NASA/CP-2002-211736

Theorem Proving in Higher Order Logics

Edited by
Victor A. Carreiio
Langley Research Center, Hampton, Virginia

César A. Murioz
Institute for Computer Applications in Science and Engineering
Langley Research Center, Hampton, Virginia

Sofiene Tahar
Concordia University, Montreal, Canada

|
August 2002

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
Program Office plays a key part in helping NASA
maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for NASA’s
scientific and technical information. The NASA STI
Program Office provides access to the NASA STI
Database, the largest collection of aeronautical and
space science STI in the world. The Program Office
is also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are

published by NASA in the NASA STI Report
Series, which includes the following report

types:

+ TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing reference
value. NASA counterpart of peer-reviewed formal
professional papers, but having less stringent
limitations on manuscript length and extent of
graphic presentations.

+ TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

*« CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

* CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored or
co-sponsored by NASA.

» SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services that complement the

STI Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing

research results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

» Access the NASA STI Program Home
Page at http://www.sti.nasa.gov

* Email your question via the Internet to
help@sti.nasa.gov

* Fax your question to the NASA STI
Help Desk at (301) 621-0134

* Telephone the NASA STI Help Desk at
(301) 621-0390

* Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

NASA/CP-2002-211736

Theorem Proving in Higher Order Logics

Edited by
Victor A. Carrerio
Langley Research Center, Hampton, Virginia

César A. Murioz
Institute for Computer Applications in Science and Engineering
Langley Research Center, Hampton, Virginia

Sofiene Tahar
Concordia University, Montreal, Canada

Track B Proceedings of the 15th International Conference on
Theorem Proving in Higher Order Logics, TPHOLSs 2002, held in
Hampton, Virginia

August 20-23, 2002

and

Proceedings of the workshop on

Formalising Continuous Mathematics, FCM 2002, held in
Hampton, Virginia,

August 19, 2002

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

|
August 2002

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076-1320 Springfield, VA 22161-2171

(301) 621-0390 (703) 605-6000

Preface

This volume contains the Track B (Work in Progress) proceedings of the 15th International Conference on
Theorem Proving in Higher Order Logics, TPHOLs 2002, held from the 20th to 23rd of August 2002, and the
proceedings of the workshop on Formalising Continuous Mathematics, FCM 2002, held on the 19th of August
2002. These events were collocated in Hampton, Virginia, USA. A volume containing the Track A papers of
the conference has been published as Springer-Verlag’s Lecture Notes in Computer Science Volume 2410.

The TPHOLSs International Conference serves as a venue for the presentation of work in theorem proving
in higher-order logics, and related areas in deduction, formal specification, software and hardware verification,
and other applications. Fourteen papers were submitted to Track B, which are included in this volume.
Authors of Track B papers gave short introductory talks that were followed by an open poster session.

The FCM 2002 Workshop aimed to bring together researchers working on the formalisation of continuous
mathematics in theorem proving systems with those needing such libraries for their applications. Over the
last few years there has been great interest in formalising real and complex analysis. Many of the major
higher order theorem proving systems now have a formalisation of the real numbers and various levels of
real analysis support. Some work has also been done on formalising complex analysis including standard and
non-standard analysis. This work is of interest in a number of application areas, such as formal methods
development for hardware and software application and computer supported mathematics. The FCM 2002
consisted of three papers, presented by their authors at the workshop venue, and one invited talk by John
Harrison (Intel Corporation). The three papers were accepted for publication in this volume.

All 17 papers in this volume were reviewed for relevance and quality of presentation by at least one person
appointed by the program committee of each event.

11

Organization

TPHOLs 2002 is organized by NASA Langley and ICASE in collaboration with Concordia University.
FCM 2002 is organized by the University of Reading and ICASE in collaboration with Intel Corporation
and INRIA.

TPHOLs 2002 Organizing Committee

Conference Chair: Victor A. Carreno (NASA Langley)
Program Chair: César A. Mufioz (ICASE - NASA LaRC)
Sofiene Tahar (Concordia University)

FCM 2002 Organizing Committee

Workshop Chair: Andrew A. Adams (University of Reading)
Program Chair: Hanne Gottliebsen (ICASE - NASA LaRC)

John Harrison (Intel Corporation)
Laurent Théry (INRIA)

v

Table of Contents

TPHOLs 2002 Track B Papers

A Weakly-Typed Higher Order Logic with General Lambda Terms and Y Combinator 1
James H. Andrews

Formal Design Environments 12
Brian Aydemir, Adam Granicz, Jason Hickey

Reflecting Higher-Order Abstract Syntax in Nuprl 0 o 23
Eli Barzilay, Stuart Allen

DOVE: a Graphical Tool for the Analysis and Evaluation of Critical Systems 33
Tony Cant, Jim McCarthy, Brendan Mahony

Formalising General Correctness i e 36
Jeremy E. Dawson

Automatic Constraint Calculation using Lax Logic 48
Jeremy E. Dawson, Matt Fairtlough

Automating Fraenkel-Mostowski Syntax 60
Murdoch J. Gabbay

A Formal Correctness Proof of the SPIDER Diagnosis Protocol o o ... 71
Alfons Geser, Paul 5. Miner

Using HOL to Study Sugar 2.0 Semantics i e 87
Michael J. C. Gordon

Extending DOVE with Product Automata 101
Elsa L. Gunter, Yi Meng

A Higher-Order System for Representing Metabolic Pathways 112
Sara Kalvala

Higher-Order Pattern Unification and Proof Irrelevanceo i i 121
Jason Reed

A Verification of Rijndael in HOL 128

Konrad Slind

The K Combinator as a Semantically Transparent Tagging Mechanism.......... 139
Konrad Slind, Michael Norrish

FCM 2002 Invited Talk

Real Numbers in Real Applications. 146
John Harrison

vi

FCM 2002 Workshop Papers

A PVS Service for MathWeb 147
A. A. Adams, A. Franke, J. Zimmer

Formalizing Real Calculus in Coqo 158
Luis Cruz-Filipe

The DOVE Approach to the Design of Complex Dynamic Processes 167
Brendan Mahony

Author Index ... 189

A Weakly-Typed Higher Order Logic
with General Lambda Terms and Y Combinator

James H. Andrews!

Department of Computer Science
University of Western Ontario
London, Ontario, Canada N6A 5B7

andrews@csd.uwo.ca

Abstract. We define a higher order logic which has only a weak notion of type, and which permits
all terms of the untyped lambda calculus and allows the use of the Y combinator in writing recursive
predicates. The consistency of the logic is maintained by a distinction between use and mention, as in
Gilmore’s logics. We give a consistent model theory and a proof system which is valid with respect to
the model theory. We also give examples showing what formulas can and cannot be used in the logic.

1 Introduction

The type system of a new higher order logic must be designed with care. Whenever we try to make the logic
more expressive by permitting more well-typed terms, we risk making the logic inconsistent; for instance,
Church’s higher order logic [Chu40] cannot consistently be extended to permit the rather modestly-extended
terms of ML [Coq86]. However, greater expressivity allows us to make more concise, intuitive, and general
descriptions of the concepts we want to describe.

Most higher order logics follow the pattern of Church’s original: one or more types are assigned to every
term, and the type system is enforced with each rule of inference of the logic. Recently, however, Gilmore and
others [Gil97,AK96] have been exploring higher order logics with only a weak notion of type, and no type
enforcement across all terms. Consistency is maintained, not by types, but by a rigorous distinction between
“use” and “mention” of predicate variables. In such logics, all the terms of the untyped lambda-calculus are
permitted, and lambda-application can be used at the level of formulas as well.

There is a price to be paid for the greater expressiveness in this area, of course; certain variables cannot
be used in certain positions in axioms. We have reason to believe, however, that the restriction may not be
important for many computer science applications. These logics give a very different view of higher order
logic, which may be useful in places where traditional higher order logics are not able to go.

In this paper, we extend Gilmore’s ideas on the logic NaDSyL [Gil97] by defining a logic which further
weakens the type system, allowing the use of the Y combinator. This weakening allows general recursive
predicates to be defined and passed as parameters to other recursive predicates. We also present the proof
system in the form of a conventional sequent calculus.

Gilmore himself has recently moved in the direction of stronger types, producing a logic intermediate
between NaDSyL and Church’s type theory [Gil01,Gil02]. The most relevant other related work that we
are aware of is that of Kamareddine, who defines a logic which gives a type to the Y combinator without
permitting general lambda terms [Kam92]. Our model theory is also similar in many ways to that of Chen,
Kifer and Warren’s HiLog [CKW89)].

In section 2, we give a syntax of terms and a semantics for the logic, and prove the semantics consistent.
In section 3, we give a proof system, and prove it valid with respect to the semantics. In section 4, we
illustrate the expressiveness of the logic, and the bounds on that expressiveness, by showing what forms
of terms can and cannot be used in it; we also speculate about the consequent usefulness of the system in
computer science and theorem-proving. In section 5, we give some conclusions. This is work in progress: we
have not yet proven cut-elimination, although the proof system is designed to facilitate it; and we have not
undertaken a thorough comparison of the recursive predicate constructs to those in other higher order logics.

2 James H. Andrews

2 Syntax and Semantics

Here we present the elementary syntax of the language, define simple term models for the logic, and prove
some consistency and substitutivity results.

2.1 Elementary Syntax

There are two sorts of variables, use and mention. We assume sets X, of use variables and A}, of mention
variables; the set X’ of variables is X, U X,;,. We assume a set P of predicate names and C of constants. The
syntax of terms 7 in BNF is:

T w=alplel K| (TT) | AT

where z is a variable; p is a predicate name; ¢ is a constant; and K is one of the connectives and, not,
and forall. We use x,y,z as metavariables standing for either use or mention variables, and X,Y,Z as
metavariables standing for use variables in particular. We use p, ¢, r as metavariables standing for predicate
names, and a,b,c as metavariables standing for constants. We use M, N as metavariables standing for
arbitrary terms. All metavariables may be possibly primed or subscripted.

As is standard, we write the term (...((M N1)Nz)...Np) as (M Ni ... Np). We write (and M N),
(not M), and (forall \e.M) as M&N, =M, and Vo.M respectively. We define the notions of free variables
and wvariable substitution in the usual way. We define a- and S-convertibility in the usual way, treating
connectives as if they were constants. Two terms are af-equivalent if they are convertible to the same term
via an arbitrary number of a- or S-conversion steps.

The notions of “use term” and “mention term” are central to the semantics and proof theory. A mention
term is a term with no free use variables. A use term is a use variable, a predicate name, or a use term
applied to a mention term; in other words, a use term is one of the form (M N; ... N,), where M is a use
variable or a predicate name, and each N; has no free use variables. The significance of use terms is that
they are the only ones given an a priori assignment of truth value in the semantics. Examples of use terms
include (pad), (X ad), (pqgr), (pzy), and (X z p), where z,y are mention variables. Examples of terms
which are not use terms are (¢ a b), (z a b), and (p a X), where x is a mention variable.

We denote the sets of use terms and mention terms by 7, and 7,,, respectively, and the sets of ground
use and mention terms by G, and G,,, respectively. We denote the set of all terms by 7. Terms which are
neither use nor mention terms are still considered well-formed, and can appear in formal derivations.

2.2 Model Theory

To show consistency and to provide a reference point for the proof theory, we define simple term models.
These models correspond to Gilmore’s models for NaDSyL [Gil97] in the same way that standard models
correspond to nonstandard, Henkin-style models [Hen50]: they do not require the model to select denotations
for use variables from a single given set. This relaxation simplifies the semantics.

We use the symbols T', F' to denote the truth values “true” and “false”, respectively. A model consists of
a total function v and a countably infinite sequence vg, vy, vs, ... of total functions, such that:

— v Xm — gma

If N and N' are aff-equivalent mention terms, then v(N) = v(N');

- vy : (X UP)—{T,F};

For every i > 0, v; : (X, UP) — (G — {T,F}); and

If N and N’ are aff-equivalent mention terms, then v;(M)(...,N,...)) = v;(M)(...,N',...)).

We now extend the function v to all mention terms. Let the extension vg of v w.r.t. a set S C A of
variables be defined as follows:

vs(z) =z if x € S;

() =wv(z) if ¢ € S but © € Xpp;

— vs(M) = M if M is a predicate name, constant, or connective;
(M N) = (vs(M) vs(N));

- 'Us(/\CU.M) = /\CU.('U(SU{QE}) (M))

A Weakly-Typed Higher Order Logic with General Lambda Terms and Y Combinator 3

We then write v(M) for vy (M). Note that v(M) is undefined for free use variables, or indeed for any term
containing a free use variable.

Given a model (v,vg,v1,v2,...), we also extend the functions v; to all use terms. We define
vi(M Ny ... Nj)(Ni,...,N{) to be vy (M)(v(Ny),...,v(Nj),Nyi,...,N;), for all i > 0, j > 1, where
M e (X,UP), N, € T forall1 <k <j,and Nj, € G, forall 1 <k <.

Given a use or mention variable z, a model M’ = (v',v{,v}],...) is an z-variant of another model
M = (v,vp,v1,...) if, for all mention variables y not identical to x, v'(y) = v(y), and for all use variables Y’
not identical to z, vi(Y) = v;(Y") for all 7 > 0.

A signed term is a term preceded by a 4+ or — sign, denoting truth or falsehood. We say that a model
M = (v,vp,v1,...) entails a signed term =M at stage i, in symbols M |=; £M, just in the following cases.

- M '20 +(M Nl N2 Nn) 1fM€ (XUUP), and
Un(M)(U(Nl)aU(NZ)a te 7U(Nn)) =T.

— M Eo—(M N, Ny ... Ny)if M € (X, UP), and
v (M) (0(N1), v(Na), ..., 0(N,)) = F.

- M '=z+1 +(M&N) if M 'Zz +M and M |:i +N.

_M':z—i-l (M&N) if M ':z MOI"M|:i —N.

- M iy +(-M) if M = —M.

- M ':H-l (") if M |—@ +M.

- M Eiy1 +(Vo.M) if for every z-variant M’ of M, M' |&; +M.

- M Eiy1 —(Vo.M) if for some z- varlant M of M, M" |=; =M.
*M'Zerl +((/\$M) Nl NZ)1fM|—z ([37 —Nl] NZ Nn)

- M ':H—l —((AI M) N1 N2 Nn) if M |:@ —(M[I = Nl] N2 Nn)

We say that M entails £M, in symbols M = £M, if there is some 7 > 0 such that M |=; £M.

As an example, consider a model M and a use variable X. By the definition of model, either M E —X
or M = +X. Therefore either M E —X or M = —(=X), so M | —(X&(=X)), and thus M |
+(=(X&(=X))). Because this is true for every M, it is also the case that M |= +VX (~(X&(=X))). Ex-
pressing this formula more conventionally, M = +VX (X = X).

An important point to note is the condition on the clause for —(M&N) above. —(M&N) is entailed if
either —M or —N is entailed; the other conjunct does not have to be assigned a truth value at all by the
model. This is in contrast to Gilmore’s semantics for NaDSyL [Gil97], in which the other conjunct had to be
assigned a truth value. The relaxation of the restriction makes the Y-combinator more useful. We can never
entirely eliminate the Y-combinator from a typical recursive predicate term by beta-conversion, and thus can
never convert a term with a Y-combinator into one in which all atomic terms are use terms. However, the
—(M&N) clause allows, for instance, (M&N) to be false when M is false, regardless of whether N contains
an irreducible term such as a Y-combinator.

2.3 Consistency and Substitutivity

Here we prove that it is impossible for a term to be both true and false in a model. We also prove some
results concerning the substitution of mention terms for mention variables and use terms for use variables.
These substitutivity results will be useful in later proving soundness of the proof system.

Theorem 1. For every model M and every term M, it is not the case that both M |= +M and M = —M.

Proof. If M |= £M, then for some ¢ > 0, M =; £M. The proof is by induction on 4. If i = 0, then M
must be a use term, and by definition the model must assign one unique truth value to the term. Otherwise
(i > 0), cases are on the form of M. If M is (M;&M>), then M =; +M iff M |=;—1 +M; and M |=;-1 +Mo.
But in this case, by the IH, we can have neither M =;_; —M; nor M |=;_1 —M>, and therefore we cannot
have M |=; —M. Conversely, if M |=; —M, then either M }=;_1 —M; or M |=;_1 —M>. But in neither case
can we have both M |=;_1 +M; and M |=;_1 +M>, and therefore we cannot have M |=; +M. The other
cases follow the same straightforward reasoning. O
We define the complezity of a term M, in symbols k(M), as follows. k(Ax.M) = k(M) + 1; k(M N) =
max(k(M),k(N)) + 1; and k(M) = 0 when M is a variable, constant, predicate name or connective.

4 James H. Andrews

Theorem 2. Let x© be a mention variable and M a mention term. For every mention term N and every
model M such that v(z) = v(M), v(N) = v(N[z := M]).

Proof. By induction on the complexity of N. Cases are straightforward. O

Theorem 3. Let x be a mention variable and M o mention term. For every i > 0, every term N and every
model M such that v(z) = v(M), M |=; £N iff M |=; £N[z := M].

Proof. By induction on 3.

If i =0, then N is a use term, of the form (Ny Ny Ny ... N,,), where Ny is a use variable or predicate
name. By the definition of =, M |=¢g +(No N1 N3 ... Ny) iff v, (No)(v(N1),v(Na),...,v(Ny)) = T. Because
of the last theorem, this is true iff v,(No)(v(N1[z := M]),v(Nz2[z := M]),...,v(Ny[z := M])) =T. (x does
not appear free in Ny, so No[z := M] is Ny.) By the definition of |= again, the previous statement is true iff
M |=0 +(N0 Nl[iL” = M] Nz[CU = M] Nn[iL” = M]), that iS, IHM '20 -|—(N0 Nl N2 Nn)[ﬂf = M]
The subcase with — instead of + is similar.

If i > 0, then one of the other cases of the definition of the |=; relation holds. The cases of the propositional
connectives are straightforward.

If N is Vy.N', then we assume without loss of generality that y is not z and that y does not appear in
M. M E=; +(Vy.N') iff for every y-variant M’ of M, M’ |=;_1 +N'. By the induction hypothesis, this is
true iff for every y-variant M’ of M, M’ |=;_; +N'[z := M]. Because of the assumption, this is true iff
M =i +(Vy.N'[x := M]); that is, iff M =; +(Vy.N')[z := M]. The subcase with — instead of + is similar.

IfNis ((A\y.No) Ny Ny ... N,,), then M |=; +N it M ;1 +(No[y := N1] N2 ... N,,). By the induction
hypothesis, this is true iff M ;-1 +((Noly := N1])[z := M] Na[z := M] ... N,z := M]). We assume
again that y is not = and that y does not appear in M. Therefore because of the properties of substitution,
this is true iff M |=;_1 +((No[z := M]))[y := (N1[x := M])] Na[z := M] ... Nypjz := M]). By the definition
of |=, this is true iff M |=; +((A\y.No[z := M]) Ni[z := M] No[z := M] ... Ny[z := M]); that is, iff
M i +((Ay.No) N1 Ny ... N,)[z := M]. The subcase with — instead of + is similar. O

Theorem 4. Let X be a use variable and M a use term. For every i > 0, every term N and every model
M such that v;(X) = v;(M) for every j >0, M |=; £N iff M |= £N[X = M].

Proof. Similar to the proof of the last theorem, except for the base case of the induction.

If i =0, then N is a use term, of the form (Ny Ny N ... N,,), where Ny is a use variable or predicate
name and the N;s have no free use variables. If Ny is not a use variable, or is a use variable different from
X, then N[X := M]is N, and the result follows immediately.

If Ny is X, then N[X := M]is (M Ny N> ... N,). By the definition of |=, M |=¢ +(X Ny Ny ... N,,) iff
U (X)(v(N1),v(Na),...,v(Ny))) = T. By assumption, it is also the case that v, (M) (v(N1),v(N2), ..., v(Ny))) =
T.If M is a use variable or predicate, then the result follows immediately. Otherwise, M is (Mo My ... M,,).
By the definition of v, (M),

U (M) (v(N1),v(N2),...,v(N,))) =T = Omgn(Mo)(v(My), ..., 0(Mp,),v(N1),...,0(Ny)))
Therefore M =g +(Moy My ... My, N1 ... N,). Now it is also the case that
(Mo My ... My, Ny ... Np) = ((Mo My ... M) Ny ... Np) = (M Ny ... N) = (X[X := M| Ny ... Np)

Since X does not appear free in the N;s, this last term is equivalent to (X Ny ... N,)[X = M], or
N[X := M]. Therefore M |59 +N[X := M], as desired. The subcase with — instead of + is similar. O

3 Proof Theory

Here we present a proof system for the logic, in the form of a classical sequent calculus similar to Gentzen’s
LK. We give notational preliminaries in section 3.1. In section 3.2, we prove soundness of the proof system
with respect to the model theory; in section 3.3, we briefly discuss the prospects for cut elimination.

Reflexive entailment:

Thin/1:

Con/1:

&/

=/1:

v/L:

B

Cut:

A Weakly-Typed Higher Order Logic with General Lambda Terms and Y Combinator 5

IMF A M

where M, M' are use terms and M =, M’

reA .
m Thln/r.
[LM,M+ A .
TFMFA Con/r:
IM,NF A _
I, M&NF A &/
I'cAM e
T,-MFA '
I'M[z:=N]F A V/r:

Iz MF A

where z is a use (mention) variable, and N is a use
(mention) term

I(Mz:=Ni|Ns ... N,)F A

I,(Ae.M) Ny Ny ... No)F A Bl

FT'-AM MTITFA
I'A

A
I'FAM

'+ A MM
I'FAM

I'AM I'AN
I' A M&N

LMFEA
I'FA-M

' A Mz :=y]
' ANe. M

where z is a use (mention) variable, and y is a use
(mention) variable not appearing free in I, A, M

FI—(M[$Z=N1] Ny ... Nn),
Nn

A

Fig. 1. Proof rules for proof system G.

6 James H. Andrews

3.1 Notation

A sequent is an ordered pair of finite multisets of terms, written in the form I' H A. We will use I" and A
as metavariables standing for multisets of terms; the notation Iy A will mean I' W A, and I, M will mean
I'y {M}, where W is multiset union. We present the proof system in the form of Gentzen-style proof rules
for sequents in Figure 1.

In Gilmore’s original presentation [Gil97], he defines a semi-decidable set of formulas; the restriction on
the V/1 rule then essentially ensures that the term in the upper sequent must be a formula. The condition
here is weaker, but simplifies the presentation.

Since the rules define a complete set of classical connectives, it is clear that we can introduce all the
other classical connectives, such as V (disjunction), — (implication) and 3 (existential quantifier). We will
use these connectives in the sequel without further comment.

3.2 Soundness

We say that a sequent I' F A is wvalid in a model M if either there is an M € I" such that M = —M, or
there is an N € A such that M |= +N. We say that a sequent I' - A is wvalid if it is valid in all models.

Theorem 5. Fvery provable sequent is valid.

Proof. By structural induction on the derivation. Cases are on the last rule applied. In the following, we
write M [~ —I" to mean that for all M € I', M [~ —M.

— Reflexive entailment: let the sequent be I M F A, M’ such that M =,3 M' and M is a use term.
Assume that M £ —I" and M £ —M. But since M is a use term, either M = —M or M E +M;
hence, M |= +M. By the definition of model, M = +M' as well.

— Thin/I: let the lower sequent be I, M = A. Assume that M = —I" and M = —M. Then by the induction
hypothesis (IH) on the upper sequent, M |= +N for some N € A.

— Thin/r: Assume that M [—I". Then by the IH on the upper sequent, M |= +N for some N € A.

— Con/l, Con/r: straightforward.

— &/1: let the lower sequent be I M&N F A. Assume that M £ —I" and M £ —(M&N). Then neither
M E —M nor M = —N, because otherwise M |= —(M&N). Thus, by the IH on the upper sequent, for
some N' € A, M E +N'.

— &/r: let the lower sequent be I' F A, M&N. Assume that M & —I'". There are two subcases. (a) If
M = +N' for some N' € A, then the result follows immediately. (b) Otherwise, by the IH on the upper
left sequent, it must be the case that M = +M; and by the IH on the upper right sequent, it must be
the case that M = +N. Thus, M | +(M&N).

— —/1: let the lower sequent be I, =M F A. Assume that M £ —I" and M £ —(=M). Then M £ +M,
because otherwise M = —(—M). Therefore by the IH on the upper sequent, there must be some N € A
such that M |= +N.

— —/1: let the lower sequent be I' F A, =M. Assume that M = —I". There are two subcases. (a) If there
is some N € A such that M | +N, then the result follows immediately. (b) Otherwise, by the IH on
the upper sequent, M = —M; therefore M = +(=M).

— V/1: let the lower sequent be I',Va.M F A. Assume without loss of generality that & does not appear free
in I A, N. Assume that M (£ —I" and M [—(Vaz.M). Let M = (v,vg,v1,...). We know that for any
z-variant M’ of M, M' £ —M, because otherwise M |= —(Vz.M). There are two subcases. (a) If z is
a mention variable, this means in particular that M' £ —M where M' = (v',v{,v{,...) is an z-variant
of M such that v'(z) is the same as v'(N). Therefore by Theorem 3, M’ £ —M |z := N], and by the
induction hypothesis, there must be some N’ € A such that M’ |= +N'. Since & does not appear free
in N, it must be the case that M | +N' as well. (b) Similarly, if = is a use variable, this means that
M' £ —M where M’ = (v',v(,v],...) is such that v}(z) is the same as v[(N) for all i > 0. The proof
proceeds similarly, using Theorem 4.

— V/r: let the lower sequent be I' F A, Vz.M. Assume that M & —I". There are two subcases. (a) If there
is some N € A such that M = +N, then the result follows immediately. (b) Otherwise, by the IH on
the upper sequent, M |= +M|z := y]. But then for the z-variant M’ of M in which v(z) = v(y) (if =
is a mention variable), or v;(z) = v;(y) for all i > 0 (if = is a use variable), we have that M’ |= +M.
Therefore M = +(Va.M).

A Weakly-Typed Higher Order Logic with General Lambda Terms and Y Combinator 7

F (X Qz(=(= 1)) = (X A((z = 2))))
FVX((X Az(o(z = 1)) = (X Ae(=(x = 2)))))
F (QAz(=(x = 7)) = Qe (=(z = 2))))
2(Az(o(z = 2))) = Az(o(z = 2)))) -

Fig. 2. The proof that the empty set is in the Russell set.

— B/1, B/r: Straightforward applications of the induction hypothesis.

— Cut: let the lower sequent be I' - A, and the cut term be M. Assume that M = —I". There are two
subcases. (a) If there is some N € A such that M | +N, then the result follows immediately. (b)
Otherwise, from the IH on the upper left sequent, M |= +M; hence M & —M. Therefore by the IH on
the upper right sequent, there must be some N € A such that M = +N.

O

3.3 Cut Elimination

Because the proof system is valid with respect to the model theory, it inherits the model theory’s consistency.
Despite this, we would also like to prove cut-elimination. This would demonstrate that the proof system is
compositional in a useful way. We have not completed the proof, but the proof system has been designed
to allow it to proceed. For instance, any use term should be able to be substituted for a free use variable
in a valid derivation, facilitating the important subcase of cut-elimination where the cut term is a universal
quantification on a use variable.

4 Expressivity

Here we illustrate the expressivity of the logic, and the limits of that expressivity. In Section 4.1, we define
and prove theorems about the Russell set. In Section 4.2, we show that the Y combinator can be defined and
used. In Section 4.3, we show that Gilmore’s operators for constructing recursive sets can still be used, and
still have the effect of giving us proofs by induction without having to define an explicit induction rule. In
Section 4.4, we show formulas that cannot be used in a truly useful way, and speculate on what consequences
this has for the logic. Finally, in Section 4.5, we discuss “nonsense formulas” that can arise given the syntax
and proof theory of the logic, and propose a familiar solution.

In this discussion, we will take the notation M = IV as shorthand for Frege’s “identity of indiscernables”
property, VX.((X M) = (X N)).

