics.
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2.3 Quantified statements about hybrid programs

Notice that an HP, unlike a traditional deterministic and discrete assignment program, can have poten-
tially many different executions, or runs. This means that given an input environment ei, there may
be infinitely many output environments eo semantically related to it (by repetition, random assignment,
etc.). To reason about these, universal and existential quantifiers over the potentially infinite number of
executions of an HP are denoted by allruns [ · ] and someruns 〈 · 〉 respectively. For α ∈H and P ∈B
[α]P ∈B is defined as

λ (ei : E )∀eo : s_rel(α)(ei)(eo)→ P(eo),

and 〈α〉P is defined as
λ (ei : E )∃eo : s_rel(α)(ei)(eo)∧P(eo).

These say that every (some, respectively) run of the HP α starting at environment ei satisfies P.

Example 2.3 (Allruns) Let α be the HP in Example 2.2, circ(c) = x2 + y2 = c2 and

path(c) = (x > 0→→→ circ(c))∧∧∧ (x≤ 0→→→ y = c).

Then
(x = c∧∧∧ y = 0)→→→ [α]path(c),

is the Boolean expression stating that if the value of x is c and the value of y is 0, then for all runs of the
HP α , the values of x and y stay inside path(c). In other words, x and y stay on the circle of radius c
until x = 0 and then stay on the line y = c.

3 Embedding differential dynamic logic

With the formal specification of hybrid programs established, the embedding of the sequent calculus
of dL in PVS can be discussed. First the dL-sequent will be defined, then a description of the formal
verification process encoding the axioms and rules of dL as lemmas in PVS is provided.

3.1 The dL-sequent

The dL-sequent in PVS is defined by a function `, which takes in two lists of Boolean expressions Γ and
∆, known as the dL-antecedent and dL-consequent respectively

Γ ` ∆,

and returns the Boolean value

∀e ∈ E ,
∧

Γ(e) =⇒
∨

∆(e),

where =⇒ is the PVS implication. Intuitively, this means that the conjunction of the antecedent formulas
implies the disjunction of the consequent formulas.

The dL method for proving a statement about a hybrid program is to use the defined rules of dL to
manipulate (sometimes producing multiple branches) the sequent so that the conjunction of resulting
sequent implies the original. To accomplish this in a formally verified way, each rule of dL is specified
as a PVS lemma, which takes essentially the following form.
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notR
Γ,P ` ∆

Γ ` ¬P,∆

notL
Γ ` P,∆

Γ,¬P ` ∆

andR
Γ ` P,∆ Γ ` Q,∆

Γ ` P∧Q,∆

andL
Γ,P,Q ` ∆

Γ,P∧Q ` ∆

orR
Γ ` P, Q, ∆

Γ ` P∨Q, ∆

orL
Γ, P ` ∆ Γ, Q ` ∆

Γ, P∨Q ` ∆

cut
Γ `C, ∆ Γ,C ` ∆

Γ ` ∆

weakR
Γ ` P,∆ P ` Q

Γ ` Q,∆

impliesR
Γ, P ` Q, ∆

Γ ` P→ Q, ∆

impliesL
Γ ` P, ∆ Γ, Q ` ∆

Γ, P→ Q ` ∆

iffR
Γ,P ` Q,∆ Γ,Q ` P,∆

Γ ` P↔ Q, ∆

iffL
Γ,P∧Q ` ∆ Γ,¬P∧¬Q ` ∆

Γ,P↔ Q ` ∆

falseL
Γ,⊥ ` ∆

trueR
Γ ` >, ∆

axiom
Γ, P ` P, ∆

weakL
P,Γ ` ∆ Q ` P

Γ,Q ` ∆

Figure 2: Propositional dL rules

Lemma <dL-rule-name> For all lists of Boolean expressions Γ,∆, and predicate A on Γ,∆,(
A(Γ,∆)∧

k∧
i=1

Γi ` ∆i

)
=⇒ Γ ` ∆.

