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Abstract 

System safety analysis techniques are well established and are used extensively during the design 
of safety-critical systems. Despite this, most of the techniques are highly subjective and 
dependent on the skill of the practitioner. Since these analyses are usually based on an informal 
system model, it is unlikely that they will be complete, consistent, and error free. In fact, the lack 
of precise models of the system architecture and its failure modes often forces the safety analysts 
to devote much of their effort to gathering architectural details about the system behavior from 
several sources and embedding this information in the safety artifacts such as the fault trees.  

This report describes Model-Based Safety Analysis, an approach in which the system and safety 
engineers share a common system model created using a model-based development process. By 
extending the system model with a fault model as well as relevant portions of the physical 
system to be controlled, automated support can be provided for much of the safety analysis. We 
believe that by using a common model for both system and safety engineering and automating 
parts of the safety analysis, we can both reduce the cost and improve the quality of the safety 
analysis. Here we present our vision of model-based safety analysis and discuss the advantages 
and challenges in making this approach practical. 
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1 Introduction: Model-Based Safety Analysis  

Safety engineers traditionally perform analysis, such as fault tree analysis [24], based on 
information synthesized from several sources, including informal design models and 
requirements documents.  Unfortunately, these analyses are highly subjective and dependent on 
the skill of the engineer. Fault trees are one of the most common techniques used by safety 
engineers, yet different safety engineers will often produce fault trees for the same system that 
differ in substantive ways. The final fault tree is often produced only through a process of review 
and consensus building between the system and safety engineers.  Even after a consensus is 
reached, it is unlikely that the analysis results will be complete, consistent, and error free due in 
part to the informal models used as the basis of the analysis.  In fact, the lack of precise models 
of the system architecture and its failure modes often forces the safety analysts to devote much of 
their effort to gathering information about the system architecture and system behavior and 
embedding this information in the safety artifacts such as the fault trees. 

We hypothesize that this situation can be significantly improved by performing the safety 
analysis activities based on formal models of the system under development. In model-based 
development various development activities such as simulation, verification, testing, and code-
generation are based on a formal model of the system under development. We propose to extend 
model-based development to incorporate the safety analysis activities in addition to the 
traditional development activities, an approach we call Model-Based Safety Analysis. Since the 
safety analysis requires knowledge of the different faults that can occur and the various ways in 
which the system components can malfunction, the nominal (non-failure) system behavior 
captured in model-based development must be augmented with the fault behavior of the system. 
Model-based safety analysis operates on a formal model describing both the nominal system 
behavior and the fault behavior.  Our aim is to provide a precise model of system behavior and to 
automate parts of the safety analysis process and, consequently, both reduce the cost and 
improve the quality of the safety analysis process. 

Much of the benefit of model-based development is derived from a tool framework that supports 
formal specification of the system model [13], [15], [43], formalizing requirements [30], and 
automated verification [14], [19].  To aid model-based safety analysis, this framework must be 
extended to support (1) specification of the fault behaviors of the system, (2) extension of the 
nominal system behavior with these fault behaviors to yield an extended system model, and (3)  
automated analysis and generation of safety artifacts, like fault trees, from the extended system 
model.  

In this report, we describe the model-based safety analysis approach and discuss various research 
challenges that must be met to make this approach practical.  

Report Organization 

The remainder of the report is organized as follows.  Section 2 briefly introduces the terminology 
and summarizes the traditional safety analysis process currently practiced in the commercial 
avionics industry. Section 3 discusses the model-based safety analysis approach as an extension 
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to model-based development. We point out the important distinctions between these two 
approaches and discuss changes that might be necessary to accommodate model-based safety 
approach in the traditional safety analysis process. We then illustrate model-based safety analysis 
with the help of a wheel brake system example derived from the ARP 4761 safety analysis 
guidelines [2] in Section 4.  This example was created using existing tools and techniques and 
was designed to help identify future research directions involving extending existing tools for 
model-based safety analysis. We discuss related work in automating safety analysis in Section 5. 
Section 6 concludes the report and contains a discussion of our short-term and long-term goals 
towards addressing the shortcomings in current modeling and analysis processes and tools. 
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2 Background 

This section first introduces definitions for the terminology that will be used in the remainder of 
this report. Afterwards, we briefly describe the steps in a traditional safety analysis process, as 
specified in ARP 4761 [2].   

2.1 Terminology 

In the related areas of reliability and safety, there is no firm consensus on the terminology for 
even some of the basic terms used [2], [23], [24], [25], [32].  J.-C. Laprie [23] promoted 
dependability as a generic concept that included reliability, maintainability, availability, safety, 
with the view that all of the above are distinct perceptions of the same attribute of a system: its 
dependability. There was an effort to come up with a consistent set of concepts and terminology 
with the formation of IEEE-CS Technical Committee on Fault-Tolerant Computing in 1970 and 
of IFIP WG 10.4 Dependable Computing and Fault Tolerance in 1980 [32]. A recent paper by 
Avizienis, Laprie, Randell, and Landwehr [3] consolidates the basic concepts and taxonomy in 
dependability, and is paraphrased below. 

2.1.1 Basic Definitions 

The service delivered by a system is its behavior as it is perceived by its users. Correct service is 
delivered when the service implements the system function. The part of the provider's boundary, 
where service delivery takes place, is the provider's service interface. The part of the provider's 
total state that is perceivable at the service interface is its external state; the remaining part is its 
internal state. The delivered service is a sequence of the provider's external state. 

2.1.2 Faults, Errors, and Failures 

A failure is an event that occurs when the delivered service deviates from correct service. The 
deviation from correct service may assume different forms that are called service failure modes. 
Since a service is a sequence of the system's external states, a service failure means that at least 
one or more external states of the system deviates from the correct service state. The deviation is 
called an error. The adjudged or hypothesized cause of an error is called a fault. In most cases, a 
fault first causes an error in the service state of a component that is a part of the internal state of 
the system and the external state is not immediately affected. The definition of an error is the 
part of the total state of the system that may lead to its subsequent service failure. Note that, 
many errors do not reach the system's external state and cause a failure. A fault is active when it 
causes an error, otherwise it is dormant. 

2.1.3 Relationship between Faults, Errors, and Failures  

The creation and manifestation mechanisms of faults, errors, and failures as summarized in [42] 
are as follows: 
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1. A fault is active when it produces an error; otherwise, it is dormant. An active fault is 
caused by either 1) an internal fault that was previously dormant and that has been 
activated by the computation process or environmental conditions, or 2) an external fault 
that propagates from the environment. Fault activation is the application of an input (the 
activation pattern) to a component that causes a dormant fault to become active. Most 
internal faults cycle between their dormant and active states. 

2. Error propagation within a given component (i.e., internal propagation) is caused by the 
computation process: An error is successively transformed into other errors. Error 
propagation from component A to component B that receives service from A (i.e., 
external propagation) occurs when, through internal propagation, an error reaches the 
service interface of component A. At this time, service delivered by A to B becomes 
incorrect, and the ensuing service failure of A appears as an external fault to B and 
propagates the error into B via its use interface. 

3. A service failure occurs when an error is propagated to the service interface and causes 
the service delivered by the system to deviate from correct service. The failure of a 
component causes a permanent or transient fault in the system that contains the 
component. Service failure of a system causes a permanent or transient external fault for 
the other system(s) that receive service from the given system. 

In the rest of the report, we adopt the above terminology. In addition to the above terms, we also 
use the term propagated fault and fault propagation to refer to activation of the external fault due 
to error propagation from another component. We refer to the faults that are dependent on other 
faults as dependent faults (e.g., a power failure causing the failure of a number of components it 
supplies power to).  

2.2 System Safety Assessment Process  

This section describes the overall safety assessment process that is practiced in the avionics 
industry along the lines of the SAE standard ARP 4761 [2]. The descriptions of the various 
phases of the safety assessment process covered in this section are essentially excerpts from the 
ARP 4761 document.  

The safety assessment process is an inherent part of the system development process. Figure 1 
shows an overview of the safety assessment process. The safety assessment process includes 
safety requirements identification (on the left side of the “V” diagram) and verification (on the 
right side of the “V” diagram) supporting the aircraft development activities. An aircraft-level 
Functional Hazard Analysis (FHA) is conducted at the beginning of the aircraft development 
cycle, which is then followed by system-level FHA for individual sub-systems. The FHA is 
followed by Preliminary System Safety Assessment (PSSA), which derives safety requirements 
for the subsystems, primarily using Fault Tree Analysis (FTA). The PSSA process iterates with 
the design evolution, with design changes necessitating changes to the derived system 
requirements (and also to the fault trees) and potential safety problems identified through the 
PSSA leading to design changes.  
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Once design and implementation are completed, the System Safety Assessment (SSA) process 
verifies whether the safety requirements are met in the implemented design. The system Failure 
Modes and Effects Analysis (FMEA) is performed to compute the actual failure probabilities on 
the items. The verification is then achieved through quantitative and qualitative analysis of the 
fault trees created for the implemented design, first for the subsystems and then for the integrated 
aircraft.   

 

Figure 1: “V” Process for Traditional Safety Assessment 

2.2.1 Functional Hazard Analysis 

Functional Hazard Analysis (FHA) is conducted at the beginning of the life cycle. It identifies 
and classifies the failure conditions associated with aircraft functions (and combinations of 
aircraft functions) at the appropriate level, considering both loss of function and malfunctions. 
The FHA identifies the failure conditions for each phase of flight. There are two levels of FHA 
for avionics systems; the Aircraft level FHA and the System level FHA. The FHA establishes 
derived safety requirements needed to limit function failure effects, such as design constraints, 
annunciation of failure conditions, etc.  

