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Abstract— This paper presents a distributed consensus al-
gorithm for autonomous merging and spacing that enables
unmanned aircraft systems (UAS) to coordinate their passage
through an aerial intersection (i.e., merging fix) via a distributed
control mechanism. The algorithm is incorporated into the
Independent Configurable Architecture for Reliable Operations
of Unmanned Systems (ICAROUS). In-trail spacing between
aircraft is achieved with the integration of sense and avoid
functionality (SAA) within the ICAROUS framework. This
approach allows vehicles to maintain required spacing while
entering or exiting the merging fix. Enabling autonomously
coordinating vehicles in merging and spacing operations is a
key capability in facilitating vehicle traffic in urban airspace
and air-mobility operations involving small UAS and other
Electrical-Vertical Takeoff/Landing (E-VTOL) vehicles.

I. INTRODUCTION

Several industries are exploring the use of small Un-
manned Aircraft Systems (sUAS) to perform on-demand
delivery of low weight, low cost consumer goods, mail,
medical supplies, etc. Such delivery operations would result
in a large number of vehicles operating in low altitude
airspace when departing from and converging to distribution
centers. The complexity of these operations and the variety of
performance of these vehicles represent a technical challenge
for dispatchers and schedulers of traffic management systems
trying to prevent conflicts among converging flights while
maximizing traffic flow. The features described in this paper
will provide vehicles the capability to coordinate their arrival
order and maintain in-trail spacing without intervention of a
ground mission scheduler.

The emerging concept of operations known as Urban
Air Mobility (UAM), led by the National Aeronautics and
Space Administration (NASA), is set to revolutionize air
travel. UAM, conceptually, relies on a dedicated network
of airspace corridors that will accommodate a large number
of concurrent flights. UAM operations are envisioned to
have a high population of Vertical Takeoff/Landing (VTOL)
vehicles operating in urban canyon type environments at
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any given time [1]. Vehicles converging to a vertiport need
to maintain appropriate separation distance (i.e., spacing)
with other vehicles while merging to the vertiport location.
UAS Traffic Management (UTM) and UAM vehicles in
intersecting and converging corridors will benefit from on-
board technologies that ensure vehicle separation and spacing
requirements.

Although offline entities such as UAS Service Suppliers
(USS) can provide strategic deconfliction of flight plans a
priori, the ability to autonomously perform merging and
spacing operations in a decentralized fashion is required to
dynamically respond to uncertainties associated with spacing
or merging.

The goal of this paper is to explore the feasibility of
performing merging and spacing operations solely relying
on Vehicle to Vehicle (V2V) communications. This paper
presents a merging approach that enables independent aerial
systems to coordinate their passage through a common merg-
ing fix (i.e., the center of an intersection) in a distributed way.
The merging algorithm is integrated into the Independent
Configurable Architecture for Reliable Operations of Un-
manned Systems (ICAROUS) framework and combined with
its sense and avoid functionality. This merging algorithm
allows vehicles to achieve and maintain required spacing
when entering or exiting the merging fix. Furthermore, the
presented algorithm also enables vehicles to transition from
one merge fix to another. A proof of concept flight test
demonstration of the algorithm presented in this work and
associated flight test results are documented in [2].

This paper is organized as follows. Section II discusses
related work. Section III discusses the underlying approach
involving the scheduling algorithm and information exchange
for achieving consensus. Section IV briefly explains how
spacing between vehicles is achieved outside the intersection
environment. Section V illustrates the proposed approach on
a simple merging scenario in an urban environment. Section
VI discusses various aspects of the proposed approach.
Finally, Section VII offers conclusions and presents future
work.

II. RELATED WORK

Several systems are available to maintain separation from
other vehicles in the airspace, e.g., TCAS [3], DAIDALUS
[4], ACAS-X [5]. These systems are designed to provide
resolution advisories to the pilot. The stability and control
of intersecting aircraft flows were studied by Mao et al. [6].