4.1 The Russell Set

The Russell set R can be expressed as Az(—(x x)), and stands as usual for the set of all sets which are not

members of themselves. Given that the empty set E def Az(—(z = x)) is not a member of itself, but the set

of all terms A %' Az(z = z) is a member of itself, we should be able to prove both (R E) and (R A).

Figures 2 and 3 show these derivations. (In all derivations in this paper, we occasionally insert “steps” in
which we simply expand definitions.) These derivations demonstrate that the logic of this paper retains the
expressiveness of Gilmore’s NaDSyL [Gil97], which can also express these derivations. It also demonstrates
that the logic is in this particular way more expressive than Church’s [Chu40] and Kamareddine’s [Kam92],
in which the Russell set cannot be assigned a type and thus cannot appear in derivations.

The Russell set is not particularly useful by itself, but its presence is an indication of the difference
between Gilmore logics and traditional type theories.

8 James H. Andrews

F(s0)=(s0) F
F ((s 0) = (s 0)&((

ECDE
F(s0)=0,3y((s0
F((s0)=0V3y((s
F((Az.(x=0V3Iy(z=

Fig. 4. Part of the proof that (s 0) is an integer.

4.2 The Y Combinator

Let V(w) be Av.(w (v v)). Then Curry’s Y combinator can be defined as Y def Aw.(V(w) V(w)). We define
the set of integers as consisting of 0 and all terms of the form (s n), where s and 0 are here assumed to be

constants and n is an integer. If we define N def AuAz.(x =0V Ay(x = (s y)&(u y))), then (Y N) expresses
the set of integers.
Applying beta-reduction and definition expansion/contraction to this term yields the following.
(Y N) = (A\w.(V(w) V(w))) N
(V(N) V(N))
= (A.(N (v v))) V(N))
= (N (V(N) V(N)))
= (N (Y N))
= (AuAz.(z =0V Iy(z = (s y)&(u y))) (Y N))
= Az.(x =0V Iy(z = (s y)&((Y N) y)))

Figure 4 shows part of a derivation of the term ((Y N) (s 0)); this may be read as the statement that
the term (s 0) is an integer. The omitted parts of the derivation, at the top, are straightforward given this
derivation and the previous derivations. This derivation demonstrates that the Y combinator can be used
in this logic, as in Kamareddine’s [Kam92]. The Y combinator is disallowed in Church’s T system [Chu40]
and in Gilmore’s ITT [Gil01,Gil02] because it cannot be assigned a type; it is disallowed in NaDSyL [Gil97]
because no term containing it could be considered a “formula”.

Despite the presence of the Y combinator and implication, Curry’s paradox [HS86] is avoided because
the sequent M F M is not an axiom if M is an application of a lambda-abstraction. An attempt to prove
Curry’s paradoxical formula leads only to an infinite regress.

4.3 Gilmore’s Operators

Gilmore [Gil97] defines a kind of “intersection” operator which can be used to construct recursively-defined
sets. The intersection operator L is AX A\z.VY ((X Y) = (Y z)); given a property M and a term N, the
term (L M N) will be true if N is a member of all sets with the property M. Let Z be the property of

being a zero-successor set, i.e. the property of a set containing 0 and all of its successors. Z can be defined

as AZ.((Z 0)&Vy((Z y) = (Z (s y)))). Then the term N’ def (L Z) expresses the property that an individual

is in every zero-successor set; that is, N’ stands for the set of natural numbers.

A Weakly-Typed Higher Order Logic with General Lambda Terms and Y Combinator 9

(M y) = (M (s y))

(M y) = (M (sy)))

F (M 0) EVy((M y) = (M (s y)))

F (M 0)&Vy((M y) = (M (s y)

(M) b (M z) F (M=), (M0)&Vy(M y) = (M (

y)))
(M 0)&Vy((M y) = (M (s y)))) = (M z)) - (M z)
VY (Y 0)&Vy((Y y) = (Y (5) = (Y z)) - (M z)

(N" z) - (M z)
F(N' z)= (M x)
FVz(N' z) = (M x))

Fig. 5. Part of a proof that the use term M expresses a property held by all integers.

Applying equivalences and definition expansions yields the following equivalent definition for N':

(LZ)=((ANX VY (XY)= (Y x)) Z)
=X VY(ZY)= (Y z))
= A VY ((AZ.((Z 0)&Vy((Z y) = (Z (s) ¥) = (Y x)))
= A VY (Y 0)&Vy((Y y) = (Y (s y))) = (Y z))

The significance of this expression, as in Gilmore’s previous logics, is that a proof of a property of all
natural numbers automatically consists of a proof by induction. Figure 5 shows a generalized proof of the
term schema Vo ((N') = (M z)), that is “property M holds of all integers”, for any given use term M.
The derivation follows the general pattern of reducing the problem of proving the term to the problem of
proving (M 0) and Yy((M y) = (M (s y))).

This latter property may be useful in automated theorem proving, since it allows us to prove properties
concerning recursively defined sets by induction, without explicitly requiring induction rules or tactics.
Naturally, other tactics may be required, and it remains to be seen whether they are easier or harder to use.

4.4 Disallowed Formulas

Terms such as (X Y), where X and Y are both free use variables, cannot appear in axioms. As a consequence
of this, they are not really useful in any derivation except when one or both are bound by a lambda, although
they are not excluded by any type restriction. The logic of this paper shares this property with Gilmore’s
two recent logics [Gil97,Gil01].

In contrast, of course, in most higher order logics from Church’s [Chu40] to Kamareddine’s [Kam92], a
term of the form (X Y) is allowed as long as the types are appropriate. This leads to many natural uses
of predicate variables applied to others, such as that of assigning a value to a predicate variable and later
applying it to another predicate. The fact that applying a variable to another comes so naturally for us may
lead us to believe that we cannot do without it.

However, note that non-recursive and recursive properties of general predicates can still be defined
in the logic of this paper. The property that a predicate is transitive, for instance, can be defined as
AX . (VaVyVz.((X =z 9)&(X y z) = (X z z))). This term can be applied to any predicate or use variable,
or indeed to any term, including one using the Y combinator. The transitive closure operator on a binary
relation can be defined using the Y combinator: if T is AZAX Az y.(X z y) V (X z 2)&(Z X z y))),
then ((Y T) M) is the transitive closure of a term M. Again, M can be a predicate name, a use variable, or
another term defined using the Y combinator. Applying ((Y T) M) to two terms will result in a term which
can have a derivation of the same general form as that in Figure 4.

This property gives us reason to believe that the logic of this paper can still be useful in working with
higher order recursive definitions. It will always be impossible to use terms such as VXVY (X V) = ...) as
formulas, but such formulas may not be needed for some applications.

Moreover, note that a use variable can be applied to a particular predicate, such as in the term (X p).
This allows us to, for instance, state assumptions about the application of p to other terms on the left-hand
side of a sequent, and assert properties of p itself on the right-hand side. We simply cannot generalize from
a property about a given predicate p to a property of all use terms.

10 James H. Andrews

4.5 Nonsense Formulas

We have so far in this paper restricted our attention to formulas that “make sense” in an intuitive way.
However, readers have probably noticed that there are many terms which can be written and can appear
in formulas but don’t make sense, such as (and and), (Y x), and Vx.(¢). There are also many terms which
make sense but cannot be construed as formulas, such as Az.(x = z); if we try to build a derivation of an
ill-constructed formula, we may be faced with such a term in a formula position.

The natural way to address this problem is a familiar one: to impose a type system on the terms of
the logic. Note, however, that since types are not needed for consistency, we can choose our type system
based on considerations of expressivity. For instance, the Y combinator can be given a type in type systems
with fixpoint types and universal types, such as those described by Cardelli [Car96]; such type systems
are normally inaccessible to us in higher order logics because they allow such problematic terms. Using
Gilmore-style logics, we can choose our type system to include such terms if we so desire.

The weak type system of use and mention variables used in the logic in this paper does not seem to
interact with a more conventional type system except in one respect. Let us assume that o is the type of
propositions. It does not seem to make sense to allow constants and mention variables to have a type ending
in o (i.e., a type of the form (A; - A2 - A3 — --- — 0)), since they can never appear as the head term of
a formula in an axiom anyway. Conversely, it does not seem to make sense to allow predicate names and use
variables to have any type not ending in o.

5 Conclusions and Future Work

We have shown another facet of the complex jewel of consistent higher-order logics, one close to that shown
by Gilmore in his earlier work. Whether the logic of this paper turns out to be useful remains to be seen, but
we believe that its existence should be interesting to the community of researchers working with higher order
logic. Future work includes a proof of cut-elimination and more in-depth study of the nature of recursive
and higher order definitions in comparison to previous logics.

6 Acknowledgments

Thanks especially to Paul Gilmore for many invaluable conversations about this work, and to Denby Wong
for detailed discussions and important insights into soundness and cut-elimination. Thanks also to Peter
Apostoli, Bharat Jayaraman, and George Tsiknis for important observations. This work was supported by
Paul Gilmore’s and the author’s NSERC operating grant and by the FormalWare project, an initiative
headed by Jeff Joyce and funded by the BC Advanced Systems Institute, Hughes Aircraft Canada Ltd., and
Macdonald Dettwiler.

References

[AK96] Peter Apostoli and Akira Kanda. Parts of the continuum: towards a modern ontology of science. Accepted
for publication, Poznan Studies in the Philosophy of Science and the Humanities, ed. Leszek Nowak, 1996.

[Car96] Luca Cardelli. Type systems. In CRC Handbook of Computer Science and Engineering, pages 2208-2236.
CRC Press, 1996.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5:56-68, 1940.

[CKW89] Weidong Chen, Michael Kifer, and David S. Warren. HiLog: A first-order semantics of higher-order logic
programming constructs. In Proceedings of the North American Conference on Logic Programming, Cleve-
land, Ohio, October 1989.

[Cog86] Thierry Coquand. An analysis of Girard’s paradox. In First IEEE Symposium on Logic in Computer
Science, pages 227-236, Cambridge, Massachusetts, June 1986.

[Gil97] Paul C. Gilmore. NaDSyL and some applications. In Proceedings of the Kurt Godel Colloguium, volume
1289 of LNCS, pages 153-166, Vienna, 1997. Springer.

[Gilol] Paul C. Gilmore. An intensional type theory: Motivation and cut-elimination. Journal of Symbolic Logic,
66(1):383-400, March 2001.

A Weakly-Typed Higher Order Logic with General Lambda Terms and Y Combinator 11

[Gil02] Paul C. Gilmore. Logicism Renewed: Logical Foundations for Mathematics and Computer Science. Associ-
ation for Symbolic Logic, Poughkeepsie, NY, 2002. Forthcoming.

[Hen50] Leon Henkin. Completeness in the theory of types. Journal of Symbolic Logic, 15:81-91, 1950.

[HS86] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and Lambda Calculus. Number 1
in London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1986.

[Kam92] Fairouz Kamareddine. A system at the cross-roads of functional and logic programming. Science of
Computer Programming, 19:239-279, 1992.

Formal Design Environments

Brian Aydemir, Adam Granicz, and Jason Hickey*

California Institute of Technology, Pasadena CA 91125, USA
{emre,granicz, jyh}Qcs.caltech.edu
http://mojave.cs.caltech.edu

Abstract. We present the design of a formal integrated design environment. The long-term goal of
this effort is to allow seamless interaction between software production tools and formal design and
analysis tools, especially between compilers and higher-order theorem provers. The work in this report
is the initial design and architecture for integration of 1) the MetaPRL logical framework, 2) a multi-
language compiler we call Mojave, and 3) a generic extensible parser we call Phobos. The integration
is currently performed at the level of the Mojave functional intermediate representation, allowing the
use of the theorem prover for program analysis, transformation, and optimization.

1 Introduction

We are developing formal integrated design environments (FIDEs) where formal and informal tools are used
in a symbiotic relationship. That is, interactions between the formal and informal parts of the FIDE are
bidirectional and interdependent.

Most, if not all, existing formal design environments do not allow bidirectional interactions, especially
between the theorem prover and the compiler. Yet, the system would clearly benefit from closer interaction.
For example, the compiler might be able to use the theorem prover for optimization, proof validation, or
program transformation. The theorem prover would benefit from the ability to formalize its own code,
especially tactics.

The larger need is for effective formal programming languages. By “effective” we mean that the languages
should be general enough and efficient enough to use in software production. By “formal” we mean that
programs can be both specified and verified. The compiler is responsible for efficiency, the prover for formality.
In order to achieve both properties simultaneously, we argue that the theorem prover and compiler must
interact closely (or, equivalently, one must be folded into the other).

In this paper, we describe our initial work integrating the MetaPRL logical framework with our Mojave
multi-language compiler. There are several parts that are needed for integration: 1) the compiler and theorem
prover must share a common language, 2) the compiler must allow for an extended program syntax that
includes specification, and 3) the compiler and prover must also agree on a common program semantics,
especially operational semantics. We present the following results:

an architecture and implementation for the MetaPRL/Mojave formal design environment,

— a shared typed intermediate language, with semantics defined in the MetaPRL implementation of the
NuPRL type theory,

an extensible front-end, called Phobos, that uses the MetaPRL rewriting system for extending and
defining programming languages,

— and examples of using the theorem prover for optimization.

Section 2 describes related work. Section 3 describes the MetaPRL, Mojave, and Phobos systems indi-
vidually, and Section 4 presents the combined architecture. We give example applications in Section 5, and
finish with a summary of future work.

* This work was supported by the ONR, grant N00014-01-1-0765; DARPA, grant F33615-98-C3613; and AFOSR,
grant F49620-01-1-0361.

Formal Design Environments 13

2 Related Work

This work initially started with the development of the MetaPRL system [6-8]. MetaPRL is a logical frame-
work, designed to allow relations between logics. MetaPRL is also designed as a “Logical Programming
Environment” (LPE) where programs, type systems, proofs, and specifications can all be defined and related
to one another.

One of the problems with the MetaPRL design is that it is a layered architecture. The theorem prover
is layered above the OCaml compiler [16], and the connection is unidirectional. Any task (such as parsing,
type inference, and scoping) that is assigned to the compiler is not available to the formal system, hindering
effective formal software development.

In another related effort, we used the NuPRL system to optimize communication protocols for the En-
semble group communication system [12,11]. Again, this project separated the prover from the compiler.
To optimize a protocol, a parser would convert the protocol and requirements into an expression in the
NuPRL type theory; the prover would apply optimization tactics to generate a “fast-path;” and the result
would be printed as a ML file to be compiled by the OCaml compiler. While successful, this was awkward.
Furthermore, optimization strategies were defined in NuPRL, not as part of the program code, making it
difficult to synchronize the formal system with new Ensemble code releases. The architecture we propose in
this paper is an effort to design a system where formal properties are “first-class” program properties, and
the prover/compiler interaction is seamless.

In other related areas, Sannella and Tarlecki’s Extended ML [9, 10] allows mixing of program implemen-
tation and formal specification for SML programs. The ACL2 system [3] allows extensive mixing of formal
specification and Common Lisp programs. Nearly all other formal systems, including systems like HOL [5],
PVS [4] and Isabelle [14], allow extensive reasoning about programs, but the prover is not coupled with a
compiler as we are proposing in this paper.

3 Architectural Components

There are three major parts to our architecture. The MetaPRL system provides reasoning, the Mojave
system provides compilation, and the Phobos system provides generic, extensible parsing. The overall system
architecture is shown in Figure 1.

=
5
/

L I I |
o] e
Y |
\l_ _ 1_

Functional ; J

R | e
Mojave |
|

Machine code MetaPRL

Fig. 1. System architecture: Path (i) corresponds to a traditional compilation path augmented by the theorem prover.
Path (ii) uses the dynamically extensible front end.

14 Brian Aydemir et al.

Theories & Logics
Inference rules
Rewrites

l— Tactics

Refiner
(Theorem Prover)

Fig. 2. MetaPRL system architecture

3.1 The MetaPRL system

MetaPRL is a logical framework, designed along the same architectural principles as the NuPRL system.
The system architecture is shown in Figure 2. The refiner contains three parts: 1) a term module, which
defines the system syntax, 2) a logic engine, for theorem proving, and 3) a bookeeping module to manage
and validate proofs, and perform program extraction for constructive proofs.

The meta-language defines the language of tactics and conversionals (rewriting tactics), which are used
to define decision procedures and proof heuristics. The entire MetaPRL system is written in OCaml, and
OCaml is used as the language for tactics and conversionals.

The topmost layer in MetaPRL is the definition of theories and logics. A theory is defined by 1) its
syntax (defined using terms), 2) its proof and rewriting rules, 3) its tactics and conversionals, 4) its theorems,
expressed as derived inference and rewriting rules, and 5) other utilities for display and pretty-printing.

Judgments Inference rules are often, though not always, described in a sequent logic. For example, the
following inference rule would describe the implies introduction rule in a propositional logic.

rule imp_intro H :
[main] (H,v: AF B) —
[wi] (H F A type) —
H-A=1B

In this rule, the variables A, B, are meta-variables that represent arbitrary terms and H represents a
context. The sequents labeled “main” and “wi” are the premises of the rule; “main” is the main premise,
and “wf” is a well-formedness requirement. The — operator is the meta-implication that MetaPRL uses to
represent inference rules. The declaration of the imp_intro rule defines a tactic, called imp_intro that can
be used to “refine” any goal of the form H + A = B into two subgoals. From here, it is straightforward, for
example, to define a derived rule (a theorem) that would apply to sequents of the form H + A = B = (.
The proof would use the imp_intro rule twice, and there would be four premises.

Rewriting judgments are defined in a similar way. The rule for beta-reduction in the untyped lambda
calculus would be expressed using the following rule.

rewrite beta : apply{lambda{v.e1[v]};e2} +— e1]es]

This declaration defines a conversion called beta that can be applied within a proof to any redex,
performing the substitution. Note that the statement of the rewrite uses second-order substitution [1,13].
The pattern e; [v] represents a term in which the variable v is allowed to be free, and the term e; [es] represents
e; with ey substituted for v.

Formal Design Environments 15

Syntax, and terms All logical terms, including goals and subgoals, are expressed in the language of terms.
The general syntax of all terms has three parts. Each term has 1) an operator-name (like “sum”), which is
a unique name indicating the logic and component of a term; 2) a list of parameters representing constant
values; and 3) a list of subterms with possible variable bindings. We use the following syntax to describe
terms, based on the NuPRL definition [2]:

opname [pl;"' ;pn] {Ul-t1§"' ;vm-tm}
—_—— ~ ~ ~ ”
operator mame parameters subterms
A few examples are shown at the right. Variables are terms Displayed form | Term
with a string parameter for their name; numbers have an integer 1 number [1]{}
parameter. The lambda term contains a binding occurrence: the Az.b lambdall{x. b}
variable z is bound in the subterm b. f(a) apply[1{f; a}
v variable["v"]{}
T+y sum[1{x; y}

3.2 The Mojave compiler

The Mojave multi-language compiler, shown in the left half of Figure 1, is made up of three major parts.
The front-ends are responsible for compiling code to the functional intermediate representation (FIR), and
the back-end is responsible for generating machine code from FIR. FIR type inference and optimizations
form the middle stage of the compiler. The FIR is the primary concern for this paper; it is the language we
are using for interaction with MetaPRL.

Functional Intermediate Representation The FIR is designed to be a minimal, but general-purpose
typed intermediate language. The FIR has higher-order functions, polymorphism, and object types. We will
describe it in two parts, first the type system, and then the programs.

The FIR type system The FIR type system is based on the polymorphic lambda calculus. The type system
is shown in Figure 3. There are the normal scalars, including native integers with various bit precisions
(Zs, ..., Zes) as well as “boxed” integers, enumerations {0...7} whose values range from 0 to i — 1, and
floating-point numbers. Enumerations are used to code several base types: the empty type Void is {0...0},
Unit is {0...1}, etc.

Functions have multiple arguments. The type (¢1,...,¢,) — t is the space of functions taking arguments
with types t1,...,t, and returning a value of type t.
Tuples (t1,...,t,) are collections of elements having potentially different type. The ¢ array represents

variable-sized arrays of elements all having type ¢t. The data type is used specifically for C: it represents a
variable-sized data area containing elements of any type. Values of data type are not statically type-checked:
it is not a type error to store an integer in a data area, and immediately fetch a value from the same location
with some other type, but the runtime will raise an exception if the operation is unsafe.

Types are always defined relative to a context I" that contains type definitions and scope information for
polymorphic variables. The union type Aay,...,q,.t1 + -+ + t, is a polymorphic disjoint union of tuples
t1,...,tm. A value with a disjoint union type is a tagged tuple of type ¢; with tag i for some i € {1,...,n}.
If v defines a union type Aay,...,a,.t1 + - -+ t,, then the constructor type const(v[i],ai,...,a,) denotes
a tagged tuple of type t;[as,...,a,].

Polymorphism is expressed using the existential and universal types. A value of type Ja.t has type t for
some type «, and a value of type Va.t has type ¢t for all types a.

An object type Object(v.t) is a recursive type definition denoting objects with description ¢.

FIR expressions The FIR expressions are in a mostly-functional intermediate form where the order of
evaluation is explicit. Atoms are values that are either constants or variables, and the other expressions are
computed over the atoms. Function definitions are stored in an environment X' that also serves as a type
assignment. The definitions are shown in Figure 4.

Expressions include explicit coercions and arithmetic as unary and binary operators.

16 Brian Aydemir et al.

Type Description
t := boxed(Z) Boxed Integers
| {0...4} Integer enumerations
| Zs,Z16,Z32,Zea Native integers
| float Floating-point numbers
| (t1,...,tn) >t Function type
| const(v[i],t1,...,tn) Constructor type
| (t1,...,tn) Tuple type
| tarray Array type
| data Unsafe data
| «,8,... Polymorphic type variables
| v Type variables
| v[t1,...,tn] Type application
| FJa.t Existential types
| Va.t Universal types
| v.i Abstract type
| Object(v.t) Object type

d = Aai,...,an.t1 + - - + tm Type abstraction

yu=v=d|a«
I' =vy,...,7 Type contexts

Fig. 3. The FIR type system

The “ext” call represents a call to the runtime, providing a method to issue system calls. Type definitions
for system calls are provided as part of the compiler configuration, to ensure type safety. The tailcall provides
the only other means for calling a function.

The “match” construction allows pattern matching against a constant set of numbers, represented as a
list of intervals. Each match case defines a set s and an expression e. Operationally, the pattern match selects
the first case (s;, ;) such that a € s;, and evaluates the expression e;. An inexhaustive match is a type error.

The “alloc” operation is used for allocation of tuples, constructors, arrays, or data arrays.

The array operations define primitives to load and store values in arrays. The store operation is the only
non-functional primitive in the language.

The “assert” statement asserts that a predicate must be true. The runtime uses these predicates to
validate array bounds, and other runtime properties.

3.3 Phobos

The Phobos parser provides dynamic and extensible parsing. Languages can be augmented with new syntax
and semantics, and added to the system runtime dynamically.

The central issue in an extensible parser is the representation of semantic actions—the programs that
describe, for each clause in the grammar, how to form the abstract syntax tree. Our approach is to represent
all intermediate forms as terms, and to use the MetaPRL term rewriter to define semantic actions.

For example, Figure 5 shows the language description of simple arithmetic expressions including factorials.
The entire description is represented as a language module, which can be incrementally refined and extended
in inheriting modules. Based on this language module, Phobos can lex and parse a source string and return
a MetaPRL term that encodes its semantic meaning.

A Phobos language module consists of

— Term declarations: importing terms from existing MetaPRL modules. In the above example, the arith-
metic meta operations are imported from Base_meta, a standard MetaPRL module that defines basic

Formal Design Environments

Definition Description
a ::= nil(t) The “nil” value for type ¢
| boxed(7) Boxed integer constants
| @ Native integer constants
| @ Floating-point constants
| v Variables

unop == — | 1|+
binop i=+ | —|*| /|-

s u=[il,43],. .., [iT, i3]
=s—e
P bounds(via: ... az])

is-pointer(v[a])
is-function(v[a])

alloc = (a1,...,an) : t
const(v[ay,...,an],7): ¢
array (a1, az, :)t

malloc(a)

=letv:t=unopaine

| letv:t=ai binop azine
| letv:t=(ext"s":t)(a,
| v(ai,...,an)

| matchawithe |- | cn
| letv =allocine

| letv:¢=aifaz]ine

| aifaz2]: t < asz;e

| assert(p);e

ou=uv:t
| f:t=(v1,...,un) > €
Yu=o01,...,0n

...,ap)ine

Unary operations
Binary operations

Integer interval set
Match case

Bounds check
Pointer check
Function check

Tuple allocation
Constructor allocation
Array allocation
Malloc

Unary operations
binary operations
Calls to the runtime
Tail call

Set membership
Allocation

Load

Store

Assertion

Variable type
Function definition
Variable environment

Fig. 4. FIR expressions

17

operations on numbers and simple conversions for their simplification. Term declarations serve the pur-
pose of verification and proper scoping within MetaPRL modules. Terms do not have to be declared if
they are explicitly named with their parent module, for example Itt_int_base!number.

Lexical information: terminal symbols are named and defined by their corresponding regular expressions.
Upon successfully matching a regular expression, the resulting token is represented as __token__[p:s]{’pos},
where p stores the matched string, and ’pos its source position. This term can be given further meaning

by an optional lexical rewrite. In the example, numbers are rewritten to MetaPRL number terms.

Precedence rules: used to define precedence and associativity of terminal symbols and production rules.

Grammar: Expressed in BNF, each production may contain a list of rewrites that define the corresponding
semantic action. If more than one rewrite is given, the first matching rewrite is carried out during parsing.
If no rewrite is given, a default rewrite is used that builds a tuple term from the right-hand side.

Post-parsing rewrites: Possibly multiple sections of rewrites that are executed in sequential order after
parsing. In the above example, the two rewrites are responsible for replacing a fact term with its actual
value by unfolding factorials into multiplications. At the time of applying these rewrites, the MetaPRL
refiner contains several “built-in” conversions that, for example, reduce the meta arithmetic terms.

Optimizations: Optional target patterns for optimizations.

18 Brian Aydemir et al.

Module Calculator

Terms -extend "Base_meta" {
declare meta_sum{’el; ’e2}, meta_diff{’el; ’e2}
declare meta_prod{’el; ’e2}, meta_quot{’el; ’e2}

Terms -extend "@" {
declare fact{’e}

}

Tokens -longest {
NUM = "[1-9] [0-9]*" { __token__[p:s]{’pos} -> Itt_int_base!number[p:n] }
TIMES = "*x" {3
DIV = "/" {}
PLUS = nhgn {}
MINUS = "-" {}
LPAREN = "(" {
RPAREN = ")" {3
BANG = "!" {
* EOL = "\\n" {}
* SPACE = " " {

%left PLUS MINUS
%left TIMES DIV
%left LPAREN RPAREN
%left BANG

Grammar -start e {

e ::= NUM {}
| e PLUS e { ’el PLUS ’e2 -> meta_sum{’el; ’e2} }
| e MINUS e { ’el MINUS ’e2 -> meta_diff{’el; ’e2} }
| e TIMES e { ’el TIMES ’e2 -> meta_prod{’el; ’e2} }
| e DIV e { ’el1 DIV ’e2 -> meta_quot{’el; ’e2} }
| e BANG { ’e BANG -> fact{’e} }
| LPAREN e RPAREN { LPAREN ’e RPAREN -> ’e }

Rewrites {
fact{1} > 1
fact{’number} -> meta_prod{’number; fact{meta_diff{’number; 1}}}

Fig. 5. A grammar for simple arithmetic with factorials.

Formal Design Environments 19

Given our language module, 1+2+3+4! yields Itt_int_base!number [30:n], a MetaPRL number term
representing the number 30.

4 System Architecture

There are several technical issues in integrating these systems. The first issue is defining a shared language
for MetaPRL and Mojave (Phobos and MetaPRL already share a common language of terms). Next, in order
for MetaPRL to reason about Mojave programs, we have to formalize the language, including its operational
semantics.