Starting from the high-level functions of the system, the failure conditions associated with these 
functions are considered.  The effects of these failure conditions on the aircraft are determined 
and classified. These failure conditions can be further broken down through FHAs and Fault 
Trees. The failure conditions associated with safety are defined together with their respective 
safety objectives and the proposed means for demonstrating compliance. The aircraft level FHA 
specifies proposed methods for demonstrating compliance with aircraft-level safety 
requirements. For system-level requirements, methods for demonstrating compliance are 
presented in the Preliminary Systems Safety Analysis.  
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2.2.2 Preliminary System Safety Analysis 

A Preliminary Systems Safety Analysis—PSSA—is used to complete the failure conditions list 
and the corresponding safety requirements. It is also used to demonstrate how the system will 
meet the qualitative and quantitative requirements for the various hazards identified. The PSSA 
process identifies protective strategies, taking into account fail-safe concepts and architectural 
attributes which may be needed to meet the safety objectives. The PSSA is iterative and 
continuous throughout the design process and identifies and captures all the derived system 
safety requirements. 

The PSSA is a top-down approach to determine how failures can lead to the functional hazards 
identified by the FHA, and how the FHA requirements can be met. The aircraft (system) FHA 
process creates an initial set of safety requirements for the aircraft (systems). By combining this 
initial set of safety requirements with the design/architecture decisions made in the PSSA, a 
complete set of system requirements is generated. The design decisions are evaluated against the 
generated safety requirements with the help of Fault Tree Analysis (FTA). Since detailed item-
level studies are generally not available during this phase of evaluation, PSSA failure-condition 
evaluation must rely in part on engineering judgment and on in-service experience with similar 
designs. Each design safety-requirement derived at the system-level must then be allocated to the 
items making up the system. Failure modes and associated probability budgets identified in 
PSSA Fault Tree Analysis should be used as requirements to drive the lower-level detailed 
studies.  

Some of the important documents coming out of PSSA are planned compliance methods with 
FHA requirements, updated FHAs, lower-level safety requirements, qualitative FTAs, and 
operational requirements. The outputs of the PSSA are used as inputs to the SSA process. 

2.2.3 System Safety Assessment 

A System Safety Assessment (SSA) is a systematic, comprehensive evaluation of the 
implemented system, along with its architecture and installation, to show that the relevant safety 
requirements are met. The difference between the PSSA and the SSA is that a PSSA is a method 
to evaluate proposed architectures and derive system/item safety requirements, whereas the SSA 
is a verification that the implemented design meets both the qualitative and quantitative safety 
requirements as defined in the FHA and PSSA. 

The SSA process is a bottom-up approach for verifying that the design safety requirements and 
objectives have been met. Through these upward hierarchical verification levels, hardware 
reliability requirements, architectural requirements and hardware and software Development 
Assurance Levels (DO-178B [33] procedures for software) are verified against the safety 
requirements delineated in the PSSA process. An item-level Failure Modes and Effects Analysis 
(FMEA) is performed and is summarized into the Failure Modes and Effects Summary (FMES) 
to support the failure rates of the failure modes considered in the item FTA. The system FMEA 
is summarized into the system FMES to support the failure rates of the failure modes considered 
in the system FTA. The system is reviewed via FTA to identify the failure modes and 
probabilities used in the aircraft FTA. The aircraft FTA is used to establish compliance with the 
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aircraft-level failure conditions and probabilities described by the aircraft FHA. As items are 
integrated into systems and systems into aircraft, the failure effects are compared with the failure 
conditions identified in the FHA. This comparison is called an integration cross-check. 
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3 Model-Based Safety Analysis Process 

In the safety-critical systems domain, model-based development is an increasingly popular 
approach for development of digital control systems. In this approach, various development 
activities such as simulation, verification, testing and code-generation are based on a formal 
model of the system expressed in a notation such as Simulink [13] or SCADE [15]. In model-
based safety analysis, we propose to extend existing model-based development activities and 
tools to support safety analysis. In this section, we first briefly discuss model-based development 
and illustrate our model-based safety analysis approach. We then discuss how model-based 
safety analysis can be integrated into the traditional safety assessment process.     

3.1 Model-Based Development 

In model-based development, the development effort is centered on a formal specification 
(model) of the digital control system. This model can be subjected to various types of analysis, 
for example, completeness and consistency analysis, model checking, and theorem proving [30]. 
Model-based development tools often include automatic code generators that can derive 
implementations directly from models. There are currently several commercial and research tools 
that support model-based development. Examples of commercial tools include Simulink [13], 
Esterel and SCADE from Esterel Technologies [15], Statemate from i-Logix [17], and SpecTRM 
from Safeware Engineering [26].  

3.2 Model-Based Safety Analysis  

Model-based development focuses primarily on modeling the software components of the 
system. To perform system-level safety analysis, we must also consider the environment in 
which the system runs, which usually involves mechanical components. Fortunately, model-
based tools and techniques can also be used to model physical components of interest. By 
combining models containing the digital components (software and hardware) with models of the 
mechanical components (pumps, valves, etc.), we create a model of the nominal system 
behavior. This model can then be augmented with fault models for the digital and mechanical 
systems to create the Extended System Model [8]. This model can be used to describe the 
behavior of the system in the presence of one or more faults.  
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Figure 2: Automated Model-based Safety Analysis 

The extended system model can be used for a variety of simulations and analyses (Figure 2).  
First, it allows trivial exploration of “what-if” scenarios involving combinations of faults through 
simulations.  For more rigorous analyses, we can use static analysis tools, such as model 
checkers and theorem provers, to automatically prove (or disprove) whether the system meets 
specific safety requirements. Furthermore, these tools can also be extended to generate 
traditional safety analysis artifacts such as fault trees. 

To support model-based safety analysis, the traditional “V” process is modified (Figure 3) so that 
the safety analysis activities are centered on formal system and fault models.  These models are 
used both for systems design and safety analysis, and are the central artifact of the systems 
development process.   
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Figure 3: Modified “V” Process for Model-Based Safety Analysis 

Given extended system models, the safety analysis process consists of defining a set of formal 
properties to represent the (informal) safety requirements of the system and then using formal 
analysis techniques to determine whether the proposed system architecture satisfies the safety 
properties.  Artifacts such as fault trees and FMEAs can be automatically generated as a 
byproduct of the formal analyses.   

The main advantage of this approach is that the system and safety engineers work off a common, 
unambiguous model of the system leading to a tighter integration between the systems and safety 
engineering processes. The common model ensures that safety analysis results are relevant and 
up-to-date as the system architecture evolves, and allows safety assessment early in the system 
design process. Additionally, it supports exploration of different architectures and design choices 
by automatically determining which choices will satisfy critical safety properties.   

Ideally, the use of computational tools such as model checkers can automate many safety 
analysis activities, and the safety engineer’s task will consist primarily of reviewing the 
generated safety artifacts and confirming the assumptions made in the system and fault models. 
In this way, model-based safety analysis can lead to more accurate and complete safety analyses 
while reducing manual effort. 

In the following sections, we describe the various model-based safety analysis activities in detail.  

3.2.1 Nominal System Modeling 

The primary step in model-based development (and model-based safety analysis) is creating a 
formal specification of the system under development. The behavior of the system can be 
specified in formal specification languages supporting graphical and/or textual representation; 
e.g., synchronous (textual) languages like Lustre [16], and graphical tools like Simulink [13] and 
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SCADE [15]. The logical and physical architecture of the system can also be specified in these 
notations or with an architecture description language such as AADL [34]. 

3.2.2 Formalizing Derived Safety Requirements 

The derived safety requirements are determined in the same way as in the traditional “V” 
process. To support automated analysis, the safety properties must be expressed in some formal 
notation. There are several candidate notations, including temporal logics like CTL/LTL [11] or 
higher order predicate logics.  It is also possible to specify requirements directly in the modeling 
language as synchronous observers [16] that are composed with the system model.  

3.2.3 Fault Modeling 

System level faults can occur due to failures of components, incorrect outputs, corrupted 
messages, or improper functioning of software in the absence of failures. A fault model captures 
information about the various ways in which the components of the system (both the digital 
controller and the mechanical system) can malfunction. It defines the behavior of common 
failure modes, such as non-deterministic, inverted, stuck-at, etc. The fault model also specifies 
the fault triggers that activate the component failures and their duration.  We distinguish between 
transient faults (those that last for a short period of time) and permanent faults (those that last 
forever). The fault model can also specify more complex fault behaviors, such as fault 
propagations, dependent faults, etc. (refer to Section 2.1 for terminology). It can also specify 
fault hierarchies, in which the user can define the failure mode of a component as a function of 
its subcomponents or as an abstraction of the underlying fault behavior.  

Depending on the system model, we can chose to model different types of digital faults, 
mechanical faults, timing faults, etc. The digital faults are those that relate to the digital 
component of the system – both hardware and software. For example, a digital fault could be 
inverting an output on a hardware chip.  We would also like to be able to describe situations in 
which software fails to perform as expected (i.e. software faults) but it is still unclear how such 
faults can be described and modeled.  Some software faults can be simulated by introducing 
failure modes on outputs, such as an inverted or non-deterministic, etc., but these failure modes 
do not closely match our intuitive notion of software faults and additional research is necessary 
to further explore this issue. 

Mechanical faults are those that occur in the mechanical components of the system outside the 
digital controller. These are entirely dependent on the environment of the system in question, and 
could include electrical or hydraulic problems, network upsets, communications failures, and a 
variety of other kinds of problems.  

