Automated Generation of Reliability Models

Sally C. Johnson; NASA; Hampton

Ricky W. Butler; NASA; Hampton

Key Words: Reliability model generation, Markov models, Reliability analysis.

Abstract

Markov models can be used to analyze the reliability
of virtually any fault-tolerant system. However, the
process of delineating all of the states and transitions
in the model of a complex system can be devastatingly
tedious and error-prone. The Abstract Semi-Markov Spec-
ification Interface to the SURE Tool (ASSIST) program
allows the user to describe the Markov model in a high-
level language. Instead of listing the individual
states of the model, the user specifies the rules
governing the behavior of the system, and ‘hese are used
to automatically generate the model. A small number of
statements in the abstract language can describe a very
large, complex model. Because no assumptions are made
about the system being modeled, ASSIST can be used to
generate models describing the behavior of any type of
system. The ASSIST program and its input language are
described and illustrated by examples.

Introduction

New advances in computation, such as the Semi-Markov
Range Evaluator (SURE) program, enable the accurate
solution of extremely large and complex Markov models
(Refs. 1 and 2). (In this paper, the term Markov will
be used to refer to both Markov and the more general
semi-Markov models.) However, the generation by hand of
the large models needed to capture the complex failure
and reconfiguration behavior of mos% realistic fault-
tolerant architectures has been an intractable problem.
Much research has been done on techniques for model
pruning and state aggregation to simplify the models, at
the expense of accuracy (Refs. 3 and 4).

Many of the early fault-tolerant architectures, such
as the Software Implemented Faul% Tolerance (SIFT)
system, are relatively simple to model. Even the early
complex systems were usually made up of subsystems that
can be modeled independently. However, as flight-
critical systems become more complex and more highly
integrated, the Markov models to describe them will
become enormously complex. The complexity of the model
stems from the interactions between failure and recovery
processes of the various subsystems, which can no longer
be modeled independently.

Often even the most complex characteristics of a
system can be described by relatively simple rules. The
models only become complex because these few rules
combine many times to form models with large numbers of
states and transitions between them. The rules
describing the behavior of each subsystem can be
developed and verified separately, then ‘he submodels
are easily combined to accurately model the behavior of
the entire integrated system. An abstract, high-level
language for describing system behavior rules and a
methodology for automatically generating Markov models
from the language were developed by Ricky Butler (ref.
5). The ASSIST computer program (Ref. 6) allows the
user to specify the behavior rules of the model in this
abstract language, then the Markov model is generated
automatically from the rules. The ASSIST program was
written in Pascal and executés on a VAX 11/750. The
Markov model is output in the format required for input
to the SURE program. For Markov analysis programs

requiring a different form of input for the Markov
model, a simple program could be written to modify the
model description file.

The abstract model definition and the automatic
model generation strategy are described. Analysis of an
example fault-tolerant architecture, a triad of
processors with cold spare processors, shows how the
behavior of a system can be captured by a few general
rules. The syntax of the ASSIST inpu%t language is then
described and demonstrated by creating a model to
describe the fault behavior of the example architecture.
The flexibility of the abstract language is demonstrated
by expanding the example ‘o model multiple triads of
processors sharing a pool of cold spare processors.

A Markov model consists of a number of system states
and transitions between them. Each state is defined by
a state vector, where each element of the vector takes
on an integer value within a defined range. An element
can represent any meaningful characteristic, such as the
number of good components of one type in the system, or
the number of faulty components of another type in use.
Each element is assigned an appropriate variable name
for ease of reference. The state space variables for
the model and their valid ranges are defined in the
"space" statement. The user specifies the initial
system state in the "start" statement. This establishes
the initial values of the state space variables for the
generation of the model.