4.1 FIR as a common language

We are using the FIR as the common MetaPRL/Mojave language, for several reasons. First, all the front-
ends, including C, ML, and Java produce programs in FIR; if we can reason about the FIR, we can reason
about programs produced by any of these languages. Second, the FIR has a precise semantics, where many
of the source languages do not (for example, C).

However, the disadvantage of using the FIR is that it is difficult in general to translate source-level
specifications and proofs to their corresponding specifications and proofs at the FIR level. The optimization
problem is not nearly so hard, and much of our current work has been developing operational reasoning in
MetaPRL about programs in the FIR.

The Mojave compiler does not use terms for its internal representation of programs. For communication
with MetaPRL we develop “glue” code to translate between the Mojave FIR representation of a program,
and the MetaPRL term representation of the program. This glue code is straightforward; for the remainder
of the paper, we will assume programs are represented as terms.

4.2 FIR term representation

The MetaPRL term representation for FIR programs is straightforward. In most cases, the term that repre-
sents an FIR expression has an explicit operator name (opname), and a set of subterms described recursively.
We illustrate the translation with a few examples, using the notation [-] for the term representation of a
FIR program.

The atom values tagged with a name and any additional parameters.

[v] = atomVar{v}
[:] = atomInt{i}
[i32,signed] = atomRawlInt{int32; signedint; i}

Expressions are a bit more interesting because of their binding structure. The term representation of an
expression, in contrast to the ML representation, uses explicit binding in the form of higher-order abstract
syntax [15]. As Pfenning mentions, the advantage of higher-order abstract syntax is that substitution and
alpha-renaming are automatic. The disadvantage is that analyses that modify the binding in unusual ways
become difficult to define. We illustrate the term syntax with the term for binary arithmetic.

[let v: t = ay binop as in e] = letBinop{[t]; [binop]; [a1]; [az]; v-[e]}

The remaining terms follow the same general form, and we omit them here.

4.3 Operational semantics

The operational semantics of the FIR is defined using rewriting rules in MetaPRL. The actual operational
definition is quite large because there are many combinations of arithmetic operations and values. However,
the forms of definition are straightforward. For example, the operational rule for addition has the following
general form, which we write using simplified pretty-printed notation. To be faithful to the implementation,
we are using modular arithmetic.

20 Brian Aydemir et al.

(letv: t = atomInt{i} + atomInt{j} in e[v]) — €[i + j]

The control operator match has a more interesting definition. The match operator is a pattern match of
a number ¢ against a set of intervals. The number of interval cases is arbitrary, and reduction performs one
case analysis at a time.

(matchiwiths — e | cases)
— (if i € s then e else match i with cases)

The interval s is represented as a list of closed intervals [i11,412], .-, [in1,in2], and the membership
operation is defined inductively.

(i € ([4,k] :: interval)) — (i < jAi < k)V (i € interval)
(1t €]) — false

Once again, the remainder of the operational semantics is straightforward, and we do not present it here.

4.4 Models and usage

The question of models is probably the most interesting topic in this translation. Ideally, we would develop
a model of the FIR in a type theory or other higher-order logic, and then prove the operational semantics
and typing rules. Note that a complete model would need to represent both partial functions and general
recursive types. We have not developed this model, and we presume that it is likely that we will need to
restrict validation to a fragment of the calculus that has a well-defined formal model. In the meantime, we
treat the operational semantics axiomatically.

As Figure 1 illustrates, there are currently two major ways that we use the MetaPRL/Mojave system. The
(i) path uses the Mojave front-ends to generate FIR code, which is then passed to MetaPRL for optimization.
The (ii) path produces FIR from a Phobos description, optimizes it, and passes it to the compiler for code
generation.

5 Examples

We illustrate the system with two optimizations. The MetaPRL/Mojave systems, including examples, can
be downloaded from http://www.metaprl.org and http://mojave.cs.caltech.edu.

5.1 Dead-code elimination

Some standard code transformations are incredibly easy to define using term rewriting. Dead-code elimination
is one of the simplest. The idea of dead-code elimination is to remove any code that does not affect the result
of a computation. The problem is not computable in general, although we can develop proof procedures to
catch a fairly broad set. The usual approximation is to use a syntactic characterization: the sub-expression e;
inletv: t = e; in ey is dead if v is not free in es. Second-order term rewriting makes this easy to characterize.
The following rewrites can be derived as theorems in MetaPRL:

(letv: t = unopaine) — e
(letv: t = ay binop az ine) — e
(letv =allocine) - e

(letv: t =ajfaz] ine) » e

Dead-code elimination is then performed by normalizing the program with respect to these rewrites.
Note that the expression e in the redex does not mention the variable v, which means that v is not allowed
to appear free in e (the second-order pattern e[v] would have allowed v to appear in e, and would not
be provable [13]). Also, note that the first-order definition using substitution would not be as useful for
dead-code elimination because the rule does not specify explicitly that the variable v is dead.

Formal Design Environments 21

(letv: t = unopa in e) — e[a/v]

There are two main differences between this formal dead code elimination (using path (i7) in Figure 1),
and the standard dead-code elimination (using path (4)). First, the formal definition is much smaller—the
Mojave dead-code elimination phase is some 700 lines of OCaml code. Second, the OCaml implementation
is also much more general, because it makes use of global program properties. For example, the OCaml
implementation performs dead-argument elimination, where a function parameter can be eliminated if it is
never used. This requires modification of all calls to the function through the program, a global operation
that is difficult to perform using term rewriting.

5.2 Partial evaluation

The next example illustrates a simple, but non-trivial, application of partial evaluation. Consider the following
FIR code (we omit the types for clarity). The power function computes the value res x x¥, and passes it to
the continuation cont. The powers function computes the specific case where res = 1 and y = 5.

let power (res, x, y, cont) =
if y = 0 then
cont(res)
else
let res’ = res * x in
let y’=y-1in
power(res’, x, y’, cont)

let power5 (x, cont) =
power(1, x, 5, cont)

inline power(res, x, number][i], cont)

For this example, we would like to “unroll” the definition of power5 to a sequence of 4 multiplications
z %z * ¢ * x *x x. The programming language, defined in Phobos, includes the inline extension where the
programmer can indicate patterns that should be expanded using the inline keyword. For the example above,
the inline instruction specifies that a call to the power function should be expanded when its third argument
is a number.

Based on this information, the MetaPRL system constructs a rewrite to force the unfolding.

let power (res, x, numberli], cont) —
if number[i] = 0 then
cont(res)
else
let res’ = res * x in
let y’ = numberli] - 1 in
power(res’, x, y’, cont)

Next, powerd is normalized relative to the rewrite, and all calls to the power function with a constant
exponent are inlined. The final definition of the power function is as follows.

let power5(x, cont) =

let x1 =x *xin

let x2 =x1 *xin

let x3 =x2 *xin

let x4 = x3 *xin
cont(x4)

22 Brian Aydemir et al.

The optimized code produced by MetaPRL is still suboptimal; if we assume that multiplication is associa-
tive, the number of multiplications can be reduced to three. We have not implemented partial evaluation as
a compiler phase in path (7). Partial evaluation is most naturally expressed using the operational semantics
of the program; any implementation would needlessly reimplement program evaluation.

6 Conclusion and Future Work

The work presented in this paper demonstrates the principle of formal integrated design environments, but
the integration is far from complete. Among the next steps are: 1) a complete formalization of the operational
semantics and type system for the FIR, 2) a more general framework for performing partial evaluation. The
Mojave compiler architecture has many (around 30) stages of program transformation and optimization. It
seems likely that many of these transformations can be significantly simplified by implementing them in the
theorem prover. Another important direction is “bootstrapping.” Currently, MetaPRL is still layered over
the OCaml compiler because the Mojave implementation of ML does not include a module system. Removal
of this obstacle would enable complete integration of the formal design environment.

References

1. Stuart F. Allen. A Non-type-theoretic Definition of Martin-Lof’s Types. In Proc. of Second Symp. on Logic in
Comp. Sci., pages 215-224. IEEE, June 1987.

2. Stuart F. Allen, Robert L. Constable, Douglas J. Howe, and William Aitken. The semantics of reflected proof.
In Proc. of Fifth Symp. on Logic in Comp. Sci., pages 95-197. IEEE, June 1990.

3. Robert S. Boyer and J Strother Moore. A Computational Logic Handbook. Academic Press, 1998. Second Edition.

4. Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, and Mandayam Srivas. A Tutorial Introduc-
tion to PVS. In WIFT ’95: Workshop on Industrial-Strength Formal Specification Techniques, April 1995.
http://www.csl.sri.com/sri-csl-fm.html.

5. M.J.C. Gordon and T.F. Melham. Introduction to HOL. Cambridge University Press, 1993.

6. Jason Hickey. Fault-tolerant distributed theorem proving. In Harald Ganzinger, editor, Automated deduction
— CADE-16, 16th International Conference on Automated Deduction, LNAI 1632, pages 227-231, Trento, Italy,
July 7-10, 1999. Springer-Verlag.

7. Jason J. Hickey. The MetaPRL Logical Programming Environment. PhD thesis, Computer Science Dept., Cornell
University, Ithaca, NY, 2001.

8. Jason J. Hickey, Brian Aydemir, Yegor Bryukhov, Alexei Kopylov, Aleksey Nogin, and Xin Yu. A listing of
MetaPRL theories. http://metaprl.org/theories.pdf, 2002.

9. S. Kahrs, D. Sannella, and A. Tarlecki. The definition of Extended ML. Technical Report ECS-LFCS-94-300,
Laboratory for Foundations of Computer Science, University of Edinburgh, 1994.

10. S. Kahrs, D. Sannella, and A. Tarlecki. The definition of Extended ML: a gentle introduction. Theoretical
Computer Science, 173:445-484, 1997.

11. Christoph Kreitz, Mark Hayden, and Jason Hickey. A proof environment for the development of group communi-
cation systems. In C. Kirchner and H. Kirchner, editors, 15" International Conference on Automated Deduction,
volume 1421 of Lecture Notes in Artificial Intelligence, pages 317-332. Springer Verlag, 1998.

12. Xiaoming Liu, Christoph Kreitz, Robbert van Renesse, Jason Hickey, Mark Hayden, Kenneth Birman, and
Robert Constable. Building reliable, high-performance communication systems from components. In 17" ACM
Symposium on Operating Systems Principles (SOSP’99), volume 34 of Operating Systems Review, pages 80-92,
1999.

13. Aleksey Nogin and Jason Hickey. Sequent schema for derived rules. In Theorem Proving in Higher-Order Logics
(TPHOLs ’02), 2002.

14. Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer LNCS 828, 1994.

15. Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings of the ACM SIGPLAN ’88
Symposium on Language Design and Implementation, pages 199-208, Atlanta, Georgia, June 1988.

16. Didier Rémy and Jérome Vouillon. Objective ML: A simple object—oriented extension of ML. In ACM Symposium
on Principles of Programming Languages, pages 40-53, 1997.

Reflecting Higher-Order Abstract Syntax in Nuprl

Eli Barzilay and Stuart Allen

Cornell University
{eli,sfa}@cs.cornell.edu

Abstract. This document describes part of an effort to achieve in Nuprl a practical reflection of
its expression syntax. This reflection is done at the granularity of the operators; in particular, each
operator of the syntax is denoted by another operator of the same syntax. Further, the syntax has
binding operators, and we organize reflection not around the concrete binding syntax, but instead,
around the abstract higher-order syntax. We formulate and prove the correctness of a core rule for
inferring well-formedness of instances of operator-denoting operators.

1 Introduction

This work is part of an overall effort to get a practical reflection of syntax, computation and proof in
Nuprl [4,1, 3]. Reflecting syntax in a logical system entails writing proof rules that express that reflection,
i.e, establishing an inferential connection between the actual syntax used and the meta-terms supposedly
referring to it.

Operator-denoting operators are called shifted operators: if an operator x denotes operator y, then x is
called a shifted y, and will be typeset as y. For example, a_+ b denotes ¢ + d if a denotes ¢ and b denotes d.
The plus operator denotes a function that takes two integers and returns an integer, and its shifted version
denotes a function that takes two terms and returns a term. The problem is what do we do with an operator
that has a bound subterm: for example, V. P(x) is an operator that denotes a function taking a boolean or
propositional function and returning a boolean or a proposition (its syntactic form is, of course, binding).

The obvious choice for the semantics of the shifted version would be a function, ¥(z, P) that takes two
expressions as input values: one for the bound name, and one for the body, and constructs the concrete V
term. We will not pursue this direction. Instead, we shall adopt a higher-order abstract syntax [7]. Going in
this direction, we get the usual benefits of this approach over concrete syntax (or alternatives like de-Bruijn
indexes), such as specified in [8]. But we get a further bonus: it allows us to retain the same binding structure
as the operator being denoted. In particular, the single input argument for ¥ has the same binding as V: it
takes in a term-valued function as an argument.

Implementing reflection in a programming language is usually done in a straightforward way: simply
expose the implementation’s evaluation function so it is available to programs written in the language.
However, in a logical setting this is usually not the chosen approach, and the result is usually limited in
its usability to theoretical or toy examples. The best example is Godel numbers [5] which are good as a
theoretical tool but not fit for an actual running system. Our goal is an eventual implementation that follows
the same principle of exposing internal functionality: this is the outcome of operators being denoted by
operators. The result is expected to be a system that has practical reflection implemented as is the situation
in programming languages.

This construction is intended for the Nuprl system, but we avoid relying on a specific substitution function,
which makes this approach applicable in the general case. Relevant information about Nuprl terms is limited
to their content: a Nuprl term contains an operator id, and a list of bound subterms, each containing a list of
bound variables and a term. Throughout this text we use a more conventional notation, with the extension
of using underlines for shifted operators.

Returning to the question above: we begin by asking what is the semantics of ¥? The semantics of a
concrete shifted V is the trivial one given above, but the semantics for Y is more subtle.

2 Semantics of Shifted Operators

Since Y is a binding operator, it takes a function as an argument. Our basic requirement is that F(¢) be the
result of the ‘All-Instantiation’ rule applied to Yz. F'(z) and ¢. This means that F' needs to be a substitution

24 Eli Barzilay and Stuart Allen

function. So the semantics we adopt for Y. F(z) is that it denotes the V formula whose predicate part is
F(u) and whose binder is u for some u — almost.

But which u? As usual we can avoid this question by using a higher-order abstract syntax, and say that
what is denoted is actually the a-equivalence class of all such formulas where some appropriate « could be
found. From this point forth, we use ‘Term’ to refer to these a-equivalence classes rather than the concrete
terms.

Before going to the technical parts, lets consider how we might reason about this in the reflective logic.
The first intuition is that proving that something is a Term depends only on having a quoted operator opid
and on its subparts in a simple compositional way:

F opid(01.b1;U3.b2; . . . U,.by) € Term
if o7 :Termt by € Term
T3 : Term F by € Term

v, : Term b, € Term
This seems fine, but it fails with bound variables. For example, the following can be proved:

F A(z.if z =0 then 1 else 2) € Term
because x : Term b if £ = 0 then 1 else 2 € Term

The premise line is trivial, but the original statement is false, because the quoted A-term contains a function
which is not a substitution function — it is not a “template” function. In other words, there is no literally
quoted term that this value stands for.

When inspecting this term, we can compare it to similar but valid terms to see what went wrong with
this rule:

1. M. if o =0 then 1 else 2)
2. Maz.if £ =0 then 1 else 1)
3. Ax.if x =0 then 1 else 2

The two A-terms are fine, because they’re built from substitution functions, and the last one is a simple
Term — Term function. The difference between these terms and the previous one indicates what is wrong
with the above rule: the bound variable should not be used as a value. It is a binding that should only be
used in template holes, as there is no real value that this variable is ever bound to that can be used. In the
valid examples, the first one did not use the bound value except for sticking it in its place. The second one
almost used the value, but since the two branches are identical it is possible to avoid evaluating the test
term; therefore it can be evaluated without using it, and the last one is not a Term but a function on Terms,
so it can use that value as usual.

The conclusion is that a bound variable can be used only as an argument of a quoted term constructor.
In other words, it can serve only as a value that is “computationally inert”, much like universe expressions
in [2]. This is also similar to variables that are bound by Scheme’s syntax rules [6] — they are template
variables that can be used in syntactic structures to build new structures'. When put in this light, it seems
that any attempt to get this property in a proof fails. The lesson from this is: variables bound by quoted
operators do not behave like normal bindings in the sense that they do not provide any values usable on the
normal Nuprl level — and this is also true regarding universe expressions.

3 Term Definition

We take CTerms as concrete terms: the type of objects intended to be ordinary syntax objects with binding
operators. A more precise definition is given later, in Section 5. To define the Term type, we also need to

! For example, in the template ((foo x) (bar x)), the identifier ‘x’ is just a place holder that can be used to stick
a value in a template; it is not possible to inspect its value.

Reflecting Higher-Order Abstract Syntax in Nuprl 25

introduce a predicate, is_subst, which is used to distinguish proper substitution functions. This predicate
is defined in Section 6, and it has specific rules which are introduced in Section 6.1.
As said above, Terms are defined over these CTerms:

Term = CTerm//«

Terms are constructed by shifted operators, which have the semantics of functions that create Terms from
Term substitution functions. For example:

A:{f: Term — Term | is_subst,(f)} — Term

using a version of is_subst that works with one argument functions. Generally, is_subst,, is a predicate
over Term—Term. To simplify things, we drop the n when the context is clear.

CVar is a subsets of CTerm, which contains only atomic variable terms. Correspondingly, Var = {{z} |
x € CVar}, therefore Var C Term, since variables are a-equivalent only to themselves. Two assumptions that
will be used in the following are that we have an infinite supply of distinct variables in CVar (and therefore
in Var) and that there is at least one closed CTerm we can use.

4 Operations, Assumptions, and Facts

These are the operations that will be needed in the following text:

- taking the a-equivalence class of an object.

|| choosing an element of an a-equivalence class. This is some function, such as one that chooses the
first available variable names using lexicographic order.

[-/] standard capture-avoiding substitution on CTerms. It can be used to substitute for multiple variables

at one shot, provided that the number of supplied terms matches the number of variables, which are
all distinct.
[-/-] substitution for Terms, which is defined using the above operations as: b[z/v] = b|[Z|/7]]].
newcvar(-) returns a new CVar, i.e., newcvar(t) is neither free nor bound in ¢ € CTerm.
newvar(-) is similar to newcvar(:) but for Terms, defined as: newvar(z) = newcvar(z|)[.
newcvar,(-) returns n new CVars, defined as:
newcvary (z) = newcvar(z),
newcvar,+1(z) = (let v = newcvar, (x) in v, newcvar(v, x)).
newvar, (-) returns n new Vars, defined in the same way as newcvar,, ().

We use versions of these operations that are generalized to any lists and tuples of input arguments in
an obvious way. The newcvar(-) and newvar(-) operations are further extended to functions by plugging in
some closed dummy term argument (that we name ‘0’) and using the result:

Vf : Term"—Term. newvar,,(f) = newvar,,(f(0"))

Below we will often justify things of the form a[= b[, by mentioning lemmas of the form a =, b, without
emphasizing this transition.

Note: an overline indicates the value is a tuple and a way to index its elements. For example, T : Var”
means that T is a list of n Vars, and that z; is the ith element of this list; that is, x is a function from
i:1...len(T) to the ith element of Z.

4.1 Important Assumptions and Facts

In this section we state several assumptions and derived facts about substitution — the assumptions are
not argued for, but we think that it is clear they are all true for any reasonable definition of substitution
(one that respects the usual term binding structure). This allows us to take substitution as given and avoid
getting into a specific implementation. These will be used in the following text.

26 Eli Barzilay and Stuart Allen

*x1 Vo : Term. z = x|]
*2 Vo : CTerm. z =, z[|

This fact is mostly used when nested in a bigger term, see x4 below.
*3 Vx : CVar. z = x|

because z € CVar = z[|={z}|=
*4 VT1, T3 : CTerm™, 0 : CVar”, b: CTerm. Ty =, Tz = b[Z1/0] =4 b[T2/7]

Note that using this fact, ¥2 can be used in a subterm of an a-equality, since: V¢, z : CTerm. t =, t[z[|/z]
*5 Vbl,bz CTerm t: CTerm , U: CVar™. b1 =a by = blﬁ/ﬁ] M bz[i/ﬁ]

note that v is the same on both sides (free variables in the body are not changed).
*6 Vi : CTerm, 77 : CTerm™ | T3 : CTerm™, vy, u : CVar™, o3 : CVar™2.

the sequence v1, 03 are distinct & w are distinct, not free in ¢, T3
— 4[77, 73/77, 73] =a [, 72/07, 7[5/
This is simple to verify:

(any of w do not appear in Tz) —¢ t[:l?l, 2132/1)1, ’Uz]

Note that it is easy to show that such a @ exists by choosing it as:

let @ = newcvar,, (¢,Z3,...)

*7 Vt: Term, Ty : Term™, T3 : Term™, oy, w : Var™, o3 : Var™2.

the sequence E,@ are distinct & 7w are distinct, not free in ¢, 73
Again, verifying this is 51mp1e from x6 we know that

tl[al, 7=1/orl, w @) /al)l =tz 73l /o, vl
so:

tla, 2 /vy, vo] [Ty /U] = tl[ul, Z2l /o1l 2|l L[z) /ul)]
(2, x5) = t|[ul, Tz| /1], 02 |][Z1]/Wl]]
(by the use of x6 above) = tl,[l‘l T2 /’U1 V2 I,]r
= t[@1, 72 /v1,702]

A similar note holds here: it is easy to show that such a @ exists if it is chosen as:
let @ = newcvary, (t|,%zl,...})[= newvar,, (¢, T3, . . .)
*8 Ve : CTerm, w,w : CVar®, 5,t: CTerm”.
u are not free in ¢ except for v = ¢[5/v|[t/u] =, c[3[t/u]/7]
Note that the U exception is usually not needed.
*9 Ve : Term, U,u : Var™, 5, : Term”.
u are not free in ¢ except for v = ¢[s/v][t/u] = c[3[t/u] /7]
This is easily shown by *2 and the definition of -[-/-], using the previous fact.

A general intuition that arises from these facts and others, is that Term values are indeed isomorphic to
CTerms: as long as there are no “dirty” concrete tricks played by using names of bound variables, facts that
hold for CTerms will have corresponding versions for Terms.

5 Definitions of Shifted Operators

In the general case, a shifted operator id, opid, is defined as a function that takes in some substitution
functions (determined by is_subst) of some arities, and returns a Term value. This is done in the obvious
way: each of the substitution functions is used to plug in new variables; then the results, with the chosen
variables, are all packaged into a CTerm; and finally, the a-equivalence class of this result produces the
resulting Term. The actual representation is not too important — we could go with pairs and lists. For
example:

A(f) = (N, [([newvar ()11, f(newvar (f)) DT

Reflecting Higher-Order Abstract Syntax in Nuprl 27

but this gets too complex in the general case (and it makes analysis hard, since we should know if a pair
stands for a bound term, a term, or a pair of terms).

Instead, we use some types and abstract operations, which avoids committing us to some representation.
The additional types we need are:

— Opld will be used for term name labels;
— BndCTerm, is a bound CTerm (where a : N) — packaging a CTerm with a distinct CVars.

BndCTerms are created with a mkBndCTerm constructor?:
mkBndCTerm € a:N— (1...a — CVar) - CTerm — BndCTerm,
An alternate syntax for mkBndCTerm can be more natural when a is known:
mkBndCTerm(T,t) stands for mkBndCTerm(len(Z), (\i. z;),t)
CTerms are created with mkCTerm:

mkCTerm € Opld - n:N
—a:(1...n—>N)
— (i:1...n — BndCTerm,,)
— CTerm

An alternate syntax for this which can be more natural when n,a are known is:
mkCTerm(o, [mkBndCTerm(Z7,%1),...,mkBndCTerm(Z,,, t,)])
which can be used instead of
mkCTerm(o, n, (\i.len(Z;)), (\i. mkBndCTerm(Z;,t;)))

The next thing we need is a type which is the subset of Term™—Term functions that are substitution
functions (using the is_subst predicate):

SubstFunc, = {f : Term"—Term | is_subst,(f)}

Now we have reached the point where we can finally define a mkTerm constructor for Terms which uses
mkCTerm:

mkTerm € Opld - n:N
—a:(l...n—=>N)
— (i :1...n — SubstFuncg,)
— Term

This function is defined as:
mkTerm(o,n,a, f) =
mkCTerm(o, n, a, Ai. let T = newvar,, (f;) in mkBndCTerm(Z|, f;(Z)|))[
and the alternate syntax for this is:

mkTerm(o, [(a1, f1),- -, (@n, fn)])

which stands for
mkTerm(o, n, Ai. a;, Ai. f;) = mkTerm(o,n,a, f)

2 We use the notation x : A — B, to denote functions on A such that Vz : A. f(z) € B., a type which is more
conventionally denoted by ITz : A. B,.

28 Eli Barzilay and Stuart Allen

A shifted operator is a Term constructor which uses mkTerm with some fixed operator name and arity
list. For example, ‘A’ and ‘X’ are defined as:

A(f) = mkTerm(‘X', [(1, f)]), Z(f,g) = mkTerm(*2", [(0,), (1, 9)])

Note that since mkTermis curried, a shifted operator is made by specifying the first three inputs: mkTerm(o, n, a).
In addition to the assumptions and facts introduced in Section 4.1, we further assume the following:

*10 We specify one way that substitution interacts with CTerms — for all ¢, &, if it is true that
if vy is free in ¢; then none of Z; are free in either rp or v
then?,

mkCTerm(o, n, a, Ai. mkBndCTerm(z;, t;))[F/V] =, mkCTerm(o,n, a, A\i. mkBndCTerm(T;, t;[F/7]))

To see why it is true using any reasonable definition of substitution, it is simpler to first see that a
precondition that could be used is that none of T; occur free in 7, v; this is too restrictive for our future
needs but the explanation is somewhat similar.

First of all, if vy is not free in ¢;, then there is no need for any restriction, since it does not have any
effect on the result. Now, if it does appear in ¢;, then it is enough to have two guarantees for the above
to remain an a-equality: (a) if none of Z; are free in r; then capture by T; is impossible; (b) if vy, is not
in T;, then none of the vy will not get “screened out” in the body.

e A fact similar to this assumption also holds for Terms — if none of Z; occur free in 7,7, f;(0%) then:

mkTerm(o, n, a, Ai. f;)[F/v] = mkTerm(o,n,a, \i. AZ. f;(Z)[F/7])

However, it turns out that this fact is not needed, so no proof is given.
*11 A simple fact about renaming bound variables:
VZ;,%; : CVar". T; are distinct & Zz; are distinct & z; are not free in b;
= mkCTerm(o,n,a, \i. mkBndCTerm(Z;, b;))
=, mkCTerm(o, n, a, \i. mkBndCTerm(Z;, b;[Z; /T;]))

6 Defining is_subst

A function is a substitution function iff there exists an appropriate substitution that it is equivalent to. First,
we describe this using CTerms, since we know how substitutions work on them:

is_subst, (f) = 3b: CTerm. 3v : CVar™. Vt : CTerm"™. f(t[) = b[t/7]| (1)

Note that f returns a Term which is an a-equivalence class, so we have an equality rather than an a-equality.
This should be equivalent to directly using a Term argument for f:

is_subst,(f) = 3b: CTerm. Iv : CVar". V7 : Term™. f(7) = b[F|/v]] (2)
We should show that Vb : CTerm, Vo : CTerm”, the two sub-expressions are equivalent.

(1) = (2) Instantiate with the chosen 7|:

GESGhEL Gl

(2) = (1) Instantiate 7 with #[and we get:

£ 2 b /o)L b/l

We can now try to use a version that has all Term types and no CTerm types, using the a-terms substi-
tution, -[-/-]:

is_subst,(f) = 3b, : Term. Jv, : Var". Vi, : Term". f(t,) = ba[ta/Ta] (3)

Now, verify that this is indeed equivalent to the other two definitions:

3 Note that the a-equality is needed only because the substitution definition might introduce arbitrary renamings.

Reflecting Higher-Order Abstract Syntax in Nuprl 29
(2) = (3) Let b, = b, v, = v[, pick some %,, and instantiate 7 with it:

F(E2) 2 bfFal /]1Z b1 [Fal /511)1= bl[Fa/T1] = balfa/a]

(x) is true because of x2 (with b), x3 (with ¥), and x5 (with z1, z2,%,7).