3.2.4 Model Extension 

To enable model-based safety analysis, the fault model is composed with the nominal system 
model to describe the behavior of the system in the presence of faults. We call this the Extended 
System Model (similar to the FSAP/NuSMV-SA documentation). There are two approaches to 
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adding fault information to the system model.  First, it is possible to embed the fault behavior 
directly into the system model. The second option is to develop the fault model as a separate 
entity from the system model and automatically merge these two models for analysis. We will 
investigate both these approaches later in the report.  

3.2.5 Safety Analysis 

Once we have the extended system model, the safety analysis involves verifying whether safety 
requirements hold in the presence of the faults defined in the fault model. The safety or system 
engineer can perform exploratory analysis by simulating faults on specific components and 
observing the behavior of the system.  For more rigorous analyses, it is possible to use formal 
verification tools to determine whether safety properties of interest hold.  

3.2.5.1 Simulation 

Having a formal model of the system extended with the fault model immediately enables the 
engineer to simulate different failure scenarios. This is an important facility as the engineers can 
visualize the effect of faults on system functionality as they control their activation through a 
graphical user interface. This capability can be used to quickly detect safety problems in 
common scenarios before performing more rigorous static analysis. 

3.2.5.2 Proofs of Safety Properties 

Formal verification tools, such as model checkers and theorem provers, can be used to prove that 
a safety property holds over the extended system model. To prove interesting properties, an 
engineer will typically have to rule out certain unlikely combinations of failures. These can be 
encoded as assumptions or axioms that will be used in the proof process.  If a property is proved, 
then the responsibility of the safety engineer is to review the assumptions that were used in the 
proof and check if they are realistic. If so, the engineers have a proof that the system satisfies the 
safety property with respect to the fault model.  In case a property is not proved, it may be 
necessary to rearchitect the system or to relax the original safety property to accommodate delay 
or other acceptable constraints to allow system recovery.  

This capability can also perform exploratory analysis to investigate the fault tolerance of a 
system; e.g., what is the largest n such that the particular safety requirement holds in face of n 
faults? It could also be specialized to a specific combination of faults, say, those combinations 
whose likelihood is above some reliability threshold (say, 10-7 failures / flight hour) rather than 
random combinations. The safety engineer may also want to investigate how the system behaves 
in presence of different durations of faults, e.g., permanent and transient faults.  

3.2.5.3 Fault Trees 

With adequate tool support, the formal verification results could be represented in the form of 
familiar safety artifacts like fault trees. There is a great deal of interest in this area, but none of 
the existing tools generate fault trees in a format that is intuitive and amenable for manual review 
(see Section 5.2).  
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4 Case Example: The Wheel Brake System  

We illustrate the various activities involved in model-based safety analysis with the help of an 
example of a Wheel Brake System, as described in ARP 4761 – Appendix L [2]. We chose this 
example primarily because the majority of the safety engineers in the avionics community use 
the ARP 4761 document as their main reference for safety assessment. By using this familiar 
example, we hope to make it reasonably easy for engineers to understand the model-based safety 
analysis approach, and to evaluate the performance of MBSA against manual safety analysis 
techniques.  For illustration of the safety analysis activity (Section 4.2), we use a safety 
requirement described by ARP 4761.  The discussion of the wheel brake system below consists 
largely of excerpts of the informal requirements from the ARP 4761 document.  

The informal wheel brake system diagram taken from the ARP 4761 document is shown in 
Figure 4. The Wheel Brake System is installed on the two main landing gears. Braking on the 
main gear wheels is used to provide safe retardation of the aircraft during the taxi and landing 
phases, and also in the event of a rejected take-off. A secondary function of the wheel brake 
system is to stop main gear wheel rotation upon gear retraction. 

Braking on the ground is either commanded manually, via brake pedals, or automatically 
(autobrake) without the need for pedal application. The autobrake function allows the pilot to 
pre-arm the deceleration rate prior to takeoff or landing. When the wheels have traction, the 
autobrake function will control brake pressure to provide a smooth and constant deceleration.  

The eight main gear wheels have multi-disc carbon brakes. Based on the requirement that loss of 
all wheel braking is less probable than 5*10-7 per flight, a design decision was made that each 
wheel has a brake assembly operated by two independent sets of hydraulic pistons. One set is 
operated from the Green hydraulic supply and is used in the NORMAL braking mode. The 
Alternate system is on standby and is selected automatically when the Normal system fails. It 
is supplied by a Blue hydraulic power supply and an Accumulator, both of which can be used 
to drive the brake. The Accumulator is a simple device with built up pressure that can be 
reliably released if both of the two primary pumps (the Blue and Green pumps) fail. The 
Accumulator supplies the Alternate system in the EMERGENCY braking mode.  

Switchover between the hydraulic pistons and the different hydraulic sources is automatic under 
various failure conditions, and can also be manually selected. Reduction of the Green pressure 
below a threshold value, either from loss of the Green supply itself or from its removal by the 
BSCU due to the presence of faults, causes an automatic switchover to the Blue supply and the 
Alternate brake system. If the Blue pump fails, then the Accumulator is used to supply 
hydraulic pressure.   

An anti-skid facility is available in both the NORMAL and ALTERNATE modes, and operates 
at all speeds greater than 2 meters per second. The anti-skid function is similar to the anti-lock 
brakes common on passenger vehicles and operates largely in the same manner. In the 
NORMAL mode, the brake pedal position is electrically fed to a braking computer. This in turn 
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produces corresponding control signals to the brakes. In addition, the braking computer monitors 
various signals that denote certain critical aircraft and system states to provide correct brake 
functions and improve system fault tolerance, and generates warnings, indications and 
maintenance information to other systems. This computer is accordingly named the Braking 
System Control Unit (BSCU).  

 

Figure 4: Wheel Brake System Diagram (from SAE ARP 4761) 

 

4.1 Nominal System Modeling 

The first step in automating safety analysis is a formal specification of the nominal system 
model. A formal model typically consists of components (both mechanical and digital) and the 
interconnections between them.  

Figure 5 illustrates how we can model the Wheel Braking System (WBS) in Simulink. The 
model captures both the digital and the mechanical components of the system and reflects the 
informal structure of the system as given in the ARP document. As we implemented a formal 
model of the system, we realized that the informal requirements of the WBS were 
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underspecified, and we had to make several assumptions about the system that still need to be 
confirmed with the authors of ARP 4761. It is worth noting that even the exercise of building a 
formal model reveals details that are missing in the informal model of Figure 4. We will point 
out where (and why) any assumptions about the system are made as we describe the formal 
model. 

WBS (the highest level component/system) consists of a digital control unit, the BSCU, and two 
hydraulic pressure lines, Normal (pressured by the Green Pump) and Alternate (pressured by 
the Blue Pump and the Accumulator Pump) line. The system takes the following inputs from 
the environment – PedalPos1, AutoBrake, DecRate, AC_Speed, and Skid. All of the above 
inputs are forwarded to the BCSU for computing the brake commands. There are also a number 
of mechanical components along the two hydraulic lines, for example different types of valves. 
We have defined a library of common components such as the MeterValve, IsolationValve, 
Pump, etc., which are then instantiated at various locations in the WBS. The outputs of the WBS 
are Normal_Pressure (hydraulic pressure at the end of the Normal line), Alternate_Pressure 
(hydraulic pressure at the end of the Alternate line) and System_Mode (computed by the 
BSCU). 
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Figure 5 : Simulink model of the Wheel Brake System 
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4.1.1 Braking System Control Unit (BSCU) 

The Braking System Control Unit (BSCU) is the only digital component of the system (Figure 
6). Most of the BSCU inputs come from the higher level WBS. It also takes some feedback from 
different locations along the Normal and Alternate lines, and has two power inputs from 
separate power sources. The BSCU is composed of two redundant Command and Monitor 
units. The two subsystems (each containing a Command and Monitor unit) are powered 
independently by the two power supplies. DecRate (Deceleration Rate) and AC_Speed 
(Aircraft Speed) are used when AutoBrake is true. In the current model, AutoBrake is 
implemented by a stub component to which the actual control laws can later be added. Since this 
functionality is not specified in the informal requirements, we made the simplification that 
AutoBrake applies constant pressure on the brakes. The pedal position inputs map directly to 
some pressure value required at the output. When skidding occurs, the BSCU automatically 
decreases the pressure applied to the brakes.   
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Figure 6 : Braking System Control Unit (BSCU) 
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The Command unit regulates the pressure to the brakes in the normal line through the normal 
brake command (Nor_Cmd). The computation of this command takes into account both the 
requested brake power as well as the skid information. The Command unit regulates the 
pressure in the alternate line only to prevent skidding; it does this through the (Alt_Cmd). The 
Monitor unit monitors whether its corresponding Command unit output is valid. When both 
Command units are valid, the BSCU forwards the commands of the default unit, Command1. 
BSCU forwards the commands of the valid unit when only one of the Command units is giving 
valid braking commands. The BSCU is not valid when both of the Monitor units indicate that 
the corresponding Command outputs are not valid.  

The BSCU switches to the Alternate hydraulic system (Sel_Alt = true) under the following 
conditions:  

• The BSCU is not valid, or 

• The Green Pump is below threshold, or 

• The system was previously in the NORMAL mode and the BSCU had commanded some 
pressure but the pressure at the Normal line output (feedback Nor_Out) is below the 
threshold. 

Once the system has switched to the Alternate hydraulic system, it will not switch back to the 
normal hydraulic system.   

The SystemMode is considered to be in one of: 

• EMERGENCY mode (2), if the Blue Pump or the Accumulator Pump are below the 
threshold and  Sel_Alt = true, 

• ALTERNATE mode (1), if Sel_Alt = true, or in 

• NORMAL mode (0) otherwise. 

