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Abstract 
System and software requirements are 

inextricably intertwined, yet the challenge of 
extracting software requirements from system 
requirements is often an exercise in frustration. We 
propose an extension of the four-variable model 
originally developed by Parnas and Madey that 
clarifies how system requirements can be allocated 
between hardware and software. This extension 
organizes the software so that it traces clearly and 
directly to both the system and hardware 
requirements. An attractive aspect of this paradigm 
is that it is consistent with object-oriented 
approaches and allows the system requirements to 
be organized to facilitate object-oriented software 
development. 

Introduction 
Most complex systems consist of several 

subsystems that work closely together to achieve 
the overall objectives. Since each subsystem is itself  
a complex system built from hardware and software 
components, the process of collecting and 
managing requirements is usually done in phases. In 
a typical development, requirements are defined for 
the overall system, these system requirements are 
allocated to the subsystems, and the subsystem 
requirements are allocated to hardware and software 
components. In a large project, the subsystem 
requirements may be recursively allocated to 
smaller subsystems before being finally allocated to 
hardware and software. 

Unfortunately, the step of allocating the 
subsystem requirements to the hardware and 
software frequently becomes an exercise in 
frustration. Comments one often hears include 
“almost all my subsystem requirements are 
allocated to software and almost none to hardware” 
or “all my subsystem requirements trace indirectly 
to every hardware component”. This reflects the 

fact that hardware and software components are not 
parts of the subsystem in the same way that 
subsystems are parts of the overall system. Rather, 
software is used to build new virtual machines over 
the basic functionality provided by hardware. As a 
result, most subsystem requirements do trace almost 
entirely to the software requirements, since it is the 
software that extends the hardware to implement 
these requirements. At the same time, the system 
cannot be built without hardware, and almost every 
subsystem requirement is indirectly dependent on 
several hardware components. 

In this paper, we propose a extension of a 
model of embedded systems originally developed 
by Parnas and Madey [1] that addresses many of 
these concerns and clarifies how system 
requirements can be allocated between hardware 
and software. This extension organizes the software 
requirements so that some trace directly to the 
subsystem requirements and the remainder to the 
hardware requirements. A particularly attractive 
aspect of this model is that it is consistent with 
current object-oriented paradigms and provides a 
natural way of organizing subsystem requirements 
to facilitate object-oriented development. 

The Four-Variable Model 
The original four-variable model proposed by 

Parnas and Madey evolved out of early efforts to 
specify the requirements for the A-7 aircraft in SCR 
[2]. This paradigm was extended by the Software 
Productivity Consortium in the Consortium 
Requirements Engineering (CoRE) methodology to 
include object-oriented concepts to make the 
specification robust in the face of change and to 
support the development of product families [3], 
[4]. The CoRE methodology was later used to 
specify the avionics system of the C-130J aircraft 
[5] and portions of the mode logic of the flight 
guidance system of a general aviation aircraft [6], 
[7]. Much additional work has been done by the 
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Naval Research Lab to formalize SCR and to 
provide supporting tools [8]. 

An overview of the four-variable model is 
shown in Figure 1.  The variables in this model are 
continuous functions of time and consist of: 

• Monitored variables (MON) in the 
environment that the system observes and 
responds to; 

• Controlled variables (CON) in the 
environment that the system is to control; 

• Input variables (INPUT) through which the 
software senses the monitored variables; and  

• Output variables (OUTPUT) through which 
the software changes the controlled variables.  
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 Figure 1 – Original Four-Variable Model 

For example, monitored values might be the 
actual altitude of an aircraft and its airspeed while 
controlled variables might be the position of a 
control surface such as an aileron or the displayed 
value of the altitude on the primary flight display. 
The corresponding input and output values would 
be the ARINC-429 bus words that the software 
reads, or writes, to sense these quantities.  

To complete the specification, four 
mathematical relations are defined between the 
variables: 

• NAT defines the natural constraints imposed 
by the environment, such as the maximum rate 
of climb of an aircraft ; 

• REQ defines the system requirements, 
specifying how the controlled variables are to 
respond to changes in the monitored variables; 

• IN defines the relationship of  the monitored 
variables to the input variables; and 

• OUT defines relationship of the output 
variables to the controlled variables. 