The transitions represent the elapsed time between
system states which are stochastic processes defined by
probability distributions. In the restricted class of
Markov models, all transitions are exponentially
distributed and are completely defined by a simple rate
parameter. In the more general semi-Markov model, any
distribution can be used o describe the elapsed time.
Transitions between states in the model are specified
using transition statements. These statements have
three main parts: a condition expression, a destination
expression, and a rate expression. The first expression
is a boolean expression to describe the state space
variable values of states for which the transition is
valid. The second expression defines the destination
state for the ‘ransition in terms of state space
variable values., The third expression defines the
distribution of elapsed time for the transition.

Absorbing states of the model (i.e., states with no
transitions leaving them) represent system failure.
Typically, the reliability engineer must calculate the
probability of entering an absorbing state within the
specified mission time. The absorbing state or "death"
conditions of the model must be defined in terms of
state space values. These "death" conditions could be
system failure or the onset of degraded performance
operation or other situations resulting from failures.

The ASSIST program reads an input file containing
the model definition rules and creates two output files:
the model file and an optional listing file. The model
file describes all of the transitions between states in
the Markov model and their corresponding rates in the
format required for input to the SURE program. The
states are specified by integers. To make the model

U.S. Government work not protected by U.S. Copyright.

1988 PROCEEDINGS Annual

RELIABILITY AND MAINTAINABILITY Symposium 17

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 15, 2009 at 09:18 from IEEE Xplore. Restrictions apply.

easier to understand, this file is annotated with the
state space variables of each state in comments, which
SURE will ignore. For example:

1(* 6,0,0 %), 2(*% 5,1,0 %) = 3¥LAMBDA;
denotes a transition between state 1 and state 2 at
exponential rate 31, where state 1 is defined in ASSIST
as (6,0,0) and state 2 is (5,1,0).

In addition to a listing of the ASSIST input file,
the optional listing file contains a list of the
destination state of each arc leaving each non-death
state in the model. Destination states that are death
states are annotated with an asterisk. The listing file
also contains a list of the mappings between the SURE
state numbers and the state space variables of that
state in ASSIST. The optional listing file is useful
for verifying that the model generated accurately
describes the intended system behavior,

Constants and variables based on state space
variables can be defined in the input language and used
in subsequent statements. Statements in the ASSIST
input file that are put inside quotes are copied into
the model output file and are not otherwise processed by
ASSIST. These statements are put in the front of the
SURE input file with the constant definition statements.
Comments may also be included in the input file.

ASSIST Model Generation

The ASSIST program builds the model from the initial
"start" state by recursively applying the transition
rules. Before application of a rule, ASSIST checks all
of the "death" conditions to see if the current state is
a "death" state. Since a "death" state denotes system
failure, no transitions can leave a "death" state. All
of the transition rules are then evaluated, and
transitions to new states are generated where
appropriate. When all possible branches terminate in a
"death" state, model building is complete. The output
file contains a definition of each transition and its
rate. A listing file is also generated to assist the
user in determining whether the model generated
describes the intended system behavior.

The specific algorithm used to generate the model is
as follows. Initially, the READY SET contains only the
"start" state of the model. Each state in the READY SET
is processed in the following manner., If the state
meets any of the "death™ conditions, then that state is
a "death" state, and no transitions can leave it, so the
state is removed from the BEADY SET. If the state is

not a "death" state, then each transition rule is
applied to the state in the following manner to generate
If the

all possible transitions leaving the state.

condition expression of the transition rule evaluates to
true for the current state, ¢hen the destination
expression in the rule is used to determine the
destination state. If this state is within the bounds
of the state space parameters, then this is a valid
transition. If the destination state has no! already
been defined in the model, then a unique integer is
assigned to the new state, and it is added to the READY
SET. If the destination state was already defined in
“he model, then it was placed in the READY SET for
processing when it was first defined. The rate of the
transition is determined from the rate expression, and
the transition description is printed to the SURE model
file. After all of the transition rules have been
applied to the state, it is removed from the READY SET.