4.1.2 Hydraulic Pressure Pumps 

There are three instances of the hydraulic pressure pump in the system – the Green Pump, the 
Blue Pump and the Accumulator Pump. Each pump provides a constant hydraulic pressure 
(modeled as an integer).  

4.1.3 Isolation Valves 

There are two instances of the isolation valve – the Green Pump IsolationValve and the Blue 
Pump IsolationValve. Each isolation valve takes two inputs – the PipePressure and 
ValveShut. If ValveShut is true, then there is no pressure at the output; otherwise the pressure 
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at the output is the same as the input pressure. In Figure 4, there is no input shown for shutting 
the isolation valve on the Alternate line (the Blue Pump IsolationValve in our case). We have 
modeled the Green Pump IsolationValve and the Blue Pump IsolationValve in the same 
manner, with Blue Pump IsolationValve always getting a constant false value for the 
ValveShut input (i.e., the Blue Pump is never isolated).  

4.1.4 Selector Valve 

The SelectorValve is situated across the Normal and the Alternate hydraulic lines. This valve 
is used to select only one of the two redundant hydraulic systems. In the wheel braking system, 
we want to prevent a situation where both the Blue and Green system provide pressure to the 
brakes.  The isolation valves in combination with the SelectorValve are designed to prevent this 
from happening. The SelectorValve takes the two pipe pressures as input and outputs a pressure 
above the threshold on only one of the two pipes. In the nominal situation, only one of the two 
input pipe pressures should be above threshold (assured through the two isolation valves). In this 
case, it would simply select the system with adequate pressure and block the system with no (or 
low) pressure; functionality that could be achieved through some mechanical implementation of 
the SelectorValve. From the informal requirement it is unclear how the SelectorValve operates if 
the pressure on both the incoming pipes is above threshold. We have modeled the SelectorValve 
such that the default is the Normal system if its pressure is above the threshold. This is another 
assumption that needs to be confirmed with the authors of ARP 4761. 

4.1.5 Accumulator Valve 

The AccumulatorValve is a component that we added to the formal model that is not found in 
the informal diagram and many assumptions about its operation need to be confirmed. The 
Alternate system is pressurized by the Accumulator Pump when the Blue Pump fails and the 
system is in the ALTERNATE mode of operation. There must be some mechanism to regulate 
the pressure provided by the Alternate system through the SelectorValve and the pressure 
provided through the Accumulator Pump. To accomplish this selection we have introduced the 
AccumulatorValve. The AccumulatorValve connects the pipes coming from the 
SelectorValve and the Accumulator Pump, and regulates which one will feed pressure to the 
downstream system. In addition to the two pipe pressures, the AccumulatorValve also takes the 
Sel_Alt output of BSCU (renamed as Alt_Active) as input. This signal is used to determine 
which pressure source to use. The AccumulatorValve will open and select one of the pressure 
sources only when the system is not in the NORMAL mode of operation. When the system is in 
NORMAL mode of operation, the SelectorValve blocks the pressure on the Alternate pipe.  

4.1.6 Meter Valves 

There are three instances of the meter valve – the CMD/AS MeterValve on the Normal 
hydraulic line and the AS MeterValve and the Manual MeterValve on the Alternate hydraulic 
line. The meter valve implementation takes two inputs – the incoming pipe pressure and the 



 20 

valve position command. The meter valve will adjust the valve position according to the 
command and the required amount of pressure will be transferred to the output. For example, if 
the incoming pressure is 100 and the valve position command is ValveHalfOpen, then the 
pressure at the output will be 50. 

The CMD/AS MeterValve and the AS MeterValve take their valve position commands from 
the Nor_Cmd and Alt_Cmd outputs of the BSCU respectively. The Manual MeterValve takes 
its valve position command directly from the MechanicalPedal. 

4.2 Formalizing the Derived Safety Requirements 

After creating the system model, we would like to verify that some basic safety properties hold 
in this nominal system (i.e., an idealized system containing no faults). As a first step we need to 
formalize the derived safety requirements as safety properties. The derived safety requirements 
are determined in the same way as in the traditional “V” process. System hazards are identified 
through functional hazard analysis. Manual fault tree analysis will be potentially used to derive 
the initial set of safety requirements. The derived requirements may be at a higher (system) level 
or lower (component) level as considered appropriate.  

We will illustrate the current activity by formalizing an example safety requirement in temporal 
logic, CTL. An example safety requirement for the wheel brake system as described in ARP 
4761 is 

Loss of all wheel braking (unannunciated or annunciated) during landing or RTO shall 
be less than 5*10-7 per flight. 

Since we are not considering annunciations in this model and we are not considering any 
quantitative analysis at this stage, let us simplify this safety requirement as simply,  

Loss of all wheel braking during landing or RTO shall not occur. 

To achieve effective braking, the hydraulic pressure at the brake calibers must be above a 
minimum threshold. The braking pressure can be commanded either through the AutoBrake or 
the brake pedal. The AutoBrake function only works in the NORMAL mode of operation 
whereas the brake pedal is capable of commanding pressure in any mode of operation. 

Note here that when the wheels are skidding, brake pressure is temporarily reduced or removed 
to stop the skidding. Based on the observations above, we can derive a safety property suitable 
for formalization, 

When the brake pedal is pressed in the absence of skidding, then either the normal 
pressure or the alternate pressure must be above the threshold. 

To state this formally in CTL, we first define two intermediate variables in SMV to represent 
whether the pedal is pressed while we are not skidding (PedP_NoSkid) and whether any 
pressure is being provided to the brakes (SomeP). 
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PedP_NoSkid := (IsPressed(PedalPos1) & !Skid) ; 

SomeP := ((Normal_Pressure > threshold) | (Alternate_Pressure > threshold)) ; 

IsPressed is a predicate that returns true when the pedal is pressed. PedP_NoSkid and 
SomeP are then used in a CTL property as: 

SPEC AG(PedP_NoSkid -> SomeP) ;                                                   

This property states that it is always globally true (AG) that when the pedal is pressed in the 
absence of skidding we will get brake pressure. This property can be proven to hold in our 
nominal system (where no failures occur) in seconds using NuSMV. Of more interest in this 
report is the behavior in the face of failures discussed in the next section. 

It should be noted that this property only checks whether the system is safe in the absence of 
skidding; if the skid input is incorrectly set to ‘true’, then the system will incorrectly lower the 
brake pressure until braking is no longer effective.  To determine the safety of the system, it 
would be necessary to ensure that this signal is correctly generated.  This determination would be 
the responsibility of the safety analyst. 

4.3 Fault Modeling and Extension 

We now introduce the activities that are specific to the proposed model-based analysis approach. 
We discuss the fault modeling and extending the system model at the same time as the way one 
specifies the fault model directly affects the extension.  For the WBS, we used Simulink to 
manually extend the nominal model but found the process slow and error-prone.  Based on our 
experience, in Section 4.3 we suggest how additional tools could improve these steps.   

4.3.1 Fault Modeling 

We would like to specify different component failure modes, i.e., the way (or form) in which a 
particular component might fail. This component failure will be triggered by some internal or 
propagated fault. In order to trigger these faults, we add additional inputs to the extended model 
for each fault that can occur within a component in the nominal model.  Thus, our simple fault 
model will contain: 

1. component failure mode behavior specifications, 

2. additional inputs for activating faults 

a. intrinsic faults activated through system level inputs, and 

b. propagated faults activated by the error propagating component 

In the WBS example, we consider a simple fault model for the digital and mechanical 
components of the WBS. The fault model is implemented by subsystems (i.e. components) with 
additional inputs that can be used to control whether or not the fault is activated. In our initial 
example, for simplicity, we will not consider propagated faults.  
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4.3.1.1 Digital Fault Modeling  

Let us consider two sample digital failure modes for the BSCU component—the inverted failure 
mode for the two Monitor subsystems and the stuck (at previous value) failure mode for the two 
Command subsystems. The inverted failure mode for a Boolean output of the Monitor unit of 
the BSCU is defined as simply the negation of the input when triggered (Figure 7). In this 
example, the Fail_Flag triggers the inverted failure. Note that this component can simply be 
dropped onto the Boolean output line of the Monitor component of the BSCU.  

1

Out

NOT

2

In

1

Fai l_Flag

 

Figure 7: Inverted Failure Simulink Model 

The stuck failure mode latches the previous value of the output when the Fail_Flag input triggers 
the failure. 

The Stuck-at (a particular value) failure mode can be modeled as shown in Figure 8.  Although 
we have not included many digital faults in our prototype model, we envision most, if not all, 
digital faults to be some form of corruption of the output from the digital component; outputs 
that are either stuck at some constant value or take on completely random values.  
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Figure 8: Stuck_at Simulink Model 

4.3.1.2 Mechanical Fault Modeling 

For the mechanical components, we consider basic failure modes such as a stuck_at failure mode 
for valves, failure of the pumps to provide adequate pressure, and the failure of the power 
supplies. 

Consider the stuck_at failure mode for a valve where it can be stuck either open or closed. This 
failure model is more complex than a digital failure since the output pressure from the valve 



 23 

when failed open cannot be determined without knowing what the input pressure to the valve is. 
To model the failure mode suitable for the valves, consider the Binary_Stuck_at Simulink model 
in Figure 9. In this model the component can be stuck at one of two different values.  This model 
allows us to easily model valves where the valve can either be stuck open or closed; if it is stuck 
open we output whatever the input pressure to the valve is, if it is stuck closed we output zero 
pressure. 

