
Design for ValidationSally C. JohnsonRi
ky W. ButlerNASA Langley Resear
h CenterHampton, VA 23665{5225 �Abstra
tThe use of 
omputer hardware and software in life-
riti
al appli
ations, su
h as for 
ivil air transports, de-mands the use of rigorous formal mathemati
al validationpro
edures. However, formal spe
i�
ation and veri�
a-tion will only be tra
table if the system is designed ina manner that lends itself to formal methods. Likewise,a

urate reliability analysis will only be tra
table if thenumber of intera
ting 
omponents that must be individ-ually in
luded in a single reliability model is kept to alow number and if their failure behavior intera
tions 
anbe modeled simply. Also, the system must be designedsu
h that the system reliability does not dire
tly dependon system parameters that 
annot be a

urately deter-mined. This paper presents a design methodology basedon the 
on
ept of designing a system in su
h a mannerthat it 
an be rigorously validated, or \design for valida-tion." Introdu
tionThe development of the Airbus A320 marked the be-ginning of a new era in 
ivil air transport te
hnology|dependen
e on 
ight-
ru
ial digital avioni
s. However,there are many indi
ations that this step was premature,given the 
urrent state of the pra
ti
e in digital systemsdesign and validation[1℄. Although the A320 was 
erti�edby the British Civil Aviation Authority (CAA), BrianPerry, head of Avioni
s and Ele
tri
al Systems for theCAA admits, \It's true that we are not able to estab-lish to a fully veri�able level that the A320 software hasno errors. It's not satisfa
tory, but it's a fa
t of life"[2℄.Airframers per
eive that in
reased use of 
ight-
ru
ialdigital avioni
s is an e
onomi
 ne
essity. But how 
antraditionally 
onservative airframers, su
h as Boeing andM
Donnell Douglas, safely make the transition to 
ight-
ru
ial avioni
s without jeopardizing their 
onservativereputations?There are numerous reports of serious in
idents involv-ing the use of 
omputers in life-
riti
al appli
ations. For�Published in IEEE Aerospa
e and Ele
troni
 SystemsJournal, Vol. 7, No. 1, Jan. 1992, pp. 38-43. Also Presentedat the 10th Digital Avioni
s Systems Conferen
e (DASC), LosAngeles, Ca, O
t. 7-11, 1991.

example, \In 1983 a United Airlines Boeing 767 went intoa four-minute powerless glide after the pilot was 
om-pelled to shut down both engines," be
ause the 
omput-erized engine-
ontrol system, in an attempt to optimizefuel eÆ
ien
y, had ordered the engines to run at a rel-atively slow speed 
ausing i
e buildup and subsequentoverheating[2℄. John Garman, Deputy Chief of NASAJohnson's Spa
e
raft Software Division, stated, \It's ashard to predi
t a software failure as it is to predi
t whatyour poker hand will be in the next deal"[2℄.The 
urrent pro
edure (RTCA DO-178A) used in 
er-ti�
ation of 
ight-
ru
ial software for 
ivil air transportsis not so mu
h a veri�
ation of the system itself as anexamination of the pro
ess used in its development. The
erti�
ation pro
ess 
onsists of 
he
king for 
ompletenessof do
umentation and adheren
e to a

eptable design anddevelopment pra
ti
es. A

ording to Mike DeWalt of theFAA, \Basi
ally, we take a sli
e through the whole sys-tem. That is, we pi
k a fun
tion like left aileron 
ontroland follow it all the way down through testing and 
on�g-uration management"[2℄. Thus, the testing of the systemis 
learly in
omplete. Even after 
erti�
ation of the A320,\various unsettling reports have appeared in the Euro-pean press, regarding: engines unexpe
tedly throttlingup on �nal approa
h; ina