NAT and REQ describe how the controlled 
variables should change in response to changes in 
the monitored variables and define the subsystem 
view of the specification. NAT describes how the 
environment (the monitored and controlled 
variables) behaves in the absence of the system to 
be built, while REQ describes how the environment 
(the controlled variables) is to be constrained by the 
system. These relationships can be specified with 
mathematical precision, making them ideal for 
specifying safety-critical systems. The hardware 
interfaces surrounding the software are modeled by 
the IN and OUT relations that define how the input 
and output variables the software interacts with are 
related to the monitored and controlled 
environmental variables. Specification of the NAT, 
REQ, IN, and OUT relations implicitly bounds the 
allowed behavior of the software, shown in Figure 1 
as SOFT, without specifying its design. 

One of the great advantages of this model is 
that it explicitly defines the subsystem boundary 
through the identification of the monitored and 
controlled variables. If MON and CON are chosen 
correctly, IN and OUT will change only as the 
underlying hardware changes. At the same time, 
REQ changes only in response to changes in the 
subsystem requirements. Since customer driven 
changes and hardware driven changes often arise 
for different reasons, this helps to make the system 
more robust in the face of change.   

Figure 1 is laid out as shown to emphasize that 
the INPUT and OUTPUT variables are at a lower 
level of abstraction than are the MON and CON 
variables, with the IN and OUT relationships 
mapping between these levels of abstraction. There 
are variations of the four-variable model that are 
useful on occasion. For example, it can be helpful 
to layer the IN and OUT relations into levels much 
like the ISO Reference Model for communication 
protocols. Another variation is to "glue" the 
controlled variables of one or more models to the 
monitored variables of another model to create a 
larger system specification, or to split a large model 
up into several smaller models. 

Of course, for an actual system, there will 
dozens or hundreds of such variables and the 
relationships between them will be very complex.  
In one application of this approach, the 
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specification of the requirements for the C-130J 
avionics, there were over 1600 monitored and 
controlled variables [5]. Effectively organizing such 
a large specification is a daunting task in its own 
right, and details of how to do this well are beyond 
the scope of this paper. Additional information on 
this can be found in [5], [6], [7], [9], and [10]. 

The Extended Four-Variable Model 
A weakness of the four-variable model is that 

it does not explicitly specify the software 
requirements, SOFT, but rather bounds it by 
specifying NAT, REQ, IN, and OUT. In fact, 
SOFT is often deliberately left unspecified to avoid 
constraining the developer. However, this leaves the 
software developer with the practical problem of 
how to structure the software and relate it to NAT, 
REQ, IN and OUT.  

In older systems, one often finds the software 
implemented exactly as shown in Figure 1, i.e., as a 
direct mapping from input variables to output 
variables. In more recent systems, one finds 
hardware and software drivers that abstract away 
from the details of the input and output variables. 
This reverses in software part of the IN and OUT 
mappings in order to isolate the rest of the software 
from changes in the underlying hardware.  

The proposed extension to the four-variable 
model takes this concept one step further and 
“stretches” the SOFT relationship into the relations 
IN’, REQ’, and OUT’ as shown in Figure 2.  
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Figure 2 – Extended Four-Variable Model 

Here, IN' and OUT' are nothing more than the 
specification of hardware drivers to be implemented 
in software.  However, in addition to isolating the 
software from changes in the hardware, they also 
serve to recreate virtual versions of the monitored 
and controlled variables defined in the subsystem 

specification in the software, a technique often 
advocated in object-oriented approaches. 

As we will see, one contribution of this model 
is that it helps to clarify the roles of IN and OUT, a 
common source of confusion. However, the most 
important contribution is that it makes the tracing of 
the subsystem requirements REQ to the software 
direct and straightforward. Each function defined in 
the subsystem requirement REQ maps directly into 
an identical function in the software requirement 
REQ’. In similar fashion, IN’ and OUT’ map 
directly to the hardware specification. 