(3) = (2) Let b =b,|, v = T,|, pick some 7, and instantiate £, with it:
1) 2 balr/7] = ballFL/Tl)1= blFL /3]

6.1 The is_subst Rules

Now that we have a reasonable definition of is_subst, we define key rules which use is_subst to prove that
something is a proper Term. These rules turn out to be quite simple — there are only two cases:

o HF is_subst(zy,xa,...,Ty. T;)

e HF is_subst(zZ. opid(¥1. b1;...;Un- bn)) where opid is some quoted opid
H F is_subst(T,y1. b1)
H F is_subst(T,7s. b2)

H F is_subst(T, 7y, by)

Note that this is enough for proving the validity of any Term value; for example, quoted constants succeeds
immediately since their opid is quoted and they have no subterms. Proving ¢t € Term is achieved by showing
is_subst(. t). (Of course, this is not a complete set of rules, since there are more cases where we have general
Term expressions that are not constants.)

6.2 Justifying the is_subst Rules
The validity of the first rule amounts to this:
Vn,i:NT.i <n = is_subst,(n)

which is easily verified. Choose distinct ¥ = wvy,...,v, variables, and let b = 7 (v) = v;. Then, Vf :

Term™. 7 () = v;[t/v] is true by the definition of 7, of -[-/-], and the distinctness of v.

Our main result will be formulating and proving the validity of the second rule, but this formulation requires
some preparation. First, recall that the type of mkTerm is:

Opld—=n:N—=a:(1...n—>N) = (i:1...n — SubstFunc,,) — Term

Note that, as said earlier, a shifted operator is the result of applying mkTerm on the first three arguments,
since they define the operator symbol and the list of arities it expects. For example:

A =mkTerm(‘\’,1,(1)) X =mkTerm(‘X’,2,(0,1))
So, a shifted operator has the following type, for some given o, n, and a:
mkTerm(o,n,a) : (i :1...n — SubstFunc,,) — Term
Remember that the current goal is to conclude that for some shifted operator, opid:

is_subst(Z. opid(v1. b1, ..., Uy. by))
if
is_subst(T,v1. b1) & ... & is_subst(Z,Ty. b,)

30 Eli Barzilay and Stuart Allen

We need to compose the opid function with an object that will make the result a Term*—Term function

(consuming the 1, ...

, Ty, variables) which we then show is a substitution function. This means the function

that is composed with opid should get a tuple of Term” as input and return the vector of n substitution
functions, built by consuming Z. In short, we package all the necessary information in F:

F:Term* = (i

so we get the expected:

:1...n — SubstFunc,,)

mkTerm(o,n,a) o F : Term*—Term

Now for the main result — the validity of the second rule may be formulated thus:

Vo:0pld, n:N, a:(1
F:Term* — (i:1.

Vi:1l...n.is_ substk+a (A

= 1s_subs1:1c (mkTerm(o, n,

where (A, z,y. B(z,y))(u1, ...

..n = N),
.n — SubstFunc,,;).
ts, zs. F'(ts)(i)(ws

kN,

a)oF)

:uk-i-n) = B((ula"'

)

,Uk),(Uk+1,---,

Uk+n))-4

Proof. Assume o, n, a, k, and F' are given as specified. We also assume that the constructed functions are

substitution functions; therefore, for every 1 <i < n we get ¢; :

1) (@) (r

1 1,2 2, 1
Vry, .. T, Ty, s Term. F(rp, ...

e Let 7 : Term” be some k Terms,
e let T; = newvar,, (F'(¥)(4)),

e and let 5 = newvarg (¢, z1,...,T,).

Term, u; :

Vark,

?; : Var® such that:

..,rii) = cl[[_1 r2 [u;, v7]

Now we can proceed: our goal due to the definition of is_subst, is to derive an equality of the form

(mkTerm(o,n,a) o F

— B[Y/X]

where, and this will be the tricky part, B and X are independent of the input, f. So:

(mkTerm(o,n,a) o F)(t) =

= mkTerm(o,n,a, F (%))

(mkTerm def.) = mkCTerm(o, 1, a, \i.

(F’s fact) = mkCTerm(o, n, a, \i.

(x7) = mkCTerm(o, n, a, Ai.

(-[-/-] def.

(
(
(

(x2) = mkCTerm(o, n, a, Ai
(
(x2 (
(

(-[-/-] def.

= mkCTerm(o, n, a, \i.
. mkBndCTerml

) =
)

(%10, see below) = mMKCTerm(o, n, a, \i.
) = mkCTerm(o, n, a, Ai.
) =

= mkCTerm(o, n, a, \i.

mkBndCTerm
mkBndCTerm
mkBndCTerm
mkBndCTerm

mkBndCTerm

L F() (@) @)D

1 callt, T /s, vl)1
i1, cils, zi/ui, il [E/35]1))
|, cills, T Jug, vi] L[t
|, cills, T fag,] L[E]
1, ills, T /aq, vl
|
v;]l

;Ci[[s mz/uuvz]]

)
)
)

i
)
[tl/5l]
[[E/5
[T/

/3
/3

DI
DI
I
I
/s
]

Wl

In the above, making sure x10 applies needs some care. Assume that for some j,[, the variable s;]| is free in
the Ith body, which is ¢35, %/, T1]|. We need to make sure in this case that Z7| is not free in either ¢;| or
s;j]. The latter is trivial by the choice of 5 (and holds for all indexes), but the former is not obvious. What

we do know about 7| is its definition:

Tl=

newvar,, (F(t)(1))|=

newvar,, (c[t, 0% /uz, v7])|

4 Note that this special form of X could be avoided if the fourth input type to mkTerm would take the terms first and
then the index (instead of the SubstFunc,,), but that would require a special composition operation instead.

Reflecting Higher-Order Abstract Syntax in Nuprl 31

but since s;| is free in ¢[s, T7/a;, 7;]|, then w; ;| must appear in ¢;|; therefore, the choice of Z;| above must

pick variables that do not appear in t;| so we're safe.

Going back to the main proof, the last term of the equality chain built so far was:
mkCTerm(o, n, a, \i. mkBndCTerm(Z; |, ¢;[5, T; /us, vi] 1)) [t /5]

which has the B[t/ X] structure that we’re looking for, but we’re not finished because both the B and the X
parts depend on t — T; is defined in terms of , 5 is defined in terms of Z;, and both B and X parts contain
instances of 5 (and B actually contains Z; as well).

So we choose f-independent values now: let o = newvar,, (¢;) and let s’ = newvary (¢, a1, . .., z},), we also
need to show that in the above, using x_;,? instead of T;,s is still the same value. In an attempt to simplify
this we now choose n sets of variables z7 € Term®, ...z, € Term®" which are completely fresh: they do
not appear in anything mentioned so far, including .

Now, back to our equality chain which left off at:

= mkCTerm(o,n, a, A\i. mkBndCTerm(%;|, ¢;[5, T; /u;, U]) [[£/5]

By %11:
= mkCTerm(o, n, a, \i. mkBndCTerm(z;|, ¢;[S, z; /s, vi] 1)) [[t/5]

Next, we use substitution to get s’ inside — 5 are distinct, s’ are distinct, and s’ does not occur in %;:
= mkCTerm(o, n, a, \i. mkBndCTerm(Z;|, c;[s'[5/5'], Z[5/s'] /i, vi]))) [Tt /5]
Because s’ does not occur free in ¢;, this would be the expansion of the following substitution by %9:
= mkCTerm(o, n, a, \i. mkBndCTerm(z;|, ¢;[s', Zi /@i, 03] [3/5']1)) ITE/5]
Combining -[-/-] and *x2 we get:
= mkCTerm(o, n, a, \i. mkBndCTerm(Z; |, ¢;[s', Z; /@, T3] L[51 /")) [[£/5]
Z; do not occur in either 3 or s’ so we can use *10:
= mkCTerm(o, n, a, \i. mkBndCTerm(Z; |, c;[s', Z; /uz, 03] 1)) [51 /5"][[£/5]
Again, using -[-/-] and *2:
= mkCTerm(o, n, a, \i. mkBndCTerm(z;|, ¢;[s', Zi /@i, vi)|) 1[5/ s'] [£/5]

Now, 5 does not appear in the mkCTerm except possibly for s’ (because we know it is not in ¢; or %), so using
*9 we get:

= mkCTerm(o, n, a, \i. mkBndCTerm(Z;|, ¢;[s', Z; /s, 73] 1)) [[5[£/5]/5']
= mkCTerm(o, n, a, \i. mkBndCTerm(Z;|, ¢;[s, % /@, 73] 1)) [[£/ ']
Finally, using %11 we get:
= mkCTerm(o, n, a, \i. mkBndCTerm(z}], ¢;[s', z} /7, 53])) |[/5']

Our final term has the desired B[f/X] form, and now the B and the X parts are independent of 7. This is
because:

. :U_; depends only on ¢;;

e s' depends only on «% and ¢, and therefore only on ¢;

e and u; and v;, just like ¢, were derived from the assumption that the inputs are substitution functions.

QED.

32 Eli Barzilay and Stuart Allen

7 Conclusions

The construction of the Term type was done to facilitate exposing internal Nuprl functionality to Nuprl
users, which, it is hoped, will lead to a lightweight reflection implementation. We have shown the plausibility
of basing logical reflection on higher-order abstract syntax, where each syntactic operator is denoted directly
by another operator.

We are continuing the implementation of reflection in the Nuprl system along these lines, and hope to soon
test this conjecture. The core rules reflecting syntax that we showed correct here, are already implemented,
reusing existing internal functionality, without involving concrete syntax. Initial examples have indicated
that it is, in fact, useful.

Acknowledgments

Thanks to Robert Constable for numerous discussions on these and closely related topics.

References

1. S. F. Allen, R. L. Constable, D. J. Howe, and W. Aitken. The semantics of reflected proof. In Proceedings of
the Fifth Annual IEEE Symposium on Logic in Computer Science, Philadelphia, Pennsylvania, pages 95-105, Los
Alamitos, California, June 1990. IEEE Computer Press Society.

2. Stuart F. Allen. A Non-Type-Theoretic Semantics for Type-Theoretic Language. PhD thesis, Cornell University,

1987.

Eli Barzilay. Implementing Reflection in Nuprl. PhD thesis, Cornell University, to appear in 2002.

4. R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper, D. J. Howe, T. B.
Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith. Implementing Mathematics with the
Nuprl Development System. Prentice-Hall, NJ, 1986.

5. Kurt Gédel. On Formally Undecidable Propositions of Principia Mathematica and Related Systems. Dover Publi-
cations, New York, 1992.

6. Richard Kelsey, William D. Clinger, and Jonathan Rees. Revised 5 report on the algorithmic language scheme.
SIGPLAN Notices, 33(9):26-76, 1998.

7. Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings of the ACM SIGPLAN 88
Symposium on Language Design and Implementation, pages 199-208, Atlanta, Georgia, June 1988.

8. Andrew M. Pitts and Murdoch Gabbay. A metalanguage for programming with bound names modulo renaming.
In Mathematics of Program Construction, pages 230-255, 2000.

©@

DOVE: a Graphical Tool for the Analysis and Evaluation of
Critical Systems
(Extended Abstract)

Tony Cant, Jim McCarthy, and Brendan Mahony

Defence Science and Technology Organisation,
Department of Defence,
PO Box 1500, Edinburgh, South Australia 5111,
Australia

DSTO’s DOVE project [2] aims to provide easy-to-use tools for the analysis and evaluation of criti-
cal defence systems. The current DOVE tool provides a graphical front-end to a state-machine reasoning
environment developed in the Isabelle/HOL [4] environment.

— It allows the user to interact with a design in a highly visual way, performing many design, animation and
proof activities through direct manipulation of a graphical presentation of the state-machine topology.

— The XIsabelle component of DOVE provides a graphical environment for managing the construction and
execution of tactical proof-scripts.

— It provides the user with a comprehensive database of the state-machine design, including definitions of
all the transitions, variables, constants, and properties associated with the design.

— It allows the user to generate a high-quality presentation of the design in PDF format via the IATEX
document preparation system [3].

Experience in the use of DOVE has suggested a number of possible approaches to improving the DOVE
tool.

— Many critical systems involve complex interactions between numerous components. DOVE would benefit
greatly from support for the hierarchical decomposition of designs and analysis activities.

— Many critical systems involve analog components, concurrency, stochastic and real-time interactions. An
ability to treat such issues would greatly enhance the scope of the tool.

— High assurance development standards require the generation of numerous documents describing various
formal analyses of a design. Being able to generate a number of different documents from a single formal
design, in various formats and for various audiences would be of great value to DOVE users.

— Providing true assurance in a design involves the effective communication of the results of the analysis
process to a human audience. This is a particular challenge for formal proofs in general and is nearly
impossible where proofs are generated through the application of tactical programs as is the case in
the current version of DOVE. In addition tactical proofs are extremely brittle and difficult to maintain.
Proofs need to be structured in a manner more natural to the human reader and at a level of detail which
ensures the communication of the salient points without overwhelming the user with arcane points of
formal logic. If possible proofs should also benefit from graphical comprehension aids.

— The unstructured input of formal mathematical text can be a painstaking process even for the most
experienced of users. An ability to assist and direct the construction of formulae is critical to the general
adoption of a formal analysis tool. A related point is the need to provide screen support for the many
and varied mathematical symbols and notations demanded by mathematically advanced users.

— As a formal model grows, the problems associated with any large data set become apparent. The user
spends increasing amounts of time and effort searching for the information necessary to make progress.
Tool support for the management of the design database is critical to the efficient performance of formal
analysis techniques.

Concurrently with the development of the DOVE tool, important improvements have been made to the
Isabelle environment itself.

34

Tony Cant et al.

The Isar environment [6] now provides a literate and interactive environment for theory and proof
development and presentation. Isar proof texts represent a significant improvement over tactical scripts,
both in terms comprehensibility and in terms of maintainability. However, as Isar proofs now contain
the statement of many intermediate facts, the need for tool support in the management of design and
proof elements is once again made apparent.

The introduction of the Isatool tool [7] has provided Isabelle with a mechanism to structuring formal
developments as sessions and also for assisting in the preparation of a (single) high-quality document
presentation of a session. However, the need to generate many views and presentations of a single session
has not been addressed.

Integration with the Emacs-based Proof-General [1] tool now offers tool-supported management of inter-
active theory-script execution. Unfortunately, the Proof-General environment ignores the hooks for tool
support provided by Isabelle mechanisms such as the session concept, document generation, or impor-
tantly the assume/show presentations of proof goals which could easily be auto-inserted into the theory
script.

Support for the screen and document presentation of a range of mathematical symbols has been pro-
vided through integration with the X-Symbols[5] package. Unfortunately, this does little to address a
fundamental problem with Isabelle, namely the strong coupling of formal syntax and mathematical pre-
sentation. An illustrative example of this problem is the inability to make use of the letter ‘0’ as a logical
variable. The character has been co-opted to serve as a formal syntax for function composition. Such
syntactic conflicts become more and more common as the size and complexity of the theory database
increases.

With all of these factors and opportunities in mind, the DOVE project team has developed a fundamental

re-design of the DOVE tool. We have identified the following priorities for the next generation of the DOVE
tool.

The basic function of the tool is to be the preparation of design assurance documents for the evaluation
and certification of critical systems. It should allow the user to construct any number of documents in
essentially arbitrary formats from a single project database.

The tool should allow the user to group and maintain all formal elements, indexes and documents related
to a given project within a single project artifact.

The tool should include a structured, syntax-directed editing mode for formal mathematical input. This
mode should allow the user to construct mathematical terms by making selections from a palette of
available operators.

The tool should offer a decoupling of formal presentation and formal syntactic layers. This allows indi-
vidual users the maximum of presentation freedom without modification of the formal syntactic layer,
an especially inconvenient process for library and predefined theories. The user should be able to craft
presentations using arbitrary user supplied character fonts.

The tool should provide powerful indexes and structured views of the modeling database. This is critical
for the efficient use of the structured editor and should act as an enabling technology for powerful
tool-support for a number of other user activities.

The architecture of the tool should enable the future extension of the tool with specialised modeling or
reasoning environments.

The tool should include a reasoning environment for the analysis of hierarchies of processes, allowing the
treatment of concurrency, real-time properties, and analog system components.

The specification of temporal properties should enjoy a graphical presentation and importantly the proof
of temporal properties for state machines should be performed as much as possible through interactions
with the graphical presentations of the temporal properties and/or the state machine itself.

The next generation DOVE tool is currently in an advanced stage of design and initial prototype coding

has begun on the following features.

An XML document style has been developed to encompass all elements of a design project, including
formal mathematics, indexing, and multiple document views.

The graphical user interface and modeling database is being developed in Java. The use of an object-
oriented programming language is expected to greatly simplify future extensions to the tool.

DOVE: a Graphical Tool for Critical Systems 35

— The basis of the tool is the design editor, which allows the user to interact with the formal design using a
familiar document construction metaphor. The design editor is based on the the Swing Document class,
allowing it to be prototyped rapidly with an acceptable level of on-screen document presentation.

— The design editor will also control user-interaction with the underlying Isabelle/Isar environment. The
editor automatically generates legal Isabelle theory files from the design document and controls the
interactive processing of these files. Control of theory processing will be maintained through a ‘processed-
up-to’ marker which is additional to the usual text entry cursor. The user controls theory processing by
moving this logic cursor around the document. The design editor mediates with Isabelle/Isar, providing
feedback to the user on the results of processing, particularly of errors encountered.

— Printed document presentation will be provided through the use of the IXTEX document preparation
system. Access to more sophisticated document construction features, such as precision mathematical
typesetting and bibliographies, will be provided by allowing the verbatim insertion of IXTEX code into
the generated IATEX output.

— A structured mathematical editor is being prototyped with sophisticated support for the use of mathe-
matical fonts in the Truetype format. Mathematical input proceeds through the selection of constants,
type constructors, syntactic operators, et cetera from palettes that list the defined elements from the
appropriate class.

— A symbolic presentation layer has been incorporated into the structured editor, allowing the user to
change the presentation of mathematical operators with a minimum of impact on the generated Isabelle
theories.

— Sophisticated tools for the description of hierarchies of components have been developed in Isabelle,
inspired by the Z schema calculus and mathematical toolkit.

— Isabelle support for the design and analysis of networks of input/output process has been developed.
Dataflow-style diagrams will be used to visualisation these network designs and to provide a graphical
user-interface for their construction and manipulate.

— Enhanced Isabelle support for real-analysis is being developed in collaboration with the Software Verifi-
cation Research Centre (SVRC) at the University of Queensland.

— Initial investigations into support for probabilistic programming techniques are being carried out in
collaboration with Macquarie University.

References

1. D Aspinall. Proof General. http://www.proofgeneral.org/.

2. A Cant, J McCarthy, and B Mahony. DOVE: Design Oriented Verification Environment.
http://www.dsto.defence.gov.au/esrl/itd/dove/index.html.

3. L Lamport. BTEX: A Document Preparation System. Addison Wesley, 2"% edition, 1994.

4. T Nipkow, L Paulson, and M Wenzel. Isabelle’s Logics: HOL.
http://www.cl.cam.ac.uk/Research/HVG /Isabelle/dist /Isabelle2002/doc/logics-HOL.pdf.

5. C Wedler. X-Symbols for WYSIWYG in Emacs. http://x-symbol.sourceforge.net/.

6. M Wenzel. The Isabelle/Isar Reference Manual.
http://www.cl.cam.ac.uk/Research/HVG /Isabelle/dist /Isabelle2002/doc/isar-ref.pdf.

7. M Wenzel and S Berghofer. The Isabelle System Manual.
http://www.cl.cam.ac.uk/Research/HVG /Isabelle/dist /Isabelle2002/doc/system.pdf.

Formalising General Correctness

Jeremy E. Dawson!*
Department of Computer Science
Australian National University, Canberra ACT 0200, Australia
jeremy@csl.anu.edu.au
http://csl.anu.edu.au/" jeremy/

Abstract. We consider the abstract command language of Dunne, and his account of general cor-
rectness. We provide an operational interpretation of his abstract commands, and use the automated
theorem proving system Isabelle to prove that this operational interpretation leads to Dunne’s seman-
tics.

Keywords: general correctness, abstract commands.

1 Introduction

General correctness was introduced as an alternative to partial correctness and total correctness by Jacobs
& Gries (1985) [5], see also Nelson (1989) [7]. Jacobs & Gries use a relational model, representing a program
as a relation between initial states and final states: their space of final states includes L, representing
non-termination. In this way they can distinguish when a program guarantees termination, guarantees non-
termination, or neither. Neither partial correctness nor total correctness (alone) can do this.

In [1] and [2], Dunne gives an account of general correctness, in which he gives a set of “abstract com-
mands”, with associated semantics. For each abstract command, Dunne gives its semantics in terms of its
termination condition, its weakest liberal precondition predicate and its frame, which is (loosely) the set of
program variables which might be altered by the command. From these one can derive total-, partial- and
general correctness semantics.

We describe the abstract commands in terms of an operational interpretation similar to that of Jacobs
& Gries. We then use the automated prover Isabelle to show that this interpretation implies the semantics
given by Dunne. We also use Isabelle to prove some of his more difficult results. This paper refers to results
proved in Isabelle — the code is available via the author’s home page (above).

In [3], Gordon provided an operational interpretation of programs (commands), and used the HOL
theorem prover to verify the axioms (rules) of Hoare logic. He explains in detail certain problematic aspects
of such work, which we will allude to briefly.

In [4], Harrison formalized Dijkstra’s program logic in the HOL theorem prover, using a relation between
states and outcomes to model commands.

2 Modelling Commands and Conditions

Commands Typically one models a command (or program) as a function acting on the machine state. A
deterministic command which must terminate can be modelled as a function returning simply a single new
machine state. A deterministic command which may or may not terminate could be modelled as a function
which returns either a new state or nothing, representing the idea that a non-terminating command returns
no result. However if we represent a non-deterministic program as a function which returns a set of new
states, then this leaves us without a way of representing non-termination as one of several possible outcomes.

We also want to represent commands which are infeasible. (These are a useful building-block, even if
you don’t want to write such programs, as Dunne discusses). In fact this, rather than non-termination, is
naturally represented by a command returning no new state.

The solution (Plotkin [8], also used by Harrison [4]) is to consider command outcomes, where an outcome
is either termination in a new state or non-termination.

* Supported by an Australian Research Council Large Grant

Formalising General Correctness 37

Conditions Boolean expressions, or conditions, on the machine state, occur in work such as this in two
contexts. Firstly, many commands (such as if-then—else, or while-do) incorporate conditions on the state. A
state is typically represented as a function from the set of variable names to their values. The condition in
such a command will most naturally be represented as text in the programming language, or as an abstract
syntax tree, but as it will be capable of being evaluated in any machine state, we might well think of it as a
function of type state — bool (and then we could treat the notion of state as an abstract entity).

Secondly, a condition) can appear in an expression wip(C, Q) (where wlp means weakest liberal pre-
condition), or in {P}C{Q} (Hoare logic). It may be most natural to think of these as predicates on states
(or functions of type state — bool). However the rule for wip, and a related rule in Hoare logic, are

wlp(z := B,Q) = Qla := E] {Pla := E]} 2 := E {Q}

By Q[z := E] we mean @ with occurrences of x replaced by E; various other authors write this as Q[z/E],
Q[E/z], QE—e, Q(E/z), {E/x}Q, with, confusingly, both the first two being popular. The notion of sub-
stitution in these rules is meaningless when P and @) are arbitrary predicates on states; they require P
and @ to be expressions written in the command language, or something like it, or as, say, abstract syn-
tax trees, containing literal program variable names. Note that the language for these predicates must not
be able to express a condition like “no two different variables may have the same value” (for, then, what
would Q[z := E] mean?) However, P and () may also contain logical variables, as in the following Hoare
logic example (taken from Gordon[3, §5.0], where X,Y, Z denote program variables and z,y denote logical
variables)
{X=2AY =y}Z =X; X =YYV =Z{X =yAY =z}

It is also worth noting at this point that where boolean expressions are used in abstract commands (such
as the guarded command P — A and the preconditioned command P|A) the boolean P is not treated as a
fragment of code but rather as an arbitrary predicate on the state. Thus, as is clear from Dunne’s treatment
of these commands, the possibility of P looping or producing other than a single answer is not considered.

Gordon [3] discusses these issues. What this means for us now is that our analysis of many commands (not
including assignment) can be performed at the level of abstraction where a boolean expression is modelled
as a predicate on states, and a command is modelled as a function from states to sets of outcomes. The next
section contains the analysis at that level.

Frames Dunne has also defined that each abstract command has a frame. Loosely, this is the set of variables
which “might” be affected. Note, however, that frame(x := z) = {z}. Also, from any command a new
command may be defined which has an enlarged frame but is otherwise the same.

Stating the frame of a command does not contribute to a description of what the command does, so we
can show, for example, that two commands behave the same way, without considering their frames. The
work in this section proceeds on this basis. Note that the results are therefore subject to the proviso that
two abstract commands are in fact not the same if their frames differ. We think that the relevant proofs
about frames would be quite straightforward.

Consideration of literal commands and expressions and of the frames of commands is deferred to the
following section, as is that of the assignment command.

3 Commands as transformations of state

3.1 Monadic Types

As mentioned, we model a command as a function from states to sets of outcomes. Here is the formal
definition of the type outcome.

datatype outcome = NonTerm | Term state

So when we model sequencing of two commands A and B, we first apply A to a given state, obtaining
a set of outcomes, and we must then apply B, a function of type state — outcome set, to the set of

38 Jeremy E. Dawson

outcomes obtained from A. We can think of this as “extending” the function B to a function ext B of type
outcome set — outcome set. When this can be done in a way that satisfies certain conditions, we call the
relationship between the types a “monad”. See Wadler [9] for further information on monads.

In fact, this is an example of a compound monad. The type outcome, relative to the type state, is a monad,
where the extension function, of type (state — outcome) — (outcome — outcome) would be given by

exto f NonTerm = NonTerm
exto f (Term s) = fs

For any type «, the type a set (the type of sets of things of type «) is also a monad, where the extension
function, of type (¢ — « set) — (a set — « set), would be given by

ests f os = Ufo

o€o0s

Apart from the extension function, specification of a monad includes a unit function, which converts a
value of the “base” type, usually in a rather natural way, to a value of the monadic type. For the two monads
mentioned, we have

unito : state — outcome units : @ — « set
unito s = Term s units e = {e}

Note also that the extension function is often called bind and written in infix format (as in [9]), so ext f s =
s bind f.

Two monads cannot in general be composed to form another monad, but the first monad mentioned above
can in general be composed with any other monad to give a compound monad (see [6, §7.3]). The formulae for
the extension function, both generally (in terms of units and exts) and for our specific choice of units and ewts,
are given below. In the specific case, extos has type (state — outcome set) — (outcome set — outcome set).

extos f os = extos f os =
let f' (Terms) = f s let f' (Terms) = f s
f' NonTerm = units NonTerm f' NonTerm = {NonTerm}
in exts f' os in Upeos f' 0

As mentioned above, a monad consists of functions unit and ext (of appropriate types), which must
satisfy certain conditions, as follows:

ext ko unit =k (Left Unit)
ext unit = id (Right Unit)
ext (ext hok) = ext ho ezt k (Assoc)

Let seq A B denote the sequencing of commands A and B (where A, B and seq A B are of type
state — outcome set). As noted, we want to first apply A to the given state, obtaining a set of outcomes; we
must then apply the extension of B (of type outcome set — outcome set) to that set of outcomes. That is,
seq A B = extos B o A. Then we can prove the associativity of seq thus:

seq A(seq B C) = extos (seq B C)o A

extos (extos C o B)o A

extos C o extos Bo A by the monad rule (Assoc)
extos C' o seq A B

seq (seq A B) C

This is proved in Isabelle as seq_assoc. Dunne [1, §7] uses ‘;’ for sequential composition, so he writes seq A B
as A; B.