In the above specification, A represents a way to ensure that the rule applies to the original sequent.
The sequents {Γi ` ∆i}k

i=1 represent a transformation of the original antecedent and consequent into the
result of applying the rule being specified. For some rules of dL, the specification and proof of these
lemmas are simple (e.g., propositional logic rules). Some can be difficult to specify due to the need to
parse the structure of a hybrid program to identify if a rule applies and to rewrite particular parts for
the rule transformation. Finally, some of the rules are difficult to prove because they rely on applying
mathematics that either is complex or had to be developed in PVS to support this functionality.

With such a lemma proven in PVS, a user can bring the lemma into a proof environment and instanti-
ate each of the expressions needed to use the rule. In order to automate this, these lemmas are developed
into strategies in PVS. These strategies have the ability to parse the current sequent, identify instantia-
tions that apply, hide unneeded formulas, and prove type check conditions that may appear, among other
capabilities. Further batch strategies can employ several of these atomic strategies at once to simplify
the proof process. Some of these rules, including details about their specification, verification, and im-
plementation as strategies in PVS, are discussed below. A Plaidypvs “cheat sheet” is available for users
with the development.4

3.2 Basic logical and structural rules of dL

Many logical rules allow manipulations of the dL-sequent. For example, the rule impliesR allows an
implication in the dL-consequent, P→ Q, to be simplified to P in the dL-antecedent and Q in the dL-
consequent.

4Plaidypvs cheat sheet: https://github.com/nasa/pvslib/tree/master/dL/cheatsheet.pdf

https://github.com/nasa/pvslib/tree/master/dL/cheatsheet.pdf
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existsR
Γ ` p(e), ∆

(any e)
Γ ` ∃x : p(x), ∆

forallL
Γ, p(e) ` ∆

(any e)
Γ, ∀x : p(x) ` ∆

forallR
Γ ` p(y), ∆

(y Skolem symbol)
Γ ` ∀x : p(x),∆

existsL
Γ, p(y) ` ∆

(y Skolem symbol)
Γ, ∃x : p(x) ` ∆

Figure 3: Quantifier dL rules'

&

$

%

existsR
Γ ` p(e), ∆

(any e)
Γ ` ∃x : p(x), ∆

forallL
Γ, p(e) ` ∆

(any e)
Γ, ∀x : p(x) ` ∆

forallR
Γ ` p(y), ∆

(y Skolem symbol)
Γ ` ∀x : p(x),∆

existsL
Γ, p(y) ` ∆

(y Skolem symbol)
Γ, ∃x : p(x) ` ∆

Figure 4: Structural dL rules

impliesR
Γ, P ` Q, ∆

Γ ` P→ Q, ∆.

Here Γ ` P→Q, ∆ is the dL-sequent that impliesR can be applied to, and Γ, P `Q, ∆ is the result. Note
that the standard logical notation being used for impliesR above is for ease of presentation, whereas the
PVS specification of such a rule, generally hidden from a user by a strategy, is closer to that described in
Section 3.1. There are a number of propositional rules in dL similar to impliesR which allow manipu-
lation of the basic logical connectives (∧∧∧, ∨∨∨, ¬¬¬,→→→, ⇐⇐⇐⇒⇒⇒ ) and operators (>>>, ⊥⊥⊥) in the dL-sequent, see
Figure 2. Additionally, there are quantifier rules for Skolemization and instantiation in the dL sequent,
see Figure 3, and there are structural rules that allow expressions to be moved or hidden, see Figure 4.

The proofs of the lemmas for logical and structural rules largely follow from the analogous logical
properties in PVS. Each of the individual rules are implemented as strategies, but the batch strategies are
generally simpler to apply. For example, flatten repeatedly applies propositional rules which disjunc-
tively simplify a dL sequent, separating implications using the impliesR rule, flattening conjunctions in
the antecedent, and flattening disjunctions in the consequent. A list of batch commands in Plaidypvs is
given in Figure 7.

Example 3.1 (dL-sequent example) Attempting to prove the validity of the expression from Example
2.3, the sequent begins as:

` (x = c∧∧∧ y = 0)→→→ [α]path(c).