1
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Stuck_Choice
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Fail_Flag

3

Nominal_In

2

Stuck_Val_0

1

Stuck_Val_1

 

Figure 9: Binary_Stuck_at Simulink Model 

4.3.2 Model Extension 

In order to analyze the system behavior in presence of faults, we would like to extend the 
nominal system model with the fault model. 

The method for model extension will differ based on the failure mode under consideration. We 
observe that the Binary_Stuck_at failure mode needs to access the inputs of the original 
component (Stuck at open assigns the original input PipePressure to the output pressure). This 
necessitates the failure mode extension in the form of a wrapper around the original component, 
as it needs to access the original input. The extension of the MeterValve component with the 
Binary_Stuck_at failure mode is shown in Figure 10. In the figure, the MeterValve is the 
nominal component implementing the meter valves as described in the previous section and the 
Stuck_at component is the Binary_Stuck_at discussed above. When Stuck_Choice is 1 we 
model a valve that is stuck open and the input pressure is forwarded as is to the output 
irrespective of the Cmd, and when Stuck_Choice is 0 we model a valve that is stuck closed and 
the output pressure is set to 0. 
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Figure 10: MeterValve_Stuck Simulink Model 

Alternatively, a simple failure mode, like inverted output for a component generating a boolean 
output, can be simply added at the output signal of the affected component. There is no need to 
wrap the failure mode behavior around the original component since the failure mode behavior 
does not depend on the inputs to the original component. Another failure mode that does not 
need wrapping is power failure (as shown in Figure 11) that can directly operate on the output of 
the affected component, i.e., the PowerSupply.  

 

Figure 11: Power_Fail Simulink Model 

Once the failure modes are manually inserted in the nominal model, we need to add new inputs 
and new connections to activate the faults which may consequently lead the extended 
components to fail. For the activation of independent and transient (or intermittent) faults, new 
inputs are added to the system model (at the topmost level). For example, all the valve 
components, extended by the Binary_Stuck_at failure mode, have two additional inputs: 
Stuck_Flag and Stuck_Val. The rest of the failure modes require a single input signaling the 
occurrence of a fault. For the activation of permanent faults, latched inputs (permanently active 
once activated) are added to the system model. In the case of fault propagation and dependent 
faults, there will be addition of more data paths to propagate faults (backward propagation, 
simultaneous propagation, delayed propagation, etc.).  

After extension, the model is considerably larger and more cluttered due to the additional inputs 
needed to activate the possible faults, as shown in Figure 12 and Figure 13. Figure 12 shows the 
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fault inputs (shaded) added to the system to control when the faults get triggered. To reduce 
clutter, “goto” Simulink tags are used to route the fault triggers to the corresponding component 
without actually drawing signal lines. Figure 13 shows the rest of the system. The shaded 
components are the mechanical components extended with failure modes. The Simulink “from” 
tags supply the fault inputs to the components from Figure 12.  
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Figure 12 : Fault Trigger Inputs of the Extended Wheel Brake System 
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Figure 13 : Wheel Brake System Extended with Fault Model 



 28 

4.3.3 Fault Modeling and Extension Issues 

In the previous sections we used Simulink to illustrate how one could model the behavior of 
failure modes using existing modeling constructs. Our fault model was quite simple, consisting 
of only the definitions of component failures.  Also, we only considered independent faults. Even 
so, we can identify several issues and shortcomings with using the existing tools for these 
activities. 

Clutter:  As noted in the previous paragraphs, even for simple fault models, the extended model 
is cluttered with considerable fault information, making it difficult to keep track of the original 
system functionality in presence of these faults. For more complicated fault models, say with 
fault propagations and dependent faults, additional data paths would be needed, adding even 
more clutter. 

Manual Extension: Even for simple fault models, manually extending the nominal behavior 
with the fault behavior is error-prone. The manual model extension also leads to model evolution 
issues.  If changes to the system model are required, systems engineers will have to make these 
changes in the context of a cluttered model including faults or the safety engineers will have to 
redo their fault modeling in the updated model produced by the systems engineers; both highly 
undesirable overhead. 

Lack of Flexibility:  Here we discuss some of the flexibility issues in the existing tools: 

Composite Failure Modes: To add more flexibility to the fault model, one might want to 
specify all possibly ways in which a component could fail.  This means that there could 
be a number of different failure modes associated with a component. To do this with the 
existing tools, an engineer has to manually compose all applicable failure modes for a 
given component to create a composite failure mode which takes into account conflicting 
behaviors, priorities, etc. This composite failure mode can then be composed with the 
nominal behavior of the component. Since this composite failure mode will be different 
for different types of components, an engineer would have to construct many such 
composite failure modes. 

Duration of the Fault: Not only does a fault have a behavior, but it also has a duration.  
Broadly, we distinguish between permanent and transient faults.  Permanent faults are 
straightforward to model, but for transient faults, we also have to consider the duration of 
the fault.  For some classes of faults, this duration is parameterized depending on the 
component that the fault is applied to and the model of time used for the system model.  
Using existing techniques, it is difficult to create generic faults whose duration can be 
parameterized appropriately.   

Fault Hierarchies and Dependencies: One might also want to specify fault hierarchies 
for the system. For example, we might want to define the failure mode on the BSCU 
based on the failure modes of the underlying Monitor and Command units.  

We would also like to express fault propagation and other kinds of dependent faults 
flexibly. For example, if a pipe bursts in the WBS, this affects the pressure of both the 
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downstream pipes and upstream pipes.  Due to the dataflow in the WBS system 
architecture, the failure of a pipe will automatically be propagated downstream. However, 
as there is no dataflow in the upstream direction, there is no way to propagate loss of 
pressure to these components in the system model. One solution is to propagate this 
failure by describing additional fault propagation connections to the upstream pipes in the 
fault model.  

The fault model could also identify other dependent faults such as common mode failures. 
These are faults that simultaneously affect a number of components that may not be 
explicitly connected in the system model.  For example, in the WBS, a number of 
components in the system might be supplied power by the same power supply. Failure of 
this power supply would lead to failure of all these components. The nominal system 
model might not even mention the power supply, since it is not necessary to describe the 
nominal behavior of the system. But the fault model will need to take this common mode 
failure into account. 

4.3.4 Proposed Approach: Aspect-oriented Technique 

We view the nominal model that captures the system functionality and the fault model as 
conceptually distinct.  For example, in a model-based development approach, the nominal model 
of software is used for code generation to derive the implementation of the software. If fault 
modeling is integrated into these components, then it is no longer possible to generate desirable 
code for these components.  Also, having an integrated fault model makes other MBD activities 
such as test-case generation and formal analysis of nominal model behavior more difficult.    

In addition, integrating the fault model into the system model leads to problems in the creation 
and evolution of the extended system model.  Even with an extremely simple fault model, the 
fault information can dwarf the description of the nominal behavior within an extended system 
model, leading to problems in system understanding, maintenance, creation, and evolution.  
Manually adding a single fault to a component to the system model may require several 
additional inputs to the top-level model and modifications to several components to “wire” the 
fault information to the appropriate place within the model. This step is further complicated if we 
wish to describe fault propagation or composite faults.  Finally, we often want to separately 
evolve the system and fault models, for example, to easily introduce or modify faults into a 
stable system model.  In short, if the fault model is not separated, it is extremely difficult and 
error-prone to manage the evolution of the combined model.  

We believe that it is critical to have the ability to separate the fault model from the system model 
and provide flexible options for combining the two models to perform meaningful safety analysis. 
By keeping the functional system model and the fault models separate and automating the 
composition, we can (1) keep the individual models simpler and more focused, and (2) reduce 
the possibility of introducing errors while manually composing the original functionality with the 
failure functionality.  

In addition to separation of the fault model from the nominal model, there must be support for 
flexible fault modeling. Having a notation that is specifically targeted towards fault modeling will 
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promote ease of specification of complex fault behaviors, such as fault propagations and 
hierarchies, allowing the engineer to create realistic models for precise safety analysis.  

Due to these shortcomings in using the existing tools for model-based safety analysis, there is a 
need to extend the existing framework to support separation of the fault and system models, 
flexible modeling of the fault model, and automatic system model extension. In this framework, 
the system and safety engineers can separately formalize the nominal system model and the fault 
model, which can be then automatically composed to form an extended model suitable for safety 
analysis. This extension should be performed at the modeling language/tool level so that the 
engineers can simulate the extended model in addition to performing formal analysis.  

The fault model is not intrinsic to the basic functionality of the system, but is an artifact required 
for the safety analysis and defines the failure behavior of the system. We observe that the fault 
model affects various components of the system in different ways. This can be essentially seen as 
cross-cutting the system functionality – an aspect of the system – which can be woven into the 
nominal system only when required for safety analysis. Aspect oriented programming (AOP) 
[21], [22], is a recent technique that makes it possible to clearly express programs with 
crosscutting concerns, or aspects, including appropriate isolation and composition of the aspect 
code. Using the AO-technique, one can specify the components that implement the basic system 
functionality in the component language (component program), the crosscutting aspects in an 
aspectual language (aspect program), and define an aspect weaver that composes the two to give 
an extended component program. We hypothesize that there is a natural application of these 
aspect-oriented techniques to resolve some of the research issues identified in fault modeling and 
model extension. A fault model can be thought of as an aspect of the original system and, 
consequently, we can view model extension as aspect-weaving. We believe that aspect-oriented 
techniques can be successfully applied in the formal modeling domain and that fault modeling 
and model extension can be considered as a natural instance of this application. Given aspect-
oriented tool support, we hope to achieve (1) separation of the fault model from the system 
model, (2) flexible specification of the fault model, and (3) sophisticated and flexible 
composition of the two models to create an extended system model. 

