Under consideration for publication in Formal Aspects of Computing

Formal Analysis of the Compact
Position Reporting Algorithm

Aaron Dutle!, Mariano Moscato?, Laura Titolo?, César Munoz!, Gregory Anderson?,

Francois Bobot*

INASA Langley Research Center, Hampton, VA, USA
?National Institute of Aerospace, Hampton, VA, USA
3University of Texas at Austin, Austin, TX, USA
4CEA List, Paris

Abstract. The Automatic Dependent Surveillance-Broadcast (ADS-B) system allows aircraft to communi-
cate current state information, including position and velocity messages, to other aircraft in their vicinity and
to ground stations. The Compact Position Reporting (CPR) algorithm is the ADS-B protocol responsible
for the encoding and decoding of aircraft positions. CPR is sensitive to computer arithmetic since it relies
on functions that are intrinsically unstable such as floor and modulus. In this paper, a formal verification
of the CPR algorithm is presented. In contrast to previous work, the algorithm presented here encompasses
the entire range of message types supported by ADS-B. The paper also presents two implementations of
the CPR algorithm, one in double-precision floating-point and one in 32-bit unsigned integers, which are
both formally verified against the real-number algorithm. The verification proceeds in three steps. For each
implementation, a version of CPR, which is simplified and manipulated to reduce numerical instability and
leverage features of the datatypes, is proposed. Then, the Prototype Verification System (PVS) is used to
formally prove real conformance properties, which assert that the ideal real-number counterpart of the im-
proved algorithm is mathematically equivalent to the standard CPR definition. Finally, the static analyzer
Frama-C is used to verify software conformance properties, which say that the software implementation of
the improved algorithm is correct with respect to its idealized real-number counterpart. In concert, the two
properties guarantee that the implementation meets the original specification. The two implementations will
be included in the revised version of the ADS-B standards document as the reference implementation of the
CPR algorithm.

Keywords: Formal Analysis, Finite Precision Computation, Compact Position Reporting Algorithm, Frama-

C, PVS

Correspondence and offprint requests to: Aaron Dutle, NASA Langley Research Center, Mail Stop 234, Hampton, VA 23681-
2199, USA, e-mail: aaron.m.dutle@nasa.gov

2 Dutle, Moscato, Titolo, Mufioz, Anderson, and Bobot

1. Introduction

The Automatic Dependent Surveillance - Broadcast (ADS-B) protocol [RT'C09] is a fundamental component
of the next generation of air transportation systems. It is intended to augment or replace existing surveillance
systems such as radar by providing real-time accurate surveillance information based on global positioning
systems. Aircraft equipped with ADS-B services broadcast a variety of information related to the current
state of the aircraft, such as position and velocity, to other traffic aircraft and to ground stations. The use
of ADS-B transponders is required to fly in some regions and, by 2020, it will become mandatory for most
commercial aircraft in the US [Cod15] and Europe [Eurl?]. Thousands of aircraft are currently equipped
with ADS-BI

The ADS-B broadcast message is defined to be 112 bits long. Its data frame takes 56 bits, while the
rest is used to transmit aircraft identification, message type, and parity check information. When the data
frame contains a position, 21 bits are devoted to the status information and altitude, leaving 35 bits in total
for latitude and longitudeﬂ If raw latitude and longitude data were expressed in 17 bits each, the resulting
position accuracy would be worse than 300 meters, which is inadequate for safe navigation. For this reason,
the ADS-B protocol uses an algorithm called Compact Position Reporting (CPR) to encode the aircraft
position in 35 bits such that, for airborne applications, the decoded position is intended to guarantee a
position accuracy of approximately 5 meters. Unfortunately, pilots and manufacturers have reported errors
in the positions obtained by encoding and decoding with the CPR algorithm.

Prior to the current work, a formal analysis of the airborne version of the CPR algorithm was con-
ducted [DMTMT7]. It was formally proven that the original operational requirements of the CPR, algorithm
are not enough to guarantee the intended precision, even when computations are assumed to be performed
using exact arithmetic. Additionally, the ideal real number implementation of CPR was formally proven
correct for a slightly tightened set of requirements. Nevertheless, even assuming these more restrictive re-
quirements, subtleties in the implementation of the algorithm as well as accumulated error can cause incorrect
computation. For instance, using a standard single-precision floating-point implementation of CPR for the
position whose latitude is —77.368° and longitude is 180°, the recovered position differs from the original one
by approximately 1500 nautical miles. Titolo et al. [TMM™18| proposed an alternative version of the airborne
version of the CPR algorithm. This version was proven correct when implemented using double-precision
floating-point arithmetic.

This paper extends the previous work done on CPR ([DMTM17], [TMM¥18]) in several directions. First,
the formal verification of the CPR algorithm under a set of tightened requirements is extended from covering
only the airborne case, as in [DMTM17], to cover all four types of position messages that CPR allows (coarse,
intent, airborne, and surface). The other main contributions of the paper are two implementations of the the
CPR algorithm. The first is a double-precision floating-point implementation of the airborne algorithm, which
was first detailed in [TMM™18|. The second is a single-precision fixed-point implementation using unsigned
integers, which implements all types of position messages. Both versions include algorithmic simplifications
with respect to the original protocol presented in the ADS-B standard. This reduces the accumulated error in
the floating-point implementation, and makes for faster and more straightforward computation in the integer
version. Both implementations are verified using a similar approach. Each implementation is written in C
and its real number counterpart is specified using the logic structure in ANSI/ISO C Specification Language
(ACSL). Frama-C [KKP*15] is used to prove that the encoding implementation always returns the same value
as its idealized counterpart, and that the decoded position is close enough (in a sense that will be made
precise later). The Frama-C WP plug-in is used to generate verification conditions ultimately discharged
with the aid of the automatic solvers Gappa [dDLMII] and Alt-Ergo [CCKLO0S]. Finally, the Prototype
Verification System (PVS) [ORS92] is used to formally prove that the real counterpart of the proposed CPR
implementation is mathematically equivalent to the original algorithm defined in the standard [RTC09]. It
follows that the correctness results presented in [DMTMI7] and extended in this paper also hold for the
proposed versions of CPR. The PVS formalization of this equivalence, as well as the ACSL annotated C
code for both implementations, is available at https://github.com/nasa/cpr.

The remainder of the paper is organized as follows. In section [2 the original definition of the CPR algo-
rithm and the correctness of its real-valued version [DMTMI7] are summarized. This section also discusses

! https://generalaviationnews.com/2017/09/18/more-than-40000-aircraft-now-equipped-with-ads-b/!
2 There are 35 bits available for airborne and surface message types. The intent and coarse messages use fewer bits for position,
as described in section 2.

https://github.com/nasa/cpr
https://generalaviationnews.com/2017/09/18/more-than-40000-aircraft-now-equipped-with-ads-b/

Formal Analysis of the Compact Position Reporting Algorithm 3

the extension to the other position formats. Section [3| details the verification approach used by both imple-
mentations of CPR. The double-precision floating-point implementation of CPR is presented in section [4]
along with the results ensuring its mathematical equivalence with respect to the original algorithm. Section
presents the single-precision 32-bit unsigned integer implementation of CPR, and the related equivalence to
the original algorithm. Related work is discussed in section [6] Finally, section [7] concludes the paper.

2. The Compact Position Reporting Algorithm

In this section, the CPR algorithm is introduced, summarizing its definition in the ADS-B standard [RT'C09].
In addition, the results of [DMTMIT7] proving the correctness of the decoding under a tightened set of
requirements are extended to include all types of CPR messages. The CPR algorithm is used to produce four
different types of position messages, depending on the aircraft state and the message type to be sent. The
four types of messages are coarse, intent, airborne, and surface. The procedure for encoding and decoding
that CPR uses is generally similar across the types, with different parameters and some small changes to
the basic algorithm depending on the type. The goal of CPR is to encode latitude and longitude in a limited
number of bits, while keeping a position resolution higher than would be possible by encoding raw latitude
and longitude. The coarse, intent, airborne, and surface messages allow 12, 14, 17 and 17 bits (respectively)
for each of latitude and longitude, and are meant to decode to a position within 164, 41, 5, and 1.25 meters
(respectively) of the aircraft’s actual GPS position. CPR is based on the fact that transmitting the entire
latitude and longitude in each broadcast message is generally inefficient, since the higher order bits of such
a transmission are very unlikely to change over a short period of time. In order to leverage this observation,
only the least significant bits of the position are encoded and transmitted. Two different techniques for
decoding are used to recover the higher order bits.

CPR uses a global coordinate system where each direction (latitude and longitude) is divided into zones
of approximately 360 nautical miles. There are two different subdivisions of the space in zones, based on
the format of the message, either even or odd. The number of zones depends on the format and, in the case
of the longitude, also on the current latitude of the target. Each zone is itself divided into 2" parts, called
bins, where nb corresponds to the message typeﬂ The value of nb is either 12, 14, 17, or 19 for message types
coarse, intent, airborne, and surface, respectively. Throughout the remainder of the paper, the parameter nb
will be used and the message type is inferred from its value. Figure [I] shows how latitude is divided into 60
zones (for the even subdivision) or into 59 zones (for the odd subdivision), and also how each zone is then
divided into 2" bins.

