
Published in the Proceedings of the 20th Digital Avionics Systems Conferene (DASC01), Daytona Beach, Florida, Oct. 14-18, 2001.
Selected as best paper of the Systems Engineering Track.

 1

EXTENDING THE FOUR-VARIABLE MODEL TO BRIDGE THE
SYSTEM-SOFTWARE GAP

Steven P. Miller, Alan C. Tribble

Rockwell Collins, Cedar Rapids, Iowa 52498

Abstract
System and software requirements are

inextricably intertwined, yet the challenge of
extracting software requirements from system
requirements is often an exercise in frustration. We
propose an extension of the four-variable model
originally developed by Parnas and Madey that
clarifies how system requirements can be allocated
between hardware and software. This extension
organizes the software so that it traces clearly and
directly to both the system and hardware
requirements. An attractive aspect of this paradigm
is that it is consistent with object-oriented
approaches and allows the system requirements to
be organized to facilitate object-oriented software
development.

Introduction
Most complex systems consist of several

subsystems that work closely together to achieve
the overall objectives. Since each subsystem is itself
a complex system built from hardware and software
components, the process of collecting and
managing requirements is usually done in phases. In
a typical development, requirements are defined for
the overall system, these system requirements are
allocated to the subsystems, and the subsystem
requirements are allocated to hardware and software
components. In a large project, the subsystem
requirements may be recursively allocated to
smaller subsystems before being finally allocated to
hardware and software.

Unfortunately, the step of allocating the
subsystem requirements to the hardware and
software frequently becomes an exercise in
frustration. Comments one often hears include
“almost all my subsystem requirements are
allocated to software and almost none to hardware”
or “all my subsystem requirements trace indirectly
to every hardware component”. This reflects the

fact that hardware and software components are not
parts of the subsystem in the same way that
subsystems are parts of the overall system. Rather,
software is used to build new virtual machines over
the basic functionality provided by hardware. As a
result, most subsystem requirements do trace almost
entirely to the software requirements, since it is the
software that extends the hardware to implement
these requirements. At the same time, the system
cannot be built without hardware, and almost every
subsystem requirement is indirectly dependent on
several hardware components.

In this paper, we propose a extension of a
model of embedded systems originally developed
by Parnas and Madey [1] that addresses many of
these concerns and clarifies how system
requirements can be allocated between hardware
and software. This extension organizes the software
requirements so that some trace directly to the
subsystem requirements and the remainder to the
hardware requirements. A particularly attractive
aspect of this model is that it is consistent with
current object-oriented paradigms and provides a
natural way of organizing subsystem requirements
to facilitate object-oriented development.

The Four-Variable Model
The original four-variable model proposed by

Parnas and Madey evolved out of early efforts to
specify the requirements for the A-7 aircraft in SCR
[2]. This paradigm was extended by the Software
Productivity Consortium in the Consortium
Requirements Engineering (CoRE) methodology to
include object-oriented concepts to make the
specification robust in the face of change and to
support the development of product families [3],
[4]. The CoRE methodology was later used to
specify the avionics system of the C-130J aircraft
[5] and portions of the mode logic of the flight
guidance system of a general aviation aircraft [6],
[7]. Much additional work has been done by the

Published in the Proceedings of the 20th Digital Avionics Systems Conferene (DASC01), Daytona Beach, Florida, Oct. 14-18, 2001.
Selected as best paper of the Systems Engineering Track.

 2

Naval Research Lab to formalize SCR and to
provide supporting tools [8].

An overview of the four-variable model is
shown in Figure 1. The variables in this model are
continuous functions of time and consist of:

• Monitored variables (MON) in the
environment that the system observes and
responds to;

• Controlled variables (CON) in the
environment that the system is to control;

• Input variables (INPUT) through which the
software senses the monitored variables; and

• Output variables (OUTPUT) through which
the software changes the controlled variables.

MON

INPUT OUTPUT

IN

REQ

OUT

NAT

CON

SOFT

 Figure 1 – Original Four-Variable Model

For example, monitored values might be the
actual altitude of an aircraft and its airspeed while
controlled variables might be the position of a
control surface such as an aileron or the displayed
value of the altitude on the primary flight display.
The corresponding input and output values would
be the ARINC-429 bus words that the software
reads, or writes, to sense these quantities.