It is important to note that MON' and CON' are 
not the same as the system level variables 
represented by MON and CON.  Small differences 
in value are introduced both by the hardware and 
software, and differences in timing are introduced 
when sensing and setting the input and output 
variables. For example, the value of an aircraft's 
altitude created in software is always going to lag 
behind and differ somewhat from the aircraft's true 
altitude. In safety-critical applications, the existence 
of these differences must be considered. However, 
if they are well within the tolerances of the system 
they can be treated as perturbations and Figure 2 
provides an intuitive model relating the subsystem 
requirements to the software requirements.  

A Small Example 
This section illustrates the extended four-

variable model by applying it to a small example, 
the Altitude Switch (ASW). While far simpler than 
an actual avionics component, the ASW is nicely 
suited for illustrating the four-variable model 
because most of its complexity lies in its IN and 
OUT relations.  

The Altitude Switch receives altitude 
information from two digital altimeters and 
computes an estimate of the aircraft's altitude. 
When the aircraft descends below a threshold 
altitude, it turns on power to a Device of Interest 
(DOI). In this example the ASW also accepts a reset 
signal that returns it to its initial state and an inhibit 
signal that inhibits turning on the DOI. The 
example is specified in the style recommended in 
the CoRE methodology [3]. An overview of the 
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ASW is shown in the dependency diagram of Figure 3. 
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Figure 3 - Dependency Diagram of the Altitude Switch (ASW)

The main components are the CoRE classes of 
Altitude, ASW Mode, and DOI. The monitored 
variables are shown as arrows into the diagram, the 
controlled variables are shown as arrows out of the 
diagram, and intermediate values, or terms are 
shown as arrows between classes. 

The Altitude class defines a term Altitude that 
is the estimate of the aircraft’s true altitude 
constructed from the readings provided by the two 
digital altimeters, and a term Altitude_Status that 
indicates whether that estimate is valid. It has two 
internal classes, Digital Altimeter(1) and Digital 
Altimeter(2), representing two digital altimeters. 
Each digital altimeter defines two monitored 
variables, Digital_Altitude and Digital_Altitude_ 
Status. 

The ASW Mode class defines the system 
modes of the ASW. For this example, these consist 
of only two modes (not shown), DOI_Needed, 
indicating that the DOI should be powered on, and 
DOI_OK, indicating that the DOI is either not 
needed or is already powered on. In a more realistic 
example, modes for system initialization, self-test, 
and error modes would also be defined. To 
transition between these two modes, the ASW 
Mode class makes use of the terms Altitude and 
Altitude_Status defined in the Altitude class, the 
DOI_On monitored variable defined in the DOI 
class, and the monitored variable Reset defined in 
ASW Mode. 

The DOI class represents the ASW’s view of 
the Device of Interest. It contains the definition of 

the only controlled variable, Wake_Up, representing 
whether the actual DOI should be powered on. It 
also defines the monitored variables Inhibit, 
indicating if Wake_Up should be supressed, and 
DOI_On, indicating if the DOI is powered on. The 
DOI_On monitored variable is passed on to the 
ASW Mode class as the term DOI_On. 

While space does not permit giving the 
definition of each class in detail, the full 
specification of the Digital Altimeter class is shown 
in Figures 4 and 5 and the DOI class is given in 
Figures 6 and 7. The monitored variables Altitude 
and Altitude_Status are defined on the class’s 
interface, indicating that they can be referenced by 
name in other classes. Their definition consists of 
their name, type, possible values, and a brief 
description. This is all any other class needs to 
know about the Digital Altimeter class. 

Encapsulated within the Digital Altimeter class 
is the information needed to define how the input 
variables Digital_Altimeter_Word, Digital_Altime-
ter_Input, Digital_Altimeter_Status_Input, and 
Digital_Altimeter_Label are related to the moni-
tored variables. These input variables are read by 
the software over an ARINC-429 bus [9], [10].  
Since misunderstanding of the hardware interface is 
known to be a frequent source of errors [11], [12], 
the input variables are carefully defined by giving a 
brief description, details of their data representation, 
legal values, and information about how they are 
physically located in memory. In this case, 
examples and diagrams of word layouts are used to 
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make clear the relationships between individual 
bits, fields, and words. 
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Class Digital Altimeter(I: 1..2)

This class describes the interface to a Digital Altimeter. It exports the estimate of the
aircraft's altitude sensed by the altimeter and that altitude's status. It encapsulates the
physical details of the interface to the device

Name/Definition Type Values Physical Interpretation
Digital_Altitude Monitored Real -20.0..2,500.0 Distance in feet above

ground level (AGL) as
sensed by digital altimeter.