Example Architecture

The example architecture consists of a triad of
processors each executing the same program plus a pool
of two cold spare processors. The three processors
receive identical inputs so all non-faulty processors
produce the same output, and the three outputs are
voted. Any incorrect outputs are masked by the voting
as long as a majority of the active processors are non-
faulty. A faulty processor is detected by the voter and
is replaced with a cold spare processor if one is
available, For simplicity, this process is assumed to
be exponential for this example. There is no fault
detection for spare processors until they become active.
The Markov model to describe this system is shown in
figure 1.

The states in the example model are described by the
vector (NP, NFP, NS, NFS), where

NP Number of active processors,

NFP = Number of failed active processors,

NS = Number of cold spare processors, and
NFS = Number of failed cold spare processors.

[

The fault and recovery behavior of the example system is
described by the following rules:

1. The failure rate of each active processor is A.

2. The failure rate of cold spare processors is Y.

3. A failed active processor is replaced by a spare
processor a%t rate §.

4, System failure occurs unless a majority of the
active processors are non-faulty.

Rules 1 through 3 above describe the transitions
between states in the model. The fourth rule describes
the "death" states of the model. The system starts with
three non-faulty, active processors and two non-faulty,
cold spare processors, thus the start state is (3, 0, 2,
0).

Figure 1.

18 1988 PROCEEDINGS Annuadl

Markov model for a triad with two cold spares.

RELIABILITY AND MAINTAINABILITY Symposium

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 15, 2009 at 09:18 from IEEE Xplore. Restrictions apply.

Creating an Example Input File

The basic statements used in ASSIST are:

SPACE statement
START statement
DEATHIF statement
TRANTO statements
FOR statements
PRUNEIF statements

The ASSIST input file must contain one SPACE statement
and one START statement. The file may contain multiple
DEATHIF and TRANTO statements, and these statements may
be placed inside of FOR loops. Multiple PRUNEIF
statements may also be included to reduce the number of
states in the model. The use of the basic statements to
describe the fault behavior of the example architecture
will be demonstrated in this section.

SPACE Statement

The SPACE statement specifies the state space on
which the Markov model is defined. The state space is
defined by a n-dimensional vector where each component
of the vector defines an attribute of the system being
modeled. In the example architecture described above
the state space is (NP, NFP, NS, NFS). This would be
defined in ASSIST by the statement

SPACE = (NP: 0..3, NFP: 0..3, NS: 0..2, NFS: 0..2);
A state space variable can also be a one-dimensional
array. Arrays are useful, for example, in modeling
systems in which the specific processor that has failed
must be modeled instead of simply the number of failed
processors. The TRANTO and DEATHIF statements affecting
components modeled with arrays are often placed within
FOR loops. The section entitled "Modifying ‘he Example"
shows an example of how arrays may be used.

START Statement

The START statement indicates which state represents
the initial state of the system being modeled, i.e. the
probability the system is in this state at time 0 is 1.
In the example architecture the initial state is (3, 0,
2, 0). This is specified as follows:

START = (3, 0, 2, 0);

DEATHIF Statement

The DEATHIF statement specifies which states are
absorbing or "death" states in the model. In the
example problem, system failure occurs when half or more
of the active processors are faulty. Thus, in all
states of the Markov model where 2 times the value of
NFP is greater than or equal to NP, system failure
occurs. This is described with the following statement:

DEATHIF 2 * NFP >= NP;

TRANTO Statement

The TRANTO statement is used to describe the state
transitions in the model. The model is generated by
applying the TRANTO rules to each state in the model in
a recursive manner. Each TRANTO expression consists of
three basic parts: the condition expression, the
destination expression, and the rate expression.
condition expression is a boolean expression that
determines which states of the model this rule will be
applied to. The destination expression defines the
destination state of each transition by specifying the
change in one or more of the state space variables from
the source to destination state. The destination state
can be specified using positional or assigned values,

The

expression may contain FOR loop variables and state
space variables.

There are three ways of expressing the distribution
of elapsed time between states in the SURE program that
are supported in ASSIST. Slow exponential transitions
are specified by the transition rate. Fast transitions
may be specified by two different methods: White's
method or the fast exponential method. The syntax for
White's method consists of three real expressions:

<nmuu, "sig", "frach>

where
"mu" = the conditional mean transition time,
"sig" = the conditional standard deviation of the

transition time, and
"frac" = the transition probability.