To complete the specification, four
mathematical relations are defined between the
variables:

• NAT defines the natural constraints imposed
by the environment, such as the maximum rate
of climb of an aircraft ;

• REQ defines the system requirements,
specifying how the controlled variables are to
respond to changes in the monitored variables;

• IN defines the relationship of the monitored
variables to the input variables; and

• OUT defines relationship of the output
variables to the controlled variables.

NAT and REQ describe how the controlled
variables should change in response to changes in
the monitored variables and define the subsystem
view of the specification. NAT describes how the
environment (the monitored and controlled
variables) behaves in the absence of the system to
be built, while REQ describes how the environment
(the controlled variables) is to be constrained by the
system. These relationships can be specified with
mathematical precision, making them ideal for
specifying safety-critical systems. The hardware
interfaces surrounding the software are modeled by
the IN and OUT relations that define how the input
and output variables the software interacts with are
related to the monitored and controlled
environmental variables. Specification of the NAT,
REQ, IN, and OUT relations implicitly bounds the
allowed behavior of the software, shown in Figure 1
as SOFT, without specifying its design.

One of the great advantages of this model is
that it explicitly defines the subsystem boundary
through the identification of the monitored and
controlled variables. If MON and CON are chosen
correctly, IN and OUT will change only as the
underlying hardware changes. At the same time,
REQ changes only in response to changes in the
subsystem requirements. Since customer driven
changes and hardware driven changes often arise
for different reasons, this helps to make the system
more robust in the face of change.

Figure 1 is laid out as shown to emphasize that
the INPUT and OUTPUT variables are at a lower
level of abstraction than are the MON and CON
variables, with the IN and OUT relationships
mapping between these levels of abstraction. There
are variations of the four-variable model that are
useful on occasion. For example, it can be helpful
to layer the IN and OUT relations into levels much
like the ISO Reference Model for communication
protocols. Another variation is to "glue" the
controlled variables of one or more models to the
monitored variables of another model to create a
larger system specification, or to split a large model
up into several smaller models.

Of course, for an actual system, there will
dozens or hundreds of such variables and the
relationships between them will be very complex.
In one application of this approach, the

Published in the Proceedings of the 20th Digital Avionics Systems Conferene (DASC01), Daytona Beach, Florida, Oct. 14-18, 2001.
Selected as best paper of the Systems Engineering Track.

 3

specification of the requirements for the C-130J
avionics, there were over 1600 monitored and
controlled variables [5]. Effectively organizing such
a large specification is a daunting task in its own
right, and details of how to do this well are beyond
the scope of this paper. Additional information on
this can be found in [5], [6], [7], [9], and [10].

The Extended Four-Variable Model
A weakness of the four-variable model is that

it does not explicitly specify the software
requirements, SOFT, but rather bounds it by
specifying NAT, REQ, IN, and OUT. In fact,
SOFT is often deliberately left unspecified to avoid
constraining the developer. However, this leaves the
software developer with the practical problem of
how to structure the software and relate it to NAT,
REQ, IN and OUT.

In older systems, one often finds the software
implemented exactly as shown in Figure 1, i.e., as a
direct mapping from input variables to output
variables. In more recent systems, one finds
hardware and software drivers that abstract away
from the details of the input and output variables.
This reverses in software part of the IN and OUT
mappings in order to isolate the rest of the software
from changes in the underlying hardware.

The proposed extension to the four-variable
model takes this concept one step further and
“stretches” the SOFT relationship into the relations
IN’, REQ’, and OUT’ as shown in Figure 2.

MON

INPUT

MON'

OUTPUT

IN

REQ

OUT
OUT' SOFTWARE

REQ'

IN'
SOFT

NAT

CON

CON'

Figure 2 – Extended Four-Variable Model

Here, IN' and OUT' are nothing more than the
specification of hardware drivers to be implemented
in software. However, in addition to isolating the
software from changes in the hardware, they also
serve to recreate virtual versions of the monitored
and controlled variables defined in the subsystem

specification in the software, a technique often
advocated in object-oriented approaches.