4.4 Formal Safety Analysis  

After extending the model with faults and failure modes, we want to check whether the safety 
property holds in the face of component failures. As mentioned in Section 3.2.5.2, there are two 
ways to perform this analysis – 1) one can either prove the safety property without constraining 
the number of faults that can occur in the system, or 2) one can prove the safety property after 
constraining it to some maximum number (k) of faults. In the first case, it will probably be 
necessary to assert that certain unlikely combinations of faults will not occur for the proof to go 
through. After ruling out all the unlikely combinations of faults, if the proof goes through, then 
the system adequately satisfies the safety property. In the second case, we restrict the safety 
property such that it will only consider k combinations of faults. If this property is satisfied, the 
engineer will get a proof that the safety property is satisfied for all combinations of k faults.  

In this section we describe an example safety analysis we can perform on the extended wheel 
brake system model. We describe the system fault tolerance verification, in which we investigate 
if the system can handle some fixed number of faults. 
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4.4.1 Fault Tolerance Verification Using Model-Checkers 

We want to investigate what is the maximum number of faults that the system can recover from 
and still satisfy the (relaxed) safety requirement. We would like to explore the effects of both 
transient and permanent faults on system fault tolerance.   

First, let us attempt to verify that our safety requirement holds in the presence of at most one 
transient fault at any point in time. 

In the presence of at most one transient fault, when the brake pedal is pressed in the absence of 
skidding, then either the normal pressure or the alternate pressure shall be above the threshold. 

For this example, we again formalize our safety properties in SMV. To make it easier to specify 
properties we extend our model to compute the number of faults triggered in the current step 
(given by NumFails). To flexibly formalize the notion of at most n faults, we introduce a 
variable, k, in NuSMV with range 0..n. We define the next relation for k such that it keeps its 
previous value. Thus k has some non-deterministic assignment in the initial state (a model 
checker considers all possible initial values in the range) and then holds that value constant. 

We first formalize the notion of correct behavior of the system in a particular state.  In CTL, this 
can be defined as: 

DEFINE  
   CorrectBraking := ((NumFails = k & k <= 1 & PedP_NoSkid) -> SomeP); 

This definition states that if there is at most one fault occurring in the current step (NumFails) 
and if the pedal is pressed in the absence of skidding, then we will get some pressure at the 
output in the same step. We can formalize the property over all states CTL (using the 
intermediate variables defined in section 4.2) as follows:  

SPEC AG (CorrectBraking); 

As may be expected, this property does not hold and NuSMV returns a counterexample 
indicating that as soon as a critical component fails (e.g., the green pump) we will instantly lose 
pressure at the brake calipers.  The underlying problem is that the system needs time to discover 
and react to the failure.  To account for this interval, we introduce a delay into our property to 
give the system chance to recover, 

SPEC AG (ABF 0..1 CorrectBraking)  

This property introduces the ABF operator, which is  a real-time CTL operator supported in 
NuSMV [19].  The ABF 0..1 specification states that the CorrectBraking property must either 
hold immediately or in the following step (alternately, the property CorrectBraking can be false 
for no more than one step).  Given this formulation, NuSMV comes back with a counterexample 
where the Green Isolation Valve fails. The only way for the system to detect this feedback is 
through the pressure feedback after the Meter Valve along the Normal line where there is a step 
delay in the model (Figure 14).  
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Figure 14 : Counter-example for a downstream fault requiring additional delay 

From the counterexample, it is clear that we need to allow the system time to detect failures 
located on the Normal system and switch to the Alternate system. We deem this delay acceptable 
and refine our property to reflect this additional delay. 

SPEC AG (ABF 0..2 CorrectBraking); 

This property states that if there is a single fault and the pedal is pressed in the absence of 
skidding for three consecutive time steps, then we will get pressure at the brakes by the third step 
(i.e., the property CorrectBraking can be false for no more than two steps). Nevertheless, 
verification of this relaxed safety property is still not possible, as illustrated by the scenario  
shown in Figure 15: If there is some transient failure (e.g., the Green pump fails) then the BSCU 
will detect this failure and switch over to the Alternate system powered by the Blue pump. In this 
version of the WBS, the switchover to the Alternate system is not reversible.  

Even if the fault that caused the switchover is transient and is repaired, the system will not switch 
back to the Normal hydraulic system. In our counterexample, even if the transient fault recovers, 
the active hydraulic system will still be the Alternate system. Now, if, for example, some meter 
valve along the Alternate system fails closed (stuck at closed), then the system cannot recover 
from this failure and will not generate any braking pressure.  
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Figure 15 : Counter-example for two transient non-overlapping faults  

The issue is that even though it took two transient faults to cause the loss of braking pressure, 
there was never more than one fault at any particular instant in time.  After examining the 
system, we realize that the original formulation of the property cannot hold if faults are allowed 
to “migrate” between different components.   

We realize that the real measure of interest is not the number of current failures, but the total 
number of failures over the course of operation.  To capture this notion, we introduce a new 
variable (TotalFails) that will compute the total number of faults triggered until the current 
step. TotalFails considers only rising edges of faults, i.e., a fault input was false in the 
previous step and true in the current step. Thus, a persistent fault will only be counted once, 
regardless of how long it lasts. In the previous failure scenario, TotalFails will count two 
failures even though we never have more than one failure at any one instance in time. 

We now redefine CorrectBraking to use TotalFails instead of NumFails as follows:  

DEFINE  
   CorrectBraking := ((TotalFails = k & k <= 1 & PedP_NoSkid) -> SomeP); 

and given the property: 
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SPEC AG (ABF 0..2 CorrectBraking); 

NuSMV now verifies that the property is satisfied. As noted before, TotalFails captures both 
scenarios for single transient and persistent (and permanent faults). We can conclude that our 
system can recover from any single transient or permanent failure. However, the system is not 
tolerant to two (or more) failures. In this case, NuSMV returns the counterexample described in 
Figure 15.   

4.4.2 Formal Safety Analysis Issues 

Currently the computation tools like model checkers do not generate results in the form of 
traditional safety artifacts, like fault trees. The result is either the property is true, or the property 
is false with a counterexample. There is research [8], [9], [27] that has begun to address turning 
counterexamples generated by model checkers into fault trees, but the current results are 
unacceptable for real safety analyses for reasons discussed in Section 5.2.1. 

Ideally, we would like to represent the safety analysis results in the form of a traditional fault tree 
with all possible fault combinations encoded in a way that reflects the architecture of the system. 
We can then use existing fault tree analysis tools (cf. [4], [5], [35]) to compute the probability of 
the top level event and check whether it is within acceptable limits. 

Alternately, the tool can rule out combinations of faults that are highly unlikely (based on some 
probability estimates) and only analyze for possible fault combinations. This can be performed as 
an iterative process, starting with no constraints. If counterexamples are returned, the user rules 
out certain combinations of faults and re-runs the tools. The end result that the tool will produce 
will be proof of the degraded safety property, in the presence of user specified constraints.  

Also, current notations (such as temporal logic) used for describing complex safety properties are 
not very familiar to practicing engineers nor straightforward to use for specifying degraded 
properties. More support is needed for capturing complex properties for verifying system fault 
tolerance. Due to the size and complexity of the models, we often operate at the limit of the 
capabilities of automated tools, such as model checkers. Scaling up the models to significantly 
larger systems will require additional research into techniques involving model abstraction and 
partitioning, or the use of manually guided tools such as theorem provers like PVS. 

4.4.3 Proposed Approach for Fault Tree Generation using PVS 

Theorem proving is another method for performing verification on formal specifications of 
system models. Theorem provers (for example, PVS [37]) apply rules of inference to a 
specification in order to derive new properties of interest. Rather than exploring the global state 
space, theorem provers automate human reasoning, reducing a proof goal (with human guidance) 
to simpler sub-goals that can be discharged automatically by the primitive axioms or decision 
procedures of the prover.   

Given a property and a model, the user is either able to verify the property by completing the 
proof or is presented with unproven subgoals that describe scenarios in which the property is 



 35 

violated. Theorem proving is generally harder than model checking and requires considerable 
technical expertise and understanding of the specification as well as the theorem proving 
environment. On the other hand, the process of creating a proof is an excellent way to gain 
insight into the specification. One of the major disadvantages of using theorem provers is that the 
prover does not help the user to determine if a proof is failing because the property is unprovable 
or the user is not providing the right steps to complete the proof.  

Proof trees correspond closely to fault trees (see Figure 16). In many ways, the process of 
constructing a proof tree is similar to the construction of a fault tree. The safety requirements 
will guide the formulation of safety properties and Top Level Events (TLE), in case of fault 
trees, for the system or subsystem under consideration. In a fault tree, the system engineers 
encode all the combinations of failures that will make the top level event occur. While proving a 
safety property, the engineer will have to rule out bad scenarios (in the form of the unprovable 
sub-goals) with the help of assumptions or axioms that enable the proof to succeed. These 
assumptions will potentially encode all the failure combinations which could cause the safety 
requirement to fail. These assumptions can be checked later to see if they satisfy the probability 
constraints. 
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Figure 16 : Correspondence between Fault Trees and Proof Trees 

 

4.5 Summary 

In this section, we illustrated the model-based safety analysis activities on a wheel brake system 
example using existing commercial modeling tool, Simulink [13], and verification tool,  
NuSMV [19]. We demonstrated how simulations and formal analysis can expose interesting 
failure scenarios even in case of a simple model. We identified important research challenges 
that need to be resolved in order to make the model-based safety analysis approach practical.   
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5 Related Work 

This section discusses related work in automating safety analysis. We start by discussing 
architectural specification languages and how they may be useful for safety analysis.  Following 
that, we look at research more specifically related to safety analysis.  Since fault trees are 
considered one of the most important safety artifacts, most of the existing work in the field has 
been in fault tree generation and analysis. We discuss some existing tools for automated fault 
tree generation (in conjunction with fault injection) and fault tree analysis.  We finally discuss 
some integrated formalisms for modeling and capturing safety information. 