Formalising General Correctness 39

The wnit function, of type state — outcome set, of the compound monad is given by
unitos s = units (Term s) = {Ternm s}

This represents the command skip, which always terminates in its initial state.

3.2 Refinement

As we will often just give Isabelle code, we mention some less obvious Isabelle notation. The “?” indicates
a variable for which anything (of a suitable type) may be substituted. Some set and function notation
(mathematical and Isabelle equivalents) follows:

adUpee D a ~: UN b:C. D
{a}U(CUD) CENF\G insert a (C Un D) <= E Int F - G
Az E (%x. E)

We define functions corresponding to wlp, trm, and wp of [1, §2].

wlpm ?cm 7bm ?state == ALL nst. Term nst : 7cm 7state --> 7bm nst
trmm 7cm 7state == NonTerm ": 7cm 7state
wpm 7cm 7bm == wlpm 7cm 7bm && trmm 7cm
Here && and | | lift conjunction and disjunction over states, and --->is the “is stronger” relation between

predicates, so

P -——> 7q == ALL s. ?p s --> 7g s
(7p && 7q) ?s == 7p 7s & 7q 7s
(7p Il 7q) ?s == 7p ?s | 7q 7s

These definitions work with commands and conditions as functions of type state — outcome set and
state — bool respectively. We note that a command (as such a function) is uniquely determined by its wip
and termination conditions. This is proved in Isabelle as unique. Later we will introduce corresponding
(differently named) functions which take abstract syntax trees as arguments.

In [1, §5] Dunne discusses several notions of refinement, including general-, total- and partial-correctness
refinement. The second equivalent definition of gencref is derived from Dunne’s (Geref2) ([2, §2.1]).

totcref 7Am 7?Bm == ALL Qm. wpm 7Am Qm ---> wpm 7Bm Qm
partcref 7Am 7?Bm == ALL Qm. wlpm 7Am Qm ---> wlpm ?Bm Qm
gencref 7Am 7Bm == partcref 7Am 7Bm & totcref 7Am 7Bm"
gencref 7Am 7Bm == partcref 7Am 7Bm & (trmm 7Am ---> trmm 7Bm)

From these definitions, we have derived more direct characterizations of these three notions of refinement.
It is worth noting that the characterization for general correctness is simpler than the other two although it
is defined in terms of both of them; this no doubt explains how general correctness semantics often seems
simpler than either partial or total correctness semantics.

totcref 7Am 7Bm = (ALL st. 7Bm st <= 7Am st | NonTerm : 7Am st)
partcref 7Am 7Bm = (ALL st. 7?Bm st <= insert NonTerm (7Am st))
gencref 7Am 7Bm (ALL state. 7Bm state <= 7Am state)

3.3 Meaning of Commands

skip, perhaps, magic, abort [1, §7] skip is the command which is feasible, terminates and does nothing
to the state. It is exactly the function unitos. It follows immediately from the (Left Unit) and (Right Unit)
monad laws that skip is an identity (left and right) for the binary function seq. These are proved in Isabelle
as seq_unitL and seq_unitR. We define

perhaps 7?st == {Term ?st, NonTerm}
magic 7st = {}
abort 7st == {NonTerm}

40 Jeremy E. Dawson

preconditioned command [1, §7] The command P|A is the same as A except that, if P does not hold,
then P|A may fail to terminate.

precon 7bm 7cm 7state == if 7bm 7state then 7cm 7state else insert NonTerm (7cm 7state)
guarded command [1, §7] The command P — A is the same as A if P holds, but is infeasible (the
outcome set is empty) if P does not hold.

guard 7bm 7cm 7state == if 7bm 7state then 7cm 7state else {}

A command has a “natural” guard and precondition. Here fis A means A is feasible, that is, its outcome
set is non-empty. We have proved

fis_guard = ‘"guard (fis 7Am) 7Am = 7Am"
pc_trm = ‘"precon (trmm 7Am) 7Am = 7Am"

choice In [1, §7] Dunne defines a binary operator, AOB, for bounded choice: AOB is a command which
can choose between two commands A and B. This is a special case of choice among an arbitrary set of
commands, defined by

choice C s = U cs choice 7cms 7state == UN cm:7cms. cm 7state
ceC

From these, we prove the definitions, and some other results, of Dunne.

perhaps_alt = "perhaps = precon (J%st. False) unitos"

magic_alt = "magic = guard (%st. False) 7A"

abort_alt = "abort = precon (%st. False) (guard (st. False) 7A)"
pma = "seq perhaps magic = abort"

asp = "choice {abort, unitos} = perhaps"

concert [1, §12] The command A#B represents A and B executing independently, on seperate copies of
the state: whichever of A or B terminates first gives the effect of A# B. Thus the possible outcomes of A# B
are:

— Term s, if it is an outcome of A,
— Term s, if it is an outcome of B,
— NonTermn, if it is an outcome of both A and B.

conc 7Am 7Bm 7state == concrs (7Am 7state) (7Bm 7state)
concrs 7crl 7cr2 == 7crl Un 7cr2 - {NonTerm} Un {NonTerm} Int 7crl Int 7cr2

Interestingly, this means that if B is magic (everywhere infeasible), then A# B is just A with any possibility
of non-termination removed (difficult though it is to see from the first sentence above!). This is proved in
Isabelle as conc_magic.

The wlp and termination conditions for these commands, which are used by Dunne to define these com-
mands, are proved in Isabelle from our definitions, as precon_trm, precon_wlp, guard_trm, guard_wlp,
seq_trm, seq_wlp, choice_trm, choice_wlp, conc_trm and conc_wlp. Dunne’s results Xpre, Xguard, Xas-
sump and Xassert are also proved in Isabelle, under the same names.

3.4 Repetition and Iteration

finite repetition [1, §7] Dunne defines A° = skip and A"*! = A; A". A very convenient result which we
proved, called rep_Suc’, is that A"+l = A™; A,

Formalising General Correctness 41

repetitive closure [1, §12] We also defined repall ¢ s = |J,, rep n ¢ s, ie,
repall 7cm 7state == UN n. rep n 7cm 7state

that is, repall A is the (unbounded) choice of any number of repetitions of A. The termination condition
for repall A is that for every n, A™ terminates (proved as repall_term).

The repetitive closure of A is A*, where the outcomes of A* are those of repall, augmented by NonTerm in
the case where it is feasible to execute A infinitely many times sequentially (we call this an “infinite chain”).
It is considerably easier to define this concept operationally than in terms of wip and trm. The definition of
this circumstance asserts an infinite sequence of states, of which each is reachable from the previous one. We
omit the Isabelle definition.

infch As=3f. fO=sA(Vn.Term (f (n+1)) € A (f n))
Thus we have the definition
repstar 7cm 7state == repall 7cm 7state Un (if infch 7cm 7state then {NonTerm} else {})

It may be noted that in [1, §10], Dunne defined a predicate cic (“cycles and infinite chains”), with the
intended meaning (in effect) that cic A s be true if A, executed in state s, might not terminate. However
the definition made cic A s true in the situation where A could be executed any given n times sequentially,
which is not sufficient to ensure an infinite chain of executions. (It would be sufficient under an assumption
of bounded non-determinacy, see [4, §3]). As is a common experience, we did not discover this discrepancy
until trying to perform Isabelle proofs based on the definition in question.

We have proved some useful results, such as

wlpca : wip(A*) = wip(repallA) (since they differ only in that A* has an additional possibility of non-
termination)
seqrepstar : A*; A = A; A*

In [1, §12] Dunne mentions that repetitive closure could be defined using Egli-Milner approximation [1,

§6].

A Sem AI =A Etot AI A AI Epar A

where C;,: and C,,, denote respectively total- and partial-correctness refinement. Then A* is a least fixpoint
under the ordering <.,,:
A" = pen, X.(A; X)Oskip

We show in Isabelle that our definition of A* implies this result. Here fprep_alt2 is a paraphrase of our
definition of fprep (fprep A X means X = (A; X)Oskip), repstar_isfp says that A* is a fixpoint, and
repstar_is_1fp says that A* is less than or equal to, in the Egli-Milner ordering, any given fixpoint Y.

fprep_alt2 = "fprep 7Am 7Xm = (7Xm = choice {seq 7Am 7Xm, unitos})"
repstar_isfp = "fprep 7Am (repstar 7Am)"
repstar_is_1fp = "fprep 7Am 7Ym ==> egMil (repstar 7Am) 7Ym"

Dunne (personal communication) also defines trm(A*) and wip(A*, Q) as fixpoints:

trm(A") = vY.wp(A,Y)
wilp(A*, Q) = pY.wilp(A,Y) A Q

where p and v denote the least and greatest fixpoints, that is the weakest and strongest (respectively)
fixpoints. We also prove these results in Isabelle, based on our definition of A*. trfp and wrfp say that
trm(A*) and wip(A*, Q) are fixpoints of the respective functions. trsfp says that trm(A*) is equal or weaker
than any given fixpoint Y, and similarly for wrwfp.

trfp = "let trmstar = trmm (repstar 7Am) in trmstar = wpm 7Am trmstar"

trsfp = "?Y = wpm ?Am 7Y ==> trmm (repstar 7Am) ---> 7Y"

wrfp = "let wlpstar = wlpm (repstar 7Am) 7Qm in wlpstar = (wlpm ?7Am wlpstar && 7Qm)"
wrwfp = "?Y = (wlpm 7Am 7Y && ?Qm) ==> ?Y ---> wlpm (repstar 7Am) 7Qm"

42 Jeremy E. Dawson

3.5 Monotonicity

For developing a program by starting with an abstract expression (of requirements), and progressively refining
it to a concrete program, it is important that the abstract commands constructors are monotonic with respect
to general-correctness refinement (Cgep,).

Given our characterization of A Cg., B as (Vstate. B state C A state), and our operational definition of
commands in terms of their outcome sets, it is easy to see that all the constructors mentioned are monotonic.
In any event, they are proved in Isabelle as (for example) seq_ref_mono, rep_ref_mono, repstar_ref_mono.

3.6 The while loop
In [1, §7, §12] Dunne defines

if G then A end = (G — A)O(~G — skip)
while G do A end = (G — A)*; -G — skip

The definition of while which is intuitive to programmers is
while G do A end = if G then A; while G do A end end

We cannot use this as a definition in Isabelle since it is recursive — as it stands it is non-terminating, and
when applied to a particular state, may not terminate. So in Isabelle we have defined while as does Dunne,
and have proved that it satisfies the “intuitive” definition.

while_prog = "while ?G 7A = ifthen 7G (seq 7A (while 7G 7A))"

4 Frames and Variable Names

In §3, we viewed a command as a function from a state to a set of outcomes, and a condition as a predicate
on states. In this treatment, the view of a state was abstract. As discussed in §2, there are various ways in
which a full treatment needs to be more concrete, namely

— referring to program variables
— having conditions in a form in which we can substitute for a program variable
— gpecifying a frame for a command

In this section we discuss those abstract command constructors which require us to address these issues.
In our Isabelle model, the program variable names are strings and they take natural number values. As
a state is an assignment of variables to values, we have the type definition state = "string => nat"

indeterminate assignment [1, §12] Where z is a (list of) variables, and P is a predicate, the command
x : P assigns values to the variable(s) in = in any way such that the change of state satisfies P. More precisely,
if « is the “current alphabet” (the set of variables whose names are currently “in scope”), and z is the set
of variable names in , but with subscript 0 added, then P is a predicate on a U zg. (The paper [1] says
aUag — we comment on this below). The subscripted variable names represent the values of those variables
before the command is executed. We model such a P as a function on two states, so our definition of this
command is

indetass 7vars 7P 7s == Term ‘ (Collect (7P 7s) Int chst 7vars 7s)

where chst ?7vars 7s means the set of states which differ from 7s only in the variables ?vars, f ¢ X means
{f x|z € X}, and Collect (7P ?s) means {s' | P s s'}.

Formalising General Correctness 43

prd [1, §10] The “before-after” predicate prd specifies conditions under which the command may terminate
in a state where variables have certain given values. Dunne defines this as

prd (A) = —~wlp (A,x # z')
where 2’ are new (logical) variables corresponding to the program variables. We define prds and prdm, as

prds ?strs 7dashed 7Am == Not o wlpm 7Am (%st. EX str:?strs. st str "= 7dashed str)
prdm 7dashed 7Am == Not o wlpm 7Am (%st. st “= 7dashed)

where ?dashed, of type state, represents the values z’, and prdm is a simpler version of prds for use when
x can be taken to be all variable names. As a sort of inverse to this definition, Dunne gives wip (4, Q) =
Va'.prd (A) = Q[z := «'] which we prove as

wlp_prd = "wlpm 7Am 7Qm ?state = (ALL dashed. prdm dashed 7Am ?7state --> 7Qm dashed)"

In [2, §9] Dunne states the result prd (z : P) = P[zg,z := z,z']. We proved a corresponding result for
the special case where x represents all variable names

indetass_prd = "prdm ?dashed (indetass UNIV 7P) 7state = 7P 7state 7dashed"

but found that we could not prove the stated result generally. It turned out that Dunne’s result requires
that P be a predicate on a U zg, not on a U ap (as stated in the paper). This is another example of the
common situation that attempting to prove such results formally detects points such as this which can easily
be overlooked in an informal treatment.

unbounded choice [1, §7] The command (@z.A) means that variable z is to be set to any value and then A
is to be executed. But z is to be a “local” variable in A; if, for example, () contains z, then it is a different z
from that in A. In other words, the notation correctly reflects that z behaves as normal for a bound variable
(it can be a-converted with no change in meaning).

So we model this command as follows:

— set variables z to arbitrary values
— execute A
— reset variables z to their initial values

setstrs 7strs 7strfun 7state 7str == if 7str : 7strs then 7strfun 7str else 7state 7str
revert ?strs 7Am 7initst == mapos (setstrs 7strs 7initst) (7Am 7initst)
at 7?strs 7Am 7initst ==
let initptf = Ystrfun. setstrs 7strs strfun 7initst;
initptc = %x. UNION UNIV (7Am o initptf)
in revert 7strs initptc 7initst

Here, UNION UNIV F' = |J, F' z, and mapos is the monadic “map” function:

mapos f ocset = {mapo f s | s € ocset}
mapo f (Term s) = Term (f s)

mapo f NonTerm = NonTerm

We then proved
at_trm = "trmm (at 7strs 7Am) = allstrs 7strs (trmm 7Am)"

where allstrs strs B s means that for any other state s’ obtained by taking s and setting the variables
strs to any values, B s’ holds. We tried to prove

wlpm (at 7strs 7Am) 7Qm = allstrs 7strs (wlpm 7Am 7Qm)

44 Jeremy E. Dawson

but could not. This reflected the fact that the formula for wip (@z.A) given by Dunne assumes that @ does
not involve z. (As noted above, the a-convertibility of z in @z.A4 means that we can sensibly assume this).
In fact we proved

at_wlp = "indep ?strs 7Qm ==> wlpm (at ?strs 7Am) 7Qm = allstrs ?strs (wlpm 7Am 7Qm)

where indep z () means that @ is “independent” of z. As @) is a semantic expression, not a syntactic one
(see §4.1), “independent” was defined to mean that changing z does not change Q.

4.1 Assignment; the Syntactic View

As noted in §2, wip(z := E, Q) = Q[z := E], which is only meaningful when @ is some structure in which we
can define substitutions. So we have defined types for the abstract-syntax-tree version of integer and boolean
expressions, thus (abbreviated):

datatype exp = Num nat

| Var string

| Pluss exp exp
| Minus exp exp
| Timess exp exp
datatype bexp = Eq exp exp
| Lt exp exp
| Le exp exp

| Gt exp exp

| Ge exp exp

| Nott bexp

| T

| F

| And bexp bexp
| Or bexp bexp
| Imp bexp bexp

We defined substitution functions, of the following types

expSub :: "string => exp => exp => exp"
bexpSub :: "string => exp => bexp => bexp"

where (for example) expSub ¢ E M means M [z := E]. We also defined functions to translate an expression
(type exp or bexp — which we will call a syntactic expression) to the corresponding function of type state —
nat or state — bool (which we will call a semantic expression). We may also say the semantic expression
is the “meaning” of the syntactic expression. Obviously, distinct syntactic expressions may have the same
meaning, and therefore the “=" symbol in a proposition of the form “wip (A, Q) = ...” can only be sensibly
interpreted as equality of semantic expressions, notwithstanding that in “wip(z := E,Q) = Q[z = E]”,
the right-hand side is only meaningful as a syntactic expression. We can talk about syntactic and semantic

commands also.

types
expMeaning = "state => nat"
bexpMeaning = "state => bool"
consts
expMng :: "exp => expMeaning"
bexpMng :: "bexp => bexpMeaning"

We can then prove the following results, and corresponding ones for boolean expressions.

Formalising General Correctness 45

subLemma = "expMng (expSub ?x 7E 7Q) 7state = expMng 7Q (7state(7x := expMng 7E 7state))"
sub_equiv = "expMng 7Q = expMng 7R --> expMng (expSub 7x 7E 7Q) = expMng (expSub 7x 7E 7R)"

Here f(z := E) is Isabelle notation for the function that is like f except that its value at argument z is E.
The first of these results relates substitution for a variable in an expression to assignment to that variable
in the state. The second expresses that if two syntactic expressions have the same meaning, then the results
of making the same substitution in the two of them also have the same meaning. (Thanks to Dunne for
pointing out the need for this result).

We are now in a position to define assignment and prove its properties. We define assignv and assigne
for the assignment, to a variable, of a value and a (semantic) expression respectively. We also define assignvs
for the assignment of values to a set of variables.

assignv 7var ?n 7state == {Term (7state(?var := 7n))}
assigne 7var 7E 7state == assignv 7var (7E 7state) 7state
assignvs 7strs 7strfun 7state == {Term (setstrs 7strs 7strfun ?state)}

We can then prove ass_trm (which is trivial — an assignment terminates), and ass_wlp, which says wip(z :=

E,Q) = Q[:= B

ass_wlp = "wlpm (assigne 7x (expMng 7E)) (bexpMng 7Q) = bexpMng (bexpSub 7x 7E 7Q)"

4.2 Normal Form

In [2, §7.1] Dunne gives the following result, giving a “normal form” for an abstract command A.
A=trm (A) | Qz'.prd (A) >z :=2a'

Here x is the frame of A (which we first take to be the entire current alphabet of variable names), and '
is a corresponding set of logical variables, with names dashed. For this purpose we want somewhat different
definitions of @ and of A, involving a set of logical variables z', one for each program variable. So we use a
function dashed, of type state, which gives the values of these logical variables.

atd 7Ad 7?state == UN dashed. 7Ad dashed 7state

Here 7Ad is not a semantic command, but a function which, given a “dashed” state as argument, returns
a semantic command. Then also the assignment z := 2’ (where z represents all variables) becomes the
replacing of state x by “state” z’. Thus we prove the following corresponding result.

ACNF = "7A = precon (trmm 7A)
(atd (/dashed. guard (prdm dashed 7A) (%st. {Term dashed})))"

We also proved a corresponding result for the case where x is a proper subset of all variables. Here Dunne’s
result requires that A does not change variables outside the set x. Rather than specify this requirement as
such, we proved a result whose left-hand-side means “A restricted to z”, that is, as though you executed A
and then reset the variables outside = to their original values.

ACNFs = "revert (- 7x) 7A = precon (trmm 7A)
(atd (%dashed. guard (prds 7x dashed 7A) (assignvs 7x dashed)))"

4.3 Frames

In Dunne’s formulation [1, §7], each abstract command comes decorated with a frame, and the frame of the
new command is defined individually for each abstract command constructor: for example

frame (AOB) = frame (A#DB) = frame(A) U frame(B)

However we are unable to give an exact semantic meaning to the frame in a similar sense to the meaning we
have given to commands so far. The frame may be thought of as a set of variables “potentially” set by the

46 Jeremy E. Dawson

commands, but it can be larger than the set of variables actually set by the command. The frame may be
smaller than the set of variables read by the command, and two commands which have the same semantic
meaning can have different frames. Accordingly we could not attempt to prove the statements about frames
given by Dunne in the definitions of abstract commands from our operational model, in the way we have
done for their wlp and ¢rm conditions. The best one could do is to attempt to prove that for any abstract
command the frame of the result contains the set of variables which are changed by the command. However
this does not look at all difficult in any case, and so we have not included frames in our model.

parallel composition [1, §12] This is the only abstract command operator whose meaning depends on the
frames of its operands. The command A||B executes A and B, independently, each on its own copy of the
variables in its frame, and waits until both have terminated. (Thus, non-termination is a possible outcome of
A||B if it is possible for either A or B). We say a new state resulting from A is compatible with a new state
resulting from B if these new states agree on the values they give to the variables in frame(A) N frame(B).
Then, for each (sa,sp), where s4 and sp are compatible new states resulting from A and B respectively,
there is an outcome Term sap of A||B, where s4p is given by:

— the new values of variables in frame(A) N frame(B) are as in s4 (or sp),

— the new values of variables in frame(A)\frame(B) are as in s4, and

— the new values of variables in frame(B)\frame(A) are as in sp.

Dunne defines A||B by
trm(A||B) = trm(A) A trm(B)
prd(A||B) = prd(A) A prd(B)

but the latter formula contains an implicit reference to the frames of the commands. It is interesting to note
that if A is infeasible, and B is feasible but does not terminate, then A||B is feasible but does not terminate.

We consider first a version of this command for which the frame is the entire set of variables, defined by
pcomp_def and pcomprs_def ; for these, we prove the formulae just mentioned, as pcomp_prd and pcomp_trm.
We also prove as, pcomp_wlp, a result (communicated by Dunne)

wip (A]|B) @ s =3Q1 Q2.(Vt.Q1 t AQ2t = Q t) ANwip(A,Q1) s ANwlp(B,Q2) s

Unusually, we have explicitly referred to states s and ¢ in this statement of the result to make it clear that
the choice of @)1 and @), depends on the state s.

The following definition of A||B takes into account the frames of A and B. Firstly, pccomb combines two
states (resulting from A and B) if they are compatible.

"pccomb 7frA 7frB 7initst (7stA, 7stB) =
(let compat = ALL str:?frA Int ?frB. ?stA str = 7stB str;
combst = str.
if str : 7frA then 7stA str
else if str : 7frB then ?stB str else 7initst str
in if compat then {Term combst} else {})"

"pcompfr 7frA 7A 7frB 7B 7state ==
let tsA = {st. Term st : 7A 7statel};
tsB = {st. Term st : 7B 7statel};
nont = {NonTerm} Int (7A 7state Un 7B 7state)
in nont Un UNION (tsA <*> tsB) (pccomb 7frA 7frB 7state)"

Here (tsA <*> tsB) means the set product of tsA and tsB. The result pcomp_chk is a sanity check that,
where the frames of A and B are the set of all strings, this definition is equivalent to the one mentioned
in the previous paragraph (a useful check, since our first attempt at the definition above was erroneous).
Noting that Dunne’s formula prd(A||B) = prd(A) A prd(B) implicitly refers to the frames of the commands,
we prove it as pcompfr_prd, as follows:

pcompfr_prd = "prds (7fA Un 7fB) 7dashed (pcompfr 7fA 7Am 7fB 7Bm) =
(prds 7fA 7dashed 7Am && prds 7fB 7dashed 7Bm)"

Formalising General Correctness 47
5 Conclusion

We have provided an operational model for Dunne’s abstract commands and their operators, except that
our model does not provide any information about the frame of a command. Based upon this model, we
have been able to prove, using the automated prover Isabelle, Dunne’s definitions of the abstract command
operators, except their frames. That is, we have shown that they follow from our operational model.

We have discussed the problems in including the frame of a command in this work. Briefly, while the
frame of a command might be thought of as the set of variables which “might” be set by the command,
commands such as z := z (whose frame is {z}) prevent us from defining the command’s frame from its
behaviour. We could have attempted to show that the frame of a command (as defined by Dunne) conforms
to a rule that the frame contains any variable which can be changed by the command, but this generally
seems obvious.

Formalising the various definitions for use in the mechanised prover has highlighted aspects of the spec-
ification of commands which need to be considered, but are easily overlooked until one formalises them.
Examples of this appear in our discussions about “syntactic” and “semantic” expressions and commands,
and about the language in which “syntactic” expressions may be expressed.

Acknowledgement. We wish to thank Steve Dunne for his very great assistance in some lengthy discussions
on the topic.

References

1. Steve Dunne, Abstract Commands: A Uniform Notation for Specifications and Implementations, In Computing:
The Australasian Theory Symposium (2001), Electronic Notes in Theoretical Computer Science 42, http://www.
elsevier.nl/gej-ng/31/29/23/68/22/show/Products/notes/index.htt#008

2. Steve Dunne, A Case for General Correctness, submitted.

3. Michael J. C. Gordon. Mechanizing Programming Logics in Higher Order Logic. In G. Birtwistle and P. A.
Subrahmanyam (editors), Current Trends in Hardware Verification and Automated Theorem Proving, Springer-
Verlag, 1989.

4. John Harrison: Formalizing Dijkstra. In Jim Grundy, Malcolm C. Newey (Eds.): Theorem Proving in Higher
Order Logics, (TPHOLS’98), Lecture Notes in Computer Science, Vol. 1479, Springer, 1998, 171-188.

5. Dean Jacobs and David Gries. General Correctness: A Unification of Partial and Total Correctness. Acta Infor-
matica 22 (1985), 67-83.

6. Sheng Liang, Paul Hudak, and Mark P Jones. Monad Transformers and Modular Interpreters. In Symposium on
Principles of Programming Languages (POPL’95), 1995, 333-343.

7. Greg Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on Programming Languages and Systems,
11 (1989), 517-61. Or see DEC (now Compaq) SRC Research Report 16, http://gatekeeper.dec.com/pub/DEC/
SRC/research-reports/abstracts/src-rr-016.html

8. Gordon D. Plotkin. A Power-domain construction. SIAM J. Comput. 5 (1976), 452-487.

9. Philip Wadler. The Essence of Functional Programming. In Symposium on Principles of Programming Languages
(POPL’92), 1992, 1-14.

Automatic Constraint Calculation using Lax Logic*

Jeremy E. Dawson! and Matt Fairtlough?

! Department of Computer Science and Automated Reasoning Group
Australian National University Canberra ACT 0200, Australia
jeremy@discus.anu.edu.au
2 Department of Computer Science, The University of Sheffield
Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK
matt@dcs.shef.ac.uk

Abstract. Earlier papers have described how lax logic can be used to develop verified designs, where
the lax logic modality is taken to represent some constraint. We show how to use Isabelle’s instantiation
of variables to obtain elegant proofs of results which are true subject to constraints, and to derive these
constraints. We show how this method can be applied to examples of hardware design (where the
constraints relate to timing) and to a numerical function (where the constraint is that the machine
word length is sufficient).

The Isabelle files required to run the examples in this paper may be found in
http://www.dcs.shef.ac.uk/"matt/lax/isabelle/Public

Keywords: lax logic, machine-checked proof, hardware timing

1 Introduction

In [7] Mendler describes Lax Logic and how its single modality may be used to represent that a condition
is true up to satisfaction of some constraint. He gives examples, including the calculation of the factorial
function using increment and multiplication, which are themselves accurate only up to a constraint. In the
factorial example, he takes the constraints on these to be that the word length of the computer is sufficient.
In [4] Fairtlough, Mendler and Cheng have described how to analyse the behaviour of hardware, where each
particular predicate on the state is true only at certain times, so the constraint is that the predicate is
considered at the “right” time. They note that the proof of the “logical” result (e.g, for an and-gate, that
if the inputs are true then the output is true) can be separated from the timing constraint (that the inputs
have remained true over a certain time interval), and suggest that the proof algorithm could actually be
used to calculate the constraint. They go on to describe some examples.

In this paper we flesh out this suggestion and consider some examples, including the “latch” example of
[4] and the “factorial” example of [7]. We show how we can perform an Isabelle proof in the usual way, but
with the constraint initially being a variable, which gets instantiated during the course of the proof. In this
way the constraint is generated by the prover—which also proves it correct, in the sense that it implies the
corresponding predicate.