Various techniques have been proposed to address merging
and spacing problems for automotive vehicles at traffic inter-



sections. Scheduling-based approaches to coordinate vehicles
approaching an intersection are used in [7]–[10]. Colombo
et al. [11] use a schedule to construct a maximal control
invariant set that will guarantee safe transit through an
intersection. Zhang et al. [12]–[14] explore optimal control
formulations where separation/collision constraints are rep-
resented as penalties in a cost function along with other con-
straints such as fuel consumption, ride smoothness, etc. The
various approaches found in the literature can be classified
into centralized vs. decentralized approaches. Centralized
methods rely on a single common entity, often located at
the intersection, to enable coordination. Decentralized ap-
proaches often decentralize the vehicle control problem while
still relying on a centralized server to control sequencing and
scheduling.

The approaches proposed by Zhang et al. [12], [14] could
be used to control merging and spacing of UAS traffic
in urban environments. However, these techniques would
require a dedicated central agent for managing coordination
and would lead to concerns in building a suitable infrastruc-
ture to host these dedicated agents. Likewise, a centralized
approach must consider overhead in terms of economic
impact from maintaining and operating the infrastructure.
From a safety standpoint, a centralized solution may offer
limited responses for autonomous vehicles to enter a state
of graceful degradation before engaging fail-safe operations.
A distributed consensus algorithm may be more resilient by
allowing a system to mitigate individual unit failures.

This work explores a framework that enables vehicles to
coordinate via V2V communication and reach consensus
on a merging resolution determining when each vehicle
can safely pass through an intersection. A V2V approach
avoids the need for a dedicated, centralized coordinator that
makes the decentralized approach an attractive solution for
controlling the merging and spacing of UAS traffic in an
urban environment.

III. MERGING

Given a set of predefined intersections and an arbitrary
number of UAS approaching their merging fixes (i.e., in-
tersections), the goal is to enable all vehicles to orderly
traverse the intersection avoiding conflicts and collisions. In
a centralized system, all agents approaching an intersection
would communicate to a dedicated central agent residing
at the intersection. The central agent coordinates the ar-
rival/departure of each UAS approaching the intersection.
In this paper, instead of having a dedicated central agent,
each UAS approaching the intersection receives information
about the arrival times of all other UAS approaching a shared
intersection and computes a schedule such that its arrival at
the intersection will ensure a safe spacing distance from other
UAS.

This paper builds on preliminary work first discussed in
[15]. Several improvements to the originally proposed merg-
ing solution is discussed in this work. Significant differences
from the previous work is highlighted at relevant sections
throughout this paper.

A. Scheduling Arrival Times

Given a set of n UASs approaching an intersection, let
Ri, Di denote the earliest and latest times, respectively, the
ith vehicle can approach the intersection. Let P denote the
minimum separation time that must be maintained between
vehicles crossing the intersection. The goal is to compute a
schedule T = (T1, . . . , Tn) ∈ Rn for all i ∈ {1, . . . , n},
such that

Ri ≤ Ti ≤ Di − P (1)

and thus, for all i 6= j

Ti ≥ Tj ⇒ Ti ≥ Tj + P. (2)

Without loss of generality, the arrival times are normalized
as follows:

ri =
Ri

P
, (3)

di =
Di

P
. (4)

A schedule t = (t1, . . . , tn) is computed with the normalized
arrival times from (4) using a polynomial-time scheduling
algorithm [11] as described in [15] and the crossing times
for the original data is obtained as:

Ti = Pti, i ∈ {1, . . . , n}. (5)

1) Computing early arrival time: The earliest arrival time
at the intersection is mathematically defined as:

R := inf
u∈U
{t : x(t, u, x(t0)) = Xint}, (6)

where x(t, u, x(t0)) represents the position of the vehicle at
time t when starting from initial condition x(t0) using the
control input function u ∈ U . The position Xint represents
the intersection. Given the current time t0, for a vehicle to
reach the intersection from its current positions at the earliest
time, it has to fly directly towards the intersection at its
maximum speed:

R = t0 +
xd − xb

vmax
. (7)

Here, vmax represents the maximum speed of the vehicle,
xd represents the distance to the intersection. The value xb

represents a predetermined distance the vehicle is allowed
to travel before actually computing a schedule. This value is
chosen to provide sufficient leeway to compensate for factors
such computational delays and network latency.