urate altimeter readings; sud-den power loss prior to landing; stearing problems whiletaxiing"[2℄.There are two major reliability fa
tors to be addressedin the design of ultra-reliable avioni
s: hardware 
om-ponent failures and design errors. Even though signi�-
ant in
reases in the reliability of future hardware devi
esare envisioned, hardware 
omponent failures in the op-erational environment will remain unavoidable. Further-more, industry trends towards signi�
antly redu
ing therequirements for air
raft maintenan
e a
tions will meanin
reased dependen
e on the ability of systems to toleraterandom hardware faults.Design 
aws are errors introdu
ed in the developmentphase rather than the operational phase. These in
ludeerrors in spe
i�
ation of the system, dis
repan
ies be-tween the spe
i�
ation and the design, and errors madein implementing the design in hardware or software.While it is 
onvenient to 
onsider these fa
tors sepa-rately, they are inexorably linked be
ause of their strongintera
tions. The need for tolerating random hardware1




omponent failures requires the use of redundant hard-ware 
omponents. The a

ompanying need for redun-dan
y management fun
tions 
an greatly in
rease the
omplexity of the operating system software and hard-ware. Complexity in
reases the likelihood of serious, yetlatent, design 
aws.The design of a system entails making a series of de-sign de
isions and tradeo�s. These tradeo�s are typi-
ally made towards greater performan
e or lowest 
ostwithout regard for in
reased design 
omplexity and thuslower reliability. For example, the developers of the Ad-van
ed Fighter Te
hnology Integration (AFTI) F-16 de-
ided to use triplex, asyn
hronous 
hannels be
ause itwas believed that syn
hronous 
hannels would be morevulnerable to a single-point failure due to ele
tromag-neti
 interferen
e (EMI) or lightning. However, this de-
ision greatly 
ompli
ated the design and integration ofthe system. During 
ight tests, the majority of the in-
ight anomalies found were attributed to design over-sights during integration of systems developed separately,and many of them were dire
tly attributable to unex-pe
ted intera
tions between the asyn
hronous operationand the redundan
y management system[3, 4℄.This paper outlines an approa
h for the developmentof ultra-reliable digital avioni
s for 
ivil air transports|a \design-for-validation" philosophy that in
ludes rigor-ous appli
ation of formal methods. First, the basi
 
on-
ept of the methodology is introdu
ed, and the role offormal methods is explored. The impa
t of the design-for-validation philosophy on the system design pro
ess isthen demonstrated by two simple examples. More de-tail about the design-for-validation methodology is thengiven, followed by some 
on
luding remarks.Basi
 Con
eptA 
ommonly stated requirement for the 
ight 
riti-
al 
omponents of 
ommer
ial air
raft is a probability offailure not greater than 10�9 for a 10-hour mission time.This reliability region is 
learly outside the domain wherebla
k-box testing is feasible. Thus, analyti
 te
hniquesmust be used in addition to testing to demonstrate thata system meets its requirements.The validation problem for life-
riti
al systems 
an bede
omposed into two major subtasks:1. Quanti�
ation of the probability of system failuredue to physi
al failure.2. Establishing that design errors are not present.Sin
e 
urrent te
hnology 
annot manufa
ture ele
troni
devi
es with failure rates low enough to meet the reliabil-ity requirements dire
tly, fault-toleran
e strategies mustbe utilized that enable the 
ontinued operation of the sys-tem in the presen
e of 
omponent failures. The �rst sub-task must therefore 
al
ulate the reliability of the systemar
hite
ture that is designed to tolerate physi
al failures.This leads to the use of sto
hasti
 models of the faultarrival and fault re
overy behaviors of the system. Su
hmodels depend 
riti
ally upon the 
orre
tness of the soft-ware and hardware whi
h implements the fault-toleran
e

of the system. For example, if the redundan
y manage-ment system improperly diagnoses a good pro
essor asfailed or if a voter sele
ts a faulty value, the assumptionsof the reliability model may be violated|leading to \use-less" reliability numbers. Thus, the se
ond subtask mustnot only establish the absen
e of errors in the 
ontrollaws and their implementation, but also the absen
e oferrors in the underlying ar
hite
ture whi
h exe
utes the
ontrol laws. Furthermore, it must be demonstrated thatthe reliability model is a 
omplete and a

urate model ofthe implemented system. Sin
e this 
annot be rigorouslydemonstrated through testing, analyti
 methods must beused. Thus, the design-for-validation 
on
ept 
onsists ofthe following:1. The system is designed in su
h a manner that a
omplete and a