As we will see, one contribution of this model
is that it helps to clarify the roles of IN and OUT, a
common source of confusion. However, the most
important contribution is that it makes the tracing of
the subsystem requirements REQ to the software
direct and straightforward. Each function defined in
the subsystem requirement REQ maps directly into
an identical function in the software requirement
REQ’. In similar fashion, IN’ and OUT’ map
directly to the hardware specification.

It is important to note that MON' and CON' are
not the same as the system level variables
represented by MON and CON. Small differences
in value are introduced both by the hardware and
software, and differences in timing are introduced
when sensing and setting the input and output
variables. For example, the value of an aircraft's
altitude created in software is always going to lag
behind and differ somewhat from the aircraft's true
altitude. In safety-critical applications, the existence
of these differences must be considered. However,
if they are well within the tolerances of the system
they can be treated as perturbations and Figure 2
provides an intuitive model relating the subsystem
requirements to the software requirements.

A Small Example
This section illustrates the extended four-

variable model by applying it to a small example,
the Altitude Switch (ASW). While far simpler than
an actual avionics component, the ASW is nicely
suited for illustrating the four-variable model
because most of its complexity lies in its IN and
OUT relations.

The Altitude Switch receives altitude
information from two digital altimeters and
computes an estimate of the aircraft's altitude.
When the aircraft descends below a threshold
altitude, it turns on power to a Device of Interest
(DOI). In this example the ASW also accepts a reset
signal that returns it to its initial state and an inhibit
signal that inhibits turning on the DOI. The
example is specified in the style recommended in
the CoRE methodology [3]. An overview of the

Published in the Proceedings of the 20th Digital Avionics Systems Conferene (DASC01), Daytona Beach, Florida, Oct. 14-18, 2001.
Selected as best paper of the Systems Engineering Track.

 4

ASW is shown in the dependency diagram of Figure 3.

DOI_On

Wake_Up

Altitude

Digital_Altitude_Status

Digital_Altitude

Digital_Altitude

Digital_Altitude_Status

Digital
Altimeter

(1)

Digital
Altimeter

(2)

DOI
DOI_On

ASW
Mode

Reset

Altitude

Altitude_
Status

ASW_
Mode

Inhibit

Figure 3 - Dependency Diagram of the Altitude Switch (ASW)

The main components are the CoRE classes of
Altitude, ASW Mode, and DOI. The monitored
variables are shown as arrows into the diagram, the
controlled variables are shown as arrows out of the
diagram, and intermediate values, or terms are
shown as arrows between classes.

The Altitude class defines a term Altitude that
is the estimate of the aircraft’s true altitude
constructed from the readings provided by the two
digital altimeters, and a term Altitude_Status that
indicates whether that estimate is valid. It has two
internal classes, Digital Altimeter(1) and Digital
Altimeter(2), representing two digital altimeters.
Each digital altimeter defines two monitored
variables, Digital_Altitude and Digital_Altitude_
Status.

The ASW Mode class defines the system
modes of the ASW. For this example, these consist
of only two modes (not shown), DOI_Needed,
indicating that the DOI should be powered on, and
DOI_OK, indicating that the DOI is either not
needed or is already powered on. In a more realistic
example, modes for system initialization, self-test,
and error modes would also be defined. To
transition between these two modes, the ASW
Mode class makes use of the terms Altitude and
Altitude_Status defined in the Altitude class, the
DOI_On monitored variable defined in the DOI
class, and the monitored variable Reset defined in
ASW Mode.

The DOI class represents the ASW’s view of
the Device of Interest. It contains the definition of

the only controlled variable, Wake_Up, representing
whether the actual DOI should be powered on. It
also defines the monitored variables Inhibit,
indicating if Wake_Up should be supressed, and
DOI_On, indicating if the DOI is powered on. The
DOI_On monitored variable is passed on to the
ASW Mode class as the term DOI_On.

While space does not permit giving the
definition of each class in detail, the full
specification of the Digital Altimeter class is shown
in Figures 4 and 5 and the DOI class is given in
Figures 6 and 7. The monitored variables Altitude
and Altitude_Status are defined on the class’s
interface, indicating that they can be referenced by
name in other classes. Their definition consists of
their name, type, possible values, and a brief
description. This is all any other class needs to
know about the Digital Altimeter class.