Such calculated constraints are not in their simplest form. In Section 3.1 we describe some conversions
written to help simplify the constraint which was calculated for the “latch” example, which we expect would
be useful for other automatically generated timing constraints.

1.1 Lax Logic

In [3] Fairtlough and Mendler develop “Lax Logic”!. This is described as an intuitionistic modal logic, with
a single modality O, which obeys the following axioms:

OR : M D> OM
OM : OOM D OM
OF : (M D N) > (OM > ON)
* this work was supported by EPSRC under grant GR/L86180
! The logic has been independently invented by Curry [2] and Benton, Bierman & de Paiva [1]

Automatic Constraint Calculation 49

One interpretation of the modality O is that it denotes an anonymous constraint or qualification of some
sort, that is, OM means that M holds under some (unspecified) constraint or qualification. For example,
the constraint may be that a certain condition C holds, so OM is C' D M, but C is not made explicit.

The latter two axioms may be replaced by the single axiom OF, and OS and OC' are also useful.

OFE : (M 2> ON) D (OM D ON)
OS : (OM AON)DO(MAN)
OC:(M D>ON)D(LD>OM)D (L DON)

Lax Logic can be expressed in a Gentzen-style calculus, with the usual singletons-on-the-right restriction
from the Gentzen calculi for Intuitionistic Logic, with the following rules for O :

FI—MO_O) I,M+ON ©H)
I'FOM I,OMF ON

The O modality is unusual as it has some properties which are typically O-like and others that are typically
O-like. The usual explanation of this, that DA «— <A when the underlying Kripke relation R is functional,
does not hold in Lax Logic (where A +— B stands for (A D B) A (B D A)).

Lax Logic also has a Natural Deduction formulation, which we shall use in the rest of this paper. Its
rules for O appear in Table 2. This formulation is equivalent under the Curry-Howard correspondence to the
typing rules for simply-typed A-calculus with a strong monad [9]—an extension of Moggi’s computational
A-calculus. The constraint computations carried out in the examples of this paper use the computational
rules for the set monad, which are of course consistent with the general equations for a strong monad. We
stress this point because our method relies on the extraction of constraint information from an abstract
proof; this extraction process involves the abstract computational rules of the calculus, the specific rules of
the set monad and the higher-order logic rules for equivalence between propositions. From this viewpoint
it is no surprise that the way in which abstract formulas are proved determines the constraints that are
extracted from their proofs.

2 Abstract and concrete formulae

In [4] Fairtlough, Mendler and Cheng use Lax Logic to separate aspects of reasoning about hardware circuitry.
At the concrete level, aspects such as timing must be taken into account, whereas at the abstract level, only
a simplified “boolean” description of the behaviour of devices suffices. For example, at the abstract level, we
have “if inputs P and @ are true (high) then output R is also true”. Correspondingly, at the concrete level,
we have “if inputs P and @ are both high at time ¢, and remain high until time ¢ 4 d;, then output R goes
high no later than ¢ 4+ o, and remains high so long as both P and @) remain high”.

Henceforth, following [4], we work in higher-order logic (HOL), and we will define a function Oy which
satisfies the Lax Logic rules for O. This function is in fact the set monad. Other monads undoubtedly also
have their uses within our framework, but we have not yet explored them in any detail. The literature on
combining monads, see for example [6], provides a rich source of ideas for extending our method.

Following HOL convention, we will write implication as —, and following the usage of the Isabelle theorem
prover, we will use P = @ to denote the meta-proposition “Q) can be deduced from P” (for which we also
use the conventional horizontal bar). Also following Isabelle, we use “!!” as a universal quantifier understood
at the meta-level.

2.1 Translating logic into the concrete/abstract format

Consider as an example a concrete formula such as P s, which means that signal P is high (true) at time s,
and likewise a second formula @) t. The corresponding abstract formulae are just P and @), whose conjunction
is P A Q. The concrete formula expressing the conjuction is P M @), defined by (PN Q)(s,t) =P sAQ t.

More typically we would want to express a formula containing an arbitrary constraint, for example
Vs.s > 5 — P s. Here one could separate the concrete and abstract by writing {s|s > 5} C {s|P s}. We
define the concrete modality Oy by OyPc = Vs.cs — P s; then Oy obeys the Lax Logic axioms for O given
earlier. We can now write this last constraint as OyP(As.s > 5).

50 Jeremy E. Dawson and Matt Fairtlough

In both these expressions, i.e, (P M Q)(s,t) and OyP(As.s > 5), the concrete part is the (last curried)
argument, and the abstract part is the rest.
Note, however, that in the latter example, the abstract part includes the Lax Logic modality Oy.

2.2 The translation used in the Isabelle/HOL implementation

As an alternative to the above, we tried replacing predicates by the corresponding sets (where the predicate
is the characteristic function of the set), replacing P s by s € P, and so forth. After experimenting with both
styles in Isabelle/HOL, we proceeded with the set-based implementation, since it renders the derivations of
the rules corresponding to OR, OM, OF, OF and OS particularly transparent (these are given later, in
Table 2).

In the set-based notation, the definition of M becomes (s,t) € (PN Q) =s € P At € @ and the formula
Vs.s > 5 — s € P isrewritten as {s|s > 5} € OyP, where ¢ € OyP = Vs.s € ¢ — s € P. This last definition
may be more simply written ¢ € OyP = ¢ C P.

Thus, in this formulation, the concrete formula is of the form ¢ € P, where the abstract formula is
simply P. Henceforth in this paper, we will follow our Isabelle implementation and write formulae using the
set-based formulation rather the function-based one.

2.3 Calculating constraints

Intuitively, the formula s € P may be seen in the light that s is a concrete witness of the abstract formula
P; it gives an instance where P holds. Likewise, in the formula (s,t) € (PMQ), (s,t) gives an instance where
P @ holds.

In reasoning about timing of logical circuits, when P and () are “primitive” (eg gate inputs or outputs),
s and ¢ will be of type “time”. Note, however, that the witnesses for “compound” (abstract) formulae, such
as PN @, will be of a different type. For example, (s,t) is of type “pair of times”.

As noted above, the abstract formula PAQ corresponds to the concrete formula (s,t) € (PMNQ). Likewise,
the following two (Natural Deduction style) rules of inference (of which the second is expressed in two forms)
correspond.

P Q seP teq fst z€ P snd z€Q
PAQ (s,t) € (PNQ) ze(PNQ)

Note here that the rule calculates the witness for the conclusion from the witnesses for the premises.
Alternatively, if the rule is used in a backward proof, the second form calculates the required witnesses for
the two subgoals in terms of the required witness for the conclusion.

Similarly, we can find a concrete equivalent for all the rules of Lax Logic. Table 1 gives many examples
for the intuitionistic logic rules. In some cases the rules are in the specific form used in the Isabelle/HOL
system. The third column gives the name of the rule (or of a close equivalent) in the implementation.

Note that, because a concrete formula specifies a witness, a simpler rule than Sumd Ep is available for
eliminating an abstraction | |y., namely the inverse of the Sumd_Ip rule.

For the rules using the Oy operator, a selection of the rules is shown in Table 2. Note that the rules
labelled (OyR), (OyM), etc, are equivalent to the axioms (OR), (OM), etc listed earlier, but they are in the
form of Natural Deduction inference rules. Note that the binary infix operator ¢ (written op ¢ as a curried
2-argument function) is given by op ¢ fS = f'S={fz|z € S}.

2.4 The “Tiny” example

In [4] the following simple example is given. The concrete formulae (expressed in terms of sets rather than
predicates) are

P :Vs.s >5—s € Pa
Yo 1 Vsy.s > 9y — s € Py(fy)
’1/13 IVtSylyQ.(t Z s+35As € P1y1 Ns € szz) —te Q(g(ylayz))

Automatic Constraint Calculation

Table 1. Some logical rules with concrete equivalents (Natural Deduction format)

Abstract Concrete HOL rule
PAQ r€eEPMNQ
P=— Q=R fstte P—=sndzxzec@Q =R
. S—— Y) (NE) andd_Es
R R
P Q seP teqQ
I — (NI dd_I
rag Goern -
P=Q lex e P= freqQ .
I 1 d_Ip’
P_>Q(—>) FeP 30 =Py impd_Ip
P—-Q P fePaQ peP .
E JF impd _Ep’
0 (= E) 0 (3 E) pd_Ep
P-Q Q—R feEPOQ geE@QIR .
d_
PSR gof€EPIR tmpd-trans
Vy.Py fely.Py
E _— Prodd_E
Pz VE) fr € Pz e P
"z.Px "o.fr € Px
1 _— Prodd_I
Vy-Py() felly.Py P
Pz z € Pw
ar —_— Sumd_TI
3y~Py() (w,z) € Uy-Py I
(w,z) € Uy-Py
Jy.Py !z.Pxr = R "uzx.w € Pr = fru € R
aE d_E
R (B8) fwz€R Sumd-Ep

Firstly, these are rewritten to use Oy:

P! {s > 5} € Oy(Pra)
¥ Vy.{s > 9y} € Ov(Pa(fy))

%ng P VY1y25182.51 € Piyi Ase € Poys —= {t]s1 =82 At > 51+ 35} € Ov(Q(9(y1,y2)))

From the above we can delete the concrete information (i.e, that before €, and the quantified variables

s1 and s2) to get the following formulae which are abstract, but expressed in terms of Lax Logic.

?z . Ov(Pla)
52 Vy.Ov(Pa(fy))

W VY12 Piyy A Pays = Ov(Q(g(y1,92)))

Where it is required to prove Jv.Oy(Qv), the abstract Lax Logic proof would run as follows.

51

(0
3 Y Vy.Ov(P(fy)) (VE)
Viry2.Pryy A Py — Ov(Q(9(y1,42))) (VE) Ov(Pia) Ov(P(fb)) (OvS)
Pra A Py(fb) = Ov(Q(g(a, fb))) Ov(Pra A P>(f)) (OvE)

Fv.0y(Qv)

Note that we use (OyS) and (OyE) for rules which are equivalent to the corresponding axioms shown in
§1.1.
To do the concrete constraint calculation, we would rewrite the formulae again using the logic of the

implementation such that the abstract formulae appear after the €, as follows (we also show an intermediate
step in the rewriting for v3):

52 Jeremy E. Dawson and Matt Fairtlough

Table 2. Some modal rules with concrete equivalents

Abstract Concrete HOL rule

Ofp(ovR) {wfeeic};P Dall_unit’
ﬁ(ovfﬂ) o ;: E gvzll—"% 590 Oall_F_image
70"(()?1"3}3) (o) 755 SO; (C?:]};) 0all M Union
%(OVS) zi%’goi }f r?Z)? Dall_S_times

P20k _Ovl og\ng P oypy LS PU:(|f<‘>;)Q€ osvg VP parlext

W {s > 5} € Oy(Pra)
¥ Ay {s > 9y} € My.Ov(P(fy))
P! (intermediate form) :
Virye A(s1,82).{t]s1 = sa At > 51 +35} € Piys A Pays = Ow(Q(9(y1,v2)))
U5 MYz (s, 82) {t |51 = s2 At > 51+ 35} € [Tyiye-Prys A Paya — Ov(Q(g(y1,2)))

We would then repeat the proof, using rules on the right-hand sides of Tables 1 and 2. In the implemen-
tation in Isabelle/HOL, we use the rules listed in place of the logic rules. The file Tiny2.ML gives a proof
of the goal p : | |v.Oy(Qv), for some appropriate p, which precisely mimics the abstract proof above, using
the corresponding rules shown in the Tables. In Isabelle we can leave p unspecified—it is a variable in the
goal—and the proof process in Isabelle calculates it, by instantiating the variable.

2.5 The “Latch” example

This example deals with a latch, with two inputs r;, and s;,, and two outputs ¢,.+ and @oue. The latch is
constructed using two cross-coupled NOR-gates, and has the “memory” property that,

— if one input is low and remains so, and

— the other input is high and goes low,

— then (so long as both inputs remain low) the outputs remain the same as they were when one input was
high.

This is possible because of the feedback from each gate to the other in the design of the latch circuit, and
because the gates have a finite delay.

The rules governing the latch, as relevant for this proof, are #,, 6> and 63, and the initial conditions are
0p1 and B,2. The notation (sq,t,) € (7)) means that, for all times from s, to ¢, inclusive, the signal ry, is
high. It may be noted (from the description above of the latch functionality) that the outputs should remain
steady regardless of whether or when r;,, goes low (in fact the outputs guu: and Gour should remain low and
high respectively).

Op1 : (Sarta) € (Tin)

Op2 2 Vt > 84.(Sa,t) € (]5in) 2

01 : Vst.(s,t) € (rin) = (s +di,t + D1) € (1qout)

0o : Vsity s t2.(81,t1) S (HS“—,,D AN (82,t2) S (Hq:;utl) —
(max S1 82 + dg,min t1to + Dz) € (Iml)

27 is used for not, as in [4].

Automatic Constraint Calculation 53

05 : Vst.(s,t) € (Iqoutl) — (S +dy,t+ Dl) € (quutl)
We translate these into the form which separates the abstract and concrete to get

Op1 @ (Sa,ta) € (Tin)

Op2 : {(Sa,t) |t > 54} € Ov(]sin)

01 : A(s,t).(s +di,t + D1) € (rin)) 3 (1g0ut)

05 : /\((Sl,tl), (Sg,tz)).(maxsl So + do, minty to + Dg) € (HS“’LD [l (quutl) .| (IMI)
03 : A(s,1).(s + di,t + D1) € (Touz) 3 (1q0ut)

The reasoning goes like this:

(a) Because 7y, is high (by 6p1), gout is low (by 61).

(b) Because s;;, is low (by 6p2) and goy: is low (by step (a) or (¢)), Gous is high (by 62).
(c) Because Gz is high (by step (b)), gout is low (by 63).

(d) Now go back to step (b)

Because of the inertiality and delay of gates, this cyclic argument corresponds to the physical process
that keeps q,u: low permanently. Note that it requires that s;, be low permanently, which is expressed by
the concrete version of fps.

The proof can be broken into three parts: step (a), steps (b)—(c)—(d), and the integration of these two
parts. We first discuss steps (b)—(c)—(d).

The abstract result we prove is (]gout)) = Ov(]gout|). This result is trivial—for example, use the axiom
Oy R—but we need a proof which expresses the reasoning above. This is because the reasoning above gives
(loosely) “if goue is low on a certain interval, then it is low on another (slightly later) interval”. Then,
ultimately, g,u+ is low permanently.

We call that result latch_step. Here is the proof of the abstract result using the abstract connectives,
following the proof in [4, §3, equations (2) to (5)].

Assume
9p2 (H Qout D (OvR)
0o OV(HSinD OV(Hq:)utD (OvS)
03 (I—lstnD A (Hq:)utD — (IWD OV((HSZTLI) A (quutD) (OvF)
(IMI) — (quutD OVGMD (O F)
\4
OV(quutD

This tree proves (||qout) = Ov(]¢out)), and (]gout) = Ov(]gout]) follows trivially.

As in the “Tiny” example, this proof can be translated to a proof of the concrete goal p € (]gout]) 3
Ov(|1gout)) for some appropriate p, which is calculated in doing the Isabelle proof.

The file Memory2.ML gives a proof which precisely mimics the abstract proof above, using the correspond-
ing rules shown in Tables 1 and 2.

A rule is now needed to incorporate the repeated use of latch_step (which incorporates steps (b) to (d)
in the proof outline above). The inductive property of a set is defined in [4] thus:

Ind P=x€ P33 (P210OyP)J0yP (1)

(where z is a specific value, given in [4]), and it is proved that Ind (P) holds for any P. It seems difficult
to describe the proof of this result as an abstract proof where the implementation calculates the constraint
automatically. The proof seems tailored towards the desired constraint much more than in the “Tiny”
example, or in the proof of latch_step. Proofs of this result are given in Induction.ML. Later, in §2.6, we
describe a different way of using latch_step to prove the required result, first focussing only on the proof
at the abstract level.

We can now use the induction rule (P) — ((P) = Ov(P])) = Ov(P) in the following proof.

54 Jeremy E. Dawson and Matt Fairtlough

0, Op1
(IrinD — (H qoutD (Irznl) (_) E) (latch_step)
(I—lqoutD (quutl) — OV(I-lqoutD (
OV(H qoutl)

induction rule)

Again, we convert this proof using Tables 1 and 2, and the constraint is calculated for us; see Memory2. ML.

2.6 Alternative Approach

In part of the proof described above, we considered an abstract proof and performed the corresponding
concrete proof in Isabelle, letting Isabelle generate the relevant constraint. However the proof of the induction
rule did not follow this pattern; rather, the proof seemed to be targeted at the desired constraint. We tried
to improve this by proving forwards from the rule latch_step.

Firstly, two intervals which overlap can be combined to form a single interval. We can express this as
z € (P)=>ye€(P)=SC(P) where S = if z and y do not overlap, and S = {z Uy} if they do. The
abstract version of the rule, called During_overlap’, is (P|) — (P]) — Ov(P).

The result latch_step expresses that from an interval in (||g,ut]) we derive a set of intervals in (|]qout])-
Of this set of intervals, those that overlap the initial interval can be joined with it, giving a set of intervals
which are at least as long as the initial interval.

Here is the abstract version of this. Note that the assumption appears twice, which reflects the fact that
the initial interval is used twice, once to generate a set of intervals, and once to join with each of them. The
result obtained, also (]gout]) = Ov(]qout)), is called During_extend.

Assume Assume

(9out) During overlap’ —(H Gout)
(I-lqoutl) — OV(quutD OV(I-lqoutD

OV(H Qout D

latch_step
(OvE)

This tree proves (||qout) = Ov(]¢out)); and (]gout) = Ov(]gout]) follows trivially.

At this point we realized that we want our subset S of (]gout]) to be closed under “shrinking from the
right”; that is, if (a,b) € S and b’ < bthen (a,b’) € S. It is obvious that if (a,b) € (P]) and ¥’ < b then (a,b') €
(P), that is, if (a,b) € (P)), then {(a,b’) | < b} € Oy(P)), so this gives the result During_shrink_right,
which is, abstractly, (P]) — Oy(P). Using (OyC) we combine During_shrink_right and During_extend
to give During_extend_all.

By During_extend_all we have (a,b) € (]¢gout) = S C (]gout)) where S contains intervals which extend
(a,b) to the right. We want to repeat this ad infinitum, forever accumulating larger intervals in S. To do this
we used Isabelle’s inductive definition facility, as follows. The code shown defines rep h x as the smallest set
satisfying rules repI1 and repI2, and it is easily proved, as rep_£fp, that rep € (P 1 OyP) O (P 1 OyP).

consts rep :: "(’a => ’a set) => (’a => ’a set)"
inductive "rep h x"
intrs

repll "x : rep h x"
repI2 "[| z : hy ; y : reph x [] ==> 2z : rep h x"

Finally, we combine rep_fp with During_extend_all to get latch_abs_rep. Note that, as abstract
results, latch_step, During_extend,During_extend_all and latch_abs_rep are all the same, ie (] gout) —
Ov(|1¢out]). However they have different (and successively more complex) constraints.

Having obtained this result using (we thought) the correct logic, we then set out to check that the
constraint obtained was equivalent to the one found previously — in fact it turned out that latch_abs_rep
was a stronger result (had a weaker constraint) than the earlier one.

Automatic Constraint Calculation 55

2.7 Comment on Proof Style

The file Memory . ML gives proofs of the “latch_step” and the final result. The proofs of corresponding results in
Memory2.ML and Memory3.ML are very much shorter. While the results proved in Memory2.ML and Memory3.ML
contain somewhat different constraints from those proved in Memory.ML, it is not unduly difficult to show
the equivalence between them (see §3).

In fact we can attribute our success in streamlining the proofs to the concept outlined in [4, p. 4], where
the authors say

Our contribution. Our approach involves maintaining a close connection between abstraction (the de-
ductive dimension) and constraints (the algorithmic dimension). The algorithmic aspect corresponds
to the calculation of constraints, ...

In the proofs in Memory2.ML and Memory3.ML, we have first performed a proof by looking only at the abstract
parts of the terms. In fact we did this by working out the corresponding proof in Lax Logic as shown in the
proof trees above, and then translated this using Tables 1 and 2. While we were concentrating solely on the
abstract “side” of the formulae (on the right-hand sides of the ‘€’ in the rules in the second column of the
tables), Isabelle was constructing (or calculating) the constraints on the left-hand sides of the ‘€’.

As can be seen in Memory2.ML and Memory3. ML, this made for quite short proofs. Only then did we turn
to the constraints, proving that they were equivalent to the desired constraints (that is, the constraints found
in the results in Memory.ML). This whole process made for shorter proofs than those found in Memory.ML.

2.8 Different proofs

It was observed earlier that the latch_step result could be proved (abstractly) simply by applying OvR.
This would give, however, a different concrete result (i.e, with different timing constraint term), which would
not have been what we wanted. For another example, the important result rep_£fp corresponds to the trivial
abstract result (P — OyP) — (P — OyP), but the trivial proof would give a different concrete result.
This illustrates that taking an automated proof of an abstract result and then converting it to a proof of
the concrete result will often not give the desired constraint. Likewise, we have noted that several distinct
concrete results, with different proofs, correspond to the same abstract result as does latch_step. It is
necessary to take into account not only whether the abstract result is provable but how it may be proven.
In this sense our abstract rules are intended to be used more like tactics than theorems.

2.9 The “Factorial” example

In [7], Mendler gives some practical examples. We consider his “Factorial” example, where he defines an
implementation of the factorial in terms of implementations of an “increment” function and of multiplication,
both of which can handle integers only up to a certain size.

In this example, the factorial function is implemented using the usual recursive definition, but using
functions i (for incrementing) and m (for multiplication), which implement the mathematical successor and
multiplication functions subject to constraints.

The results are in the file Factorial.ML, with definitions in the file Factorial.thy. The functions
Mendler used are as follows:

fact, Suc and * are the true factorial, successor and multiplication functions,

i and m are implementations of the successor (or increment) and multiplication functions, which are
correct up to constraints

cnt is an implementation of the successor function—in effect, cnt n = i" 1

cnt_0 "cnt i m O = Suc O"
cnt_Suc "cnt i m (Suc n) =i (cnt i m n)"

fac is an implementation of the factorial function, using cnt

fac_ 0 "fac im0 = 1"
fac_Suc "fac i m (Suc n) =m (cnt i m n) (fac i m n)"

56 Jeremy E. Dawson and Matt Fairtlough

Note that cnt and fac are defined in terms of i and m, which is a detail necessary in the source code
but omitted from the Figures 4-7 and 4-8 in [7]. We also note that this implementation assumes that a given
argument can be correctly identified as being equal to Suc n—there is no constraint for the accuracy of this
step.

Figure 4-7 in [7] gives an inductive proof that the function cnt implements the successor function, based
on a premise that i also implements the successor function. We followed this proof, generally substituting
rules on the right-hand sides of Tables 1 and 2 for those on the left-hand sides. As the proof in Figure 4-7 is
by induction on the natural numbers, we show nat_induct, the concrete equivalent of the induction axiom.

PO VYn.Pn— P(Sucn) a€ PO fe[]nPn— P(Sucn)
Vn.Pn nat_reca f € [n.Pn

where nat_rec is defined by

nat_rec £ g 0 = £
nat_rec f g (Suc n) = g n (nat_rec £ g n)

Recall that previously, where the abstract expression was a boolean condition, the constraint was that the
condition would hold only at certain times. Therefore the concrete quantity corresponding to the abstract
condition was the set of times at which the condition would hold.

Here the constraints are themselves simply boolean conditions. To use the same concrete rules as previ-
ously, we use a function ¢ of type bool — unit set, where t(true) = {()} and ¢(false) = {}. (unit is the type
with just one value, ‘()’, and so unit set has two values, {()} and {}).

We first proved a goal of the form

f €n(Ov(e(i n = Suc n)))
?g € [1n(Ov(¢(ent i m n = Suc n)))

where ?g denotes a variable which would (usually) become instantiated during the course of the proof.
Observe that ?g could always be instantiated by the function g n = {}, but the proof process gives us the
“largest” possible g (in terms of f). That is, assuming f n is {()} whenever i n = Suc n holds, then f n is
{()} whenever it follows (according to the proof in Figure 4-7)) that ent i m n = Suc n. The Isabelle proof
instantiates g to nat_rec{()}(Anz. | J((Ay.f(Suc n))‘z)) This gave the result deriv2.

From here we look at the proof in Figure 4-8 of [7], and attempt to prove a goal of the form

fen.(Ov(t(i n = Sucn))) ge[]nin.(Ov(e(m ny ny =ny *ny)))
?h € [n(Ov(t(fac i m n = fact n)))

The proof in Figure 4-8 is not quite complete for our purpose, as it shows only a proof of the premises of
the main inductive step. But using Figure 4-8 of [7] plus that inductive step we obtain the result deriv4 in
Factorial.ML.

We then applied these results, choosing, as constraints for the functions i and m, the conditions that the
result fits into a word length of w bits. So our constraint for ¢ n = Suc n is Suc n < 2%, and our constraint
for m n1 na = ny xng is ny *ne < 2%. (These constraints are expressed in the functions I and M, defined by
I_def and M_def).

We then simplified the constraint of deriv4. This involved a few theorems which may be generally useful
in dealing with the unit set type, and some theorems specific to the constraint being simplified. Finally we
obtained the theorem deriv4’1, which gives the constraint (n = 0 | fact n < 2*). Expanding the definitions
of the connectives Oy, [], ¢ and the definitions of I and M, and applying a little automatic simplification, we
obtain a correctness theorem of the form

Vn.Sucn <2%¥ =in=8ucn Vniy,ns.ngxny <2¥ = mmny ne =Ny *ny
Vn.(n=0— facim 0= fact 0) A (fact n < 2% — faci m n = fact n)

In fact we weren’t expecting the disjunct n = 0 in the constraint of deriv4’1, but it is clear that it
should be there. The reason is that fac ¢ m 0 can be evaluated without using the implementation of ¢ or
m—it is defined as 1. (An alternative definition of fac might have been fac i m 0 =i 0). We mention this
only because it is reassuring to get an unexpected result which, on reflection, proves correct!

Automatic Constraint Calculation 57

3 Dealing with the resulting constraints

As mentioned, this approach has the significant advantage that constraints can be calculated automatically.
Typically, at each step of the proof, the constraint attached to the current proof becomes larger and larger.
It may therefore require significant effort to simplfy the constraint to a point where it is useful. For example,
the constraint appearing in derivé4 (before substituting the actual constraints on i and m (increment and
multiplication) for f and g) is

nat_rec{() }(Anz.nat_rec{ () } (Anz. J((Ay.f (Suc n))'z))n N g(Suc n)(fact n) N z)

In the case of the “Latch” example, part of the constraint was the expression

(th.t+D1 <t = (3828 +d; <89 Asy <tiA
(Eltz.tl <ty A (3&.82 = maxa (S + dl) +dy +di A
(Fb.ty =minb t1 + Do+ D1 As < aAa<b)))))

which can be simplified to

2xdy + (s+da) <t+ D1 A(0< D5y |0< Dy)

We felt that the form of the constraint produced would be likely to recur in other cases in connection
with timing constraints for hardware, and so we developed some conversions to assist the simplification.

This simplification requires removing all five of the quantifiers. We produced four conversions which
in various ways remove quantifiers automatically. All five quantifiers in this example were removed by the
conversions we produced, which suggests that they may be of some general use.

The actual simplification, with and without use of the conversions, is in the file Memory2.ML.

3.1 Conversions

The concept of a “conversion” is found in the HOL theorem prover, see [5, Chapter 13|, where a conversion
is a function of type term -> thm, which takes a term ¢ to a theorem ¢ = ¢’ (which can be used to rewrite ¢
to t'). A conversional is a function which acts on or modifies conversions. For example, if convt is t =t (to
rewrite t to t'), and condv' t' is t' = t" (to rewrite ¢’ to ¢'") then (conv THENC conv') t is t = t" (to rewrite ¢ to
t""). The conversional SUB_CONV applies a conversion to the immediate subterms of a term. These conversionals
may be used to program various more complex strategies for rewriting (where possible) subterms of a term,
as described in [5, §13.2].