urate reliability model 
an be 
on-stru
ted. All parameters of the model that 
annotbe dedu
ed from the logi
al design must be mea-sured. All su
h parameters must be measurablewithin a feasible amount of time.2. During the design pro
ess, tradeo�s are made in fa-vor of designs that minimize the number of mea-surable parameters in order to redu
e the valida-tion 
ost. A design that has ex
eptional perfor-man
e properties yet requires the measurement ofhundreds of parameters (e.g., by time-
onsumingfault-inje
tion experiments) would be reje
ted overa less 
apable system that requires minimal experi-mentation.3. The system is designed in a manner that enablesa proof of 
orre
tness of its logi
al stru
ture. Thereliability model does not in
lude transitions repre-senting design errors.4. The reliability model is shown to be a

urate withrespe
t to the system implementation. This is a
-
omplished analyti
ally.The Role of Formal MethodsThe design-for-validation approa
h is based on the be-lief that life-
riti
al digital systems (software and hard-ware) must be designed in a manner that enables rigor-ous mathemati
al analysis in order to truly meet theirreliability goals. The mathemati
s for the design of asoftware system or digital hardware is logi
, just as 
al
u-lus and di�erential equations are the mathemati
al toolsused in other engineering �elds. The following steps areperformed to a

omplish a formal veri�
ation.1. Spe
i�
ation of system using languages based onmathemati
al logi
2. Rigorous spe
i�
ation of desired properties as wellas implementation details3. Mathemati
al proof that the implementation meetsthe desired abstra
t properties4. Use of semi-automati
 theorem provers to insure the
orre
tness of the proofs2



The �rst two steps by themselves represent the most lim-ited appli
ation of formal methods. Nevertheless, the useof spe
i�
ation languages based on mathemati
al logi

an o�er tremendous improvement in the spe
i�
ationpro
ess. De�
ien
ies and in
onsisten
ies 
an be dete
tedearly in the development pro
ess when their 
orre
tionis less 
ostly. Step (3) represents the use of traditionalmathemati
al \hand" proofs to verify that the implemen-tation meets the spe
i�
ation. Step (4) represents the�nal and most rigorous appli
ation of formal methods|the use of me
hani
al theorem provers to 
he
k the 
or-re
tness of the proofs themselves.Several proje
ts have already demonstrated that for-mal spe
i�
ation 
ombined with informal design reviewsand walkthroughs is useful and 
ost-e�e
tive for un
over-ing design faults. IBM's Cleanroom software experien
ehas shown that \More than 90 per
ent of total produ
tdefe
ts were found before �rst exe
ution," (as opposedto the 
ustomary 60 per
ent), while produ
tivity was\equal to or better than expe
ted for ordinary softwaredevelopment"[5℄. Likewise, the parallel development ofthe Transputer by two design teams 
on
luded with theteam employing formal spe
i�
ation te
hniques 
omplet-ing the design on time and under budget (and re
eivingthe Queen's award in re
ognition of this e�ort). However,while the use of formal spe
i�
ation alone without proofis an e�e
tive method for un
overing design faults earlyin the design pro
ess, it is not rigorous enough for 
om-plex, life-
riti
al appli
ations. Numerous design faultswere still un
overed during the testing of IBM softwaredeveloped using formal spe
i�
ation teamed with infor-mal 
orre
tness arguments.Even when the 
orre
tness of a system is proven and
he
ked using me
hani
al theorem provers, one 
annotguarantee that the probability of a design fault is zero.The proofs 
ould be based on in
orre
t axioms, the sys-tem requirements 
ould be in
omplete or ina

urate, orthere 
ould even be an error in the proof (e.g. the sys-tem designer makes an error in designing the system and
omes up with an erroneous proof that happens to bede
lared a valid proof by the me
hani
al theorem proverbe
ause of a design fault in the theorem prover).Formal methods is a powerful system design te
hniquefor two reasons. First, the use of formal methods providesa degree of 
on�den
e in the 
orre
tness of the systemthat is impossible with less rigorous methods. But moreimportantly, the appli
ation of formal methods for
es thesystem designer to examine his system design in intri
atedetail and to keep that design simple and modular enoughto be rigorously analyzable. For example, Dijkstra re
og-nized that formal veri�
ation of software programs 
ouldbe greatly simpli�ed by restri
ting the programmer to afew basi
 
ontrol stru
tures and eliminating the use of\goto" statements, and this was his prin
iple motivationfor introdu
ing the idea of stru
tured programming. Un-fortunately, \Many popularizers of stru
tured program-ming have 
ut out the rigorous part about mathemati
alveri�
ation in favor of the easy part about no gotos"[5℄.System Design Examples

nnn -- �2� 321Figure 1: Over-simpli�ed Model of Fault-TolerantDual Pro
essor
n nnn? --4 2�(1� C)2�C � 321