Invoking the rule flatten to the sequent above applies impliesR and andL, which separates conjunctions
in the antecedent, producing the following sequent:

x = c, y = 0 ` [α]path(c). (1)
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boxd 〈α〉P↔¬ [α]¬P

assignb [x := `]P = SUB(x := `)(P)

assignd 〈x := `〉P = SUB(x := `)(P)

testb [?Q]P = Q→ P

testd 〈?Q〉P = Q∧P

choiceb [α1∪α2]P↔ [α1]P∧ [α2]P

choiced 〈α1∪α2〉P↔ 〈α1〉P∨〈α2〉P
composeb [α1;α2]P↔ [α1] [α2]P

composed 〈α1;α2〉P↔ 〈α1〉〈α2〉P
iterateb [α∗]P = P∧ [α] [α∗]P

iterated 〈α∗〉P = P∨〈α〉〈α∗〉P
anyb [x := ∗&Q(x)]P(x) = ∀x : Q(x)→ P(x)

anyd 〈x := ∗&Q(x)〉P(x) = ∃x : Q(x)∧P(x)

Figure 5: Hybrid program rewrites.

3.3 Hybrid program rewrites and rules

While the rules in Section 3.2 manipulate the logical structure of a dL-sequent, further rules act on the
hybrid program components of such a sequent. Properties given in Figure 5 allow direct rewriting of
hybrid programs. Other rules about hybrid programs in a sequent are given in Figure 6. The majority of
these manipulate the allruns [ · ] or someruns 〈 · 〉 operators, and the proofs were largely concerned with
reasoning about the semantic relation function, s_rel.

In addition to each of these rules becoming strategies, the batch strategy assert uses all of the hybrid
program rewrites in Table 5 to simplify an expression.

There are a few intricacies worth mentioning in the formal verification and implementation of these
rewrites and rules in PVS. In the rewrites assignb and assignd, an allruns or someruns of an assignment
HP is equated to a substitution. Substitution is defined at the environment level, where assign_sub(x :=
`)(e) is the environment such that

assign_sub(x := `)(e)(i) =

{
`(i)(e) if i ∈ x
e(i) if i 6∈ x.

(2)

Substitution of a general Boolean expression is therefore defined

SUB(x := `)(P) = λ (e : E )P(assign_sub(x := `)(e)).

While the definition of substitution above applies to any Boolean expression P and can be reasoned about
by a user of Plaidypvs, the standard level of manipulation in dL is not often at the environment level.
To increase the level of automation, a number of rewrites for reducing expressions containing SUB have
been implemented. This led to formally verifying substitution properties for real expressions, inequalities
of real expressions, and hybrid programs, so that a substitution at the top level of an expression could be
pushed down to the level of val and cnst, where atomic substitutions are applied. The implementation
of these rules required a calculus for reducing the substitution down to atomic expressions, written in
the strategy language of PVS. This allows the assignb and assignd strategies to automatically compute a
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Mb
` P→ Q

Γ ` [α]P→ [α]Q,∆

Md
` P→ Q

Γ ` 〈α〉P→ 〈α〉Q,∆

K
Γ ` [α] (P→ Q),∆

Γ ` [α]P→ [α]Q,∆

loop
Γ ` J,∆ J ` [α]J J ` P

Γ ` [α∗]P,∆

mbR
Γ ` [α]Q,∆ Q ` P

Γ ` [α]P,∆

mbL
Γ, [α]Q ` ∆ P ` Q

Γ, [α]P ` ∆

ghost
Γ ` [y := e]P,∆

fresh?(P)(y)
Γ ` P,∆

Gb
` P

Γ ` [α]P,∆

Gd
` 〈α〉>>> ` P

Γ ` 〈α〉P,∆

VRb
Γ ` P,∆

fresh?(P)(α)
Γ ` [α]P,∆

VRd
` 〈α〉>>> Γ ` P,∆

fresh?(P)(α)
Γ ` 〈α〉P,∆

mdR
Γ ` 〈α〉Q,∆ Q ` P

Γ ` 〈α〉P,∆

mdL
Γ,〈α〉Q ` ∆ P ` Q

Γ,〈α〉P ` ∆

Figure 6: Hybrid program rules.

substitution for any propositional expression composed of equalities and inequalities of polynomial real
expressions. For example the substitution

SUB(x := y,y := 10)(x2 + y2 = 11),

is transformed automatically into
y2 +102 = 11.