Encapsulated within the Digital Altimeter class
is the information needed to define how the input
variables Digital_Altimeter_Word, Digital_Altime-
ter_Input, Digital_Altimeter_Status_Input, and
Digital_Altimeter_Label are related to the moni-
tored variables. These input variables are read by
the software over an ARINC-429 bus [9], [10].
Since misunderstanding of the hardware interface is
known to be a frequent source of errors [11], [12],
the input variables are carefully defined by giving a
brief description, details of their data representation,
legal values, and information about how they are
physically located in memory. In this case,
examples and diagrams of word layouts are used to

Published in the Proceedings of the 20th Digital Avionics Systems Conferene (DASC01), Daytona Beach, Florida, Oct. 14-18, 2001.
Selected as best paper of the Systems Engineering Track.

 5

make clear the relationships between individual
bits, fields, and words.

Published in the Proceedings of the 20th Digital Avionics Systems Conferene (DASC01), Daytona Beach, Florida, Oct. 14-18, 2001.
Selected as best paper of the Systems Engineering Track.

 6

Class Digital Altimeter(I: 1..2)

This class describes the interface to a Digital Altimeter. It exports the estimate of the
aircraft's altitude sensed by the altimeter and that altitude's status. It encapsulates the
physical details of the interface to the device

Name/Definition Type Values Physical Interpretation
Digital_Altitude Monitored Real -20.0..2,500.0 Distance in feet above

ground level (AGL) as
sensed by digital altimeter.

Invalid Digital altitude is not valid.Digital_Altitude_
Status

Monitored Enum
Valid Digital altitude is valid.

Encapsulated Information

Input Variables
Digital_Altimeter_Word
Description ARINC-429 Word read from Bus I (I in [1..2])
Data Representation Bit[32]
Values Unconstrained
Data Transfer Word from Bus 1 located at memory address H'0014' - H'0017',

Word H'0014' H'0015' H'0016' H'0017'
Bit 3

2
3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

Word from Bus 2 located at memory address H'0018' - H'001B',
Word H'0018' H'0019' H'001A' H'001B'

Bit 3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

Digital_Altitude_Input
Description Altitude in feet AGL reported by digital altimeter I
Data Representation 17-bit 2's complement
Values [-8,192.0 .. +8,191.875]
Data Transfer Bits 29-13 of Digital_Altimeter_Word, sign in bit 29.

Bit 2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

Value 4
0
9
6

2
0
4
8

1
0
2
4

5
1
2

2
5
6

1
2
8

6
4

3
2

1
6

8 4 2 1 1
/
2

1
/
4

1
/
8

Figure 4 – Definition of Class Digital Altimeter

Published in the Proceedings of the 20th Digital Avionics Systems Conferene (DASC01), Daytona Beach, Florida, Oct. 14-18, 2001.
Selected as best paper of the Systems Engineering Track.

 7

Digital_Altitude_Status_Input
Description Status of altitude reported by digital altimeter I
Representation Bit[2]
Data Transfer Bits 31-30 of Digital_Altimeter_Word

Bits
31 30 Values Meaning
0 0 FAIL Failure Warning
0 1 NCD No Computed Data
1 0 TEST Functional Test
1 1 NORM Normal Operation

Digital_Altitude_Label
Description Label of ARINC-429 Word I
Representation Octal, in reverse order
Values [000 - 377]
Data Transfer Bits 8-1 of Digital_Altimeter_Word

Example: representation of Octal Number 164.
Bit 8 7 6 5 4 3 2 1

Binary 1 0 0 1 1 0 0 1

Octal 4 6 1

IN Relations

Digital_Altitude
Digital_Altitude_Input < -20 -20 <= Digital_Altitude_Input <=

2,500
Digital_Altitude_Input > 2,500

Altitude = -20.0 Altitude = Digital_Altitude_Input Altitude =2,500.0

Digital_Altitude_Status
Parity(Digital_Altitude_Word) = EVEN

OR
Digital_Altitude_Label /= '164'

OR
Digital_Altitude_Status_Input /= NORM

OR
Digital_Altitude_Input < -20

OR
Digital_Altitude_Input > 2,500

Parity(Digital_Altitude_Word) = ODD
AND

Digital_Altitude_Label= '164'
AND

Digital_Altitude_Status_Input = NORM
AND

-20 <= Digital_Altitude_Input
AND

Digital_Altitude_Input <= 2,500
Altitude_Status = Invalid Altitude_Status = Valid

Figure 5 -Definition of Class Digital Altimeter (Continued)

Published in the Proceedings of the 20th Digital Avionics Systems Conferene (DASC01), Daytona Beach, Florida, Oct. 14-18, 2001.
Selected as best paper of the Systems Engineering Track.