The CPR encoding procedure transforms degree coordinates into CPR coordinates and is parametric with
respect to the chosen subdivision (even or odd) and message type. A CPR message coordinate is exactly the
number corresponding to the bin where the target is located. In isolation, such a message corresponds to
many different positions on the globe, one in each zone. In order to choose the correct position, the reciever
must somehow determine the correct zone. This correct zone can be recovered from either a previously known
position (for local decoding) or from a matched pair of even and odd messages (for global decoding). The
decoding procedures compute a coordinate that corresponds to the centerline of the bin where the target
is located, as in figure [I} In a latitude zone (respectively longitude zone), all the latitudes (respectively
longitudes) inside a bin have the same encoding. If the recovered latitude (respectively longitude) is taken
to correspond to the bin centerline, then the difference between a given position and the result of a correct
encoding and decoding should be less than or equal to half of the size of a bin.

The modulus function, which is in some cases assumed to be for integers only, is here taken to apply to
real numbers as well, and is computed as mod (x,y) = x—y|?/y|. In this section, all computations are assumed
to be performed in real arithmetic. Therefore, no rounding error occurs. The results presented in this section
extend the work done in [DMTMI17], where the airborne version of the algorithm was first analyzed. All of
the results stated have been formally proven in PVS [ORS92].

3 1In fact, the bin centerlines separate each zone into 2™ pieces, and the bins extend half of this distance from each centerline.
This has the effect of placing a half-bin at the top and bottom of each zone, each of which correspond to a bin centerline of
0, as in figure 1. This makes the mathematics slightly more difficult, but has the aesthetically pleasing feature of allowing 0
degrees latitude as a return value.

Dutle, Moscato, Titolo, Mufioz, Anderson, and Bobot

Odd 90° Even - -
Zones Zones - - 4 bin 27-1 -
| X actual latitude
- fJE‘,, N bin centerline (- recovered latitude
L -
-90°
Latitude Zone Bin

Fig. 1. CPR latitude coordinate system.

2.1. Encoding

The CPR encoding translates latitude and longitude coordinates, expressed in degrees, into a pair of CPR
coordinates, i.e., bin indices. Each CPR message is transmitted inside the data frame of an ADS-B message.
Coarse messages are 25 bits, intent messages are 28 bits, and airborne and surface messages are each 35 bits.

The bits composing the CPR message are grouped into three parts. One bit determines the formatﬂ (0 for
even and 1 for odd). The remaining bits are divided evenly into a latitude message and a longitude message.
This provides for 12, 14, 17, and 17 bits for each of longitude and latitude for coarse, intent, airborne, and
surface message types, respectively.

Letting ¢ € {0,1} be the format of the message to be sent, the size of a latitude zone is defined as
dlat; = 360/(60—1). Given a latitude in degrees lat € [-90,90], the latitude encoding is defined as follows. Let
nb denote the number of bins for the encoding type, again noting nb is 12, 14, 17, or 19 for coarse, intent,
airborne, or surface messages, respectively.

latEnc(i, lat) = mod ([anmod (lat, dlat) + 1J) 2max{”b’l”) .

2.1

In formula (2.1)), mod (lat, dlat;) is the distance between lat and the bottom of a zone edge. Thus, %’ilati)
1

is the zone fraction of lat. Multiplying by 2" gives a value between 0 and 2", while [x + §J rounds a number
x to the nearest integer. The external modulo ensures that the encoded latitude fits in the number of bits
allocated to the message type. It may appear that this final truncation can discard some useful information.
However, for all types except the surface message, it only affects half of a bin at the top of a zone, which is
accounted for by the adjacent zone. For the surface message type, it actually removes the highest two bits
of information. For longitude, the CPR coordinate system keeps the size of zones approximately constant
by reducing the number of longitude zones as the latitude increases. As a consequence, the number of
longitude zones circling the globe is a function of the latitude. The function that determines the number of
longitude zones is called NL. While its value can be calculated directly from a given latitude, in practice,
it is determined from a pre-calculated lookup table. Since the construction of this table occurs off-line it
can be computed with enough precision to ensure its correctness during the encoding stage. Note that the
latitude used to compute NL for encoding is actually the recovered latitude, which is the centerline of the
bin containing the location. This ensures that the broadcaster and receiver can calculate the same value of
NL for use in longitude decoding.

Given a latitude value lat € [-90,90], the NL value is used to compute the longitude zone size as follows.

dlon;(lat) = 360/ max{1, NL(rlat(lat)) - i}. (2.2)

Note that the denominator in the above expression uses the max operator when NL is 1, which occurs for

4 Except in the case of intent messages, which are always calculated using even format, and hence do not include a format bit,
and only use local decoding.

Formal Analysis of the Compact Position Reporting Algorithm 5

latitudes beyond +87 degrees. In this case, there is only one longitude zone, and so longitude encodings
coincide for even and odd formats.

Given a longitude value lon € [0,360] and a latitude value lat € [-90,90], the longitude encoding is defined
similar to latitude encoding:

lonEnc(i, lat, lon) = mod | | 2" mod (lon, dlon,(lat)) + 1 ,gmax{nb, 17} (2.3)
dlon;(lat) 2

Let BN denote the domain of bin numbers, composed of the integers in the interval [0, guax{nb,17} _ 1].
The following lemma ensures the message is of the proper length. The proof of this lemma uses only simple
properties of the modulus function.

Lemma 2.1 Given i€ {0,1}, lat € [-90,90], and lon € [0,360], latEnc(i,lat) € BN and lonEnc(i, lat,lon) €
BN

2.2. Local Decoding

Each encoded coordinate broadcast in a CPR message identifies exactly one bin inside each zone (except
for surface messages, which have 4 equally spaced possible corresponding bins inside each zone). In order to
unambiguously compute the decoded position, it suffices to determine the zone (quarter zone in the case of
surface messages). To this aim, the CPR local decoding uses a reference position that is known to be near
the broadcast one. This reference position can be a previously decoded position or can be obtained by other
means. The idea behind local decoding is simple. Observe that a one-zone-wide interval (one-quarter-zone
interval for surface) centered around a given reference position does not contain more than one occurrence
of a centerline with a particular bin number. Therefore, as long as the target is known to be close enough to
the reference position (slightly less than half a zone, or an eighth of a zone for surface messages), decoding
can be performed uniquely.

Decoding uses the value of dlat; in its calculation, but the surface decoding uses an alternate value, to
account for the four bits of the message removed at the end of encoding. In order to distinguish the two,
define

dlat” = 90/(60 - %) for surface decoding
© | 360/(60 —7) otherwise.

Given a format ¢ € {0,1}, the encoded latitude YZ; e BN, and a reference latitude lat,.; € [-90,90], the
local decoding uses the following formula to calculate the zone index number (zin).
latre 1 d (lat ef, dlat; i
a fJ+l , mod (latyey, dlaty) — YZ J

dlat] 2 dlat] gmax{nb 17}

(2.4)

latZin (i, YZ;, latrep) = l (2.5)
The first term in this sum calculates which zone the reference latitude lies in, while the second term adjusts
it by -1, 0, or 1 based on the difference between the reference latitude and the received encoded latitude.
The zone index number is then used to compute the recovered latitude using the following function.
YZ,)

9max{nb,17} (26)

rlat (i, YZ;, lat e) = dlat; (latZinL(i, YZ;, late) +
This recovered latitude is used to determine the NL value for computing the value of dlon;. As with the
latitude, surface longitude decoding uses a smaller value for computing with dlon;. Define

90/ max{1, NL(lat) — i} for surface decoding

dlon; (lat) = { 360/ max{1, NL(lat) — i} otherwise.

(2.7)
In the following formulas, dlon; is used as an abbreviation for dlon; (rlat (i, YZ;, lat,f)). Given a reference
longitude lon,.s € [0,360], the recovered latitude rlat € [-90,90], and the encoded longitude XZ; € BN, the
longitude zone index and recovered longitude are computed similarly to the case of the latitude.

(2.8)

lon e 1 d (loner, dlon] XZ;
lonZin (i, XZ;, lon ey, rlat) = l on 'fJ +l ML (lones, dlon;) ’

dlon; 2 dlon} "~ 9max{nb,17} |

6 Dutle, Moscato, Titolo, Mufioz, Anderson, and Bobot

XZ,;
rlony (i, XZ;, longes, rlat) = dlon; (loanL(i, XZ;, lonyes, rlat) + Wn;m) . (2.9)

When the difference between original and reference latitude (respectively longitude) is less than half zone
size (one eight of a zone for surface messages) minus half of a bin size, local decoding is correct. This means
that the difference between the original and recovered latitude (respectively longitude) is at most half of a
bin size.

Theorem 2.2 (Local Decoding Correctness) Given a format i € {0,1}, a latitude lat € [-90,90], and
a reference latitude latrep € [-90,90] such that |lat — lat,ef| < dlat; _ ;ﬂf‘;ﬁ ,

2
dlati
onb+1°

|lat — rlat (2, latEnc(i, lat), lat,ef)| <

Furthermore, given a recovered latitude rlat € [-90,90], a longitude lon € [0,360], and a reference longi-

tude lonyes € [0,360] such that |lon — lon,ef| < dl‘m:z(rlat) - dlo;;b(ﬁat),

dlon;(rlat)

|lon — rlon (i, lonEnc(i, rlat, lon), lon ., rlat)| < el

This result was first formally proven in PVS for the airborne message type in [DMTMI17]. The extension
to the other message types is original to this paper. It should be noted here that the surface message type
is able to increase the accuracy of the recovered position by a factor of 4 while keeping the same message
size as airborne messages, but pays a penalty in the distance that a valid reference position can be from the
actual position for valid decoding. This is acceptable because the rate distances are covered is much lower
when an aircraft is on the ground.