The third parameter is optional. If it is omitted, the
transition probability is assumed to be 1.0.

The syntax of the fast exponential rate expression
is:

FAST "rate"

where "rate" is a real constan%t expression. The SURE
program automatically calculates the conditional moments
from the unconditional rates given in this expression.
In the simple case with only one transition leaving a
state, the following two expressions are equivalent:

<V, /a,1>
FAST a.

For more information on specifying transition rates, see
Reference 2.

In the example problem, the failure rate of each
active processor is A. Thi§ type of transition is
possible from every state in which there are unfailed
active processors. This condition can be described by
NP > NFP. The destination state for this type of
“ransition is identical to the current state, except
that the number of faulty processors is greater by one.
This can be described by the destination expression NFP
= NFP + 1. ASSIST assumes that the other state space
variables do not change. Since each of the unfailed
active processors can fail, the rate of this transition
is (NP - NFP) times X. This is described by the rate
expression (NP - NFP)*LAMBDA where LAMBDA is a constant
defined to be equal to A. The entire statement is thus:

IF NP > NFP TRANTO NFP = NFP+1 BY (NP-NFP)*LAMBDA;

By similar reasoning, the state transistions due %o
failures of cold spare processors can be defined by:
IF NS > NFS TRANTO NFS = NFS+1 BY (NS-NFS)¥*GAMMA;

where GAMMA is a constant defined Yo be equal to Y.

The third type of transistions are those due to
reconfiguration. A failed active processor is replaced
by a spare processor at rate §. This transition is
possible from any state in which there exist one or more
failed active processors and one or more spares, defined
by the condition expression NFP > 0 AND NS > O.

The cold spare processor selected may have failed
before reconfiguration. If one or more of the spare
processors has failed, then the failed processor will be
replaced with a failed spare processor with probability
(NFS/NS). 1If all of the spare processors have failed
then (NFS/NS)=1, and the probability of selecting a
failed spare is 1. The failed processor will be
replaced with a working processor with probability (1-

The rate expression defines the distribution of elapsed (NFS/NS)). 1If none of the spare processors have failed,
time for the transition o be added to the model. This
1988 PROCEEDINGS Annual RELIABILITY AND MAINTAINABILITY Symposium 19

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 15, 2009 at 09:18 from IEEE Xplore. Restrictions apply.

then the probability of using a working spare is 1, and
since NFS=0, then (1-(NFS/NS))=1.

Replacement of the failed processor with a failed
spare processor is only possible if there exist one or
more failed spare processors, NFS > 0. The destination
state will have the number of failed processors stay the
same. The number of spare processors will decrease by
one, and the number of failed spares will decrease by
one. The destination expression can thus be defined by
NS = NS-1, NFS = NFS-1. Since we are assuming the
recovery process is exponentially distributed, the FAST
rate technique can be used. The basic rate of replacing
a known faulty processor must be multiplied by the
probability that the failed spare was used (NFS/NS) to
include the possibility of replacing a faulty processor
with a faulty spare. The resulting expression is thus:

IF NFP > 0 AND NS > O THEN
IF NFS > O TRANTO NS = NS-1, NFS = NFS-1
BY FAST (NFS/NS)*DELTA;"
ENDIF;

where DELTA is a constant set equal Lo §.

Replacement of the failed processor with a working
spare is only possible when there exists one or more
nonfailed spare processors, NS > NFS. In this case, the
destination state has the number of failed processors
decreased by one and the number of spare processors
decreased by one. The resulting expression is thus:

IF NFP > O AND NS > O THEN
IF NS > NFS TRANTO NFP = NFP-1, NS = NS-1
BY FAST (NFS/NS)*DELTA;
ENDIF;

As may be seen from the last two examples, multiple
condition expressions of TRANTO statements can be
nested. An ELSE statement can also be used.