The individual steps of this are a number of lemma applications in PVS:

SUB(x := y,y := 10)(x2 + y2 = 11) =
(
SUB_re(x := y,y := 10)(x2 + y2) = SUB_re(x := y,y := 10)(11)

)
=
(
SUB_re(x := y,y := 10)(x2)+SUB_re(x := y,y := 10)(y2) = 11

)
=
(
SUB_re(x := y,y := 10)(x)2 +SUB_re(x := y,y := 10)(y)2 = 11

)
= y2 +102 = 11,

where SUB_re is substitution defined on real expressions r ∈R as:

SUB_re(x := `)(r) = λ (e : E )r(assign_sub(x := `)(e)).

The automated substitution of more general Boolean expressions (for example, a statement of the form
[α]P) is still incomplete in Plaidypvs, and an area of future work.

Another challenge in formal verification occurs in some hybrid program rules. The ghost, VRb, and
Vrd rules require the concept of freshness. A fresh variable y is defined as

fresh?(P)(y) = ∀e ∈ E , r ∈ R, P(e) = P(e with y 7→ r)].

In other words, the value of the Boolean expression P does not depend on the value of the variable y.
Analogous definitions exist to express that a variable is fresh relative to a real expression or a hybrid
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program. Furthermore, an entire hybrid program can be checked for freshness relative to a Boolean
expression

fresh?(P)(α) =



∀k ∈ x fresh?(P)(k) if α = (x := `),

∀k ∈ x′ fresh?(P)(k) if α = (x′ = `&Q),

True if α =?Q,

fresh?(P)(x) if α = (x := ∗&Q),

fresh?(P)(α1)∧ fresh?(P)(α2) if α = α1;α2,

fresh?(P)(α1)∧ fresh?(P)(α2) if α = α1∪α2,

fresh?(P)(α) if α = α∗1 .

(3)

Note that the recursive definition of freshness above ensures the value of P does not change for any run
of the hybrid program α by checking if all the variables potentially changing in α are fresh relative to P.

The need for generation of a fresh variable, as in ghost, requires a mechanism for producing a fresh
variable (i.e., the smallest natural number in a dL-sequent not being used as a variable index), and it also
requires a method for automatically proving freshness of the variable in PVS. This was completed in
the strategy language of PVS that utilizes a number of rewrites related to freshness proven in PVS as
lemmas.

Example 3.2 (dL-sequent example continued) Expanding α in the sequent from Example 3.1, eq. 1
and using loop with J = (path(c)∧ y≥ 0) produces three subgoals,5 one of which is

path(c),y≥ 0 `
[
(?(x > 0);(x′ =−y,y′ = x,&x≥ 0))∪
(?(x≤ 0);(x′ =−c,y′ = 0))

]
path(c)∧ y≥ 0.

Using assert to simplify with hybrid program rewrites and applying propositional simplifications with
the batch command ground, the result is the following two cases:

(x > 0,circ(c),y≥ 0) `
[
x′ =−y,y′ = x,&x≥ 0))

]
path(c)∧ y≥ 0,

(x≤ 0,y = c) `
[
(x′ =−c,y′ = 0)

]
path(c)∧ y≥ 0.

(4)

3.4 Rules for differential equations

The rules for differential equations are given in Figure 8. The differential equation rules required sig-
nificant mathematical underpinnings to be added to PVS for their formal verification. For the imple-
mentation of the dI rule, a calculus to automatically compute the derivative of a Boolean expression P
was necessary. To do this, an embedding of Boolean expressions was developed as a data type, with the
grammar:

b ::= b1∧nqB b2 | b1∨nqB b2 | ¬nqBb1 | relnqB(r1,r2),

where relnqB is of type NQB_rel which is itself an embedding of the inequality operators:

relnqB ::= ≤nqB | ≥nqB | <nqB | >nqB | =nqB | 6=nqB .