2.3. Global Decoding

Global decoding is used when a valid reference position is unknown. This can occur when either a target is
first encountered or when messages have not been received for a significant amount of time. For message types
coarse, intent, and airborne, global decoding returns a unique position on the globe. For surface messages,
the algorithm returns a unique position (in degrees) in the range [0,90] for each of latitude and longitude.
This must be resolved into the correct actual position by adding or subtracting multiples of 90 degrees based
on known information, for example the location of the receiving aircraft. Similar to the local decoding case,
the correct zone in which the encoded position lies (modulo 90 degrees in the case of surface) has to be
determined. To accomplish this, the global decoding uses a pair of messages with different formats, one even
and one odd. The algorithm computes the number of zone offsets (the difference between an odd zone length
and an even zone length) from the origin (either equator or prime meridian) to the encoded position. This
can be used to establish the zone for either message type, and hence used to decode the position.

The first step in global decoding is to determine the number of zone offsets between the southern bound-
aries of the two encoded latitudes. Given the proper value of nb for the message type, and two integers
YZy, YZ1 € BN, the zone index number for the latitude is computed as follows.
59YZy-60YZ, 1J

(2.10)

latZing(YZo, YZ1) = l omax{nb 17} ' 9

Using either ¢ € {0,1}, the recovered latitude is calculated as shown below. In practice, the most recent
message received is the one used to produce a position.

. . ‘) YZ,
rlatc(i, YZo, YZ1) = dlat] (mod (latZing(YZy, YZ1),60 — i) + W) . (2.11)
For the global decoding of a longitude, it is essential to check that the even and odd longitude messages
being used were calculated with the same NL value. To this aim, both even and odd latitude messages
are decoded, and their NL values are calculated. If they differ, the messages are discarded, otherwise, the
longitude decoding can proceed using the common NL value. Given i € {0,1} and XZ,, XZ; € BN, if

Formal Analysis of the Compact Position Reporting Algorithm 7

NL(rlatc(0,YZo, YZ1)) = NL(rlatc(1, YZy, YZ1)) the zone index number is computed as follows, where NL
denotes the common value of NL(rlatg(i, YZo, YZ1)) for i =0,1.
(NL-1)XZ, - (NL)XZ, . 1

gmax{nb,17} 5 . (212)

lonZing(XZy, XZ1) = l

Using rlatg(i, YZo, YZ1) to compute dlon; and NL, and letting nl; stand for max(NL—i,1), the recovered
longitude is computed as follows.

(2.13)

X7,
rlong(i,XZo, XZ1) = dlon] (mod (latZing(XZo, XZ1),nl;) +) .

9max{nb,17}

The zone offset is the difference between the length of an even and the length of an odd zone. For latitude
the zone offest is defined as Z0,,; = dlat] — dlat(, while for longitude, given a latitude rlat, the zone offset
is defined as ZOy,,, = dlonj(rlat) — dlon(rlat). When the difference between the original coordinates is less
than half zone offset minus the size of one odd bin, global decoding can be proven correct, meaning that
(modulo 90 degrees for surface messages) the difference between the original and recovered latitude and
longitude are each at most half the size of a bin.

Theorem 2.3 (Global Decoding Correctness) Given nb corresponding to the desired message type, and
1€{0,1}, for all laty, laty € [-90,90] such that |laty — laty| < % - %,

dlati

llat; — rlatc (4, latEnc(0, laty), latEnc(1, lat1))| < prE

Furthermore, let
rlaty = rlatc(0, latEnc(0, laty), latEnc(l, laty))
and
rlaty = rlatc (1, latEnc(0, laty), latEnc(l, lat))

be even and odd recovered latitudes, respectively. If NL(rlatg) = NL(rlaty), then for all long, lony € [0,360]
Z0 o dloni (rlat;)
2 - onb ’

such that |long — lony| <

dlon;(rlat;)

|lon; — rlong (i, lonEnc(0, long, rlaty), lonEnc(1, lony, rlat,))| < SbiT

For the surface case, the positions are all assumed to be reduced modulo 90, except in the calculation
of the NL value from the recovered latitudes. For these, the actual latitude for calculating is chosen to be
the one nearest to the receiver. Since the possible choices are separated by 90 degrees, this is assumed to be
sufficient. As in the case of local decoding, this result was proven for the airborne message type in [DMTMIT],
with the extension to the other three types being original to the present work.

Note also that the global decoding requires the original positions that were encoded to be much closer
together than the local decoding. In the local case, the encoded position and the reference were required to be
within a half a zone (one eighth for surface), which is approximately 180 nautical miles (45 for surface). For
global decoding, the original positions are required to be within a half of a zone offset, which is approximately
3 nautical miles (0.75 nautical miles for surface). Here again, surface messages provide more accuracy than
airborne messages using the same message size, but the requirements for correct decoding become more
strict.

3. Verification Approach

This section presents the verification approach used to prove that each implementation of the CPR algorithm
is precise enough to satisfy its operational requirements. In order to do so, several issues must be addressed,
and assumptions made.

The first issue is that the algorithm as specified in the standards document takes real number latitude
and longitude values as inputs. While this is fine for an idealized algorithm, an actual implementation must
take some approximation of these values as input. For both implementations, the choice was made to use a
format for the input values called 32-bit angular weighted binary (AWB), a standard format for expressing

8 Dutle, Moscato, Titolo, Mufioz, Anderson, and Bobot

geographical positions, used by GPS manufacturers and many others. Such a coordinate is a 32-bit integer
in the interval [0,232 - 1]. An angular weighted binary value # corresponds to the latitude or longitude value
of 3263% degrees (where negative latitudes are identified with their value modulo 360). An AWB value may
be calculated from a real degree input in different ways by different parties, i.e., by truncation or rounding,
but when taken as inputs, AWB values are assumed to correspond to exact positions. In the following, AWB
denotes the domain of AWB numbers and a hat on a variable (as above) is used to emphasize that a given
variable denotes an AWB value.

A similar issue is that the return value from decoding a CPR message is a real number, though in this
case, is always one of a finite set of discrete rational values, corresponding to bin centerlines. Each possible
output from a decoded CPR latitude message is of the form

dlatf(k + Z/2max{nb,17}),

where k € Z is a zone number, 0 < z < 202x{n0.17} jg g latitude message, and the result is restricted to
[-90,90]. The set of these possible values will be denoted as RLAT. Likewise for longitude, the possible
outputs take the form

dlon} (rlat)(k + Z/Qmax{nb,lﬂ)’

where rlat €e RCAT, k € Z is a zone number, 0 < z < 202x{n017} ig 4 latitude message, and the result is
restricted to [0,360]. In the following, the set of all possible longitude outputs will be denoted RLON .

While the outputs from decoding are finite, discrete, and rational, they are not all exactly expressible as
double-precision floating-point values, nor as values in AWB. The two implementations handle this issue in
different ways. The double-precision floating-point implementation returns a floating-point value, and this
value is proven to be close to the value computed by the real number counterpart in a way that will be
made precise in the sequel. The unsigned integer implementation returns the value from AWIB which is the
closest such value to the result of the real number calculation. Along the way, this rounding is shown to
be compatible with functions that must use the decoded output in further computation (particularly in the
definition of the NL table).

The general approach to the verification of each implementation is depicted in figure 2l The approach
relies on several verification tools. It uses Frama-C as the main engine, employing several of the provers that
work with it, such as Gappa and Alt-Ergo. It also uses PVS to link the C code to the real-number version of
CPR that was proven to encode and decode correctly in section [2 These tools and their uses are described
below.

Frama-C is a tool suite that collects several static analyzers for the C language. C programs can be an-
notated with ACSL [BCE*16] annotations that state function contracts, pre- and postconditions, assertions,
and invariants. For this work, one of the important annotations that ACSL supports is the logic construct.
This allows the user to define custom functions on the real numbers, and use them in subsequent ACSL
annotations. The Frama-C WP plug-in implements a weakest precondition calculus for ACSL annotations
through C programs. For each ACSL annotation, this plug-in generates a set of verification conditions (VCs)
that can be discharged by external provers. In the analysis presented in this paper, the SMT solver Alt-Ergo
and the prover Gappa are used.

Gappa [dDLMT11] is a tool able to formally verify properties on finite-precision computations and to
bound the associated round-off error. Additionally, it generates a formal proof of the results that can be
checked independently by an external proof assistant. This feature provides a higher degree of confidence in
the analysis of the numerical code. Gappa models the propagation of the round-off error by using interval
arithmetic and a battery of theorems on real and floating-point numbers. The main drawback of interval
arithmetic is that it does not keep track of the correlation between expressions sharing subterms, which may
lead to imprecise over-approximations. To improve precision, Gappa accepts hints from the user. These hints
can be used to perform a bisection on the domain of an expression, or to propose some rewriting rules that
will appear as hypotheses in the generated formal proof. Gappa is very efficient and precise for checking
enclosures for floating-point rounding errors, but it is not always suited to tackle other types of verification
conditions generated by Frama-C. For this reason, the SMT solver Alt-Ergo is used in combination with
Gappa.

Frama-C also has the ability to translate verification conditions, and of particular interest ACSL logic
functions, into PVS syntax. This allows the user to employ PVS in the proof of verification conditions if
desired. In the present work, PVS is used to provide a verification link between an ACSL logic function,

Formal Analysis of the Compact Position Reporting Algorithm 9

VCs

Alternative CPR | Cappa

Finite Precision

Implementation » Frama-C
inC
I—h Alt-Ergo
| From logic C to PVS | VCs VCs
Alternative CPR Qriginal CPR
Real Arithmetic Real Arithmetic
—— -
in PVS PVS in PVS

Fig. 2. Verification approach.

and the formally verified real number version of CPR discussed in section [2] With Frama-C providing the
link between the ACSL logic function and the actual C implementation, the C implementation inherits the
properties of the formally verified PVS version.