FOR Statements

Many times several TRANTO or DEATHIF statements are
needed which are identical except they operate on
different state space variables. The different state
space variables can be put in an array, and the FOR
statement can be used to define several TRANTO or
DEATHIF rules at once. Consider a system in which
system failure occurs when half or more of any of three
types of components are faulty. An array NA of range 1
to 3 could represent the number of each type of
component active in the system, and an array NF of range
1 to 3 could represent the number of each type of
component that is faulty and active. The "death"
condition could be described by the following:

FOR I = 1,3;
DEATHIF 2 * NF[I] >= NA[I];
ENDFOR;

Thus, in all states of the Markov model where 2 Yimes
the value of NF for one of the three components is
greater than or equal to NA for the same component,
system failure occurs.

PRUNEIF Statements

The PRUNEIF statement can be used to automatically
truncate the Markov model. Assume the probability of
more than M component failures occurring during a
mission is negligible compared to the probability of
system failure. Using NFC as a state space variable to
represent the number of failed components, the following
statement appropriately truncates the model:

PRUNEIF NFC > M;

The model is truncated by assuming system failure when
the truncation criteria is met, so this method is con-

20 1988 PROCEEDINGS Annual

servative. All of the pruned states are aggregated
together as one state, which is state number 1. Thus,
the contribution to system failure due to pruning can
easily be determined from examining the SURE output.

The ASSIST Input File
The example architecture may thus be described using
ASSIST as follows:

N_PROCS = 3; (* Number of active processors ¥*)

N SPARES = 2; (¥ Number of cold spare processor *)
LAMBDA = 1E-4; (* Failure rate of active processor ¥)
GAMMA = 1E-5; (¥ Failure rate of spare processor ¥)
DELTA = 3.6E3; (* Reconfiguration rate ¥)

SPACE = (NP: 0..N_PROCS, (* Number active procs ¥)
NFP:0..N_PROCS, (¥ Failed active procs *)
NS: 0..N SPARES, (* Number spare procs *)
NFS:0..N SPARES); (* Failed spare procs *)

START = (N_PROCS, 0, N_SPARES, 0);

DEATHIF 2 * NFP >= NP;
IF NP > NFP TRANTO NFP = NFP+! BY (NP-NFP)¥LAMBDA;
(* Active processor failure ¥)
IF NS > NFS TRANTO NFS = NFS+1 BY NS*GAMMA;
(* Spare processor failure ¥)
IF (NFP > O AND NS > 0) THEN
IF NS > NFS TRANTO (NP, NFP-1, NS-1, NFS)
BY FAST (1-(NFS/NS))*DELTA;
(* Replace failed processor with working spare ¥)
IF NFS > O TRANTO (NP, NFP, NS-1, NFS-1)
BY FAST (NFS/NS)*DELTA;
(* Replace failed processor with failed spare *)
ENDIF;

By changing the value of N_SPARES, a similar system with
a different number of initial spares may be modeled.

An Example Using Arrays

The example above can be expanded to model a system
with several triads and a pool of spares using array
state space variables. If two or more processors in an
active triad fail then the system fails. As long as
spares are available, a faulty processor in a triad is
replaced from the spares pool. If no spares are
available, then the triad is broken up and the nonfaulty
processors are added to the pool of spares.

This example is very similar to the first example,
except that the DEATHIF statement and TRANTO statements
pertaining to triads must be put inside FOR loops to
handle all of the triads. The only significant changes
to the model are a new transition type and a new type of
system failure, The new transition is the breakup of a
triad when it fails and there are no spares. System
failure by exhaustion must also be modeled, ‘which
requires an extra state space variable and a new DEATHIF
statement.