Figure 2: A

urate Model of Fault-Tolerant DualPro
essorThe design-for-validation philosophy means that, ide-ally, how the system is to be validated should be 
onsid-ered from the very �rst moments of the system designpro
ess. The following simple examples illustrate thispro
ess:Example System 1Suppose we must design a simple fault-tolerant systemwith a probability of failure no greater than 2 � 10�6whose maximum mission time is 10 hours. We qui
klyeliminate the use of a simplex pro
essor sin
e there is note
hnology that 
an produ
e a pro
essor with this low of afailure rate. Thus, we begin to explore the notion of fault-toleran
e. We next 
onsider the use of redundan
y|howabout a dual? When the �rst pro
essor fails, we willautomati
ally swit
h to the other pro
essor. We developthe Markov model shown in �gure 1 to model su
h asystem.Unfortunately, our design su�ers from one major prob-lem. It would be impossible to prove that any imple-mentation behaves in a

ordan
e with this model. Theproblem is that one 
annot design a dual system that 
andete
t the failure of the �rst pro
essor and swit
h to these
ond 100% of the time.1 Thus, we must a

ept the fa
tthat there is a single-point failure in our system and in-
lude that failure transition in our reliability model (see�gure 2).Now we have a parameter in our model whi
h mustbe measured|C. This parameter represents the fra
tionof single faults from whi
h the system will su

essfullyre
over. We must now determine whether this param-eter 
an be measured in a feasible amount of time (i.e.say less than year) with statisti
al signi�
an
e. Anal-ysis of this model using the SURE reliability analysisprogram[6℄ shows the sensitivity of the system reliabilityto C, as shown in Table 1. From this sensitivity analysis,1There are theoreti
al proofs that this 
annot be done.3



C LOWERBOUND UPPERBOUND:9990 2:99600 � 10�6 2:99900 � 10�6:9992 2:59660 � 10�6 2:59920 � 10�6:9994 2:19720 � 10�6 2:19940 � 10�6:9996 1:79780 � 10�6 1:79960 � 10�6:9998 1:39840 � 10�6 1:39980 � 10�61:000 9:99000 � 10�7 1:00000 � 10�6Table 1: Sensitivity Analysis of System Reliabilityto Parameter C.Pf
10�11
10�3
10�910�710�5

10�10 10010�8 10�6 10�4 10�2pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp

1�CFigure 3: Failure Probability of 5MR with � = 10�5as a Fun
tion of Cwe 
an see that we must demonstrate that C is greaterthan 0.9995. It 
an be shown that 20000 observations arene
essary to estimate this parameter to a reasonable levelof statisti
al signi�
an
e. If we optimisti
ally 2 assumethat ea
h fault inje
tion requires 1 minute, then this val-idation exer
ise would require 330 hours (i.e. 14 days).In this 
ase, we de
ide we 
an live with this amount oftesting and pro
eed to develop our system.Example System 2Now suppose we need to design a system with a reli-ability goal of 1 � 10�9. We de
ide to develop a nonre-
on�gurable 5-plex (5MR) using a pro
essor with a fail-ure rate of 10�5=hour. We do not intend to use formalmethods to verify the 
orre
tness of the fault-masking
apability of the system, so we must rely on testing tovalidate this property. Through testing we must estab-lish that the probability of a single point failure, say C,is suÆ
iently small. The probability of system failure isplotted as a fun
tion of 1�C in �gure 3. The value of Cmust now be greater than 0.9999982.It is easily shown that over a million fault inje
tionswould be required to measure this parameter even if we2Theoreti
ally one would have to observe the system for along time in 
ase the fault has a large laten
y period. If oneassumes that fault laten
y is less than 1 minute one 
an 
ensorthe experiment.