 8

The IN relations are then given (see Figure 5)
to describe the relationship between the monitored
variables Digital_Altitude and Digital_Altitude_
Status and these input variables. Looking at the
four-variable model of Figure 1, one would expect
the IN relations to describe each input variable as a
function of the monitored variables. In practice, this
is seldom practical.

For example, the physical representation of the
Digital_Altimeter_Input input variable can range
between -8,192.0 and 8,191.875 feet in increments
0.125 feet, while the monitored variable
Digital_Altitude has been defined as a real number
that ranges between –20 and 2,500 feet (see
Figures 4 and 5). It is unclear how the input
variable could ever take on a value outside the
range of –20 to 2,500 feet, and it is even less clear
what the system should do if such a value is seen.

The relationship of the monitored variable
Digital_Altitude_Status to the input variables
Digital_Altitude_Status_Input and Digital_
Altitude_Label is even more difficult to sort out.
This is due to the fact that the monitored variable
Digital_Altitude_Status does not represent a
concrete physical quantity, but rather represents the
system’s ability to read the altitude produced by the
digital altimeter, a difficult notion to define
precisely.

These problems disappear if we define IN so
that it describes each monitored variable as a
function of the input variables, i.e., if we define IN’
rather than IN. This is shown in Figure 5 where we
define one IN relation for each monitored variable.
The IN relation for Digital_Altitude maps values of
Digital_Altimeter_Input outside the range of –20 to
2,500 feet to either –20 or 2,500 feet.

At the same time, the IN relation for
Digital_Altitude_Status maps these out of range
values to the value Invalid. Since our requirements
model only needs to know if the monitored variable
Altitude is valid or invalid, the IN relationship for
Altitude_Status maps several possible physical
errors to the value Invalid. In general, monitored
variables that define the health or status of a
physical quantity should only make distinctions that
are actually used in the specification or likely to be
used in future versions.

As mentioned earlier, an advantage of the
extended four-variable model is that it clarifies the
roles of IN and OUT. Conceptually, IN is the
relationship we would like to specify, but
practically, it is simpler and more useful to specify
IN’. This is the relationship the software developer
needs to implement. More importantly, the system
and hardware information that is available usually
makes it simpler to specify IN’ than IN.

To illustrate the mapping of controlled
variables to output variables, the definition of class
DOI is given in Figures 6 and 7. The DOI class
exports the definition of the controlled variable
Wake_Up that indicates if the DOI is to be powered
on and the monitored variable DOI_On that
indicates if the DOI is already powered on. Since
the monitored variable Inhibit is used only by the
DOI class, its definition is encapsulated within the
class.

Figure 6 also contains the definition of the
REQ relation for the Wake_Up controlled variable.
This relation uses the ASW_Mode defined in the
ASW_Mode class (not shown). If the current value
of ASW_Mode is DOI_Needed and the Inhibit
monitored variable is false, Wake_Up takes on the
value True indicating that the DOI should be
powered on. The initiation delay and completion
deadline state that the value of Wake_Up can be
changed immediately in response to changes in the
monitored variables, but must be completed within
50 miliseconds. The REQ relation for this example
is almost trivial, but this is not normally the case. A
larger and more realistic example can be found in
[7].

Figure 7 shows the specification of the input
and output variables for the DOI class and defines
the IN and OUT relations mapping them to the
monitored and controlled variables. Again, these are
actually the specification of IN’ and OUT’. The
two input variables DOI_Status_Input and Inhibit_
Input are defined to be individual bits of a register,
and the IN relations define how they are related to
the monitored variables DOI_On and Inhibit. The
output variable DOI_Power_On_Output is also
defined as a bit of this register and the OUT
relation defines how it is related to the DOI_On
controlled variable.

Published in the Proceedings of the 20th Digital Avionics Systems Conferene (DASC01), Daytona Beach, Florida, Oct. 14-18, 2001.
Selected as best paper of the Systems Engineering Track.