INPUT N_TRIADS;
INPUT N_SPARES;
N_PROCS = 3;
LAMBDA = 1E-Y;
GAMMA = 1E-5;
DELTA1 =" 3.6E3;
DELTA2 = 5.1E3;

(* Number of triads initially *)
(* Number of cold spare processors *)
(* Number of active processors ¥)
(* Failure rate of active processors *)
(* Failure rate of spare processors *)
(* Reconfig. rate to switch in spare *)
(* Reconfig. rate to break up triad *)
SPACE = (NP: ARRAY[Y..N_TRIADS] oF 0..N_PROCS.
(* Number of active processors per triad *)

NFP: ARRAY[1..N_TRIADS] OF O..N_PROCS,

(* Fatled active processors per triad¥*)

NS, (* Number of spare processors ¥)

NFS, (* Number of failed spare processors *)

NT: 0..N TRIADS); (* Non-failed triads ¥)
START = (N_TRIADS OF N_PROCS, N_TRIADS OF 0, N_SPARES,

0, N_TRIADS);

RELIABILITY AND MAINTAINABILITY Symposium

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 15, 2009 at 09:18 from IEEE Xplore. Restrictions apply.

IF NS > NFS TRANTO NFS = NFS+1 BY NS*GAMMA;
(* Spare processor failure ¥)
FOR J=1,N_TRIADS
IF NP[J] > NFP{J] TRANTO NFP[J] = NFP[J]+1
BY (NP(J]-NFP[J])*LAMBDA;
(* Active processor failure *)
IF NFP[J] > O THEN
IF NS > 0 THEN
IF NS > NFS TRANTO NFP{J] = NFP[J]-1, NS = NS-1
BY FAST (1-(NFS/NS))*DELTA?;
(* Replace processor with working spare *)
IF NFS > O TRANTO NS = NS-1, NFS = NFS-1
BY FAST (NFS/NS)*DELTA;
(* Replace processor with failed spare *)
ELSE
TRANTO NP[J] = O, NFP[J] = 0, NT = NT-1,
NS = NP[J]-NFP[J] BY FAST DELTAZ2;
(* Break up failed triad ¥)
(* if no spares available *)
ENDIF;
ENDIF;
DEATHIF 2 * NFP[J] >= NP[J] AND NP[J] > O;

(* Two faults in active triad is system failure *)
ENDFOR;
DEATHIF NT = 0; (* System failure by exhaustion ¥)

Since variable-sized arrays were used, a system with
any number of initial triads may be modeled by setting
the constant N TRIADS. The number of spares initially
is set with the constant N SPARES. Table 1 shows that
changing these two constants has a dramatic effect on
the number of states in the model generated.

Number of Spares

0 1 2 3
Numver 1 4 10 19 31
of 2 45 61 85 nT
Triads 3 219 259 319 399
y. 889 985 1129 1321
Table 1. Number of states in model for various

initial configurations of example 2.

An Example Using Pruning

The example used in this section was taken from
Reference 7, where it was used to demonstrate the
ability of the Hybrid Automated Reliability Predictor
(HARP) program to solve very large models. The example
system contains twenty components of seven different
types. The failure conditions of the system are defined
by the fault tree given in figure 2. Without
considering coverage failures, this fault tree converts
%0 a Markov chain containing 24,533 states and over
335,391 transitions according to Reference 7. The
ASSIST input file to define this model is given below.
A PRUNEIF statement is included to prune the model at
the third component failure level.

of power supplies *)

of input controllers ¥)
of data collectors ¥)
of CPUs ¥)

of 1553 busses ¥)

e of output drivers *)

e of CCDL receivers *)

L PS = 3.0E-5; (* Failure rat
L_IC = 1.5E-5; (¥ Failure rat
L DC = T.0E-6; (* Failure rat
L CPU = 3.26E-5; (* Failure rat
.
¢
t

® ® ® @

L_BUS = 1.0E-5; (* Failure ra
L _OD = 3.0E-6; (* Failure ra
L CR = 4.26E-6; (¥ Failure ra