The general workflow is as follows. To begin, each of the alternate versions of CPR (described in section
and section [5)) is implemented in C. Each C function is annotated with several ACSL statements. First, a
corresponding logic ACSL function is specified that mirrors the C function, but operates over the real
numbers. Pre- and postconditions are added to the C program, along with additional intermediate assertions
which are added after specific program instructions to help the external provers in reasoninﬂ This program
is analyzed by the WP plug-in of Frama-C and a set of verification conditions (VCs) is generated. These
verification conditions are then discharged by the external provers Gappa and Alt-Ergo. Each ACSL logic
counterpart that is specified in the annotation is translated by Frama-C into a PVS function. PVS is then
used to formally verify the equivalence of these generated functions with respect to the PVS implementation
of the CPR algorithm that has been proven to be correct in section

For the purposes of this paper, a proof that connects an ACSL logic function considered over real numbers
to the proven implementation of CPR from section section [2] is called a real conformance property, as it
provides a link between two algorithms over the real numbers. An assertion proven in Frama-C that claims
a link between the software version of a CPR function and the logic version of the same function is denoted
a software conformance property. Taken together, a real conformance property and a software conformance
property provide a link between a software implementation and the real number implementation proven to
be correct from section 2l

Each implementation includes real and software conformance properties for encoding, local decoding, and
global decoding. They are detailed for each implementation in section [f] and section [5} In each of the these
sections, a C-implemented function (floating-point or integer) will be represented with a tilde, as f, while
the corresponding real number function f specified in an ACSL logic construct will appear without one.

5 As anyone familiar with Frama-C will recognize, these intermediate assertions are often identified and added incrementally,
when the provers are not able to discharge a certain verification condition.

10 Dutle, Moscato, Titolo, Mufioz, Anderson, and Bobot

4. A Floating-Point Implementation of CPR

In this section, a floating-point implementation of the airborne CPR protocol and its verification is presented.
The computations performed in this implementation leverage several mathematical simplifications that de-
crease the numerical complexity of the expressions with respect to the original implementation presented
in the ADS-B standard. The alternative version is designed to be more numerically stable and to minimize
the accumulated floating-point round-off error. Whenever possible, the formulas are transformed in order to
perform multiplications and divisions by a power of 2, which are known to produce no round-off error as
long as no over or under-flow occursﬁ Other simplifications are applied to reduce the number of operations,
especially the modulus and floor. These operations are particularly problematic because a small difference in
the arguments can lead to a significant difference in the result. For instance, consider a variable z that has
an ideal real value of 1, while its floating-point version has value 0.999999. The round-off error associated
to x is |z — | = 0.000001, but the error associated to the application of the floor operation is ||z] - |Z]] = 1.

4.1. Floating-Point Encoding

Given a latitude lat ¢ AWB , algorithm [1] encodes it in a bin index number. The encoding is slightly different
for AWB latitudes greater than 23° because the input latitude range for the original encoding is [-90,90] and
the AWB interval from 239 to 232 corresponds to the range [90,360]. Therefore, a shift must be performed
to put the range [270,360] in the expected input format [-90,0].

Algorithm 1 fpLatEnc(i, lat) Algorithm 2 fpLonEnc(i, NL, lon)
nz < 60 —1 if NL=1 then
if lat < 230’§\hen nz <1
tmpy = (lat * nz +214) » 2715 else
tmpy = (lat * nz + 214) x 2732 nz < NL—i
else end if
tmpy = ((laf - 232) % nz + 214) % 2715 tmpy = (lon * nz +2'4) x 271
tmps = ((Tat — 23%) = nz +2'4) + 2732 tmpy = (lon * nz + 214) » 2732
end if return [tmp; | - 27 * [tmps |

return |tmp; | - 2'7 % [tmps |

Algorithm [2| implements the longitude encoding similarly to algorithm [I} In this case, no shift is needed
since the input longitude range is [0,360]. The variable nz denotes the number of longitude zones, which
is 1 when NL = 1, and NL -t otherwise. This is equivalent to taking the maximum between 1 and NL—:
as done in the original version of the algorithm (see formula) The following theorem asserts the real
conformance property for the proposed floating-point encoding with respect to the encoding described in
subsection 2.11

Theorem 4.1 (Real Conformance, Floating-Point Encoding) Let lat € [-90,90], lon € [0,360], laf €
AWB, lon € AWB, and i € {0,1}. If lat = 36222‘” , lon = 36203l2°” , and NL = NL(rlat(lat)), then

fpLatEnc(i, lat) = latEnc(i, lat) and
foLonEnc(i, NL, E)?L) = lonEnc(i, lat, lon).

To prove this lemma, it is necessary to use the following intermediate results. First, it is possible to use the
following alternative formula for the encoding, which avoids the external modulo of 2'7 used in equations

and (2-3).

6 The verification tools must still determine and account for when overflow and underflow may occur, but when it is determined
that no overflow or underflow happen, they use the fact that no additional error is introduced.

Formal Analysis of the Compact Position Reporting Algorithm 11

Lemma 4.2 Let lat € [-90,90], lon € [0,360], and i € {0,1},
mod (lat +27'8dlat;, dlat;)
an
dlati
mod (lon + 278 dlon, (lat), dloni(lat))
dlon;(lat))

latEnc(i, lat) = [217

lonEnc(i, lat, lon) = l?”

The following two results, which have been formally proven correct in [DMTMTI7], are also used. When the
modulo operator is divided by its second argument, the following simplification can be applied.

mod(a,b) _a _ H (4.1)
b b Lb
Additionally, given any number z and any integer z, the floor function and the addition of integers is
commutative.

|z +z]=|x]+2. (4.2)

Given [denoting either a latitude or a longitude and dl representing dlat or dlon respectively, the following
equality holds.

[217 mod (+27"%dl, dl)J = lzni + EJ _217{ L, 1 J

dl dl 2 dl

— 4.
i 218 (43)

Since the input coordinate [is assumed to correspond to an AWB, there exists 1 e AWB such that | = 32%22.
By replacing [, after some basic arithmetic simplifications, the formula used in algorithms|[I] and [2]is obtained
as follows.

1 l 1 “ N .
21— + ,J - ol7 {f + —J =|(1-nz+ 22718 =217 | (1. nz + 214)2732] 4.4
e R P MG S R (R ()

Because the encoding produces an integer which corresponds to the bin of the actual position, the floating-
point encoding of CPR will satisfy the software conformance property if it returns exactly the same value as
the real number implementation. This means that no round-off error affects the final outcome. The double
precision implementation of encoding achieves this, as indicated by the following theorem.

Theorem 4.3 (Software Conformance, Floating-Point Encoding) Let lat € AWB, lon € AWB, NL
be an integer in the range [1,59], and i € {0,1}. Then

fpLatEnc(i,lat) = fpLatEnc(i, lat) and
fpLonEnc(i, NL, lon) = fpLonEnc(i, NL, lon).

In order to prove this theorem, algorithms [I] and [2] are annotated with assertions stating that tmp; and
tmp, do not introduce rounding error. This generates VCs that are automatically proved by Gappa since the
computation only involves operations between integers and multiplications by powers of 2. Since the floor
operation is applied to expressions that do not carry any round-off error, the computation of the floor is also
exact and, therefore, theorem [£.3] holds.

Taken together, the real and software conformance theorems for encoding guarantee that the floating-
point encoding algorithm calculates exactly the same value as the formally verified real-number version.

4.2. Floating-Point Local Decoding

Given an encoded latitude YZ and a reference latitude in AWB format, algorithm [3] recovers the latitude
corresponding to the centerline of the bin where the original latitude was located. Similar to the encoding
algorithm, it is necessary to shift the AWB to correctly represent the latitudes between —90 and 0 degrees.
Similarly, algorithm [recovers the longitude bin centerline. Note that the two algorithms differ only in the
computation of the zone index number (zin). Let ref be the reference latitude (respectively, longitude) in

12 Dutle, Moscato, Titolo, Mufioz, Anderson, and Bobot

Algorithm 3 fpDecLat, (i, lat, YZ) Algorithm 4 fpDecLon, (i, NL, lon, XZ)
nz < 60 -1 if NL =1 then
dlat < 360/nz nz < 1
if Tat < 230/t\hen else
zin < l(lat*nz—(YZ—Qm)*215)*2’32J nz < NL—i
else end if
zin < | ((Tat - 2%2) » nz = (YZ - 2'6) % 215) x 2732| dlon < 360/nz
end if zin < [(fo?t xnz— (XZ - 216) » 21%) » 2_32J
return dlat + (YZ #2717 + zin) return dlon * (XZ %2717 + zin)

degrees, dl be the zone size, and enc the 17-bit encoding. By applying Equations (4.1]) and (4.2)), the latitude
(respectively, longitude) zone index number formulas (2.5)) and (2.8) can be rewritten in the form
1
{, Lref @J _
2 dl 217

Since the reference coordinate ref is assumed to represent an AWB, there exists ref € AWB such that

ref = 36203’;ef . After some simple algebraic simplification, the real conformance property of theoremdirectly

follows.

Theorem 4.4 (Real Conformance, Floating-Point Local Decoding) Letic {0,1}, YZ;, e BN, XZ; €
BN, Ez\tref e AWB, and l?)?sz e AWB. If lat e = 36021;;"# and lon e = 360213?” , then

rlat (i, YZ;, latyes) = fpDecLat, (3, YZ,, EL\tTef) and
rlony (i, XZ;, lonyef, latres) = fpDecLon (3, NL(fpDecLat (i, YZ;, Ez\tr@f)), E)?Lref, XZ;).