5.1 Architecture Specification Languages 
There are several architectural specification languages that are already in use or are proposed for 
use in industrial applications. In this section, we discuss a few of the better-known languages. 

5.1.1 Architecture Analysis and Design Language (AADL) 

The Architecture Analysis and Design Language (AADL) is an SAE standard [34] specifically 
targeted to the design and analysis of the software and hardware architecture of performance-
critical real-time systems. The language is used to describe the structure of systems as an 
assembly of software components mapped onto an execution platform. The language can 
describe functional interfaces to components (such as data inputs and outputs) and performance-
critical aspects of components (such as timing).  The language also describes how components 
interact, such as how data inputs and outputs are connected and how application software 
components are allocated to execution platform components.  The language can also describe 
adaptable systems through the use of operational modes and mode transitions.   

This standard does not specify how the detailed design or implementation details of software and 
hardware components are to be specified.  Those details can be specified by a variety of software 
and hardware description languages. The relevant design and implementation characteristics are 
specified as AADL component properties, and as rules of conformance between the properties 
and the described components.  

AADL is designed to be extensible to accommodate analyses of the runtime architectures that the 
core language does not completely support. Extensions to accommodate new analyses and 
unique hardware properties take the form of new properties and analysis specific notations that 
can be associated with components. Some annexes may be proposed to be added to the standard. 
There is a proposed annex that will provide support for specifying error models.  

In the context of this work, we can use synchronous languages like RSML-e or Lustre (SCADE) 
to specify the component implementations and AADL to specify the architecture. We can use 
properties associated with each component to specify safety requirements. Work is already 
underway on an error model annex that may be suitable for specifying failure modes of 
components. AADL supports specification of both the logical and physical architecture, which 
could be used to separate logical and physical faults.  
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5.1.2 EAST-ADL 

EAST-ADL [28] is a language for the modeling and development of software based systems, 
with its primary domain of application in automotive systems. The language has been developed 
within the project EAST-EEA by representatives of European automotive industries and 
academic research sites. EAST-ADL is intended to capture all information needed for the 
development, from early analysis to implementation and evolution, and meets specific 
automotive requirements such as support for automatic code generation in the context of 
common automotive hardware.  

The EAST ADL is structured into 7 layers, each layer only loosely coupled through requirements 
entities and associations. The EAST ADL abstraction layers are – Vehicle View (describing user 
visible features), Functional Analysis Architecture (capturing the behavior and algorithms of the 
Vehicle View functions), Functional Design Architecture (representing a decomposition of 
functionality in the Functional Analysis Architecture to meet constraints regarding allocation, 
efficiency, etc), Function Instance Model, Hardware Architecture, Platform Model (which 
models the operating system or middleware) and Allocation Model (which contains configuration 
information needed for mapping of application software to hardware).  A progression through 
these models is implicit, but as there is overlap between the architectures, the path through them 
can be adapted to the needs of the different domains and companies. However, the language 
defines the artifacts in a unique and consistent way.  

The description of the language elements is divided into parts corresponding to different 
language domains: the structure specifying structural relation, the behavior describing behavioral 
models, the requirements modeling requirements (functional and non functional ones) and their 
relations to other entities, the V&V elements describing entities related to testing and 
verification. 

5.2 Automated Safety Analysis Tools and Techniques 

This section discusses some of the related tools and techniques specifically proposed for 
automated safety analysis. 

5.2.1 FSAP/NuSMV-SA 

FSAP/NuSMV-SA is a tool for automating the generation of fault trees. FSAP/NuSMV-SA [8], 
[9], [10], [14] is based on two components – FSAP (Formal Safety Analysis Platform), which 
provides a graphical front-end through the Safety Analysis Task (SAT) manager, and the 
NuSMV2 model checker, which provides the safety analysis engine. FSAP/NuSMV-SA requires 
the system model to be specified in NuSMV. FSAP/NuSMV-SA has support for failure mode 
definition and model extension through automatic failure injection. 

5.2.1.1 Fault Model 

FSAP/NuSMV-SA provides certain predefined failure modes – stuck_at (stuck at a particular 
value), inverted (boolean value gets inverted), non_determinism (non-deterministic, i.e. random, 
value),  ramp_down (integer value decreases by a fixed amount each step, down to a bottom 
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value), and glitch (wrong, random value for a limited number of steps). The user can specify the 
failure mode of a particular input/output by selecting one of the failure modes from the pre-
defined list of failures or the user-defined failures. The failures are assumed to be non-
deterministic in the time and order they may fail. With the exception of glitch, they are also 
persistent failures, i.e. once the failure occurs, it will exist from then on. 

5.2.1.2 Automatic Fault Injection and Model Extension 

After the failure modes are defined, the user can automatically inject the failures in the system 
model to create a new extended model. The extended system model adds degraded behavior to 
the original system corresponding to the failure modes defined. This model can then be used for 
safety assessment of the system. 

5.2.1.3 Automated Fault Tree Analysis 

A significant advantage of an automated analysis tool like FSAP is that it removes the burden of 
manually creating fault trees once the system and the fault model are specified. This ensures that 
the system and safety engineer work off the same models and assumptions. 

FSAP uses model checking to perform fault tree analysis [12], [27].  In this analysis, one 
describes a potential system failure, or Top Level Event (TLE) to be analyzed. Rather than 
generate a counterexample describing that failure, FSAP uses exhaustive state-space analysis to 
identify all sets of basic events, which may cause that TLE to occur. Thus, the tool will 
automatically extract all collections of basic events, i.e. all minimal cut sets, which can cause the 
given TLE. It creates all the minimum sets of basic events that cause the failure to occur 
independently, ensuring that all the events not affecting the TLE will not be a part of a minimum 
cut set. This gives a more exact and complete analysis than a manual fault tree analysis. 

NuSMV-SA also provides a trace for each minimal cut set it generates. The trace shows how the 
TLE is reached, given a particular configuration of failures determined by the minimal cut set. 
FSAP/NuSMV-SA can also automatically perform event ordering analysis. Specifically, given a 
TLE and a minimum cut set, it will find out whether there are any ordering constraints, which 
hold between the pair of basic events in the cut set. Traditionally FTA is a static analysis; using 
FSAP we can investigate influence of fault modes in dynamic situations. 

5.2.1.4 Discussion 

Though FSAP is a very powerful tool, it has disadvantages, which might limit its applicability to 
practical systems. A fault tree generated by FSAP has a flat structure (see Figure 17) – the 
structure of the generated fault trees is an “or-and” structure, i.e. it is a disjunction of all the 
minimum cut sets, with each minimum cut set being a product of basic events. Thus the tree is 
only two levels deep and can be very broad. A fault tree generated by a traditional manual 
analysis is usually more intuitive to read, as the analyst creates the fault tree, which corresponds 
to the structure of the system. This is an important concern as it hampers the understanding of the 
fault trees, and in turn the acceptance of the tool by the safety engineers. 

Another issue is that FSAP (or any automatically) generated fault trees are completely reliant on 
the correctness and completeness of the system and fault model.  If all possible failures are not 
considered, or if the component specifications do not correspond to the behavior of the real 
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system, then the fault trees will be incomplete or inaccurate. Manual creation of fault trees also 
serves as a human review that helps to catch such errors.  

Finally, in FSAP most faults (except glitch) are considered to be permanent when they occur. 
There is no flexibility in defining the fault model – no good way of specifying fault propagation, 
simultaneous/dependent faults, and persistent/intermittent faults. The user cannot control 
triggering of faults; it is performed non-deterministically by the tool. An additional point to note 
is that there is no way to simulate faults since the fault injection is performed at a lower level in 
NuSMV. The fault injection is straight-forward – there is no wrapping of failures as discussed 
earlier. 

 

 

Figure 17: Example Fault Tree Automatically Generated by FSAP/NuSMV-SA 

5.2.2 Galileo – Dynamic Fault Tree Analysis Tool  

Galileo [4], [39] is a dynamic (and static) fault tree modeling and analysis tool that incorporates 
DIFTree analysis methodology. Dynamic fault trees extend traditional (static) fault trees to 
enable modeling of fault-tolerant systems in which failure modes can depend on the ordering of 
component and sub-system failures and can include cascading and common cause failures 
(functional dependencies). DIFTree (Dynamic Innovative Fault Tree) analysis methodology [5] 
combines static and dynamic fault tree analysis techniques using a modular approach.  
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5.2.2.1 Fault Tree Creation 

Galileo enables engineers to edit and display fault trees in textual and graphical form through 
widely used, commercially-supported components that are easy to integrate into real engineering 
practice.  

5.2.2.2 Fault Tree Analysis Capabilities 

Galileo performs reliability analysis on the constructed tree. The tool supports coverage 
modeling in static and dynamic trees. Failure probabilities in static trees may be constant (time-
independent) or follow the exponential distribution. Dynamic fault trees only support exponential 
distribution of time to failure. A basic event is characterized by a failure probability and a 
coverage factor. 

DIFTree is a hybrid technique that supports automatic decomposition, analysis and integration of 
partial results. During traversal, a subtree is marked as dynamic if a dynamic gate is present, 
otherwise it is marked as static. The static fault subtrees are solved by automatic conversion to 
the equivalent BDD, while dynamic subtrees are solved by automatic conversion to the 
equivalent Markov model. Each submodel is solved for the probabilities of covered and 
uncovered failures and is replaced by a basic event in the higher-level model.  