5The other two dL-sequents generated can be proven easily. For full details of the examples in this paper, see the PVS
implementation at https://github.com/nasa/pvslib/tree/master/dL/examples

https://github.com/nasa/pvslib/tree/master/dL/examples
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flatten Disjunctively simplifies the dL sequent by applying trueR, falseR, orR, impliesR, notR, axiom,
falseL.

ground Disjunctively and conjunctively simplifies the dL sequent by applying flatten and additional splitting
lemmas andR, orL, and impliesL.

inst Instantiates a universal quantifier in the dL-antecedent by applying forallL or an existential quantifier
in the dL-consequent by applying existsL.

skolem Skolemizes an existential quantifier in dL-antecedent by applying existsR or an universal quantifier in
the dL-consequent by applying forallR.

grind Repeatedly uses ground and skolem, and a number of rewrites related to real expressions. This strat-
egy has the option to use the MetitTarski automatic theorem prover as an outside oracle to discharge
the proof if possible.

assert Repeatedly applies hybrid program rewrites in Figure 5.

Figure 7: Batch dL commands

With this structure, the derivative b′ of a Boolean expression b is defined as:
b′1∧b′2 if b = b1∧nqB b2 or b = b1∨nqB b2

r′1 ≤ r′2 if b = r1 ≤nqB r2 or b = r1 <nqB r2

r′1 ≥ r′2 if b = r1 ≥nqB r2 or b = r1 >nqB r2

r′1 = r′2 if b =
(
r1 =nqB r2

)
or b =

(
r1 6=nqB r2

)
.

In the PVS implementation of this, [x′ := f (x)] (P)′ is computed in a single step, where P is replaced by
a equivalent non-quantified Boolean, and the derivative of any real expression r occurring in P is the real
expression given by:

r′ = ∑
i∈x

∂ ri · `(i).

This is the derivative of the real expression r in terms of the explicit variable that all the variables in x are
a function of. To arrive at this formulation, differentiability and partial differentiability had to be defined
for real expressions as well as the multivariate chain rule.

For the Differential Ghost rule dG, adding an equation to the differential equation x′ = ` required
that the new differential equation x′ = `,y′ = a(x) · y+b(x) had a unique solution. The Picard-Lindelöff
theorem can be used to show that if a and b are continuous on Q, then there is a unique solution to y′ =
a(x) · y+b(x). Given a solution to x′ = ` that is contained in Q, it follows that x′ = `,y′ = a(x) · y+b(x)
has a unique solution. These properties of differential equations, including the Picard-Lindelöff theorem,
were developed in PVS specifically to prove these rules.

Example 3.3 (dL-sequent example continued) Applying dC with C = circ(c) to the first branch of the
proof in Example 3.2, eq. 4 produces two subgoals, the first of which (with expanded circ) is

(x > 0,x2 + y2 = c2,y≥ 0) `
[
x′ =−y,y′ = x,&x≥ 0))

]
(x2 + y2 =c2).

Using dI reduces to two cases:

x≥ 0 ` (2 · x ·−y+2 · y · x = 0)

(x≥ 0,x2 + y2 = c2,y≥ 0) ` x2 + y2 = c2,
(5)
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dinit
Γ,Q ` [x′ = f (x)&Q]P,∆

Γ ` [x′ = f (x)&Q]P,∆

dW
Q ` P

Γ ` [x′ = f (x)&Q]P,∆

dI
Γ,Q ` P,∆ Q ` [x′ := f (x)] (P)′

Γ ` [x′ = f (x)&Q]P,∆

dC
Γ ` [x′ = f (x)&Q]C,∆ Γ ` [x′ = f (x)&(Q∧C)]P,∆

Γ ` [x′ = f (x)&Q]P,∆

dG
Γ ` G, G ` P, Γ ` ∃y [x′ = f (x), y′ = a(x) · y+b(x)&Q]G,∆

fresh?(y)
Γ ` [x′ = f (x)&Q]P,∆

dS
Γ ` ∀t ≥ 0(∀0≤ s≤ t Q(y(s)))→ [x := y(t)]P

Γ ` [x′ = f (x)&Q]P

Figure 8: Differential Equation Rules. For dG, a and b are continuous on Q, and y is fresh relative to
x′ = f (x), Q, a, b, P, Γ and ∆.

both of which can be proven with basic algebraic and logical simplifications included in batch com-
mand grind.