Invalid Digital altitude is not valid.Digital_Altitude_
Status

Monitored Enum
Valid Digital altitude is valid.

Encapsulated Information

Input Variables
Digital_Altimeter_Word
Description ARINC-429 Word read from Bus I (I in [1..2])
Data Representation Bit[32]
Values Unconstrained
Data Transfer Word from Bus 1 located at memory address H'0014'  - H'0017',

Word H'0014' H'0015' H'0016' H'0017'
Bit 3

2
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1
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9

1
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1
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1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

Word from Bus 2 located at memory address H'0018' - H'001B',
Word H'0018' H'0019' H'001A' H'001B'

Bit 3
2
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1

3
0
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Digital_Altitude_Input
Description Altitude in feet AGL reported by digital altimeter I
Data Representation 17-bit 2's complement
Values [-8,192.0 .. +8,191.875]
Data Transfer Bits 29-13 of Digital_Altimeter_Word, sign in bit 29.

Bit 2
8

2
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2
6

2
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2
4

2
3

2
2

2
1
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1
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Figure 4 – Definition of Class Digital Altimeter 
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Digital_Altitude_Status_Input
Description Status of altitude reported by digital altimeter I
Representation Bit[2]
Data Transfer Bits 31-30 of Digital_Altimeter_Word

Bits
31 30 Values Meaning
0 0 FAIL Failure Warning
0 1 NCD No Computed Data
1 0 TEST Functional Test
1 1 NORM Normal Operation

Digital_Altitude_Label
Description Label of ARINC-429 Word I
Representation Octal, in reverse order
Values [000 - 377]
Data Transfer Bits 8-1 of Digital_Altimeter_Word

Example: representation of Octal Number 164.
Bit 8 7 6 5 4 3 2 1

Binary 1 0 0 1 1 0 0 1

Octal 4 6 1

IN Relations

Digital_Altitude
Digital_Altitude_Input < -20 -20 <= Digital_Altitude_Input <=

2,500
Digital_Altitude_Input > 2,500

Altitude = -20.0 Altitude = Digital_Altitude_Input Altitude =2,500.0

Digital_Altitude_Status
Parity(Digital_Altitude_Word) = EVEN

OR
Digital_Altitude_Label /= '164'

OR
Digital_Altitude_Status_Input /= NORM

OR
Digital_Altitude_Input < -20

OR
Digital_Altitude_Input > 2,500

Parity(Digital_Altitude_Word) = ODD
AND

Digital_Altitude_Label= '164'
AND

Digital_Altitude_Status_Input = NORM
AND

-20 <= Digital_Altitude_Input
AND

Digital_Altitude_Input <= 2,500
Altitude_Status =  Invalid Altitude_Status = Valid

 

Figure 5 -Definition of Class Digital Altimeter (Continued) 
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The IN relations are then given (see Figure 5) 
to describe the relationship between the monitored 
variables Digital_Altitude and Digital_Altitude_ 
Status and these input variables. Looking at the 
four-variable model of Figure 1, one would expect 
the IN relations to describe each input variable as a 
function of the monitored variables. In practice, this 
is seldom practical.  

For example, the physical representation of the 
Digital_Altimeter_Input input variable can range 
between -8,192.0 and 8,191.875 feet in increments 
0.125 feet, while the monitored variable 
Digital_Altitude has been defined as a real number 
that  ranges between –20 and 2,500 feet (see 
Figures 4 and 5). It is unclear how the input 
variable could ever take on a value outside the 
range of –20 to 2,500 feet, and it is even less clear 
what the system should do if such a value is seen. 