 9

Class DOI
This class defines the interface with the Device of Interest (DOI) that the Altitude
Switch (ASW) is to control. The relevant portion of the DOI includes the signal to
turn the DOI on and the signal from the DOI of whether the DOI is actually powered
on. This class hides the details of the physical hardware interface to the DOI.

Class Interface

Name/Definition Type Values Physical Interpretation
False Do not apply power to the DOI.Wake_Up Controlled Bool
True Apply power to the DOI
False DOI is not powered on.DOI_On Monitored Bool
True DOI is powered on.

Encapsulated Information

Name/Definition Type Values Physical Interpretation
False Do not inhibit the DOI.Inhibit Monitored Bool
True Inhibit the DOI.

REQ Relations

Wake_Up Controlled Variable

Mode Class ASW _Mode

Mode Conditions
DOI_OK INMODE NEVER

DOI_Needed Inhibit not Inhibit
Wake_Up = False True

Initiation Delay 0 Milliseconds

Completion Deadline 50 Milliseconds

Figure 6 – Definition of Class DOI

In addition to the Digital_Altimeter and DOI
classes, the full CoRE specification of the Altitude
Switch also includes definitions for the Altitude and
ASW_Modes classes. These are omitted here to
save space, but the classes presented are sufficient
to illustrate the four-variable model.

Given the full CoRE specification, it is
straightforward to write the software that
implements the specification. The developer defines
virtual versions of the monitored and controlled

variables Digital_ Altitude, Digital_Altitude_Status,
DOI_On, Inhibit, and Wake_Up. Input routines are
written that implement the inverse relation IN’ to
map the input variables into the virtual monitored
variables, and output routines are written
implementing OUT’ to map the virtual controlled
variables into the output variables. The developer
directly implements the REQ relationships defined
in the subsystem requirements model in software so
that the virtual versions of the controlled variables

Published in the Proceedings of the 20th Digital Avionics Systems Conferene (DASC01), Daytona Beach, Florida, Oct. 14-18, 2001.
Selected as best paper of the Systems Engineering Track.

 10

respond correctly to changes in the virtual versions of the monitored variables.

Hardware Interface Specification

Input Variables

DOI_Status_Input
Description Discrete signal indicating if the DOI is powered on.
Data Representation Bit[1]
Data Transfer Bit 2 of Register 1 (line STS)

Values Interpretation
0b Off DOI is not powered on.
1b On DOI is powered on.

Inhibit_Input
Description Discrete signal used to inhibit the ASW.
Data Representation Bit[1]
Data Transfer Bit 3 of Register 1 (line IHB)

Values Interpretation
0b Norm Do not inhibit the ASW.
1b Inhibit Inhibit the ASW.

IN Relations

DOI_On
DOI_Status_Input = Off DOI_Status_Input = On

DOI_On = False DOI_On = True

Inhibit
Inhibit_Input = Norm Inhibit_Input = Inhibit

Inhibit = False Inhibit = True

Output Variables

DOI_Power_Output
Description Discrete signal indicating if the DOI is to be turned on.
Data Representation Bit[1]
Data Transfer Bit 7 of Register 1 (line PWR)

Values Interpretation
0b Off DOI is not to be turned on.
1b On DOI is to be turned on.

OUT Relations

Wake_Up
Wake_Up = False Wake_Up = True

DOI_Power_Output = Off DOI_Power_Output = On

Figure 7 – Definition of Class DOI (Continued)

Published in the Proceedings of the 20th Digital Avionics Systems Conferene (DASC01), Daytona Beach, Florida, Oct. 14-18, 2001.
Selected as best paper of the Systems Engineering Track.

 11

The resulting system directly implements the
extended four-variable model shown in Figure 2 by
translating

• the monitored variables MON into the input
variables INPUT via the hardware
implementation of IN,

• the input variables INPUT into software
versions of the monitored variables MON’
via the software implementation of IN’,

• the changes in MON’ into changes in the
controlled variables CON’ via the software
implementation of REQ’,

• the software versions CON’ of the controlled
variables into the output variables OUTPUT
via the software implementation of OUT’,

• the OUTPUT variables into the controlled
variables CON via the hardware
implementation of OUT.