4 Using Plaidypvs

Plaidypvs has the functionality of dL within the PVS environment. Numerous examples of this can
be found in the examples directory of the Plaidypvs library. Figures 9 and 10 illustrate using dL for
specification and verification of hybrid systems in Plaidypvs. However, Plaidypvs is not limited to just
these applications, the embedding allows additional features to be used for formal reasoning of hybrid
programs. For example, the definition of other functions from PVS libraries can be imported into an
Plaidypvs file, and meta-properties about hybrid programs can be specified and proven. The example
below illustrates these points and has been implemented in Plaidypvs.

Example 4.1 (Verified connection to Dubins paths) The following example shows the capability of Plaidypvs
to allow meta reasoning about hybrid programs that other implementations of dL, like KeYmaera X, can-
not perform. An aircraft moving at a constant speed c > 0, with a turn rate of 1 can be modeled by a
Dubins path:

θ
′ = 1,x′ =−csin(θ),y′ = ccos(θ).

Furthermore, it can be shown that the hybrid program β defined as

((?(x≥ 0);(θ ′ = 1,x′ =−csin(θ),y′ = ccos(θ)&x≥ 0))∪
(?(x < 0);(x′ =−c,y′ = 0)))∗,

is equivalent to the hybrid program α defined in Example 2.2, for appropriate initial values. Formally,
this is a property relating the s_rel function associated with each of these programs, namely for environ-
ments ei,eo such that ei(x) = c and ei(y) = 0:

(∃t s_rel(β )(ei with [θ := 0])(eo with [θ := t])) ⇐⇒
s_rel(α)(ei)(eo with [θ := ei(θ)]).
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Figure 9: The specification of Example 2.3 in Plaidypvs.

Note the property above is specified in PVS logical specification since it is a meta property of hybrid
programs, and involves generic hybrid programs rather than particular instances, both features are
unique to Plaidypvs. Thus, for a Boolean expression Q that does not change according to θ :

(x = c,y = 0→ [α]Q) ⇐⇒ (x = c,y = 0,θ = 0→ [β ]Q).

5 Related work

There is a long line of research on the formal verification of hybrid systems. The development of dL
itself ([45, 47, 53, 55]) and its use in formal verification of hybrid systems ([6, 7, 19, 21, 23, 26, 27, 33])
is well-known. Additionally, there has been significant work done in the PVS theorem prover [1, 57],
Event-B [14], and Isabelle/HOL [17, 34, 35, 36, 56, 59, 61, 62] verifying hybrid systems outside of the
dL framework.

The most similar verification effort to the current development is [5], where the authors formally
verified the soundness of dL in Coq and Isabelle. The work in [5] focuses on a full formal verification of
soundness of dL, with the goal of a formally verified prover kernel for KeYmaera X. The result are proof
checkers in Coq and Isabelle for dL proofs. The goal of Plaidypvs is a verified operational embedding of
dL in the theorem prover PVS, allowing specification and reasoning about HPs interactively within PVS.

While the work in [5] proves soundness of most of the proof calculus of dL, the present work focuses
on verifying the proof rules of dL. Particularly, the substitution axiom in dL that allows rules and ax-
ioms to be applied to specifications of HPs in dL is proven in [5], but is not directly proven for the PVS
embedding. Instead, substitution is handled by the instantiation functionalities of the PVS itself, specif-
ically when dL rules and axioms are applied as strategies to a particular dL-sequent in the interactive
prover. Additionally, there are several places where the embedding of dL in this work is more general
than the work in [5]. Differential Ghost and Differential Effect in [5] are shown for a single ordinary
differential equation rather than the more general system of ordinary differential equations. Differential
Solve is only shown for differential equations with linear solutions, whereas the corresponding rule in
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Figure 10: The proof steps that complete the proof discussed in Example 3.3.

Plaidypvs automatically solves differential equations with linear and quadratic solutions and is proven
for any ODE where the solution is known. Differential Invariant in [5] is restricted to propositions of
the form P = ( f (x)≥ g(x)) and P = ( f (x)> g(x)) and it is remarked that other cases can be derived in
dL from these two cases, but in Plaidypvs Differential Invariant is fully implemented for any proposition
that is the conjunction or disjunction of inequalities.