The software conformance property for the floating-point implementation, for both global and local
decoding, employs a concrete bound for how far the real number algorithm and the software implementation
can differ. Note that theorem and theorem state that the original coordinate (latitude or longitude)
and the recovered bin centerline differ by at most half the size of a bin. If the recovered coordinate computed
with floating-point decoding differs from the bin centerline computed with real numbers by less than half the
size of a bin, then the original coordinate, the bin centerline, and the recovered coordinate are all located in
the same bin. Hence a floating-point decoding function is considered correct when the recovered coordinate
differs from the bin centerline by less than half the size of a bin.

Recall from section [2] that the airborne bin size for the latitude even configuration is approximatively
4.578 x 107° degrees, and for the odd one is 4.655 x 10~ degrees. Also note that longitude zones, regardless
of the NL value, contain more degrees per zone than latitude zones. In the software conformance theorems
for floating-point decoding (local and global), the lower bound for half bin size of 2.2888 x 10~ degrees is
used.

Theorem 4.5 (Software Conformance, Floating-Point Local Decoding) Let i € {0,1}, YZ; € BN,
XZ; e BN, lat o € AWB, and lon,.; € AWB. Then

|fpDecLat (i, Tcﬁref, YZ;) —prechqu(i,l/(;fref7 YZ;)| <2.2888 x 107° and
|fpDecLon (i, NL, l’()\nmf, XZ;) - fpDecLon, (i, NL, E)?me, XZ;)| <2.2888 x 107°,

where NL = NL(fpDecLat, (i, YZ;, lal,f)) and NL= NL(fpDecLat, (i, YZ;, latyef)).

To verify this software conformance property for local decoding, algorithms [3] and [4] are annotated with
assertions stating that the computation of the zone index number zin has no round-off error. This holds
and can be automatically discharged in Gappa since the computation of zin involves just integer sums
and multiplications, and multiplications by powers of 2. The only calculation that carries a round-off error
different from 0 is the one of the zone size (dlat and dlon), which involves a division. However, Gappa is able
to prove that the propagation of this error in the result is bounded by half bin size as stated in theorem

Formal Analysis of the Compact Position Reporting Algorithm 13

Algorithm 5 fpDecLat¢ (i, YZo, YZ1)
dlat « 360/(60 - i)
zin = | (59 % YZo - 60+ YZ1 +216) 2717

if i =0 then

return dlat * ((zin - 60 * | 2in/60]) + YZq + 2717)
else

return dlat * ((zin — 59 * | zin/59]) + YZ1 % 2717)
end if

Algorithm 6 fpDecLon¢ (i, NL, XZo, XZ1)

if NL=1 then
if i =0 then
return 360 * XZ, % 2717
else
return 360 * XZ; 2717
end if
else
dlon < 360/(NL—-i)
zin < |((NL-1) * XZo - NL*XZ; +2'6) » 2717
zin' < zin/(NL—i)
if =0 then
return dlon * ((zin — (NL—i) * | zin'|) + XZ¢ » 2717)
else
return dlon * ((zin — (NL—i) * | zin'|) + XZ1 » 2717)
end if
end if

4.3. Floating-Point Global Decoding

Algorithm [5] and algorithm [6] perform the global decoding for latitude and longitude, respectively. Variable i
represents the format of the most recent message received, which is used to determine the aircraft position.
In algorithm [6] NL is the common value computed using both latitudes recovered by algorithm [} When
NL = 1, the computation is significantly simplified due to having only one zone. Otherwise, the recovered
longitude is computed similarly to the latitude.

The real conformance property, theorem directly follows from simple algebraic manipulations. The
sum of the two fractions inside the floor in formula is explicitly calculated and the modulo in formulas

(2.11) and (2.13) is expanded.

Theorem 4.6 (Real Conformance, Floating-Point Global Decoding) Letie {0,1}, YZ, e BN, XZ,; €
BN, and nl = NL(fpDecLatg (i, YZo, YZ1)). Then

rlatc(i, YZo, YZ1) = fpDecLatc (i, YZo, YZ1) and
rlong (i, XZo, XZ1) = fpDecLong (i, NL, XZo, XZ1).

The verification of the software conformance property for global decoding involves more complex reason-
ing. Similar to the local decoding case, the code is annotated to explicitly state that the zone index number
is not subject to rounding errors, and that its value is between —-59 and 60. These two assertions are auto-
matically proved by Gappa. With nz denoting the number of zones (60 or 59 for latitude, and the maximum
of NL-1 and 1 for longitude), an annotation is added to assert that the real-valued and double-precision
computation of |zin/nz| coincide. In order to prove the verification conditions generated by this assertion,
Gappa was provided with a hint on how to perform the bisection. This hint is added to the Frama-C gener-
ated Gappa files. To the best of authors’ knowledge, the direct specification of Gappa hints is not supported
in Frama-C. It is important to remark that this hint does not add any hypothesis to the verification process.
Given these intermediate assertions, Gappa is able to verify theorem [£.7] as well.

14 Dutle, Moscato, Titolo, Mufioz, Anderson, and Bobot

Theorem 4.7 (Software Conformance, Floating-Point Global Decoding) Let i€ {0,1}, YZ; € BN,
and XZ; € BN, if NL(fpDecLatc(0, YZo, YZ1)) = NL(fpDecLat (1, YZo, YZ1)), then

\fpDecLatc (i, YZo, YZ1) - fpDecLat(i, YZq, YZ1)| < 2.2888 x 10™° and
\fpDecLong (i, NL, XZo, XZ1) — fpDecLong (i, NL, XZo, XZ1)| < 2.2888 x 107°,

where NL = NL(fpDecLatc(j, YZo, YZ1)) and NL = NL(fpDecLat¢(j, YZo, YZ1)) for j =0,1.

4.4. A Note on NL Calculation

The bound used in the software conformance of decoding serves a secondary purpose as well. Because it
is strictly less than half a bin, the recovered floating-point values for successive bins are guaranteed to be
strictly separated from each other, in the sense that a value strictly between the possible return values for
consecutive bins exists. It follows that a new table NL, which takes as input the floating-point latitude
resulting from fpDecLat, , can be computed off-line with enough precision. This can be done as follows. For
each transition latitude [in the original NL table, the two bin centerlines that surround it can be determined.
The point centered between them is thus the transition between the two bins, and is guaranteed to be strictly
separated from the possible return values for decoding either of the two flanking bins. This value can be
calculated as precise as needed, and serve as the floating-point transition latitude. The only slight downside
to this calculation is that separate NL tables must be computed for the odd and even formats, since odd
and even bin breakpoints generally do not coincide.

5. An Unsigned Integer Implementation of CPR

This section presents another C implementation of CPR and its associated verification. This implementation
uses 32-bit unsigned integers throughout the computation. As such, it is suitable for use on hardware with
limited capabilities. It also implements the full version of CPR, allowing for coarse, intent, airborne, and
surface message types.

The verification follows the approach described in section[3] In the floating-point implementation, the logic
functions specified in Frama-C’s ACSL operate natively on real numbers, and after some slight simplifications,
very closely resembled the original CPR, definition. This made the real conformance part of that verification
relatively simple. The more difficult portion of the verification was in the software conformance, where the
floating point and real functions had to be proven to compute closely. In the unsigned integer implementation,
the ACSL logic functions are specified in a manner to exactly mimic the 32-bit unsigned integer computation,
using the mod function to mimic overflow wrapping, and the floor function to truncate integer divisions.
This makes the software conformance of the implementation and the logic functions simpler, since they are
built to coincide exactly at every step. On the other hand, this makes the real conformance of these logic
functions with respect to the version of CPR discussed in section [2| much more involved. In order to do this
reasoning, a model of 32-bit unsigned integer computation was specified in PVS. The formalization includes
functional specifications of all of the standard arithmetic operations (addition, subtraction, multiplication,
and division, as well as exponentiation of powers of 2, integer modulus, and shifting operations). When shown
in the following, the standard C version of each function will be used. For example, the integer modulus
function mod(a,b) will be shown as a%pb.

The implementation uses many of the same mathematical simplifications that were employed in the
floating point implementation of section [f] to decrease numerical complexity. It also uses the fact that fixed
width unsigned integers never overflow as the result of any of the basic mathematical operations, instead
returning the value of the operation modulo 232.

The limitations of 32-bit integer computation shows in several places in the computation, but is most
apparent in expressions of the form a-b/c, which occur often in the CPR specification. The issue with such
expressions is that if the multiplication is performed first, the result might exceed 23? and wrap around, mak-
ing the final result incorrect after division. On the other hand, performing (one of the) divisions first loses the
lower order bits of the numerator, and so the result is incorrect after multiplication. Because these expressions
occur often, and a precise result is needed, the functions MultShiftDiv(a,c, exp) and MultDivShift(a, b, exp),
defined in algorithms [7] and [§] are used in cases when at least one of the values involved is a power of 2.

Formal Analysis of the Compact Position Reporting Algorithm 15

Algorithm 7 MultShiftDiv(a,c, exp) Algorithm 8 MultDiwShift(a,b,exp)
tmpy = 2°°P % (afc) tmpy =b* (a >> exp)
tmpa = 2°°P* % (a%c) tmpa = (2 % b) * (a%2*P)
tmps = ((tmpz/c) +1)/2 tmps = ((tmpe >> exp) +1) >> 1
return tmp; +tmps return tmp; +tmps

The function MultShiftDiv(a,c,exp) is intended to compute an approximation of a2°P/c, while the
function MultDivShift(a,b,exp) computes an approximation to ab/2°*P. These functions are proven in PVS
to return the closest unsigned integer value to what the corresponding real number expression would produce,
given some restrictions on the input values. The precise formulations are given in the following two lemmas.