are very optimisti
 about the testing pro
ess. If ea
hinje
tion required 1 minute, this would require almost1.9 years of non-stop fault inje
tions.It would be ni
e if we 
ould design our system so thatsu
h an experiment is unne
essary. This is pre
isely thenotion of design for validation. The system is designedso that a single point failure 
annot 
ause system failure(i.e. C = 1), and this is demonstrated to be true byformal proof. Thus, one uses the power of analysis toeliminate experimental testing.The Design-for-Validation MethodologySystem design begins with a detailed des
ription of thesystem requirements written in a formal, mathemati
allanguage. The system design then pro
eeds in a hier-ar
hi
al fashion from a highest-level spe
i�
ation of thesystem down to a detailed implementation level. There-fore, formal methods are applied to the total system, notjust to the individual subsystems, and all intera
tionsbetween subsystems are formally des
ribed and under-stood. Of 
ourse, this represents the long-term ideal. Inthe short term, formal methods will probably be appliedto individual 
riti
al subsystems �rst.Although experimental methods 
annot be used tomeasure ultra-reliability dire
tly, there are important ap-pli
ations of experimental methods. The reliability mod-els used to analyze the system will depend on a

uratemeasurements of 
ertain parameters, su
h as 
omponentfailure rates and system re
on�guration rates. Likewise,the interfa
e between the lowest level of formal systemdes
ription and the a
tual hardware implementation ofthe system must be bridged by a

urate des
riptions andmeasurements of the hardware fun
tionality and timing.Reliability AnalysisReliability models are 
onstru
ted based on a detailedunderstanding of the failure modes and fault toleran
e ofa system. A reliability predi
tion is only as a

urate asthe reliability model of the system. Consequently, it isessential that a formal proof be 
onstru
ted to demon-strate that the Markov model is an abstra
tion of theimplementation[7℄. It is important to re
ognize that ex-perimental methods 
annot be used to demonstrate thisfor ultrareliable systems. This would require as mu
hexperimentation as dire
t life-testing of the system.Additionally, the reliability estimate obtained for asystem is only as a

urate as the parameters used inthe model. Therefore, the reliability model, and hen
ethe system behavior, must be based on parameters that
an be a

urately measured or estimated through analy-sis or experimentation. This would typi
ally in
lude thefailure rates of the hardware 
omponents and the re
ov-ery time for dete
ting, isolating, and re
on�guring out afailed 
omponent.There are pra
ti
al and e�e
tive 
omputational ap-proa
hes available today for 
al
ulating the reliability4



of Markov models[6, 8℄. The main area of 
on
ern isthat reliability models are often 
onstru
ted with manyparameters that would require exhorbitant amounts oftesting to measure a

urately. If rigorous validation isto be a

omplished, systems will have to be designeddi�erently|even if this means adding additional hard-ware to the system to make the validation task tra
table.Design FaultsReliability modeling te
hniques are satisfa
tory for val-idating the failure probability due to random hardwarefailures given that a

urate 
omponent failure rate datais available. The primary obsta
le in validation of ultra-reliable systems 
on
erns design faults in fun
tionality,not random hardware failures. With random hardwarefailures, the failures are assumed (and generally a

eptedto be) independent between ele
tri
ally isolated redun-dant 
hannels, and the failure probabilities of the repli-
ated units 
an be multipled, greatly in
reasing the over-all system reliability predi
tion. When 
onsidering designfaults su
h as software bugs, however, it has been foundthat errors in repli
ated versions, even though 
reated bydi�erent programmers using di�erent programming lan-guages, are not independent; i.e. the programmers tendto make the same kinds of mistakes[9℄.The 
on
ept of di�erent repli
ated versions is 
alled\design diversity" and has been applied to both softwareand hardware. It is generally a