The relationship of the monitored variable 
Digital_Altitude_Status to the input variables 
Digital_Altitude_Status_Input and Digital_ 
Altitude_Label is even more difficult to sort out. 
This is due to the fact that the monitored variable 
Digital_Altitude_Status does not represent a 
concrete physical quantity, but rather represents the 
system’s ability to read the altitude produced by the 
digital altimeter, a difficult notion to define 
precisely. 

These problems disappear if we define IN so 
that it describes each monitored variable as a 
function of the input variables, i.e., if we define IN’ 
rather than IN. This is shown in Figure 5 where we 
define one IN relation for each monitored variable. 
The IN relation for Digital_Altitude maps values of 
Digital_Altimeter_Input outside the range of –20 to 
2,500 feet to either –20 or 2,500 feet.  

At the same time, the IN relation for 
Digital_Altitude_Status maps these out of range 
values to the value Invalid. Since our requirements 
model only needs to know if the monitored variable 
Altitude is valid or invalid, the IN relationship for 
Altitude_Status maps several possible physical 
errors to the value Invalid. In general, monitored 
variables that define the health or status of a 
physical quantity should only make distinctions that 
are actually used in the specification or likely to be 
used in future versions.  

As mentioned earlier, an advantage of the 
extended four-variable model is that it clarifies the 
roles of IN and OUT. Conceptually, IN is the 
relationship we would like to specify, but 
practically, it is simpler and more useful to specify 
IN’. This is the relationship the software developer 
needs to implement. More importantly, the system 
and hardware information that is available usually 
makes it simpler to specify IN’ than IN. 

To illustrate the mapping of controlled 
variables to output variables, the definition of class 
DOI is given in Figures 6 and 7.  The DOI class 
exports the definition of the controlled variable 
Wake_Up that indicates if the DOI is to be powered 
on and the monitored variable DOI_On that 
indicates if the DOI is already powered on.  Since 
the monitored variable Inhibit is used only by the 
DOI class, its definition is encapsulated within the 
class. 

Figure 6 also contains the definition of the 
REQ relation for the Wake_Up controlled variable. 
This relation uses the ASW_Mode defined in the 
ASW_Mode class (not shown). If the current value 
of ASW_Mode is DOI_Needed and the Inhibit 
monitored variable is false, Wake_Up takes on the 
value True indicating that the DOI should be 
powered on. The initiation delay and completion 
deadline state that the value of Wake_Up can be 
changed immediately in response to changes in the 
monitored variables, but must be completed within 
50 miliseconds. The REQ relation for this example 
is almost trivial, but this is not normally the case. A 
larger and more realistic example can be found in 
[7]. 

Figure 7 shows the specification of the input 
and output variables for the DOI class and defines 
the IN and OUT relations mapping them to the 
monitored and controlled variables. Again, these are 
actually the specification of IN’ and OUT’. The 
two input variables DOI_Status_Input and Inhibit_ 
Input are defined to be individual bits of a register, 
and the IN relations define how they are related to 
the monitored variables DOI_On and Inhibit. The 
output variable DOI_Power_On_Output is also 
defined as a bit of this register and the OUT 
relation defines how it is related to the DOI_On 
controlled variable. 
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Class DOI
This class defines the interface with the Device of Interest (DOI) that the Altitude
Switch (ASW) is to control. The relevant portion of the DOI includes the signal to
turn the DOI on and the signal from the DOI of whether the DOI is actually powered
on. This class hides the details of the physical hardware interface to the DOI.

Class Interface

Name/Definition Type Values Physical Interpretation
False Do not apply power to the DOI.Wake_Up Controlled Bool
True Apply power to the DOI
False DOI is not powered on.DOI_On Monitored Bool
True DOI is powered on.

Encapsulated Information

Name/Definition Type Values Physical Interpretation
False Do not inhibit the DOI.Inhibit Monitored Bool
True Inhibit the DOI.