©

SPACE = (PSF:ARRAY[1..3], (* Failed power supplies ¥)
ICF:ARRAY[1..3], (¥ Failed inpu%t controllers *)
DCF:ARRAY[1..2], (* Failed data collectors ¥)
CPUF:ARRAY[1..3], (* Failed CPUs *)
BUSF:ARRAY[1..3], (* Failed 1553 buses *)
ODF:ARRAY[1..3], (¥ Failed output drivers *)
CRF:ARRAY[1..3], (* Failed CCDL receivers ¥*)
NFC); (* Total number of component failures ¥)

START = (21 OF 0);

PRUNEIF (NFC >= 3); (¥ Prunes model at 4th *)
(* component failure level ¥)
ONEDEATH = 1; (* This statement causes all the death *)

(* states to be aggregated into one state *)
ggreg

(* The DEATHIF statements can be determined *)
(* directly from the fault tree description *)

DEATHIF (PSF[1]+ICF[1]+DCF[1]>0) AND
(PSF[2]+ICF[2]+DCF[21>0);

DEATHIF (PSF[1]+ICF[1]+CPUF[1]+BUSF[1]>0) AND
(PSF[2]+ICF[2]+CPUF(2]+BUSF[2]>0) AND
(PSF[3]+ICF[3]+CPUF[3]+BUSF[31>0);

DEATHIF (PSF[1]+ICF[1]+CPUF(1]+0DF[1]+CRF[1]>0) AND
(PSF[2]+ICF[2]+CPUF[2]+0ODF[2]+CRF[2]>0) AND
(PSF[3]+ICF[3]+CPUF[3)+ODF[3]+CRF[31>0);

(¥ Failures of each type of component: *)
FOR I = 1,3;
IF PSF{I] = O TRANTO NFC=NFC+1, PSF[I1]=1 BY L_PS;
IF ICF[I] = O TRANTO NFC=NFC+1, ICF[I)=1 BY L_IC;
IF CPUF[I] = O TRANTO NFC=NFC+1, CPUF[I]=1 BY L_CPU;
IF BUSF[I] = 0 TRANTO NFC=NFC+Y, BUSF[I]=Y BY L_BUS;
IF ODF[I] = O TRANTO NFC=NFC+1, ODF[I}=1 BY L_OD;
IF CRF[I] = O TRANTO NFC=NFC+1, CRF[I]=! BY L_CR;
ENDFOR;
FOR J = 1,2;
IF DCF[J] = O TRANTO NFC=NFC+1, DCF[J]=1 BY L_DC;
ENDFOR;

The ASSIST file above generates a Markov model with
only 203 states and 3658 transitions. The ASSIST
program required approximately 300 CPU seconds to
generate this model, and the SURE program required
approximately 20 CPU seconds t¢o solve the model for each
of the 10 mission times. As shown in the following
table, the conservative error due to pruning is at most
0.8% for each mission time. This pruned model is only
approximately 1/100th the size of the full model of the
system, yet the error is negligible.

Figure 2.

1988 PROCEEDINGS Annuadl

Fault tree for example with pruning.

RELIABILITY AND MAINTAINABILITY Symposium 21

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 15, 2009 at 09:18 from IEEE Xplore. Restrictions apply.

Mission Unreliability Error Due to HARP

(hours) Bounds Pruning Answers
1 2.704E-9 2.707TE-9 2.222E-12 2.705E-9
2 1.082E-8 1.084E-8 1.77T7E-11 1.082E-8
3 2.435E-8 2.442E-8 6.000E-11 2.435E-8
4 4.329E-8 4.347E-8 1.422E-10 4.330E-8
5 6.766E-8 6.800E-8 2.717E-10 6.766E-8
6 9.TU5E-8 9.804E-8 4,799E-10 9.T45E-8
7 1.327E-7 1.336E-7 7.620E-10 1.327E-7
8 1.733E-7 1.TUTE-T 1.138E-9 1.733E-7
9 2.194E-7 2.214E-7 1.620E-9 2.194E-7
10 2.709E-7 2.736E-7 2.222E-9 2.709E-7

This example dramatically shows the power of the PRUNEIF
statement. Although the SURE program and many other
Markov solvers could prune the model before analyzing
it, pruning in ASSIST means the entire model never has
to be generated.