Of course, the required result is to implement
REQ, and the path through IN, IN’, REQ’, OUT’,
and OUT will introduce both timing delays and
differences in value from REQ. These differences
must be analyzed to ensure that the final
implementation meets the timing and value
tolerances of the system. Hopefully, these
differences are considerably smaller than the
allowed tolerances, making this task
straightforward.

Conclusions
We have described an extension of the four-

variable model of embedded systems that makes
implementation of the software from the subsystem
requirements straightforward. The most important
contribution of this extension is that it organizes the
software so that it traces clearly and directly to the
subsystem and the hardware requirements. Since
customer driven changes and hardware driven
changes often arise for different reasons, this also
helps to make the software more robust in the face
of change. At the same time, this extension forces
the recreation of images of physical environmental
quantities in the software, an approach often
advocated in object-oriented approaches. As shown
in the example, such specifications can be easily
organized in a manner compatible with object-
oriented software development.

Acknowledgements
The authors wish to thank Dr. Stuart Faulk of the
University of Oregon, Dr. Constance Heitmeyer of
the Naval Research Laboratory, and Lisa Finneran
and Howard Lykins of the Software Productivity
Consortium for their assistance in applying SCR,
CoRE, and the four-variable model.

Bibliography

[1] Parnas, D. L. and J. Madey, "Functional
Documentation for Computer Systems
Engineering, Vol. 2," McMaster University,
Hamilton, Ontario, Technical Report CRL 237,
September 1991.

[2] van Schouwen, A. J., "The A-7 Requirements
Model: Re-examination for Real-Time Systems
and an Application to Monitoring Systems,"
Queens University, Hamilton, Ontario,
Technical Report 90-276, 1990.

[3] Faulk, S. R., J. Brackett, P. Ward, and J. Kirby,
Jr., "The CoRE Method for Real-Time
Requirements," IEEE Software, Vol. 9, No. 5,
pp. 22-33, September 1992.

[4] Faulk, S. R., L. Finneran, J. Kirby, and A.
Moini, Consortium Requirements Engineering
Guidebook, Technical Report SPC-92060-
CMS, Herndon, VA: Software Productivity
Consortium, December 1993.

[5] Faulk, S. R., L. Finneran, J. Kirby, S. Shah, and
J. Sutton, "Experience Applying the CoRE
Method to the Lockheed C-130J Software
Requirements," Proceedings of the Ninth
Annual Conference on Computer Assurance,
Gaithersburg, MD, pp. 3-8, June 1994.

[6] Miller, S. P. and K. F. Hoech, "Specifying the
Mode Logic of a Flight Guidance System in
CoRE,", Rockwell Collins, Cedar Rapids, IA,
Technical Report WP97-2011, August 1997.

[7] Miller, S. P., "Specifying the Mode Logic of a
Flight Guidance System in CoRE and SCR,"
Second Workshop on Formal Methods in
Software Practice (FMSP98), Clearwater
Beach, FL, March 1998.

Published in the Proceedings of the 20th Digital Avionics Systems Conferene (DASC01), Daytona Beach, Florida, Oct. 14-18, 2001.
Selected as best paper of the Systems Engineering Track.

 12

[8] Heitmeyer, C. L., J. Kirby, and B. G. Labaw,
"Automated Consistency Checking of
Requirements Specification," ACM
Transactions on Software Engineering and
Methodology (TOSEM), Vol. 5, No. 3, pp. 231-
261, July 1996. ARINC Characteristic 707-5,
Radio Altimeter, Aeronautical Radio,
Annapolis, MD, March 1993.

[9] ARINC Characteristic 707-5, Radio Altimeter,
Aeronautical Radio, Annapolis, MD, March
1993.

[10]ARINC Specification 429-14, Mark 33 Digital
Information Transfer System (DITS),
Aeronautical Radio, Annapolis, MD, March
1993.

[11]Leveson, N. G., Safeware: System Safety and
Computers, Reading, MA: Addison-Wesley
Publishing Company, 1995.

[12]Lutz, R. R., "Analyzing Software Requirements
Errors in Safety-Critical Embedded Systems,"
IEEE International Symposium on
Requirements Engineering, San Diego, CA,
January 1993.