epted that design diver-sity 
an result in in
reased reliability, but it is not possi-ble to quantify the in
rease in the ultra-reliable regime.These 
onsiderations leave validation of life-
riti
al sys-tems in a quandary: testing is not appropriate be
auseof the exhorbitant number of tests required. The design-for-validation philosophy leads us to the approa
h of for-mally verifying the 
orre
tness of ea
h and every elementof the design. There is no attempt to measure the proba-bility of system failure due to design faults. On
e proven
orre
t, the design is assumed 
orre
t for all analyses.Although formal veri�
ation 
an 
on
eptually be 
ar-ried down to deeper and deeper levels of re�nement (sayto the quantum-physi
s level), ultimately one rea
hes apoint where the 
ost/bene�ts do not justify veri�
ationat a level any lower. For example, it is typi
ally believedthat gate-level design is suÆ
iently low. At lower lev-els CAD synthesis tools seem to be adequate to developfault-free designs. The implementation 
onsequently isbuilt in terms of \atomi
" 
omponents su
h as NANDgates, 
rystal os
illators, lat
hes, et
. These 
omponentsare des
ribed mathemati
ally. The demonstration thatthese 
omponents are des
ribed properly must be doneexperimentally. For example, the drift rates of the 
lo
k
rystal os
illators is obtained by measurement.Performan
e AnalysisAvioni
s systems typi
ally 
onsist of a number of tasksthat exe
ute periodi
ally. The 
ight-
ru
ial avioni
stasks must reliably 
al
ulate the outputs needed to 
on-trol the airplane a

ording to stri
t real-time deadlines.

EE ��

ount

exe
ution timesHard upper boundFigure 4: Histogram of Task Exe
ution TimesFundamentally, the validation must establish that all ofthe 
ight-
ru
ial tasks meet their deadlines.Although probabilisti
/statisti
al methods have beensu

essfully utilized to model general purpose operat-ing systems, they have limited appli
ation to the perfor-man
e validation of ultrareliable, hard real-time systems.In fa
t, the majority of performan
e analysis tools beingdeveloped today are useful for estimating the average per-forman
e levels of a system, but are of little use in esti-mating in the tails of the performan
e distribution. Sim-ulation is of little value in su
h estimation for the samereason that software reliability 
annot be quanti�ed|you
annot estimate what you 
annot observe.Sin
e the set of tasks are 
onstant and their s
heduleis almost always stati
, the performan
e problem redu
esto a demonstration that ea
h task's exe
ution time isbounded. Unfortunately, experimental methods 
annotestablish this property to the required level of reliabil-ity. When one measures the exe
ution times of a taskone obtains a histogram like the one shown in �gure 4.Colle
ting enough measurements to estimate with suÆ-
ient statisti
al signi�
an
e the probability that the harddeadline would be ex
eeded is infeasible. Consequently,one must use formal 
ode analysis to demonstrate thatthe exe
ution times are stri
tly bounded. However, inmany 
ases su
h analyti
al methods will also be infeasi-ble unless the 
ode is developed (or redesigned) in su
h amanner as to support the required analyses. In re
ogni-tion of this problem, the proposed 00-55 British defen
estandard de�nes stri
t 
oding pra
ti
es that avoid imple-mentations whose exe
ution times 
annot be analyti
allybounded.System Modi�
ationIn an ideal world, the system requirements wouldbe 
ompletely de�ned at the start of the proje
t andfrozen|
hanges in the system requirements during de-sign and implementation would be forbidden. However,this is simply not a realisti
 s
enario for large develop-ment proje
ts. The plea that John Garman of NASA5