REQ Relations

Wake_Up Controlled Variable

Mode Class ASW _Mode

Mode Conditions
DOI_OK INMODE NEVER

DOI_Needed Inhibit not Inhibit
Wake_Up = False True

Initiation Delay 0 Milliseconds

Completion Deadline 50 Milliseconds

 

Figure 6 – Definition of Class DOI 

 

In addition to the Digital_Altimeter and DOI 
classes, the full CoRE specification of the Altitude 
Switch also includes definitions for the Altitude and 
ASW_Modes classes. These are omitted here to 
save space, but the classes presented are sufficient 
to illustrate the four-variable model.  

Given the full CoRE specification, it is 
straightforward to write the software that 
implements the specification. The developer defines 
virtual versions of the monitored and controlled 

variables Digital_ Altitude, Digital_Altitude_Status, 
DOI_On, Inhibit, and Wake_Up. Input routines are 
written that implement the inverse relation IN’ to 
map the input variables into the virtual monitored 
variables, and output routines are written 
implementing OUT’ to map the virtual controlled 
variables into the output variables. The developer 
directly implements the REQ relationships defined 
in the subsystem requirements model in software so 
that the virtual versions of the controlled variables 
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respond correctly to changes in the virtual versions of the monitored variables.  

 

Hardware Interface Specification 

Input Variables 

DOI_Status_Input 
Description  Discrete signal indicating if the DOI is powered on. 
Data Representation  Bit[1] 
Data Transfer  Bit 2 of Register 1 (line STS)   

Values Interpretation 
0b Off  DOI is not powered on. 
1b On DOI is powered on. 

Inhibit_Input 
Description  Discrete signal used to inhibit the ASW. 
Data Representation  Bit[1] 
Data Transfer  Bit 3 of Register 1 (line IHB)   

Values Interpretation 
0b Norm Do not inhibit the ASW. 
1b Inhibit Inhibit the ASW. 

IN Relations 

DOI_On 
DOI_Status_Input = Off DOI_Status_Input = On 

DOI_On = False DOI_On = True 

Inhibit 
Inhibit_Input = Norm Inhibit_Input = Inhibit 

Inhibit = False Inhibit = True 

 

Output Variables 

DOI_Power_Output 
Description  Discrete signal indicating if the DOI is to be turned on. 
Data Representation  Bit[1] 
Data Transfer  Bit 7 of Register 1 (line PWR)   

Values Interpretation 
0b Off  DOI is not to be turned on. 
1b On DOI is to be turned on. 

OUT Relations 

Wake_Up 
Wake_Up = False Wake_Up = True 

DOI_Power_Output = Off DOI_Power_Output = On 

 
 

Figure 7 – Definition of Class DOI (Continued) 
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The resulting system directly implements the 
extended four-variable model shown in Figure 2 by 
translating  

• the monitored variables MON into the input 
variables INPUT via the hardware 
implementation of IN, 

• the input variables INPUT into software 
versions of the monitored variables MON’ 
via  the software implementation of IN’,  

• the changes in MON’ into changes in the 
controlled variables CON’ via the software 
implementation of REQ’,  

• the software versions CON’ of the controlled 
variables into the output variables OUTPUT 
via the software implementation of OUT’,  

• the OUTPUT variables into the controlled 
variables CON via the hardware 
implementation of OUT. 

Of course, the required result is to implement 
REQ, and the path through IN, IN’, REQ’, OUT’, 
and OUT will introduce both timing delays and 
differences in value from REQ. These differences 
must be analyzed to ensure that the final 
implementation meets the timing and value 
tolerances of the system. Hopefully, these 
differences are considerably smaller than the 
allowed tolerances, making this task 
straightforward. 

Conclusions 
We have described an extension of the four-

variable model of embedded systems that makes 
implementation of the software from the subsystem 
requirements straightforward. The most important 
contribution of this extension is that it organizes the 
software so that it traces clearly and directly to the 
subsystem and the hardware requirements. Since 
customer driven changes and hardware driven 
changes often arise for different reasons, this also 
helps to make the software more robust in the face 
of change. At the same time, this extension forces 
the recreation of images of physical environmental 
quantities in the software, an approach often 
advocated in object-oriented approaches. As shown 
in the example, such specifications can be easily 
organized in a manner compatible with object-
oriented software development. 
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