2) Computing late arrival time: Similar to the earliest
arrival time calculation in Section III-A.1, a simple solution
for the late arrival time is to use the slowest speed to
fly directly towards the intersection. However, it is always
desirable to maximize the latest arrival time at an intersection
as this can be helpful in situations where there are multiple
converging paths at an intersection and arrival times of
vehicles are close together. The latest arrival time at the
intersection is mathematically defined as:

D := sup
u∈U
{t : x(t, u, x(t0)) = Xint}. (8)



Fig. 1. Trajectories (in green) used by vehicle to maximize late arrival
times

In this work, for simplicity, the class of inputs U is restricted
to those that can yield trajectories of the form shown in
Figure 1. The trajectories are parametrized by xc1 and xc3.
More specifically, each vehicle is allowed to make lateral
deviations no greater than Xmax from the nominal flight
plan to maximize its late arrival time. Each vehicle is free
to choose a suitable xc1. Consequently, the late arrival time
can be analytically computed as

D = t0 +
xb

v
+√

x2
c1 +X2

max +
√
(xd − xc1)2 +X2

max

vmin
.

(9)

Here, v represents the current speed of the vehicle and vmin,
which is assumed to be non-zero, represents the slowest
speed possible for the vehicle.

3) Computing a trajectory given an arrival time: Once
an arrival time ta is computed by the scheduler, a suitable
control function u(t), t0 ≤ t ≤ ta that satisfies the following
condition must be computed:

x(ta, u, x(t0)) = Xint. (10)

In general, the above constraint can be solved using an
optimal control formulation [16]. Exploiting the class of
trajectories used to find the late arrival time, a simpler
solution can be obtained by searching for the cross track
deviation xc3 ∈ [0, Xmax] and resolution speed vres ∈
[vmin, vmax] that satisfy the following equation:

xb

v
+

√
x2
c1 + x2

c3 +
√
(xd − xc1)2 + x2

c3

vres
= (ta−t0). (11)

Note that Formula (11) is underdetermined and admits mul-
tiple solutions. Assuming xc1 is fixed a priori, one possible
solution is to find a vres that minimizes the lateral deviation
xc3 (See Algorithm 2 in [15]).

B. Information Exchange and Consensus

Successfully computing a schedule, described in the pre-
vious section, requires each vehicle to use identical sets of
predicted arrival times as each other vehicle that is approach-
ing the same intersection. Let V = {1, 2, ..., n} represent
the set of vehicles approaching a particular intersection.
Let (re, te, de)ij represent vehicle i’s knowledge of vehicle
j, where (re, te, de)j represents the early, current and late

arrival time information of vehicle j at epoch e, where, an
epoch is a delineated passage of time.

A schedule computed by vehicle i, i.e., (T1, ..., Tn)i, is
consistent with vehicle j’s schedule if (T1, T2, ..., Tn)i =
(T1, T2, ..., Tn)j . For vehicles to compute a consistent sched-
ule, it is crucial that:

∀ i, j ∈ V : (re, te, de)ij = (re, te, de)jj (12)

i.e., there must be consensus among all vehicles on the flight
data being used to compute a schedule, T .

A straightforward approach where vehicles broadcast their
arrival data, i.e., (re, te, de) values, to every other vehicle
in the network may not ensure the consistency condition
described in Equation (12). For consistent and coherent flight
data among vehicles, merging resolution uses a consensus-
based approach.

In the preliminary version of this work presented in [15],
the Raft algorithm enabled sUAS to achieve consensus.
Generalizing the approach presented in [15] to networks of
intersections challenges Raft’s performance under real-time
constraints. This work implements several modifications to
the Raft algorithm, thus enabling the satisfaction of real-time
and safety constraints presented by fixed-wing aircraft and
rotorcraft. These modifications, however, eliminate some of
Raft’s guarantees that are not essential for the merging and
spacing operations under real-time constraints. The adopted
modifications are explained below.

To achieve consensus over arrival data, a virtual network
N is established between the set of vehicles V approaching
the intersection. Each vehicle in the intersection plays one of
four roles: witness, follower, candidate or leader. The leader
is responsible for sending heartbeats, MHbt

k , to followers at
regular intervals to indicate the presence of a leader in the
network and maintains its own liveness. Each epoch, e, is
delineated by a leader heartbeat message MHbt

k where k =
e.

If a leader is no longer live, leader accession must occur
by another vehicle. Heartbeat messages contain information
known to the leader– viz., intersection identifier, vehicles
currently alive in the network, newly computed arrival times
for vehicle approaching the intersection, and zone location
of each vehicle (discussed in Section III-C).