Lemma 5.1 For unsigned integers a,c,exp, if 0 < c, exp < 30, and 2°**1(c - 1) < 232, then
MultShiftDiv(a, c,exp) = mod (|a2°"P/c+1/2],25%).

The restrictions on the above lemma are fairly lenient. Essentially they require that the denominator be
non-zero, that the exponent be small enough to fit 2*P*! in an unsigned integer, and that the computation
of 2°#P*1(a%c) in 32 bits does not overflow. Recalling that |z +1/2] returns the closest integer to =, lemma
guarantees that the result is (up to overflow wrapping) the closest integer to the desired value.

Lemma 5.2 For unsigned integers a,b,exp, if b <256, 12 < exp < 20, then
MultDivShift(a,b, exp) = |ab/2°"P + 1/2].

The restrictions on this lemma are more severe, requiring at least one of the numerator values to be small,
and the exponent to be bounded above and below. The bound on the exponent is chosen very carefully to
encompass the smallest value of nb up to the largest value of nb + 1, which are the values needed in the
CPR implementation. On the other hand, the result of lemma[5.2]is stronger, in that it calculates the closest
integer to the desired expression, and is known not to overflow.

5.1. Integer Encoding

For the integer implementation, each of the three main functions is specified in C generically. That is, a single
function is given, and changing one of the parameters allows the function to compute for either latitude or
longitude. The generic encoding function is specified in algorithm [9}

Algorithm 9 intEnc(nz, awb, nb)

tmpy = awb * nz

tmpy = tmpy + (2327 (nb+1))
tmps = tmps >> (32 — nb)
if nb =19 then

tmpy = tmps %27
else

tmpy = tmps
end if

return tmpy

Due to the way that the logic function is specified, exactly following the integer computation even down to
overflow conditions, the software conformance property for the generic encoding is simple and exact. Indeed,
because the output of encoding is a 32-bit integer, the logic function and the software implementation can
produce identical output.

Theorem 5.3 (Software Conformance, Integer Encoding) Let awb € AWB, nz be an unsigned inte-
ger, and nb € {12,14,17,19}. Then

intEnc(nz, awb,nb) = intEnc(nz, awb, nb)

16 Dutle, Moscato, Titolo, Mufioz, Anderson, and Bobot

The nz parameter in the encoding function is a placeholder for 60 — ¢ in the latitude encoding, and
max{NL(rlat;(lat)) — 4,1} in the longitude encoding, where lat is the input latitude. In order to state the
conformance property for longitude encoding, implementations of the two functions NL and rlat; need to
be specified as well. The NL function will be discussed separately in subsection [5:4} The function defined
there is NLgyp, which takes an input from AWDB. Recall from section [2| the the rlat; function translates a
real-valued latitude to the centerline of the bin where it lies. This is done prior to computing the NL value
used for encoding to ensure that the NL value used for encoding longitude (computed with rlat;(lat)) is the
same value used by a receiver of the message (computed with the decoded latitude).

Algorithm 10 intRlat(i, awb,nb)

tmpy = MultDivShift (awb, 60 — i, nb)
tmps = MultShift Div(tmpy,60 — i, 32 — nb)
return tmps

The unsigned integer specification of rlat; is given in algorithm [I0] Both real and software conformance
properties are proven for intRlat, but are omitted here. With the implementations of NL and rlat; defined,
the real conformance property for integer encoding can be stated.

Theorem 5.4 (Real Conformance, Integer Encoding) Let lat € [-90,90], lon € [0,360], lat € AWB,
lon € AWB, nb e {12,14,17,19}, i € {0,1}, and nl = max{NLq;(intRlat(lat)) - 4,1}. If lat = 358t and

lon = 362%12"", then

intEnc(60 — i, lat,nb) = latEnc(i, lat)

intEnc(nl, lon,nb) = lonEnc (i, lat, lon).

The real and software conformance theorems for encoding guarantee that the integer encoding algorithm
calculates exactly the same value as the formally verified real number version.

5.2. Integer Local Decoding

Similar to the floating point implementation, the integer version of local decoding takes an encoded value YZ
and a reference position in AWB format. The output of the integer implementation is another AWB value,
which corresponds to the recovered position. As with the encoding, the integer algorithm is a generic decoding,
with a parameter that can be set in order to decode either latitude or longitude messages. Algorithm
determines the zone index, which is then used by Algorithm [12]to produce the decoded position.

Formal Analysis of the Compact Position Reporting Algorithm 17

Algorithm 11 intZone,(nz, awb, YZ , nb) Algorithm 12 intDecy(nz, awb, YZ , nb)
if nb =19 then if nb =19 then
nzz=4+*nz nzz=4%*nz
mes=4x*YZ mes=4xYZ
else else
nzz=mnz nzz=nz
mes = YZ mes=YZ
end if - end if .
tmpy =nzz * (awb >> (32 —nb)) tmpy = (2" # intZoner(nz, awb, YZ)) + mes
tmpy = (nzz * (awb%2%27"%)) >> (32 — nb) return MultShiftDiv(tmpi,nzz,32 — nb)

tmps = 2071 4 (tmpy + tmps)
if tmps < mes then

tmpyg =nzz -1
else

tmps = (tmps —mes) >>nb
end if
return tmp,

The software conformance property for the local decoding algorithm is simple and exact. The integer
implementation computes the same value as the ACSL logic version.

Theorem 5.5 (Software Conformance, Integer Local Decoding) Let awb € AWDB, nz be an unsigned
integer, nb € {12,14,17,19}, and YZ € BN'. Then

intZoner(nz, awb, YZ,nb) = intZone(nz, awb, YZ,nb)
and

intDecr,(nz, awb, YZ ,nb) = intDecr,(nz, awb, YZ,nb).

The real conformance property for local decoding (and global decoding) uses a function which converts
a real valued coordinate in degrees into the closest corresponding value in AWB.

awb(pos) = | (pos + IF pos < 0 THEN 360 ELSE 0 ENDIF)2°2/360 + 1/2]

Note that this function is only used in proofs of the real conformance properties, so the accuracy or
ability to compute this value with 32-bit integers is irrelevant. theorem 5.6 states that the integer version of
the algorithm returns the closest possible value to the idealized algorithm.

Theorem 5.6 (Real Conformance, Integer Local Decoding) Let i € {0,1}, YZ, € BN, XZ; € BN,
l’a\tmf e AWB, l?)\rzref € AWB, and nb e {12,14,17,19}. If lat,ef = 360;;;”’" and lonyef = 36021;);”“-*' , then

awb(rlat (i, YZ;, lat,ep)) = intDecr,(60 — 2'7l’a\tref7 YZ;,nb).
Also, letting nl = max{ NLgq (intDec,(60 — i, lal o, YZ;,mb)) —i,1},
awb(rlony (i, XZ i, 1onyef, latep) = intDecr,(nl, l0n,ep, XZ;,nb).

The proof of the real conformance property proceeds in two steps. The first step proves that the local zone
is calculated exactly. The second step shows that adding in the message information to the zone returns the
closest AWB value. The proof of the correctness of the local zone is long and involved, but is not particularly
enlightening. It utilizes the fact that many of the calculations performed in the original CPR specification
can be significantly simplified mathematically when the input is in AWB format. As a simple example, note
that

_ ot 360lat/2°> _ lat - (60 - i)

360/(60 —7) 232-nb
This last expression is calculated to the nearest integer by the function MultDivShift. The more tedious steps
of the proof are in verifying that none of the integer functions encounter undesired overflow or underflow.

2" ot | dlat;

18

Dutle, Moscato, Titolo, Mufioz, Anderson, and Bobot

Algorithm 13 intZone g (nz, mesg, mesy,nb)

Algorithm 14 intDec (i, nz, mesgy, mesy, nb)

if nz =1 then
tmpy =0
else
tmpy = ((nz—1) * mesg) + (2min{nd173-1)y

tmpo = nz * mes;
tmpsz = (tmpy + ((nz —1) * 2'8)) — tmpy
tmps = (tmps >> min{nb, 17})%(nz - 1)
end if
return tmp,

if =0 then
mes = mes
else
mes = mes
end if

if nb =19 then

mmes = 4 * mes

nzz =4+ max{nz—i,1}
else

mmes = mes

nzz = max{nz —i,1}
end if
tmpy = (2™ * intZone g (i,nz, mesg, mesy,nb)) + mmes
return MultShiftDiv(tmpy, nzz, 32 — nb)

2nb

The casual reader is spared from this level of detail, while the full proof is available for inspection in the
formal PVS development.

5.3. Integer Global Decoding

Algorithm [13] and algorithm [14] calculate the global zone index and global decoding value, respectively. Once
again, the variable nz can be instantiated to allow for latitude or longitude decoding.

The software conformance theorem for global decoding, theorem [5.7] asserts that the implementation and
the associated logic function perform precisely the same calculation. Similar to the local case, the assertion
is shown for the zone index and then the entire decode.