In HOL, a conversion conv that “fails”, in the sense that conv t finds no ¢ such that ¢ = ¢/, can be
programmed either to return ¢ = t or to raise an exception (and there are functions to change one sort of
conversion to the other). We implemented this concept slightly differently. Our conversion has type cterm
-> thm option (a cterm is a term “certified” to be type-correct). Given ¢, if an equivalent but different
expression t’ is not found, then (normally) NONE is returned (we say the conversion “fails”) though some
conversions will return ¢ = ¢t (we say they “succeed trivially”)

The structure Conv (file conv.ML) contains many functions relating to conversions. (All have close coun-
terparts in HOL [5, Chapter 13]). For example, the following three functions apply ¢; and/or ¢z, but with
different results depending on their success or failure.

c1 THENC ¢ applies ¢; and then c,, failing if either ¢; or ¢, fails,

c1 BOTHC ¢ behaves just as ¢ if ¢; fails, but if ¢; succeeds it tries ¢ on the result of ¢p; it fails only if
both ¢; and ¢, fail,

c1 ORELSEC ¢y tries c¢1, and tries co if ¢; fails.

For a single conversion c,

TRY_CONV c¢ ¢ tries ¢ t, succeeding with ¢ = ¢ (succeeding trivially) if ¢ ¢ fails

REPEATI1C c repeats ¢ until it fails, succeeding only if ¢ succeeds at least once

REPEATC c tries ¢ repeatedly until it fails, but always itself succeeds

Clearly a conversion which can succeed trivially should not be REPEATC-ed, or an infinite loop may result.

58 Jeremy E. Dawson and Matt Fairtlough

For a conversion ¢, where t is ¢; t2, COMB_CONV c ¢ applies ¢ to ¢; and to t»; where ¢ is Az.t', ABS_CONV
c t applies ¢ to t'.

With these building blocks, we can define TOPDN_CONV and BOTUP_CONV; TOPDN_CONV ¢ t applies ¢ to all
subterms of ¢, without repetition, in top-down order, and likewise BOTUP_CONV ¢ ¢, in bottom-up order.

Depending on ¢, either TOPDN_CONV (REPEAT1C ¢) or REPEAT1C (TOPDN_CONV (REPEAT1C ¢)) may be
conversions which achieve more (but are slower) than TOPDN_CONV c.

The functions CONV_GOAL_TAC : conv -> int -> tactic and CONV_GOALS_TAC : conv -> tactic
turn a conversion into tactics which will alter a given subgoal, or all subgoals respectively. The function
CONV_RULE : conv -> thm -> thm option uses a conversion to turn a theorem into a new one.

More such functions and conversionals are available in the file conv.ML.

3.2 Ex_eq_conv

Given a term of the form Jz y z. Pxy 2 Ay = f © 2 AQ x y z clearly the only possible solution for y is
y = f x z. Therefore the term is equivalent to Iz z. Pz (fx 2) 2 AQ x (f ¢ 2) 2.

The conversion ex_eq_conv’ actually converts the original term to 3z y 2. P x (f ¢ 2) 2 AN f © z =
fxzANQx (f ¢ 2) z (ie, converting y in the body of the original to f x z); Simp_tac will simplify this to
JrzPx(fez)zAQx(fx=z)=z

Given a term such as 3z. P x A (Jy. © = a + y) A Q x we can rewrite it to move existential quantifiers
outwards, to make ex_eq_conv’ applicable. (Note that default simplification will do the opposite, i.e, move
quantifiers inwards where possible).

3.3 Ex_mono_conv

Given a term of the form Jx. P x x, where the notation P x implies that « appears in P in two (or more)
places, and where P is monotonic in both (or all) of those arguments, then the term 3z, 2. P x1 x4 is
equivalent. This is because, given any solution z;,z, for the latter, z = max(z;,z2) will suffice as a solution
for the former.

The conversion ex_mono_conv’ performs this conversion. The resulting term may well not seem “simpler”
than the original, but it can allow further simplification. For example, 3z. a < z+bAc < z can be converted to
dx1 @2. a < w1 xbAc < 2, and thence (by default Isabelle simplification) to (3x1. a < x1 *xb) A (Fa. ¢ < x2);
then the second conjunct can be simplified away.

3.4 Ex_rel_conv

The conversion ex_rel_conv’ converts a term such as Jx y. PyAb <z —y to Jx y. P y A True. It depends
on establishing that the conjunct b < — y can be solved for .

The result in the example can be simplified to dy. P y. It works where there are several existential
quantifiers together (as the example given above) and multiple conjuncts. As in the case of ex_eq_conv’,
it may also be useful to first rewrite so as to gather the existential quantifiers together outside a set of
conjuncts.

3.5 Ex_rm_conv

The conversion ex_rm_conv is used to convert a term such as Jy. ¢ < y A P y, where P is antitonic in y, to
P z. The reasoning behind this is that y = z is the unique minimum possible solution to the first conjunct
for y, and since P is antitonic in y, P = holds if and only if P y holds for some y such that = <y.

4 Conclusion

We have shown how the use of Lax Logic to handle constraints and of the Isabelle theorem prover to perform
proofs can achieve the “clean yet sound separation” ([4, §4]) of reasoning logically about the properties

Automatic Constraint Calculation 59

which “ought” to hold and calculating (in the theorem prover) the constraints under which those properties
actually do hold.

We have shown also described a number of conversions suitable for simplifying these automatically gen-
erated constraints in the case of the timing constraints for hardware. Although the automatically generated
constraints can be complex, the conversions we have described are powerful tools for simplifying them, and
we suggest that they would be generally useful for constraints calculated using our method.

Our approach is motivated by practical considerations and does not aim for complete generality. An
alternative and more general approach would be to apply Norrish’s work on implementing Cooper’s algorithm
in HOL [10]. This algorithm is a decision procedure for Presburger Arithmetic and relies on a method of
transforming a formula into a quantifier-free normal form; since our focus in constraint analysis is not merely
on proving constraints (that is, on showing they are redundant) but more generally in simplifying them, it
is the construction of normal forms that interests us. In the above example of the latch, the final form of the
constraint is indeed quantifier-free, and considerably shorter than the constraint initially generated. However,
there are instances where quantifier elimination would greatly increase the size of a constraint, and in those
cases a more compact formulation involving quantifiers might be more intelligible and therefore preferable.

Our constraint-based approach to machine-assisted reasoning would provide a wealth of examples that
could be used to compare these two approaches.

References

1. Nick Benton, G.M. Bierman & Valeria de Paiva. Computational Types from a Logical Perspective I. Journal of
Functional Programming, 8 (1993), 177-193.

2. H. B. Curry. The elimination theorem when modality is present. Journal of Symbolic Logic, 17 (1952), 249-265.

3. M. Fairtlough, M. Mendler. Propositional Lax Logic. Information and Computation, Vol.137, No.1 (1997), pp.
1-33.

4. M. Fairtlough, M. Mendler, X. Cheng. Abstraction and refinement in Higher-order Logic. Proc. Theorem Proving
in Higher-Order Logics 2001, LNCS 2152, 201-216.

5. The HOL System Description, Version 2, Computer Laboratory, Cambridge, 1991.

6. David J King and Philip Wadler. Combining monads. Glasgow Workshop on Functional Programming, Springer
Verlag Workshops in Computing Series, Ayr, July 1992.

7. M. Mendler, A Modal Logic for Handling Behavioural Constraints in Formal Hardware Verification. PhD thesis,
Edinburgh University, Dept of Computer Science, ECS-LFCS-93-255, 1993.

8. M. Mendler, M. Fairtlough. Ternary simulation: Refinement of binary functions or abstraction of real-time be-
haviour? Proc. 3rd Workshop on Designing Correct Circuits (DCC’96), Sweden. Baastad, Sweden (M. Sheeran
and S. Singh, Eds.), Springer Electronic Workshops in Computing, September, 1996.

9. E. Moggi. Notions of computation and monads, Information and Computation, Vol.93 (1991), pp. 55-92.

10. M. Norrish. Slides on implementing Cooper’s algorithm for deciding Presburger arithmetic.
http://www.cl.cam.ac.uk/users/mn200/research/cooper-slides.ps.gz

Automating Fraenkel-Mostowski Syntax*

Murdoch J. Gabbay?!

Computer Laboratory, Cambridge University, UK
mjgl003@cl.cam.ac.uk
http://cl.cam.ac.uk/ mjgl003

Abstract. Work with Pitts and others has led to FM (Fraenkel-Mostowski) theory, a fresh under-
standing of modelling syntax in the presence of variable binding. We discuss the design and other
issues encountered implementing these techniques in the mechanised theorem-prover Isabelle.

1 Introduction

It is easy to declare a naive datatype of terms of some language, for example the untyped A-calculus,
A = pX.Var of Nat + App of X x X + Lam of Nat x X (1)

where Nat is the natural numbers. Problems famously arise defining program transformations in the presence
of variable binding. For example a substitution function [¢/a]s on A above should avoid “accidental variable
capture” in [Var(1)/Var(0)]s for s = Lam(1, Var(0)). Thus we rename 1 in s to some i # 0, 1, but then Var(i)
is no longer syntactically a subterm of s and we have made an arbitrary choice about the value of ¢. The
former point causes difficulty with structural induction, the latter because we may have to formally prove
irrelevance of the choice made.!

All this we could do without, especially in the unforgiving structure of a computer proof assistant such
as Isabelle, HOL98, or COQ, or even programming in some language with datatypes. There is much research
in this area, for example explicit substitutions ([2]), de Bruijn indices ([3]), and HOAS ([11], [4], [9])-

FM theories are another approach with a pleasingly elementary mathematical foundation. See [7] (my
thesis), [5] and [6] (set theory), [8] (higher-order logic), [13] (programming languages), [12] (first-order logic).
The label “Fraenkel-Mostowski” honours the creators of set theories designed to prove the independence of
the axiom of choice, see [15]: a very special Fraenkel-Mostowski set theory was the first FM theory in the
sense of this paper to be created.

In this paper we discuss principles of formally implementing a theory of FM syntax, based on experience
doing so in Isabelle [14].

The first design decision of the implementation is the choice of system, Isabelle. We chose Isabelle
for its paradigm of constructing arbitrary useable theories (Isabelle/Pure/FOL, Isabelle/Pure/HOL, Is-
abelle/Pure/CCL, ..., see [14]) in a fixed weak meta-language Isabelle/Pure. This meta-language is a very
weak higher-order logic (HOL) containing little more than modus ponens, but to which we may add new
types, constants of those types, and axioms on those constants. Thus we may axiomatise a theory in Is-
abelle/Pure and then work inside that theory. This is good for prototyping a new foundational system such
as FM.

2 FM

‘FM’ may differ depending on whether we do computation or logic. For example compare the typed A-calculus
(a theory of computable functions) to higher-order logic (a theory of all functions). This paper is about logic,
FM in computation (programming languages, unification) is under development, see [13,1].

* The author gratefully acknowledges the funding of UK EPSRC grant GR/R07615 and thanks Andrew Pitts for
his suggestions for improvements.

! Cf. the work of McKinna and Pollack in the LEGO system, e.g. [10]. FM is quite different but sometimes echoes
this work.

Automating FM syntax 61

‘FM’ is a set of techniques for a-equivalence with inductive definitions and not a particular theory. We
shall now present FM in the style of a higher-order logic. This is not an axiomatic presentation (see [8]) but
a ‘sketch of salient features, in the style of higher-order logic’. First, three preliminary remarks:

1 (Types). We shall write type annotations in two styles: : @ and z® both mean “z of type o”. &
2 (HOL sets). Higher-order logic has a notion of set, where ‘a-sets’ is predicates v — Bool also written

P(a). We borrow set notation, for example writing € X for ‘(X z)’, X CY for ‘Vz. (Xz) = (Y z)’, and
0 for Az.L and « for Az®.T. &

3 (Meaning of infinite). In FM theories not all types can be well-ordered (bijected with an ordinal, see
[8, Lemma 4.10(5)]). Therefore, a reading of ‘X is infinite’ as X = N is suspect. In FM we use ‘X & Py, (X)’

where Py;,,(X) is the inductively defined type of finite subsets of X. &
An FM theory has:
4 (Atoms). An infinite type of atoms a, b, c, . ..: A to model variable names. For example in an inductively

defined type of expressions for types,
X = TypeVar of A + Product of X' x X' 4+ DisjSum of ¥ x X, (2)

type variables are represented as TypeVar(a) for a: A. &

5 (Transposition). There is a (polymorphically indexed class of) constant(s)
Tran: A - A = 0 — o, (3)

read “transposition”. Write (Tranabz?) as (a b).z. The intuitive meaning of (a b).z is as transposing a
and b in z. For example if = <a, b> then (a b).z should equal <b,a>. This is made formal by the following
equational axioms which Tran must satisfy, and equivariance below:

(aa)w =1 (4)

(a b).(a b).x == (5)

(@ b).(c d).x = (cd). ((cd).a (cd).b) x (6)

(@ b).n* =if(n=a,b,if(n=b,a,n)) (7)

where if(test, t1,t2) is Isabelle-like notation meaning “if test then t; else t5”. &
6 (Equivariance). For a term f with free variables x1,...,z,,

(a b).f(x1,...,xy) = f((a b).x1,...,(ab).xy,). (8)

In the case that f has no free variables we have the special case that (a b).f = f.
We say the language is equivariant. An equivariant element x is one such that for all a,b, (a b).x =
From (8) for n = 0 it follows that closed terms denote equivariant elements. <

Definition 7 (Smallness, N). Write P, (A) for the HOL set of finite subsets of A. Say a set X C A is
cofinite when its complement A\ X is finite. Write Peosin(A) for the HOL set of cofinite subsets of A. For
P : A — Bool write WP’ or Na. P(a)’ for P € Peogin(A).

A is infinite from remark 4 so we can read Wa. P(a) as “for all but finitely many a: A, P(a)”, or more
loosely as “for most a: A, P(a)”. We may call finite P : A — Bool small and their complements, cofinite
sets, large. Thus P is large precisely when Ma. P(a), and small precisely when Wa. —=P(a).

Definition 8. Define a#x def (Wb (b a).x = x) and read this as “a is not n’ x” or “a is apart from x”.
The intuition is that, since transposition transposes b for a in x and since b is fresh, if (b a).x = x then
certainly a is not in x.

62 Murdoch J. Gabbay

We have an axiom stating that ‘most’ atoms are not ‘in’ x : o:
Na. a#z. (Small)

Expanding definition 8 this becomes Wa. Wb. (a b).x = x. Write

Supp(z) def {a:A | ﬂa#x}

Then (Small) is equivalent to
Supp(z) € Prin(x) (9)

and we can also read (Small) as “x has finite support’.

9 (Some observations). ‘In’ does not correspond to (HOL-)set membership. For example,
n¢gL=A\{n} but n € Supp(Ll).

We might think of Supp(x) as an object-level notion of those atoms occurring in some meta-level term which
z denotes.

Datatypes of syntax T certainly satisfy (9). Terms ¢ : T are finite? so mention only finitely many atoms,
and cofinitely many a : A satisfy a#t. &

10 (M excellent properties). Higher types such as A — Bool also satisfy (9). Observe that (using some
sets notation)

P:A — Bool = {z | P(z)}.
It follows from (8) that

(ab).P ={(ab)x | P(xz)}.
We can verify by calculation that (a b).P = P if and only if a,b € P or a,b ¢ P. When we combine this with
(9) it follows that either ‘most’ atoms are in P or most are not in P:

PA) = Prin(A) + Peogin(d). (10)

We can rewrite this as =Ma. P(a) < Wa. =P(a). Now the full set Az.T = A C A is clearly cofinite
so Wa. T = T. Combining this with other properties of cofinite and finite sets we obtain the algebraic
commutativity properties:

WNa. P(a) A Na. Q(a) <= WNa. P(a) A Q(a) (11)
WNa. P(a) vV Na. Q(a) <= WNa. P(a) vV Q(a) (12)
WNa. =P(a) < —Wa. P(a) (13)
Na. T (14)
-Wa. L (15)
(Na. P(a)) A Q < WNa. (P(a) A Q), (16)

that is, W distributes over A, V, —, =, T and L. These strong properties make /1 convenient to work with
in a mechanised context. They also place W in an interestingly ‘in between’ V and 3, the equations being
informally:

2 Extending FM to infinitary syntax is possible and interesting.

Automating FM syntax 63

3 «-equivalence on a simple datatype

11. Tran is how an FM theory renames object-level variables. It interacts with object-level syntax better
than atom-substitution [b/a]. For example [b/a] applied to ¢ = Lam(a).Lam(b).a(b) raises all the usual
problems with capture avoidance, whereas (b a).t = Lam(a).Lam(b).b(a) is a-equivalent to ¢ itself. Similarly,
(b a).(A\ {a}) = A\ {b} wheras [b/a](A\ {a}) = A\ {a}. O

We can define an a-equivalence relation =, by cases on inductive types. For example:

Definition 12.

L = TyVarof A+ TyProd of L x L+ TyAbs of A x L
= ¥ TyVar(a) =, TyVar(b) —a=b
TyProd(ty,t2) = TyProd(t|,ty) <+ t1 =4 t] ANty =4t
TyAbs(a,t) =, TyAbs(a',t') — Wb, (ba).t =4 (ba)t

Here L is intended to be a type of expressions for types. The definition of L above might be written in more
familiar style as
[:= TyVar(a) | TyProd(l,l) | TyAbs(a,l) a: A,

and sugared to (writing o for [a type and « for a: A a type variable)
J::=a|JXU|/\a.U.

We shall use L, =,, and =, defined below in (18), as a running object of study in the rest of this paper. In
the rest of this section and elsewhere the proofs given are semi-formal accounts of the formal proofs as they
might be conducted in Isabelle.

This machinery allows us to quite easily prove some nice properties for =, for example transitivity:

Lemma 13. =, is transitive.

Proof. By induction on syntax using hypothesis

def
¢(t1) <:e> Vtz,tg. (tl = to A to = t3) — 1 = t3.

The significant case is of t; = TyAbs(a;,t]). So suppose ¢(t]), t1 =« t2, and to =, t3. Then t, =
TyAbs(as,t,) and t3 = TyAbs(as, t}), and

(Nb. (b ar).t) =q (b az).th) A (Wb, (b az).th =4 (b as).ty).
We now equationally apply (11) to deduce
Nb. (b ar).t) =4 (b a2).th =4 (b ag).ts. (17)

Now we assumed ¢(t]), not ¢((b a1).t}). But we can apply equivariance (8) to ¢(z) to deduce ¢(t}) <
#((b ayp).t}), which allows us to complete the proof. a

We can also define a more traditional a-equivalence =,':

TyVar(a) =, TyVar(b) —a=0b
TyProd(ti,t2) =o' TyProd(t),t,) < t1 =4 t) At =4t (18)
TyAbs(a,t) =, TyAbs(da',t") « 3b. [b/a].t =," [b/d']t'A
b n(t)Un(t')U{a,a'}
in terms of an inductively defined names-of function n(t)
n(TyVar(a)) ~ {a}
n(TyPI‘Od(tl, t2)) = n(tl) U n(tg) (19)

n(TyAbs(a,t)) {a} Un(t)

64 Murdoch J. Gabbay

and an inductively defined atom-for-atom substitution function

[b/a]TyVar(a) = TyVar(b)

[b/a]TyVar(n) =TyVar(n) n#a (20)
[b/a]TyProd(t;,t2) = TyProd([b/a]t1,[b/alt2)

[b/a]TyAbs(n,t) = TyAbs([b/a]n, [b/alt).

n(t) and [b/a]t are simple and make no allowance for free variables or capture-avoidance, but they suffice for
our needs.
Suppose we want to prove t; =, t2 <> t1 =4’ t2. A pleasing and clean method would be to prove

Wb. [b/alt = (b a).t (21)
3b. [b/a).t =o' [b/d']t' A b&n(t)Un(t')U{a,d'} < (22)
Nb. [b/alt =, [b/a]t'.

Proof (of (21)). We can use structural induction for a fixed with hypothesis ¢

o) L5 Wb b/alt = (b a).t.

Suppose t = TyProd(t;,t2). By definition from (20), [b/a]TyProd(t;,t2) = TyProd([b/alti,[b/a]tz), and
by equivariance (8), (b a).TyProd(t1,t2) = TyProd((b a).t1, (b a).t2). By hypothesis we know

(Mb. [b/alty = (b a).tz) A (Nb. [b/a]ts = (b a).t2).

By (11) and applying the equalities under TyProd we obtain the result.

The cases of TyVar and TyAbs are no different. Each time, equivariance of (b a) as illustrated in (8)
allows us to push transposition down through the structure of a term and replicate the inductive behaviour
of [b/a]. This is a general pattern. a

Note from this proof how transposition with equivariance has provided a ‘general axiomatic theory of (purely
inductive) renaming’.

Proof (of (22)). The proof of (22) is rather more involved. It is best to work from the following lemmas:

n(t) € Prin(A)

X € Prin(A) = (b€ X & b#X)
b n(t) < b#t

b#ta ANb#f = b#f(x) 26
b#(f(z)) Nb#f A f injective = b#x 27

(23
(
(
(
(
b#c ¢ a closed term (28
(
(
(
(

24
25

b PA7BL A P(b) = Wb. P(b) 29
Nb. P(b) = 3b. b#P A P(b) 30
Nb. P(b) = Vb. b#P = P(b) 31
3b. bt 32

~— O e N~ N

The proof now proceeds as follows. We must prove

3b. [b/alt =" b/t ANb & n(t) Un(t')U{a,a'} < Wb. [b/a]t =, [b/d]t'.
Write P 4 Aa,a’,t,t' Ab.[b/a]t =, [b/a']t' and use (25) (proved from (23) and (24)) and to rewrite this
to
b. b#t,t' a,a' A P(t,t',a,a',b) <= WNb. P(t,t',a,d’,b),

Automating FM syntax 65

where b#uw1, ..., x, denotes the conjunction A, b#;.
Left-right implication. We must prove

3b. b#t, ' a,a’ A P(t,t',a,a',b) = Wb. P(t,t',a,d,b).
We eliminate the existential quantifier and obtain
b#t,t' a,a’ A P(t,t',a,a’,b) = Wb. P(t,t',a,d',b). (33)
We resolve against (29) to obtain
b#t,t' a,a’ A P(t,t',a,a')(b) = b#P(t,t',a,a") A P(t,t',a,a")(b),

which simplifies to b#t,t',a,a’ = b#P(t,t',a,a’). We repeatedly resolve against (26) to reduce to b#P,
and finish this off with (28).
Right-to-left implication. We must prove

Wb. P(t,t' a,a’,b) = 3b. b#t,t' a,a’ A P(t,t' a,d,b).
Now here we have a problem. Clearly we would like to eliminate W using (30) to obtain
b#P(t,t' a,a') AN P(t,t' a,a’,b) = Tb. b#t,t',a,a’ AP(t,t',a,d,b),
identify the b in the conclusion with the b in the hypotheses, and simplify. But we obtain
b#P(t,t' a,a’) = b#t,t' a,d.

This implication does not follow for general P, nor even for our particular P: if P were injective we could
apply (27) repeatedly, but it is a predicate mapping into Bool and is not injective.
However we can use (32) to introduce into the context some b fresh for any z, so instantiate z to the
3-tuple
<n(t),n(t'),{a,a’}>. (34)

Now we can apply (27) repeatedly to obtain
b#t,t' a,a’ ANb. P(t,t',a,a’,b) = Fb. b#t,t',a,a’ AP(t,t',a,ad,b).

(Here there is also a hypothesis b#Az1, zo, £5.<x1, T2, 3> but this gives us no information since we get it
for free from (28), so we drop it.) This simplifies to

b#t,t' a,a’ ANb. P(t,t',a,d’,b) = P(t,t' a,d,b).
But now we have another problem. If we eliminate W using (30) we obtain for a variable symbol b',
b#t,t' a,a’ ANb'#P(t,t',a,a') AN P(t,t',a,a',b') = P(t,t' a,ad,b).

We need a different elimination rule for /I which does not introduce a new variable into the context, and this
is provided by (31), with which we can finish off the proof. O

4 Morals from the proofs

In the previous section we have seen the beginnings of the automated theory of (a b), #, introducing a fresh
name, and /1. We now bring it out explicitly.

14 (Theory of transposition). Given a conclusion of the form s = (a b).t, use (8) to simplify the RHS
by drawing transposition down to the variables on the right hand side. Similarly for other binary predicates
such as ¢ or also #. So for example

s =(ab).<x,y> simplifies to s= <(ab).z,(a b).y>.

This algorithm can fail, for example on the goal (a b).<z,y> = (a b).<z,y>. Call it push, because it ‘pushes’
transposition into the structure of the term on the right of an equality. In an implementation push would
denote a tactic. We shall continue to give such names to algorithms which would denote tactics. <&

66 Murdoch J. Gabbay

15 (Theory of #). Given a goal of the form a#t repeatedly apply (26) and (28) to simplify it to component
parts. So for example
aft<x,y>
reduces to a#x A a#y A a# Az, y.<x,y>, and then to a#x A a#y. This algorithm can also fail, for example
in a#m <T,a> we should perform S-reduction first, otherwise we finish up with a#a, which is untrue. Call

the algorithm split#. <&
Inductive proof on inductive types can, with proper handling and properly coordinated automated pro-

cedures, be made to produce very uniform proof-obligations which are amenable to this kind of treatment,
with only slightly more sophisticated algorithms.

16 (Introducing a fresh name). (32) allows us to introduce a new variable b into the context, fresh for
z for any x: given the proof-state

VYxi,...,&,. Conds(zy,...,z,) = Cond(xy,...,x,)
we can reduce to
Va1, .., &n,b. Conds(x,...,x,) NbFt(x1,...,2,,0) = Concl(xy,...,x,)

for any t.
We can now take ¢ to be the n-tuple <Supp(x1),...,Supp(x,)>. Repeated applications of (27) reduce
b#t to \; b#Supp(z;). It is a lemma that b#Supp(u) <= b#u, so we obtain

Vi,...,Tn,b. Conds(:nl,...,:nn)/\/\b#xi = Cond(zy,...,x,).
i

In other words, “we can always invent a fresh b”. We applied this technique ad-hoc in (34). Call the algorithm

newname. o
17 (Theory of WN). The treatment of W is more complex. There are two broad styles of reasoning on U,

equational reasoning using for example properties such as (11) and (16), and directed reasoning using intro-
and elim- rules such as (29), (30), and (31). Both are useful. For example equations in (17), and intro- and
elim- rules in the proof of (22).

A further complication of the treatment of intro- and elim- rules is that W seems to have two pairs of
them. In full, they are

3b. (b#PA7BCL A P(b)) = WUb. P(b) (35)
Nb. P(b) = (3b. b#P A P(b)) (36)
Vb. (b# P48 — P(b)) = Wb. P(b) (37)
Nb. P(b) = (Vb. b#P = P(b)). (38)

For practical purposes these pair off naturally as (35) with (38) and (37) with (36). The first pair requires
we find in the context a fresh b. The second pair introduces that fresh b, but only fresh for P. We can do
better than this using (32) as in remark 16, so this latter pair seems less useful.

The complete algorithm is therefore: simplify using (11) to collect all U quantifiers in the hypotheses into
one single quantifier. Also use (13) to draw negations under the /I quantifier. Finally, apply the intro- and
elim- rules (35) with (38), possibly augmented with remark 16 to generate a fresh name where necessary.
Thus for example

Vparams. Na. P(a) A -Wa. Q(a) = —Wa. R(a)
simplifies to
Vparams. Wa. P(a) A =Q(a) = Wa. —R(a),

a fresh b is introduced
Vparams,b. b#params A Na. P(a) A —-Q(a) = Wa. =R(a),
the intro- and elim- rules reduce this to
Vparams,b. P(b) A =-Q(b) = -R(b),

and proof-search proceeds as normal. In the case that the fresh b is already in the context, as happened in
(33), we use that supplied b instead. Call this algorithm newsimp. &

Automating FM syntax 67

5 Difficulties implementing the algorithms

There are many technical difficulties putting the ideas of section 4 into practice.
18 (split#). split# is described in remark 15. The steps of the algorithm are:

1. repeated resolution with (26) followed by, when this fails,
2. resolution with (28).