Each vehicle in the network must receive a MHbt
k and

send an acknowledgment message, MAck
k , to ensures its

own liveness. Each MAck
k may encode a vehicle’s computed

arrival data (re, te, de). Consequently each vehicle is able to
receive the arrival information about other vehicles in the
network via this leader-follower heartbeat-acknowledgment
process.

If a follower does not receive a heartbeat MHbt
k within a

predefined timeout, a leader is considered failed. Follower
vehicles enter the candidate state to requesting a minimum
number of votes to enter the leader state. A Leader must first
publish a heartbeat before safely resuming consensus-based
merging operations. Additionally, any vehicle, irrespective of
their current state, receiving a heartbeat from a leader of an
intersection, immediately enters the follower state.



Maintaining consensus among vehicles on flight data is
achieved as described above; however, in order to maintain
safety, vehicles must agree on when merging schedules must
be computed and executed. To facilitate consistent vehicle
behavior, a specific structure is imposed on the volume of
airspace around a merge fix and a set of rules are defined to
govern merging and spacing operations.

C. Operational Rules During Merging
Considering an intersection to include the volume of

airspace around a merge fix, an intersection is partitioned
into three zones: Coordination zone, Scheduling zone and
Entry zone, illustrated in Figure 2. Vehicles first enter the
coordination zone, where a leader may first be identified;
pass through the scheduling zone, sharing arrival times; and
then traverse the entry zone before exiting via the merge
fix. Note that the merge fix is uni-directional, i.e., it has a
single exit direction. A vehicle first entering the coordination
zone is a follower node. If a leader is not already identified,
which is indicated by the absence of heartbeat messages, the
follower transitions to a candidate and initiates the leader
election process. Subsequent vehicles entering the coordi-
nation zones, become followers of the already established
leader. The coordination zone is selected large enough to
ensure vehicles have sufficient time to establish leadership
and exchange arrival time information as described in the
previous section.

A vehicle transitioning into the schedule zone from the
coordination zone uses the arrival time information obtained
from all vehicles in the intersection to check for separation
conflicts and compute a new arrival schedule for the merge
fix. The new arrival times computed by the new schedule are
published to the leader for indexing and dissemination.

On ingress to the entry zone, a vehicle starts to execute
the computed schedule in its log by choosing the appropriate
control inputs to speed up or slow down/delay its arrival at
the merge fix to meet the schedule constraints.

Vehicles in the entry zone are not allowed to make
changes to their computed schedules and hence vehicles in
the coordination and schedule zones must adjust their earliest
arrival times to ensure they respect the schedule constraints
of the vehicles that are ahead of them in the entry zone.

When a leader exits the merge fix airspace, the absence of
heartbeat messages triggers follower vehicles in the intersec-
tion airspace to transition into the candidate state and initiate
an election process to elect a new leader. On intersection
egress, each vehicle switches into a neutral state (the witness
state).

The incorporation of the operation rules involving the
three zones discussed in this section is a modification to the
preliminary work in [15]. These rules enable the information
exchange to focus on achieving consensus on times of arrival.
Consensus on when to compute and execute schedules are
implicitly obtained by adhering to these rules of operations.

IV. SPACING

The scheduling process along with the operational rules
described in the previous section ensure vehicles in the

Fig. 2. A merge fix located in an urban environment. Various zones are
indicated by the concentric rings

intersection airspace regulate their arrival times at the
merge fix while maintaining sufficient separation/spacing
between them. However, outside the intersection, vehicles
maintain spacing with the sense and avoid functionality in
ICAROUS. Sense and avoid capability in ICAROUS uses
the DAIDALUS software library [4]. DAIDALUS provides
horizontal (ground speed or track) and vertical (altitude or
vertical speed) resolutions. Ground speed resolution doesn’t
require vehicles to deviate from their original path, hence
it is a suitable candidate for maintaining spacing between
vehicles approaching or departing from an intersection.