Theorem 5.7 (Software Conformance, Integer Global Decoding) Let i€ {0,1}, meso € BN, mes; €
BN, nz <64, and nbe {12,14,17,19}. Then

intZoneg(i,nz, mesg, mesy, nb) = intZone g (i,nz, mesg, mesy, nb)
and
intDec g (i,nz, mesg, mesy,nb) = intDec (i,nz, mesg, mesy,nb)

The real conformance property, theorem is more involved than the software conformance. This is
again due to the presence of the NL function, but is made more complicated due to the way that the surface
message decodes. For the other message types, the global decoding is truly global, in that each coordinate
is intended to return the bin centerline of the actual broadcast location. Surface decoding returns a value in
[0,90] which is the bin centerline of the actual broadcast modulo 90.

This difference is simple enough to account for in the case for latitude decoding. The real conformance
property simply says that the value is correct modulo 90. The longitude decoding, on the other hand, employs
the value of the latitude decoding to determine the correct NL value. To select between the two, a helper
function is used to choose between the two possibilities. It uses an input latitude value that is assumed to
be within 30 degrees of the actual broadcasting location. Generally this is taken as the receiver’s current
latitude, or due to the fact that this only occurs for surface messages, some known ground location for the
broadcaster.

The function, called NorthLat?, compares a surface global decode and a reference latitude in AWB
format, and if the values are within 30 degrees (computed in terms of AWB values), the function returns
true, otherwise returning false. Since the surface global decode is always in the range [0,90] (translated to
AWB), and because the values that correspond to the two possible decoded latitudes are separated by 90
degrees, this function returns ¢rue when the decoded latitude is already in the correct range. When it returns
false, the associated AWB value can be obtained by adding 3-2%° to the decoded value. The specification of

Formal Analysis of the Compact Position Reporting Algorithm 19

the function itself, along with the associated software and real conformance properties, is simple enough to
be omitted here. The interested reader can find the details and proofs in the formal PVS specification.
The following function adjusts the latitude if necessary.

RecoveredGlobal(i, YZy, YZ;, l/a\t,.ef,nb) =intDecq (4,60, YZo, YZ1,nb)+
IF nb# 19 OR NorthLat?(i, YZo, YZ1,lal ;) THEN 0
ELSE 3-23Y ENDIF .

Theorem 5.8 (Real Conformance, Integer Global Decoding) Letiec {0,1}, nbe {12,14,17,19}, YZ €
BN, YZ, e BN, XZy e BN, XZ1 € BN, and lat,.f € AWB. Then

awb(rlatg(i, YZy, YZ1)) = intDecg (4,60, YZqo, YZ1,nd).
Furthermore, let
nly = NL gy (RecoveredGlobal (0, YZo, YZ;, Ez\tmf,nb)
and
nly = NL gy (RecoveredGlobal(1, YZy, YZ;, EL\tmf,nb).
If nlg = nly, then
awb(rlong(i, XZy, XZ1)) = intDecg (i,nly, XZy, XZ1,nb).

The theorem for longitude only applies when the computed NL values coincide, since otherwise the
longitude messages are encoded using different values for the zone size.

The proof of the real conformance theorem, similar to the local decoding, is generally simple, though
long and tedious. The process of proving the real conformance led to several refinements and adjustments
of the algorithm. As an example, one particular statement in the global zone determination was added after
attempting to prove the real conformance, but noticing the possibility of an underflow that was skewing the
computation. The original instruction in the local zone algorithm was to assign tmps = tmp; — tmpo, which
mimics the computation of 59YZy - 60YZ; in the real algorithm. Unfortunately, the values of the first two
temporary variables can independently vary up to 60-2'7, making underflow of the subtraction possible. The
solution is to pad tmp; by adding the value ((nz —)2'®), which guarantees that the subtraction of tmps
stays positive. The next two instructions are to right shift by 17 (or fewer) bits, and then perform a modulus
by nz—1 operation. The right shift leaves the pad a multiple of nz -4, which is then removed by the modulus
operation. Several such alterations and optimizations were required to be performed, and also proven to be
equivalent to the real computation, in order to verify the real conformance theorem.

5.4. Integer NL Calculation

The computation of the correct NL value from a given latitude is essential for the reliable encoding and
decoding with CPR. Indeed, some of the early issues with CPR errors can be traced back to miscalculation of
the correct NL Valuem Some of these issues were due to a misinterpretation of the requirements, in which the
raw input latitude was being used to determine the NL value. This results in the possibility of the decoded
latitude having a different NL value, in the case where the raw latitude and the bin centerline are separated
by an NL boundary. Other errors result from the decoded latitude not having enough precision to place it
on the correct side of an NL boundary.

The integer implementation of CPR includes a function for computing NL values where the inputs are
assumed to be from AWJB. This allows for the encoding and decoding of longitudes using the input latitude,
or the recovered latitude. _ .

The function NLg,p(lat) first determines if the input is a northern hemisphere latitude (when lat < 23°)
and, if not, converts the southern latitude to a corresponding northern one by simply negating the input
(this has the effect of subtracting the input from 232 due to the unsigned integer specification). This northern
hemisphere latitude value is the input to a look-up table, which compares it to pre-calculated breakpoint
values to determine the return value.

7 Personal communication with members of RTCA Special Committee 186.

20 Dutle, Moscato, Titolo, Mufioz, Anderson, and Bobot

The software implementation and the ACSL logic specification are identical, and are easily proven to
coincide.

Theorem 5.9 (Software Conformance, Integer NL Value) For all lat € AWB,
NLawb(l/af\t) = M(EIE)

The real conformance property for the NL function is more subtle. The main observation that drives the
property is that the only values that are intended to be inputs to the NL function are those that correspond
to some bin centerline. This is because, whether encoding or decoding, the closest bin centerline is always
used, in order to guarantee consistent computation. Hence, the only values input into the idealized version
of the NL function come from RLAT . Similarly, the three functions that compute recovered latitudes, i.e.,
rlat, intDecy,, and intDecq, for the integer computation are guaranteed by their conformance theorems to
compute the closest AWB value to some bin centerline. This suggests the appropriate real conformance
property as given in theorem [5.10

Theorem 5.10 For all lat e RLAT, NL(lat) = NLgyp (awb(lat)).

The proof of this conformance theorem is simple, if blunt. A function is specified that iterates through
every possible value lat € RLAT, and compares the value of NL(lat) and NL gy, (awb(lat)). In fact, first it
is shown that the values in RLAT are all obtained as bin centerlines for the case of nb = 19. Including both
odd and even divisions, the total number of cases to be evaluated is 119 * 2!, or approximately 62 million
values, which is well within the range of efficient computation.

The real and software conformance properties proven for the NL,,,; function complete the CPR implemen-
tation and facilitate the proof of the integer versions of longitude encoding and decoding real conformance.

6. Related Work

Recently, much work has been done on the verification of numerical properties for industrial and safety-
critical C code, including aerospace software.

The verification approach used in this work is similar to the analysis of numerical programs described
by Boldo et al. [BMII], where a chain of tools composed of Frama-C, the Jessie plug-in [MMI7], and
Why [BFMPI5] is used. In that work, the verification conditions obtained from the ACSL annotated
C programs are checked by several external provers including Coq, Gappa, Z3 [dMB0g|, CVC3 [BCOT],
and Alt-Ergo. This approach was applied to the formal verification of wave propagation differential equa-
tions [BCE*13] and to the verification of numerical properties of a pairwise state-based conflict detection
algorithm [GMKCT3|. A similar verification approach was employed to verify numerical properties of indus-
trial software related to inertial navigation [Mar14].

Other similar work includes the verification of a floating-point implementation of a point-in-polygon
algorithm [MTEMI19] using a toolchain composed of Frama-C, PVS, and PRECiSA [MTDMI17, [TEMMIS],
a static analyzer for floating-point programs. In contrast to the technique presented in this paper, Moscato et
al. automate the step linking a PV'S specified function to an ACSL specified logic function. In fact, PRECiSA
takes as input the real-valued PVS specification of the algorithm and generates an annotated floating-point
C implementation. In addition, PRECiSA computes an upper bound for the round-off error occurring in the
program and a PVS certificate ensuring its correctness. Frama-C is then used to generate a set of verification
conditions that can be discharged in PVS by using the information contained in the PRECiSA round-off
error certificates.

Fluctuat [GP06] and Astrée |[CCF*05] are commercial tools based on abstract interpretation [CCT77],
which have been successfully used to verify and analyze numerical properties for industrial and safety-
critical C code. Fluctuat [GP0G] is a static analyzer that, given a C program with annotations about input
bounds and uncertainties on its arguments, produces bounds for the round-off error of the program. Astrée
is a fully-automatic static analyzer that uses sound floating-point abstract domains [CMCO8, Min04] to
uncover the presence of run-time exceptions such as division by zero, underflows, and overflows. Astrée has
been successfully applied to automatically check the absence of runtime errors associated to floating-point
computations in aerospace control software [BCC¥15|. Specifically, Astrée was used to verify the fly-by-wire
primary software of commercial airplanes [DS07]. Additionally, Astrée and Fluctuat were combined to analyze
on-board software acting in the Monitoring and Safing Unit of the ATV space vehicle [BCC*(09]. In contrast

Formal Analysis of the Compact Position Reporting Algorithm 21

to the technique presented in this paper, Fluctuat and Astrée do not provide formal proof certificates that
can be discharged in an external prover. This is particularly useful for safety-critical systems since the proof
certificates improve the trustworthiness of the approach.