The tool also supports a Monte-Carlo simulation engine that uses variance reduction techniques 
for the analysis of reliable systems. 

5.2.2.3 Discussion 

Since Galileo is a fault tree analysis tool, not fault tree generation tool, any automated fault tree 
generation tool can be used in conjunction with it. Given a qualitative fault tree (generated 
automatically from automatic fault tree generation tools like FSAP or our proposed tools), it can 
be imported into Galileo, which can then use it to do the quantitative analysis by plugging in the 
actual probabilities. Galileo is also useful for managing modular analysis of large systems.  

5.2.3 HiP-HOPS 

HiP-HOPS (Hierarchically Performed Hazard Origin and Propagation Studies) [31] is a method 
for safety analysis originating from a number of classical techniques such as Functional Failure 
Analysis (FFA), Failure Mode and Effects Analysis and Fault Tree Analysis. The method 
enables integrated assessment of a complex system from the functional level through to the low 
level of component failure modes. Though the HiP-HOPS process starts early in the design 
lifecycle with exploratory FFA, we describe its use only after we have a hierarchical model of 
the system (following the FFA). HiP-HOPS is currently supported by a tool called the Safety 
Argument Manager (SAM). 

5.2.3.1 Fault Model 

As the refinement of the system hierarchical model proceeds, the failure behavior of components 
in the model is analyzed using a modification of classical FMEA called Interface Focused-
FMEA (IF-FMEA). The application of this technique generates a model of the local failure 
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behavior of the component under examination, which is represented as a table. The table 
provides a list of component failures modes as they can be observed at the component outputs 
and for each such output failure, it determines the causes as a logical combination of internal 
malfunctions of the component or deviations of the component inputs. An IF-FMEA table records 
how a hardware or software component reacts to failures generated by other components. In 
addition, the table determines the failure modes that the component itself generates or propagates 
to other components.  

5.2.3.2 Fault Tree Generation 

Once the local failure behavior of all components is determined, we can determine how the 
functional failures that have been identified in the exploratory FFA arise from combinations of 
the low-level component failure modes that we have identified in the IF-FMEAs. In HiP-HOPS, 
this is achieved mechanically by synthesizing fault trees. 

A fault tree is generated incrementally by parsing the expressions contained in the IF-FMEA 
encountered during hierarchical traversal. The fault tree structure records hazardous 
dependencies between components in the model (caused by data flow, functional dependencies 
between sub-systems and components). Input deviations received by each component are 
substituted by corresponding output failures by other components. The tool performs minimal 
cut-set analysis and probabilistic calculations on the fault tree. 

5.2.3.3 Discussion 

The fault model consists of the standard failure modes, such as stuck at, at the base level 
components (lowest level in the hierarchy). In addition to the intrinsic component failures, fault 
propagation is explicitly considered wherever relevant at the component outputs. The user has to 
explicitly construct the IF-FMEA table which will be later used in fault tree generation. One of 
the strong points of this approach is that the hierarchical structure of the system is captured 
neatly in the fault tree. 

The component behavior is not considered while generating the fault trees – the fault tree seems 
to be just a hierarchical representation of what the user defined in the IF-FMEA table. We 
observe that there is no fault order dependency information, which will be extremely important 
in systems using synchronization. The fault trees do not contain additional trace information like 
in FSAP. We also observe that there is no direct support for formal analysis – it would depend on 
the modeling notation chosen. 

5.2.4 Altarica – Language with support for Fault Modeling  

The Altarica language [6], [7] was designed to formally specify the behavior of systems when 
faults occur. An Altarica model can be assessed of means of complementary tools such as a fault 
tree generator and a model-checker.  

5.2.4.1 Fault Model 

An Altarica model of a system consists of hierarchies of components called nodes. A node 
gathers flows, states, events, transitions and assertions. A failure can be defined as an event 
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which can affect the state of the node. A transition is characterized by a guard, an event name 
and command part (assignment to some state variable). A failure mode can be defined using a 
transition which takes the particular failure event.  

5.2.4.2 Fault Tree Generation 

Altarica fault tree generator takes as input an Altarica model and some unexpected event and 
generates a fault tree for the non-temporal failure conditions. Once the fault tree is generated, a 
fault tree analyzer, ARALIA, can be used to compute the set of prime implicants of the non-
temporal failure conditions.  
 
5.2.4.3 Discussion 

Since we do not have experience in using Altarica, we refer the reader to a short experience 
paper [7] that discusses the advantages, disadvantages and limitations of using Altarica for safety 
analysis.  Some key points made in the paper are as follows. It was found to be difficult to model 
certain types of failure propagations in Altarica – e.g. propagating failures in both directions, 
upstream and downstream without adding additional delays. Also, Altarica does not differentiate 
between transient and permanent faults.  
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6 Conclusions and Future Directions 

In this report, we introduced Model-Based Safety Analysis, an approach for automating portions 
of the safety analysis process using executable formal models of the system.  We believe that this 
approach has several benefits when integrated into safety analysis processes: 

• A tighter integration between systems and safety analysis based on common models of 
system architecture and failure modes.  

• The ability to simulate the behavior of system architectures early in the development 
process to explore potential safety hazards.  

• The ability to exhaustively explore all possible behaviors of a system architecture with 
respect to some safety property of interest using automated analysis tools.  

• The ability to automatically generate many of the artifacts that are manually created 
during a traditional safety analysis such as fault trees and FMEA/FMECA charts. 

Furthermore, this approach is based on existing commercial tools and techniques that are 
increasingly used for systems and software engineering for safety-critical systems.   

Nevertheless, there are several research challenges that must be addressed before the full benefits 
of this approach can be realized.  The first involves construction of the model: which languages 
and tools are most applicable and how much detail is necessary?  The second involves the 
analysis tools: can they be scaled to the point of analyzing realistic systems for relevant 
properties?  The third involves the user-interface and presentation issues: can we make the tools 
straightforward for system and safety engineers to use?  Can we take the results of these formal 
analyses and turn them into artifacts that can be easily understood and used by system and safety 
engineers? Can these artifacts be used for certification credit? 

Our goal in the short term was to use existing tools on industrially relevant examples to 
determine the actual problems and needs of safety engineers.  Given this experience, we can set a 
realistic, grounded research agenda to improve the process in the future.   To this end, we have 
modeled the Wheel Brake System example from ARP 4761 – Appendix L [2] in this report 
(Section 4). This example was chosen primarily because the ARP 4761 document is used as the 
main reference for safety assessment by a majority of the safety engineers in the avionics 
community, and this example is complex enough to illustrate many of the concerns that occur in 
practice.  Further, it contains a detailed safety assessment of the system, which provides a 
benchmark with which we can compare the results of our automated analyses.   

We modeled the system using the Simulink [13] modeling language (Section 4.1).  As part of 
this model construction process, we had to make several assumptions about the behavior of the 
system in question that affect the safety of the system.  This process of discovering “hidden” 
assumptions when constructing the model may be beneficial to the analysis process, as these 
models require that system behaviors be unambiguously specified.   We were then able to 
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exhaustively analyze one of the safety properties called out in the ARP document using the 
NuSMV model checker [19] (Section 4.4.1).  

In the process of creating the Simulink models and performing the safety analysis activities, we 
discovered several shortcomings in regard to flexibility in modeling faults, fault injection, 
performing safety analysis, and formatting of the analysis results.  Each of these deficiencies 
provides interesting avenues for future work.   

6.1 Fault Modeling and Model Extension 

The current process of creating fault models and injecting these faults into the system model is 
cumbersome, and it significantly clutters the model of the nominal behavior of the system with 
additional failure inputs.  Such models can be difficult to create, difficult to read, and difficult to 
update as the system evolves.   

In Section 4.3.4, we describe an alternate approach that separates the fault model from the 
nominal system behavior model.  Using aspect-oriented programming [21], it may be possible to 
create a library of reusable faults that can be applied to several different mechanical or digital 
components within a system. Using this approach, it would becomes straightforward to add or 
modify faults without the tedious redrawing of the model that is currently required, and it allows 
more flexible fault models to be specified.  Ideally, this process would be integrated into the GUI 
of existing tools, allowing the systems engineer to choose from a palette of pre-defined faults (or 
create specialized faults) and drag them onto existing system components.  We believe this is 
possible to achieve with some existing tools, but this would require significant development 
effort. 

6.2 Notations for Describing System Safety Properties 
Current notations (such as temporal logic) for describing complex safety properties are not very 
familiar to practicing engineers or straightforward to use for specifying complex properties. 
More support is needed for capturing complex properties for verifying system fault tolerance. 

6.3 Presenting Safety Analysis Results 

Currently, the results generated by model checkers and theorem provers do not correspond to the 
expected artifacts of safety analysis.  There is research that has begun to address turning 
counterexamples into fault trees, but the current results are unacceptable for real safety analyses 
for several reasons, as discussed in Section 5.2.1.4.  To better fit existing safety analysis 
guidelines we need to be able to present analysis results in familiar forms, such as fault trees, in 
ways that better map to current safety analysis practice.  In Section 4.4.2, we describe an 
approach using PVS to create fault trees that may yield intuitive and well-structured fault trees 
derived from the formal model.  

6.4 Scaling the Formal Analysis Tools 
Due to the size and complexity of the models, we often operate at the limit of the capabilities of 
automated tools, such as model checkers.  Scaling up the models to significantly larger systems 
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will require additional research into techniques involving model abstraction and partitioning, or 
the use of manually guided tools such as theorem provers, e.g., PVS [37]. 
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