Johnson dire
ts to the a
ademi
 and software engineer-ing 
ommunity is to \help us to �nd ways to reliablymodify software with minimum impa
t in time and 
ost."Garman 
ontinues, \Maintaining software systems in the�eld, absorbing large 
hanges or additions in the middleof development 
y
les, and re
on�guring software sys-tems to \�t" never-quite-identi
al vehi
les or missionsare our real problems today"[10℄. The reason that mod-ifying systems is diÆ
ult and expensive is be
ause theintera
tions between subsystems are subtle and hard todetermine. When a 
hange is made to one subsystem, itis extremely diÆ
ult to determine all of the other sub-systems that are impa
ted by that 
hange. However, ifa system has been formally veri�ed using an automatedtheorem prover system, then whenever a system mod-i�
ation is made, the user 
an determine whi
h othersubsystems are impa
ting by rerunning the proofs. Theproofs for subsystems not impa
ted by the 
hange willremain valid, while the proofs of 
orre
tness of the im-pa
ted subsystems will be reported as \unproved." Theuser then modi�es the a�e
ted subsystems and their a
-
ompanying proofs, 
on�dent that no unexpe
ted inter-a
tions have been overlooked.Con
luding RemarksMost of the formal methods resear
h sponsored in theUnited States has been targetted towards appli
ation offormal methods to se
urity appli
ations. We believe thatappli
ation of formal methods will be the state of thepra
ti
e for 
ivil air transports in 10 to 15 years. Toa
hieve this, mu
h work must be done to develop for-mal methods te
hnology. Methods and tools for develop-ing formally veri�ed fault-tolerant system hardware ar-
hite
tures, operating systems, and avioni
s appli
ationsoftware must be developed and demonstrated. Cur-rent formal methods tools are tedious and diÆ
ult touse, and they 
an only be e�e
tively used by personsskilled in formal mathemati
al reasoning. Over time, itis expe
ted that tool developers will 
ome through with
reative breakthroughs to automate some of the tedioussteps that are now required. However, the developmentof tools powerful enough to allow persons that are notskilled in mathemati
al logi
 to perform rigorous proofsof systems is very unlikely in the foreseeable future. Thelogi
al thought pro
esses needed to prove a system 
or-re
t are far beyond the 
apabilities of today's arti�
ialintelligen
e resear
h. Therefore, if formal methods are togain widespread use, there must be a supply of logi
iansto pra
ti
e the 
raft.As formal methods be
omes the state of the pra
ti
e,reuse of proven hardware and software and reuse of proofsthemselves will be
ome 
ost e�e
tive. Software reuse to-day has gained only minimal a

eptan
e for three rea-sons: 1) development of new software is per
eived as be-ing relatively 
heap, 2) most software is not built withsuÆ
ient modularity to make its reuse pra
ti
al, and 3)rigorous spe
i�
ation is 
ru
ial to reusability. Formallyveri�ed software is expensive, is typi
ally built in a moremodular fashion to fa
ilitate the proof e�ort, and is rig-

orously spe
i�ed. Therefore, one is more likely to tryto reuse formally veri�ed software. Even in situationswhere new software or hardware must be developed, ex-isting proven designs 
an be modi�ed and parts of theiroriginal proofs reused.Referen
es[1℄ N. G. Leveson, \Software safety: What, why, andhow," Computing Surveys, vol. 18, June 1986.[2℄ J. Beatson, \Is ameri
a ready to `
y by wire'?,"Washington Post, Apr. 1989.[3℄ J. Rushby, \Formal spe
i�
ation and veri�
ation ofa fault-masking and transient-re
overy model fordigital 
ight-
ontrol systems." To be published asa NASA Contra
tor Report, 1991.[4℄ D. A. Ma
kall, \Experien
es with a 
ight-
ru
ialdigital 
ontrol system," Te
hni
al Paper 2857,NASA, Nov. 1988.[5℄ H. D. Mills, M. Dyer, and R. C. Linger, \Cleanroomsoftware engineering," IEEE Software, pp. 19{24,Sept. 1987.[6℄ R. W. Butler and A. L. White, \SURE reliabilityanalysis: Program and mathemati
s," Te
hni
al Pa-per 2764, NASA, Mar. 1988.[7℄ L. Moser, M. Melliar-Smith, and R. S
hwartz, \De-sign veri�
ation of SIFT," Contra
tor Report 4097,NASA, Sept. 1987.[8℄ R. W. Butler and S. C. Johnson, \The art offault-tolerant system reliability modeling," Te
hni-
al Memorandum 102623, NASA, Mar. 1990.[9℄ J. C. Knight and N. G. Leveson, \An experimentalevaluation of the assumptions of independen
e inmultiversion programming," IEEE Transa
tions onSoftware Engineering, vol. SE-12, pp. 96{109, Jan.1986.[10℄ J. R. Garman, \The bug heard 'round the world,"ACM SIGSOFT Software Engineering Notes, vol. 6,pp. 3{10, O
t. 1981.

6