7. Conclusion

The CPR algorithm is an essential component of the ADS-B protocol which will soon be required in nearly
all commercial aircraft in Europe and the USA. In this paper, the formal specification and proof of the CPR,
algorithm is extended from [DMTMI7] to encompass all message types supported by the ADS-B standard.
Furthermore, two implementations of the CPR algorithm are proposed and analyzed, extending [TMM™1§]
to include a single precision unsigned integer implementation. The unsigned integer implementation en-
compasses all 4 message types, while the floating-point implementation covers only airborne messages. The
floating-point implementation could be extended to cover the message formats beyond airborne following
the same methodology, given sufficient time and resources. The formally verified C implementations of CPR
and the verification artifacts presented in this paper are released under NASA’s Open Source Agreement
at https://github.com/nasa/cpr, and will be included in a revised version of the ADS-B international
standard. These implementations will serve as reference implementations of the CPR algorithm to be used
by avionics manufacturers of ADS-B devices.

The implementations presented in this paper each include several simplifications aimed to reduce the
numerical complexity of the original algorithm and to compute precisely. The equivalence between each
version and the original algorithm in the ADS-B standard is formally proven in PVS. Two types of properties
are proven. Real conformance properties state equivalence between the original algorithm and an ideal version
of each implementation. Additionally, it is shown that the software computation guarantees the correct
operation of the algorithm when implemented in C, forming what are referred to as software conformance
properties.

The verification approach applied in this work requires some level of expertise. A background in floating-
point arithmetic and in unsigned integer computation is needed to express the properties to be verified
and to properly annotate for the weakest precondition deductive reasoning employed by Frama-C. Deep
understanding of the features of each tool is essential for the analysis. Careful choice of types in the C
implementation leads to fewer and simpler verification conditions. Also, Gappa requires user input to identify
critical subexpressions when performing bisection.

The work presented here relies on several tools: the PVS interactive prover, the Frama-C analyzer, and
the automatic provers Alt-Ergo and Gappa. These tools are based on rigorous mathematical foundations
and have been used in the verification of several industrial and safety-critical systems. In addition, proof
certificates for significant parts of the analysis were generated (PVS and Gappa). However, the overall proof
chain must be trusted. For instance, Alt-Ergo does not generate any proof certificate that can be checked
externally. Furthermore, though some effort has been made to formalize and verify the Frama-C WP plug-in,
this endeavor is still incomplete. Nevertheless, the CPR, algorithm is relatively simple, containing no complex
features such as pointers or loops, and so the generation of verification conditions for CPR can be allegedly
trusted.

References

[BCO7] C. Barrett and Tinelli. C. CVC3. In Proceedings of the 19th International Conference on Computer Aided
Verification, CAV 2007, pages 298-302, 2007.

[BCC*09] O. Bouissou, E. Conquet, P. Cousot, R. Cousot, J. Feret, E. Goubault, K. Ghorbal, D. Lesens, L. Mauborgne,
A. Miné, S. Putot, X. Rival, and M. Turin. Space Software Validation using Abstract Interpretation. In Proceedings
of the International Space System Engineering Conference, Data Systems in Aerospace (DASIA 2009), pages 1-T.
ESA publications, 2009.

[BCC*15] J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival. Static Analysis and Verification
of Aerospace Software by Abstract Interpretation. Foundations and Trends in Programming Languages, 2(2-3):71—
190, 2015.

[BCF*13] S. Boldo, F. Clément, J. C. Filliatre, M. Mayero, G. Melquiond, and P. Weis. Wave equation numerical resolution:
A comprehensive mechanized proof of a C program. Journal of Automatic Reasoning, 50(4):423-456, 2013.

[BCF*16] P. Baudin, P. Cuoq, J. C. Fillidtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto. ACSL: ANSI/ISO C
Specification Language, version 1.12. 2016.

https://github.com/nasa/cpr

22

[BFMP15]
[BM11]
[CCT7]

[CCF+05]

[CCKLOS]

[CMCo8]

[Cod15]
[dDLM11]

[dMBOg]

[DMTM17]

[DS07]
[Eurl?7]

[GMKC13]

[GPO6]
[KKP*15]
[Mar14]
[Min04]

[MM17]
[MTDM17]

[MTFM19]

[ORS92]
[RTCO9]

[TFMM18]

[TMM*18]

Dutle, Moscato, Titolo, Mufioz, Anderson, and Bobot

F. Bobot, J. C. Filliatre, C. Marché, and A. Paskevich. Let’s verify this with Why3. International Journal on
Software Tools for Technology Transfer, 17(6):709-727, 2015.

S. Boldo and C. Marché. Formal verification of numerical programs: From C annotated programs to mechanical
proofs. Mathematics in Computer Science, 5(4):377-393, 2011.

P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints. In Proceedings of POPL 1977, pages 238-252. ACM, 1977.

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and Rival. The ASTREE Analyzer. In
Proceedings of the 14th European Symposium on Programming (ESOP 2005), volume 3444 of Lecture Notes in
Computer Science, pages 21-30. Springer, 2005.

S. Conchon, E. Contejean, J. Kanig, and S. Lescuyer. CC(X): Semantic Combination of Congruence Closure with
Solvable Theories. FElectronic Notes in Theoretical Computer Science, 198(2):51 — 69, 2008.

L. Chen, A. Miné, and P. Cousot. A Sound Floating-Point Polyhedra Abstract Domain. In Proceedings of the
6th Asian Symposium on Programming Languages and Systems, APLAS 2008, volume 5356 of Lecture Notes in
Computer Science, pages 3—18. Springer, 2008.

Code of Federal Regulations. Automatic Dependent Surveillance-Broadcast (ADS-B) Out, 91 c.f.r., section 225,
2015.

F. de Dinechin, C. Lauter, and G. Melquiond. Certifying the floating-point implementation of an elementary
function using Gappa. IEEE Trans. on Computers, 60(2):242-253, 2011.

L. de Moura and N. Bjgrner. Z3: an efficient SMT solver. In Proceedings of the 14th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2008, volume 4963 of Lecture Notes
in Computer Science, pages 337-340. Springer, 2008.

A. Dutle, M. Moscato, L. Titolo, and C. Munoz. A formal analysis of the compact position reporting algorithm.
9th Working Conference on Verified Software: Theories, Tools, and Exzperiments, VSTTE 2017, Revised Selected
Papers, 10712:19-34, 2017.

D. Delmas and J. Souyris. Astrée: From research to industry. In Proceedings of the 14th International Symposium
on Static Analysis, SAS 2007, pages 437-451, 2007.

European Commission. Commission Implementing Regulation (EU) 2017/386 of 6 march 2017 amending Imple-
menting Regulation (EU) No 1207/2011, C/2017/1426, 2017.

A. Goodloe, C. Munoz, F. Kirchner, and L. Correnson. Verification of numerical programs: From real numbers to
floating point numbers. In Proceedings of NFM 2018, volume 7871 of Lecture Notes in Computer Science, pages
441-446. Springer, 2013.

E. Goubault and S. Putot. Static analysis of numerical algorithms. In Proceedings of SAS 2006, volume 4134 of
Lecture Notes in Computer Science, pages 18-34. Springer, 2006.

F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-C: A software analysis perspective.
Formal Aspects of Computing, 27(3):573-609, 2015.

C. Marché. Verification of the functional behavior of a floating-point program: An industrial case study. Science
of Computer Programming, 96:279-296, 2014.

A. Miné. Relational abstract domains for the detection of floating-point run-time errors. In Proceedings of the
13th European Symposium on Programming Languages and Systems, ESOP 2004, volume 2986 of Lecture Notes
in Computer Science, pages 3—17. Springer, 2004.

C. Marché and Y. Moy. The Jessie Plugin for Deductive Verification in Frama-C. 2017.

M. M. Moscato, L. Titolo, A. Dutle, and C. Mufioz. Automatic estimation of verified floating-point round-off
errors via static analysis. In Proceedings of the 36th International Conference on Computer Safety, Reliablilty,
and Security, SAFECOMP 2017, 2017.

M.M. Moscato, L. Titolo, M.A. Feliti, and C.A. Munoz. Provably correct floating-point implementation of a point-
in-polygon algorithm. In Proceedings of the Third World Congress on Formal Methods - The Next 30 Years (FM
2019), volume 11800 of Lecture Notes in Computer Science, pages 21-37. Springer, 2019.

S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system. In Proceedings of CADE 1992, volume
607 of Lecture Notes in Artificial Intelligence, pages 748—752. Springer, 1992.

RTCA SC-186. Minimum Operational Performance Standards for 1090 MHz extended squitter Automatic Depen-
dent Surveillance - Broadcast (ADS-B) and Traffic Information Services - Broadcast (TIS-B). 2009.

L. Titolo, M. Felii, M. Moscato, and C. Munoz. An Abstract Interpretation Framework for the Round-Off Error
Analysis of Floating-Point Programs. In Proceedings of the 19th International Conference on Verification, Model
Checking, and Abstract Interpretation, VMCAI 2018, volume 10747, pages 516—537. Springer, 2018.

L. Titolo, M. M. Moscato, C. A. Mufioz, A. Dutle, and F. Bobot. A formally verified floating-point implementation
of the compact position reporting algorithm. In Proceedings of the 22nd International Symposium on Formal
Methods (FM 2018), volume 10951 of Lecture Notes in Computer Science, pages 364-381. Springer, 2018.

	Introduction
	The Compact Position Reporting Algorithm
	Encoding
	Local Decoding
	Global Decoding

	Verification Approach
	A Floating-Point Implementation of CPR
	Floating-Point Encoding
	Floating-Point Local Decoding
	Floating-Point Global Decoding
	A Note on NL Calculation

	An Unsigned Integer Implementation of CPR
	Integer Encoding
	Integer Local Decoding
	Integer Global Decoding
	Integer NL Calculation

	Related Work
	Conclusion
	References