V. RESULTS

As a proof of concept, the distributed merging and spacing
algorithm is illustrated in a simulated scenario where three
vehicles approach a merge fix in an urban environment,
depicted in Figure 2. Figures 3-5 represent the vehicles’
behaviors in the intersection. Each vehicle approaches the
coordination zone with an initial speed of 7 m/s. As shown
in Figure 5, the first vehicle to enter the coordination
zone establishes itself as a leader and handles information
exchange as described in section III-B. After entering the
scheduling zone, all vehicles successfully compute a conflict
free schedule that ensures a minimum separation of 10s at
the merge fix. Figure 4 illustrates that the vehicles regulate
their speed to satisfy the minimum separation criteria at the
merge fix.

Figures 6-8 indicate a similar scenario where vehicle 2
and vehicle 3 enter the coordination zone 10s after vehicle
1. Consequently, vehicle 1 can reach the merge fix while
maintaining sufficient separation from the other vehicles;
here, vehicle 1 does not require a speed change. However,
vehicles 2 and 3 compute schedules to ensure that they can
achieve the required separation among themselves. Figure



Fig. 3. Time vs Distance to merge fix

Fig. 4. Time vs Speed

8 indicates the state transitions of the vehicle roles. Note
that after vehicle 1 exits the intersection, vehicle 2 becomes
the leader and ensures consistent data exchange among the
vehicles currently in the intersection.

Flight test demonstrations and associated flight test results
of the merging algorithm discussed in this work is presented
in [2].

VI. DISCUSSION

The intersection geometry consisting of the three zones
proposed in this work serves as an implicit coordination
mechanism which determine when a vehicle starts sharing
information, computing a schedule, and executing its sched-
ule. Consequently, the size of each of these zones influences
the total number of UAS that can safely coordinate their
passage through the intersection. For a given set of zone
sizes, constraints on the maximum speed of vehicles passing
through the airspace must be established to ensure that
enough time is allowed for information exchange between
vehicles to achieve consensus. Likewise, follower state time-

Fig. 5. Time vs Vehicle States

Fig. 6. Time vs Distance to merge fix

Fig. 7. Time vs Speed



Fig. 8. Time vs Vehicle States

out parameters must be wisely chosen to reduce overhead
when electing leaders.

V2V communication devices aboard each UAS are essen-
tial to: establish a network with other UASs participating
in merging operations, enable information exchange, and
achieve consensus. Currently available technologies such as
Dedicated Short Range Communication (DSRC) and Cellular
V2V technologies [17] are viable candidates.

Persistent network issues can degrade the performance of
the system. In scenarios where link quality is significantly
degraded, contingency maneuvers, such as loitering or hov-
ering in a designated region of the airspace, are essential to
ensure safe operation.

Path deviations, as a means to accommodate schedule
solutions, are dependent on the geometry of the intersections.
Extending trajectories with vertical maneuvers can accom-
modate a larger throughput at the intersection.

Preliminary simulation results demonstrated the applica-
tion of the proposed work on three UAS vehicles. Future
research directions will focus on studying the scalability
of the proposed algorithm and analyzing its limitations in
terms of the number of vehicles that can be handled for
a given volume of airspace. These studies will be crucial
for identifying requirements, limitations and restrictions for
multi vehicle merging and spacing operations. The opera-
tional rules discussed in this paper will have to account for
cases where vehicles fail to achieve consensus due to factors
such as communication issues and onboard emergencies.

VII. CONCLUSION

This paper proposes a framework where merging and
spacing constraints between vehicles can be satisfied using
a combination of scheduling and distributed consensus inte-
grated with the sense and avoid capability of ICAROUS.
Vehicles approaching an intersection form a network of
nodes, each playing a specific role. The vehicle nodes elect
a leader that helps collate information across all vehicles
in the network. Consequently, each vehicle computes the

same solution, enabling them to validate agreement on their
crossing times. A vehicle leaves the network once it has
safely crossed the intersection. New vehicles approaching
the intersection become new members of the network. When
leaders drops out, a new leader is automatically elected,
enabling existing members and new members to coordinate
safe passage through the intersection.

In summary, the proposed framework demonstrates the vi-
ability of coordinating safe passage through an intersection in
a decentralized manner. Future work will focus on analyzing
the safety properties of this framework, including identifying
initial conditions when a solution to the scheduling problem
may not exist, describing possible resolutions to deal with
such conditions, and evaluating the system’s ability to toler-
ate network latency and communication failures.
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