The current work formalizes a version of dL based on Parts I and II in [55], though there are many
extensions as well. For adversarial cyber-physical systems there is differential game logic in [52, 54], and
Part 5 of [55]. There are also extensions for distributed hybrid systems (quantified differential dynamic
logic, [50]), stochastic hybrid systems (stochastic differential dynamic logic, [51]), differential algebraic
programs (differential-algebraic dynamic logic, [48]), and a temporal extension of dL called differential
temporal dynamic logic [46], [49, Chapter 4].

In addition to verification of hybrid systems, the present work falls more generally into the category
of formal verification or simulation of logical systems inside theorem provers. PVS0 is an embedding of
a fragment of the specification language of PVS within PVS, used in termination analysis of recursive
functions [15]. Other efforts to model or verify theorem provers include work on the prover kernel of
Hol Light [20], the type checker of Coq [58], the soundness of ACL2 [11]. The goal of Plaidypvs is to
add to hybrid systems reasoning to the toolbox of PVS, to increase its proving capabilities. PVS has been
applied to a number of applications including formal verification of aircraft avoidance systems including
detect-and-avoid logic and algorithms [38], path planning algorithms [3, 8], unmanned aircraft systems
[39], position reporting algorithms of aircraft [16, 31] sensor uncertainty mitigation [43] floating point
error analysis [30, 60], genetic algorithms [44], nonlinear control systems [4], and requirements written
in linear temporal logic and FRETish [9]. PVS has decades of developments that give it a number of
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unique features and automation capabilities. In addition to advanced real number reasoning [10, 37,
41, 32, 40, 42], previous work has connected PVS to the automated theorem prover MetiTarski [2],
for automated reasoning of universally quantified statements about real numbers, including a number
of transcendental functions [13]. This capability to use MetiTarski in PVS is leveraged in the assert
command in Plaidypvs.

6 Conclusion and future work

This work describes Plaidypvs, the operational embedding of dL in PVS. Plaidypvs allows usage of a
version of dL within the interactive theorem prover PVS. This embedding extends the formal verification
abilities of PVS by giving a framework for specifying and reasoning about HPs and allowing features
of PVS to be used naturally within the dL embedding. These include support for importing user-defined
functions and theories including the extensive math and computer science developments in NASAlib.
Additionally, this embedding allows for meta reasoning about HPs and dL at the PVS level. An exam-
ple was given that shows the functionality of Plaidypvs that could not be completed in a stand-alone
implementation of dL alone, like KeYmaera X.

With the first version of Plaidypvs established, the door is open to much future work. One natural
step is to apply Plaidypvs to safety-critical applications of interest to NASA. This will include formal
verification of hybrid systems related to urban air mobility and wildland fire fighting among others. An-
other direction is to increase the usability of Plaidypvs. To do so, a Visual Studio Code extension is
under development to display specifications and the proof calculus in a natural and user-friendly way. To
increase the automation of dL within Plaidypvs, a more complete substitution calculus to include boolean
expressions containing statements about hybrid programs will be implemented. Additionally, formal ver-
ification of liveness properties are intended, with implementations of strategies to match. Furthermore,
a more robust ordinary differential equation solver to enhance the capabilities of the differential solve
command would increase the usability of Plaidypvs greatly. Finally, a detailed description of the mul-
tivariate analysis and ordinary differential equation library developed to support this embedding will be
written, similar to the semi-algebraic set library ([57]) which was done to support verification of liveness
properties in upcoming work.

The semantic structure of dL in Plaidypvs is based on the input/output semantics. Future work on
defining the trace semantics of hybrid programs will extend the analysis capabilities of the embedding,
such as being able to define properties in linear temporal logic, similar to the work in [22]. It has been
noted that Quantifier elimination, is often the bottleneck for formal verification of hybrid programs, due
to the computational complexity of the general problem. Implementation of techniques to make this
process faster would help the usability of Plaidypvs. There are many directions to go for this effort,
but one direction will be implementation of the active corners method for a specific class of quantifier
elimination [24] geared towards formalized reasoning of aircraft operations.
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