Modeling Techniques

Modeling of systems using Markov models is still
rather much of an art, even using the ASSIST program.
As with any language, as the user becomes proficient he
can more easily generate elegant, efficient models.
States can often be aggregated by using fewer state
space variables to describe the system states, thus
creating a smaller model that can be analyzed more
quickly by the Markov analysis tool. However, this
often leads to rather complex TRANTO and DEATHIF
statements, making the input file much more difficult to
understand and verify.

Concluding Remarks

The use of the ASSIST program has been described and
illustrated by several examples. This program allows
the user to define a set of rules in an abstract
language which are then used Yo automatically generate a
Markov model. These rules correspond ¢£0 the basic
concepts used to create models of fault-tolerant
systems. A small number of statements in the language
can be used to describe a very large model. A variation
in the system (such as in the number of initial spares)
can be accomplished by changing only one line in the
model definition, although such a change could represent
a large increase in the size of the generated model.
Model pruning techniques can be used ¢o dramatically
reduce the size of the generated model without
significantly reducing accuracy, and the maximum error
due to model pruning can easily be determined.

Although ASSIST has no%t been officially released,
reliability engineers at Sperry Corporation, Boeing
Military and Boeing Commercial Airplane Companies, the
Charles Stark Draper Laboratory, and six other companies
are using ASSIST to build models to input to the SURE
reliability analysis program. The Integrated
Airframe/Propulsion Control System Architecture (IAPSA
11) study being performed by the Boeing Military
Airplane Company used ASSIST to generate a complex

22 1988 PROCEEDINGS Annual

reliability model of sensors, actuators, and multi-
channel fault-tolerant processors used in engine and
flight control of an advanced high-performance aircraft
design. ASSIST was used to model each subsystem, then
the models were easily combined by ASSIST to produce a
reliability model for the complex, integrated system.

References

1. White, Allan L.: Upper and Lower Bounds for Semi~
Markov Reliability Models of Reconfigurable Systems.
NASA CR-172340, 1984.

2. Butler, Ricky W.: The SURE Reliability Analysis
Program, NASA TM-87593, February 1986.

3. Bavuso, Salvatore J.: A User's View of CARE III.
1984 Annual Reliability and Maintainability Symposium,
January 1984,

4, Trivedi, Kishor; et al: Hybrid Modeling of Fault-
Tolerant Systems. Computers and Electrical Engineering,
An International Journal, vol. 11, no. 2 and 3, pp. 87~
108, 1985.

5. Butler, Ricky W.: An Abstract Specification
Language for Markov Reliability Models, NASA TM-86423,
April 1985.

6. Johnson, Sally C.:
87735, August 1986.

7. Bavuso, Salvatore J., et al: Dependability Analysis
of Typical Fault-Tolerant Architectures Using HARP, NASA
TP 2760, November 1987

ASSIST User's Manual, NASA TM-

Biographies

Sally C. Johnson

NASA Langley Research Center
Mail Stop 130

Hampton, VA 23665-5225 USA

Sally Johnson is a research engineer in the System
Validation Methods Branch at NASA Langley. Her current
research interests include fault-tolerant computer
architectures, validation tools, and validation of
knowledge-based systems. She received a B.S. degree in
Computer Science from North Carolina State University in
December 1982 and is currently pursuing a master's
degree in Computer Science from 0ld Dominion University.

Ricky W. Butler

NASA Langley Research Center
Mail Stop 130

Hampton, VA 23665-5225 USA

Ricky Butler is a research engineer at the Langley
Research Center. He received his B.A. degree from the
University of Virginia in Mathematic¢s and Physics in
1976 and his M.S. degree in Computer Science from the
University of Virginia in 1978. His research interests
are in the design and validation of fault-tolerant
computer systems used for flight-critical applications.

RELIABILITY AND MAINTAINABILITY Symposium

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 15, 2009 at 09:18 from IEEE Xplore. Restrictions apply.