There are difficulties with both steps.

1. Isabelle resolution with Isabelle unification is higher-order. a# f(x) unifies with a goal a#tt for x matches
t and f matches Az.z the identity, and we have a non-terminating loop. The solution is to write ML code
to only allow this step when ¢ is syntactically an application term t1 $ t2, and package this up as an
Isabelle wrapper. An Isabelle wrapper, simplistically put, is an Isabelle theorem ‘wrapped’ in ML code
which provides some intelligent control on how it may be applied, see remark 20.

2. Tt is impossible at object level to decide whether a term of the meta-level is closed or not. Again, we
need an ML wrapper.

The algorithm push described in remark 14 is similar and also requires wrappers. <&

19 (newname). To introduce a fresh b fresh for all variables x4, ..., , in the context, as we saw in remark 16,
we must examine those names. This is, as in the previous remark, an operation on the meta-level syntax and
must be implemented by an ML wrapper which examines that syntax. <&

20 (Isabelle wrappers). We observed in remarks 19 and 18 that three significant FM features require
ML wrappers in implementation (split#, push, and newname).

Isabelle proof proceeds imperatively by applying tactics to a proof-state. Simple tactics may apply a
particular transformation to the state. More complex tactics will carry out some kind of proof-search. These
automated tactics (written in ML) give Isabelle proving much of its power. They are all essentially tree-search
algorithms of various kinds based on a library of Isabelle theorems which may be equalities, intro-rules, elim-
rules, as the case may be. In inductive reasoning we use this automation to automatically handle the dozens
if not hundreds and thousands of separate cases which a proof may entail. Wrappers are applied in between
proof-steps and perform well as intelligent agents which may examine the way the proof-state is developing
and perform for example some kind of garbage-collection.

But consider the example of split#. This is implemented as a wrapper as discussed above in remark 18
but morally it is clearly a pair of intro-resolution rules:

a#f Na#tx = a#fzr and a#c if c closed.

In proof-search however split# will only be applied if none of the standard Isabelle theorems is applicable.
We cannot, using wrappers, interleave it ‘horizontally’ with the standard Isabelle theorems, only ‘vertically’
with lower precedence, and in consequence proof-search is inefficient. Unfortunately there seems no cure
other than dedicated FM proof-search ML code, or to hack existing code to hardwire algorithms such as
split#, push, and newsimp. <

Now consider our treatment of the logic of W. This consists of equational theory such as (11) and (16),
of intro- and elim- rules

a#P, P(a) = Wa. P(a) and (WNa. P(a)), a#P = P(a),

and of newname discussed in remark 17.

In this and in the equations immediately following we introduce two items of notation. A here is not
a conjunction (as previously used written A, prop;) but a meta-level Isabelle/Pure universal quantification
(A x. prop(x)). Also, a comma , denotes meta-level conjunction. I shall not be completely strict about
distinguishing meta-level Pure from object-level HOL, but A and , where used will definitely denote the
former.

As a simple example of a proof involving U consider a proof of

A\ P.Q. Via. P(a), Va. Q(a) = Wa. P(a) A Q(a). (39)

68 Murdoch J. Gabbay

Inductive reasoning tends to be resolution-based, so we prefer an algorithm in that style. Accordingly we
apply the intro- and elim- rules above, along with the conjunction intro-rule A, B = A A B, to obtain

A P.Q. P(2a(P,Q)),Q(?b(P,Q)) = ?a(P,Q)#P
A P.Q. P(2a(P,Q)),Q(?b(P,Q)) = ?a(P,Q)#Q
AP, Q. P(2a(P,Q)),Q(?b(P,Q)) = P(a(P,Q))
AP, Q. P(2a(P,Q)),Q(?b(P,Q)) = Q(?b(P,Q)).

Here ?a(P, Q) and ?b(P, (Q)) are unknowns which may be instantiated to any expression with free variables at
most P, Q. The two freshness subgoals cannot be proved. We can use newname to introduce a fresh parameter
into the context, but that only gives us

N\ P.Q.b. P(2a(P,Q)),Q(?6(P,Q)), b#P,b#Q => ?a(P,Q)#P

and ?a(P, Q) cannot be instantiated to b because b is a new free variable not amongst P, . Thus we need
to apply newname before the resolution steps and then the proof succeeds.

In another situation such as proving (31) the fresh name may be provided by the previous proof-context
and we certainly do not want to apply newname: it will cause unknowns to be instantiated to an irrelevant
fresh parameter. It seems difficult to express a sensible and efficient compromise algorithm for this kind of
proof-search.

In the rest of this section we step back and take a high-level view of these problems. In Isabelle and other
theorem provers there are actually two kinds of variables. Free variables a, b, ¢,y and unknowns ?a, 7b, 7z, 7y.
Free variables are ‘universal’: they have an arbitrary value which ranges over all possible values. Unknowns are
‘existential’: they should, by the end of the proof-search, be instantiated to some specific term ¢. With these
built into the meta-level of Isabelle/Pure the intro- and elim- rules for universal and existential quantification
are easy to write. This need not be the case. For example in second-order A-calculus existential quantification
can be expressed using universal quantification. Theorem provers do not use this because it is nasty to work
with in implementation.

It seems that the underlying problem may be that we are trying to encode using both a and ?a a kind
of ‘freshness’ variable corresponding to the ‘new’ quantifier . The fact that we need both reflects the V/3
duality of M mentioned in remark 10. Like unknowns, 7a a freshness variable depends on a context, for
which it is fresh, and two sufficiently fresh freshness variables may be assumed equal, ‘instantiated to each
other’, where convenient (think for instance of proving (11) or (12)). Like universals, freshness variables when
introduced extend the context, and other terms and variables may depend on them if they are introduced
later (e.g. other freshness variables). Trying to usefully express this in a dedicated logic belongs to future
work.

6 The technical lemmas

This section can be skipped. For the interested reader we show a simple algorithm in action, constructed
using the tactics developed in section 4. The point is that it neatly settles most of (23) to (32), which means
we have a decent algorithm. We skip to the fourth one (26) b#xz A b#f = b# f(z).

Unfold definition 8 and apply newname. We obtain

N bz, £ V. (¢ b).w, Vic. (¢ b).f = We. (¢ b).f(x).

Apply newname
N\ bz, frc. c#b,x, flc. (¢ b).a, Vic. (¢ b).f = We. (cb).f(x)

then newsimp to obtain

/\b,x,f, c. cftb,z, f(?cl(b,x, f,c) b).x =z, (?cl(b,z, f,c) b).f = f

Automating FM syntax 69

It is now simple to instantiate 7c1(b, z, f, ¢) and ?¢2(b, x, f, ¢) to ¢, but we cannot apply push to the conclusion
and finish the proof because (7¢2(b,x, f,c¢) b) is on the left, not the right. I had elided the following detail:
transposition is invertible on each type by (5) so ¢ = (u; u2).y = (u; us).z = y. push applies this as an
intro-rule, to “draw transposition to the right”. With this elaboration the proof runs smoothly.

The proof of (27) runs along similar lines. To prove (28) b#c we unfold definitions and use newsimp to

obtain
/\ b,c. ("n(b,c) b).c =c.

If ¢ is a closed term push solves this completely (otherwise proof fails, as it should).

(29), (30), (31), are proved by the same script as (26). In fact, the script also proves (27) though its
behaviour for that goal, the path outlined in the previous paragraph, is a little special.

(32) underlies newname. The proof is best tailor-made. We rewrite it as 3b. b#x A T and intro-resolve
against (36) for P = Ab.T, we now have Mb. b#z, an instance of the axiom (9).

7 The state of the implementation

An TIsabelle/FM implementation exists but it is based on set theory rather than higher-order logic. This
creates technical difficulties which ultimately proved insurmountable for the following reason. Consider the
theorem

TyProd(ti,ts) = TyProd(t),t,) = t; =t).

In HOL this is rendered as
L L L
TyProd(tF tl) = TyProd(t,”,t,") = tF =1t
where we include all type annotations. In sets the same theorem is
TyProd(t1,t,) = TyProd(ty,t)), t1 € L,t, € L,t} € L,t, € L = t; =t.

The difference is that when we intro-resolve against the HOL version we get one subgoal, whereas the sets
version produces five (one each for each hypothesis of the implication, which must be established in order to
apply it). A sets-based treatment of inductive datatypes overcomes this by implementing TyProd by some
constructor which is is injective on the entire sets universe “by coincidence”, probably Inr(Inl(—)). In FM
this is not possible for various reasons which we now sketch.

Atoms must be marked as belonging to atomic type, the M quantifier introduces fresh variables of atomic
type which must be marked as such, and atom-abstraction a,z — a.z (which we have not discussed in this
paper, see [8, Section 6] or [6, Section 5]) is fundamentally non-injective so that the typing conditions can
actually get quite complex.

Considerable ingenuity went into minimising the impact of these typing conditions in a sets environment
(this should soon be the subject of a technical report). The price of using a HOL environment is precisely its
benefit, the relative rigidity the typing gives the theory relative to sets, with both theoretical and practical
consequences. In the recently-published [8] we provide what we hope is an elegant solution to the theoretical
difficulties which will also be implementable, and it remains to try implementing the approach.

8 Conclusions

This paper has given a very simplified account of the problem of producing an implementation of a new
foundational system FM with new and unfamiliar predicates and constructors. We considered two simple
examples:

— Some theory of a datatype of types with universal types X and relations of a-equivalence for it =,
(defined using FM structure) and =, (defined in a more traditional style).
— Some technical FM lemmas (23) to (32).

These examples illustrated a fairly rich and representative selection of problems. We presented solutions to
these problems and discussed their limitations. Another contribution of this paper is in what it elides: there
are complications to automating FM which this paper has tried to bring out, but the short, slick, parts in
between are the proof of how far we have already come.

70

Murdoch J. Gabbay

References

10.

11.

12.

13.

14.
15.

FreshML homepage. http://www.cl.cam.ac.uk/ ampl2/research/freshml/index.html.

Martin Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Leévy. Explicit substitutions. In Conference
Record of the Seventeenth Annual ACM Symposium on Principles of Programming Languages, San Francisco,
California, pages 31-46. ACM, 1990.

H. P. Barendregt. The Lambda Calculus: its Syntaz and Semantics (revised ed.), volume 103 of Studies in Logic
and the Foundations of Mathematics. North-Holland, Amsterdam, 1984.

M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable binding. In 14th Annual Symposium on
Logic in Computer Science, pages 193-202. IEEE Computer Society Press, Washington, 1999.

M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax involving binders. In 14th Annual Symposium
on Logic in Computer Science, pages 214-224. IEEE Computer Society Press, Washington, 1999.

M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding. Formal Aspects of
Computing, 2001. Special issue in honour of Rod Burstall. To appear.

Murdoch J. Gabbay. A Theory of Inductive Definitions with alpha-Equivalence. PhD thesis, Cambridge, UK,
2000.

Murdoch J. Gabbay. FM-HOL, a higher-order theory of names. In 35 Years of Automath. Heriot-Watt University,
Edinburgh, Scotland, April 2002.

M. Hofmann. Semantical analysis of higher-order abstract syntax. In 14th Annual Symposium on Logic in
Computer Science, pages 204-213. IEEE Computer Society Press, Washington, 1999.

James McKinna and Robert Pollack. Some lambda calculus and type theory formalized. Journal of Automated
Reasoning, 23(3-4):373-409, 1999.

Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 199-208, 1988.

A. M. Pitts. Nominal logic: A first order theory of names and binding. In N. Kobayashi and B. C. Pierce, editors,
Theoretical Aspects of Computer Software, 4th International Symposium, TACS 2001, Sendai, Japan, October
29-31, 2001, Proceedings, volume 2215 of Lecture Notes in Computer Science, pages 219-242. Springer-Verlag,
Berlin, 2001.

A. M. Pitts and M. J. Gabbay. A metalanguage for programming with bound names modulo renaming. In
R. Backhouse and J. N. Oliveira, editors, Mathematics of Program Construction. 5th International Conference,
MPC2000, Ponte de Lima, Portugal, July 2000. Proceedings, volume 1837 of Lecture Notes in Computer Science,
pages 230-255. Springer-Verlag, Heidelberg, 2000.

Isabelle Projects. http://www.cl.cam.ac.uk/users/lcp/Isabelle/projects.html.

J. Truss. Permutations and the axiom of choice. In H.D.Macpherson R.Kaye, editor, Autornorphisms of first
order structures, pages 131-152. OUP, 1994.

A Formal Correctness Proof of the SPIDER Diagnosis Protocol*

Alfons Geser! and Paul S. Miner?

! ICASE, Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23681-2199, USA
geser@icase.edu
http://www.icase.edu/ geser
2 Mail Stop 130, NASA Langley Research Center, Hampton, VA 23681-2199, USA
pP-s.miner@larc.nasa.gov
http://shemesh.larc.nasa.gov/ psm

Abstract. This paper presents two protocols of SPIDER, a fault tolerant broadcast communication
architecture. The Interactive Consistency Protocol (“Byzantine Agreement”) takes care of reliable mes-
sage broadcast in the presence of malicious faults. The Diagnosis Protocol distributes local information
about the health status of nodes through the network, such that each node arrives at a correct and
consistent classification of which nodes are faulty and which are not. Correctness here means that only
faulty nodes are convicted. Such diagnostic information may be useful for on-line maintenance. The
two protocols are based on each other: Diagnosis uses the Interactive Consistency Protocol for reliable
broadcast of accusation messages. Interactive Consistency relies on up-to-date health status informa-
tion and produces diagnostic data. In order to formally prove that diagnosis is able to strictly improve
reliability we define the Dynamic Maximum Fault Assumption, which depends on the set of convicted
nodes. We provide formal proofs in PVS that given the Dynamic Maximum Fault Assumption and a
sane health status classification, the Interactive Consistency Protocol satisfies validity and agreement,
and that the Diagnosis Protocol provides again a sane classification and convicts all benign faulty nodes,
all accused symmetric faulty nodes, and asymmetric faulty nodes accused by a majority of undeclared
nodes.

Keywords: fault tolerance, SPIDER, Byzantine, reliability, Diagnosis, Interactive Consistency.

1 Introduction

The Scalable Processor-Independent Design for Electromagnetic Resilience (SPIDER) is a family of general-
purpose fault-tolerant architectures being designed at NASA Langley Research Center to support laboratory
investigations into various recovery strategies from transient failures caused by electromagnetic effects. The
core of the SPIDER architecture is the Reliable Optical Bus (ROBUS). As part of an effort partially sponsored
by the FAA, the ROBUS is being developed in accordance with RTCA DO-254: Design Assurance Guidance
for Airborne Electronic Hardware.

SPIDER is a family of communication architectures that provide reliable broadcast in the presence of
multiple, possibly malicious (“Byzantine”) faults (Figure 1). Various processing elements (PEs) are connected
by the Reliable Optical Bus (ROBUS). The PEs may be computing nodes, sensors, or actuators, or composites
of them. The ROBUS is formed by a column of N Bus Interface Units (BIUs), each connected to its PE,
and a column of M Redundancy Management Units (RMUs). Each BIU is connected to each RMU, but
the BIUs and RMUs are not connected to their own kind. In other words, the BIUs and the RMUs form a
complete bipartite graph. The number of RMUs can be chosen freely; the sole purpose of the RMUs is fault
tolerance.

SPIDER comes with three protocols: the Interactive Consistency Protocol, which takes care of reliable
message broadcast, the Diagnosis Protocol, which arrives at a global fault classification, and the Synchroniza-
tion Protocol, which synchronizes the clocks of all nodes. Synchronization provides a basis for us to compose
nodes synchronously in a way similar to Rushby [4]. The SPIDER architecture and these three protocols

* This work was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-
97046 while the first author was in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681-2199,
USA.

72 Alfons Geser and Paul S. Miner

PEs BIUs RMUs
1 1 1
2 2 2

N N M

Fig. 1. SPIDER architecture

are described in more detail in [2]. Formal Verification of the first and the second protocol are complete;
Formal Verification of the third is currently under development. A fourth protocol is being designed: the
Readmission Protocol. Its purpose is to allow transiently faulty nodes to be reintegrated. All of the protocols
are being verified using PVS [3].

In this paper we present two SPIDER protocols in detail: the Interactive Consistency Protocol and the
Diagnosis Protocol. The PVS models for the two protocols can be found at URL

http://www.icase.edu/~geser/spider/diag.dmp

We state two essential assumptions. The first, called the Maximum Fault Assumption, ensures that the
health status of the ROBUS is good enough for the protocols to work. The second, called the Correct Active
Sources Assumption, takes care that the ROBUS has a sane view of its health status. We show that under
these two assumptions,

Interactive Consistency satisfies validity (the message of a good node is faithfully forwarded to all re-
ceivers) and agreement (all receivers receive the same message);

Diagnosis preserves the Maximum Fault Assumption and the Correct Active Sources Assumption;

— Diagnosis provides convictions: every declared node is declared by all good nodes;

Diagnosis declares all benign bad nodes, all accused symmetric bad nodes, and all asymmetric bad nodes
accused by a good majority of undeclared nodes.

In the design of the two protocols we take care that readmission is not impeded. For instance, some good
nodes may be distrusted for their former bad behavior. If there shall be a chance to readmit them, the
distrust must not go on indefinitely. We address some of the ramifications. Moreover a readmission protocol
is dynamic by nature, i.e., it has to speak about the temporal evolution of faults and their assessment. We do
not elaborate on this issue here. Interactive Consistency and Diagnosis are modeled as functional programs.
A dynamic model is outside the scope of this paper.

2 Related Work

The protocols for the SPIDER, were derived from a number af earlier architectures. The Interactive Consis-
tency protocol was inspired by the Draper FTP [6]. The initial PVS verification of the SPIDER, protocol
was adapted from the verification of the FTP protocol performed by Lincoln and Rushby [1]. The SPIDER
diagnosis protocol was inspired by the on-line diagnosis protocol developed for MAFT [8]. Our diagnosis
algorithm performs the same task as Algorithm DD in that paper. The PVS formalization of this protocol is
described by Walter, Lincoln, and Suri [9]. For the verification of the MAFT architecture, gathering of ac-
cusations was explicitly modeled. We have separated the mechanism of fault detection from the distribution
of the gathered fault information. Our notion of diagnosis refers to the latter. We give explicit constraints

A Formal Correctness Proof of the SPIDER Diagnosis Protocol 73

on what constitutes an accusation, i.e., the claim that a node is faulty. Any accusation basis that satisfies
these constraints may be used.

The SPIDER architecture differs from many other fault-tolerant architectures in that it is not completely
connected. So the BIUs have no direct observations of their own kind. This fact has fundamental ramifications.
A BIU may only make direct accusations against RMUs. Any evidence that another BIU is faulty must come
indirectly through the RMUs.

Rushby presents a comparison of four safety-critical bus architectures, including SPIDER, in [5].

3 Basic Types and Properties

3.1 Node Types and Symmetries

In the ROBUS architecture, BIUs and RMUs are somewhat symmetric to each other. This symmetry is not
perfect since, e.g., BIUs are connected to PEs and RMUs are not. However it is tempting, and rewarding,
to exploit in PVS the symmetries present.

The BIUs and the RMUs are instances of node types. Node types are modeled as types, below(K), of
integers in the range 0..K — 1. On this account a node type is represented uniquely by its positive, finite
cardinality, K. PVS theories may now be parameterized by node type cardinalities, which may be instantiated
by N for the BIUs or by M for the RMUs. Sometimes we provide two parameters, L and R, for the node
types LEFT and RIGHT, which may be instantiated by IV and M, respectively, or by M and N, respectively.
If the theory thus parameterized describes a protocol then the two instantiations mean usage of the protocol
in two symmetric ways.

3.2 Hybrid Fault Types

Faults may be classified according to the potential consequences they may cause. Our approach is to assume
that arbitrary, Byzantine faults may exist, but that they are rare and that less malicious faults come in
greater numbers. We distinguish the following hybrid fault types, introduced in [7], that a node can exhibit:

— A good node behaves according to specification.

— A benign faulty node only sends messages that are detectably faulty (this includes nodes that have
failed silent).

— A symmetric faulty node may send arbitrary messages, but does so the same way to each receiver.

— An asymmetric faulty node may send arbitrary messages that even may differ for the various receivers.

A node that is not good is called bad or faulty. The three bad hybrid fault types form a hierarchy in the
sense that an asymmetric node has all capabilities of a symmetric node, and a symmetric node may behave
like a benign node.

In view of readmission, we further split good nodes into trustworthy nodes and recovering nodes. Both
behave perfectly identical but the trustworthy nodes must moreover be trusted whereas the recovering nodes
need not. The trustworthy nodes are the good ones that we can count on. Without readmission, all good
nodes are trustworthy. With readmission, we may have a node that changes its fault status from benign to
good. For various reasons SPIDER cannot figure out instantaneously that the node has changed. So there is
some time interval where the node is already good but SPIDER has not yet noticed it. We let the node be
recovering for some specified time to allow SPIDER to reset its trust in this node.

The sets of trustworthy, recovering, benign, symmetric, and asymmetric BIUs are denoted by T'B, RB,
BB, SB, AB, respectively. Likewise TR, RR, BR, SR, AR for the RMUs.

3.3 The Model of Communication

Data received by a node are of type robus_data[T'] where the parameter T' denotes the type of data to be
communicated. The type robus_data[T] comprises

— valid data of type T,

74 Alfons Geser and Paul S. Miner

— receive error, a token that expresses the fact that an error has been detected during reception,
— source error,
— no majority.

Note that the absence of an expected message can be detected, so a missing message is modeled by
receive_error. The purpose of the tokens source_error and mo_majority will be explained in the Interac-
tive Consistency protocol below.

The behavior of a transmission line from LEFT node p to RIGHT node r, with data d to be sent, is
modeled as a function send in PVS as follows:

send (status)(p,d,r) : robus_data[T] =
CASES status(p) OF
trustworthy : d,
recovering : d,
benign : receive_error,
symmetric : sym_send(p,d),
asymmetric : asym_send(p,d,r)
ENDCASES

status represents the global fault assignment to nodes, which during this discourse remains unchanged. We
will henceforth suppress all status parameters in favor of a concise representation. As send must not use any
information available to the hardware, we let send have no parameters that allow to deduce such information.
Conversely, as we will see below, the hardware must not have any access to the fault status.

The value d is of type robus_data[T] rather than type T'. This accounts for values that are relayed and
may so be non-valid at p even before transmission. A benign node acts in such a way that a detectable error
results at the receiver side. As we are not interested in the kind of error, we simply record the fact of the
reception error. The behavior of a symmetric node is modeled by an uninterpreted function sym_send. By
the definition of type robus_data[T], the value of sym_send(p,d) must be some of valid(d'), receive_error,
source_error, no_magjority for some d’' : T'. As we do not specify which it is, we have to cope with an arbitrary
function sym_send which is constrained only by its parameters. The parameter d expresses the potential to
send valid(d), i.e., to fake good behavior. The parameter p expresses the potential that each symmetric node
may exhibit individual behavior. The symmetric behavior follows from the fact that r is not a parameter
of sym_send(p,d). For the asymmetric nodes we have a similar uninterpreted function asym_send which
moreover has the parameter r and so the potential to exhibit asymmetric behavior.

3.4 How Faulty Node Behavior is Modeled

Bad behavior of a node is only observable through its communication. This gives us an extraordinary capa-
bility. We may rightfully pretend that a bad node works like a good node, and that all faulty behavior is due
to the communication lines between nodes. Therefore we may speak about the state of a node as if it were
a good node. And we may assume that each node sends correct values. Only upon reception does the bad
character show up. We use this convenient view throughout the presentation.

3.5 Local Fault Classification

Each good node maintains a view of the health of all nodes. A node obs (the observer), may classify a node,
def (the defendant), as being

— trusted, if obs has no evidence of def being faulty;

— accused, if 0bs knows that def is faulty but is uncertain whether this knowledge is shared by other good
observers;

— declared, if obs knows that def is faulty and every good observer of the same kind also declares def.

The local fault classification forms a hierarchy of increasing knowledge of obs about def. Sometimes we will
need to merge knowledge arriving from two sources; in this case we will get the maximum, w.r.t. the order

A Formal Correctness Proof of the SPIDER Diagnosis Protocol 75

trusted < accused < declared, of the arrived values. For instance, merge(trusted, declared) = declared and
merge(declared , accused) = declared.

We call the map act that assigns each pair of nodes, obs and def, a fault classification, act(obs)(def),
the active-sources matriz of the ROBUS. More precisely, there is an active sources matrix for each pair of
node types of observer and defendant. The value act(obs)(def) is what obs takes def for in the current state.
The row act(obs) of the active sources matrix is called the active sources vector of obs. Note that its active
sources vector is all that obs knows about the health status of the ROBUS. The following three properties
are required for active sources vectors, actv:

— good trusting: every good node is trusted.
— symmetric agreement: every non-asymmetric node is assessed the same way by two observers.!

— declaration agreement: the set of declared nodes is the same for any two observers.
The three conditions are rendered in PVS as follows:

good _trusting?(actv) : bool = Vdef : good?(def) = trusted?(actv(def))
symmetric_agreement?(actvy, actvs) : bool = Vdef : ~asymmetric?(def) =
(trusted?(actvy (def)) < trusted?(actva(def)))
declaration_agreement?(actvy, actvs) : bool = Vdef : declared?(actvy(def)) < declared?(actva(def))

The conditions good_trusting? and declaration_agreement? are clearly motivated by our definitions of
accused? and declared?. We will demonstrate in Example 2 that symmetric_agreement? is an essential premise
to correctness of the Interactive Consistency Protocol.

In a new born ROBUS, no node has any evidence of faulty nodes whatsoever. Hence every node trusts
every node. It is easy to verify that every row in this active sources matrix satisfies good _trusting?, and every
pair of rows satisfies symmetric_agreement? and declaration_agreement?.

During the Diagnosis Protocol, active sources vectors are merged with new evidence, which is also rep-
resented as an active sources vector. The merge function is lifted to active sources vectors by

merge_active(actvy, actvs) : active_vector_type[N] = Adef : merge(actv, (def), actva(def)).

3.6 Message Qualities

For the proofs it will be convenient to speak about the following properties a message may have. A data
vector may satisfy

— good message: a good node is assigned a valid message.

benign message: a benign node is assigned receive_error.
— benign source: a benign node is assigned source_error.

good vote for: all good nodes are assigned the same given message.
In PVS this is expressed by

good_message?(dv) : bool = VG : good?(G) = wvalid? (dv(G))
benign_message?(dv) : bool = VG : benign?(G) = receive_error?(dv(G))
(dv) : bool = VG : benign?(G) = source_error?(dv(Q))

bool = VG : good?(G) = dv(G) =d

benign_source?(dv)
good _vote_for?(dv, d)

Lin view of the next property, it is sufficient to require that observers trust the same sets of non-asymmetric nodes.

76 Alfons Geser and Paul S. Miner
3.7 Accusation Vectors

During the Diagnosis Protocol, messages are transmitted that carry information about the sender’s classifi-
cations of other nodes. Usually only a certain aspect of the classification is wanted.

An accusation vector is a function from nodes to accusations, i.e., the values working or failed. Accusation
vectors are sent across the ROBUS to inform other nodes about some aspects of the local active sources
vector. To this end we provide two functions in PVS, one for encoding (form) and one for decoding (extract).
For the purposes of accusation exchange, we encode the information whether a node is trusted. For the
purposes of declaration exchange, we encode whether a node is declared:

form_accvec(actv)(p) : accusation = IF trusted?(actv(p)) THEN working
ELSIF accused?(actv(p)) THEN failed
ELSE any_accusation(actv, p) ENDIF,
extract_accvec(accv)(p) : trust = IF working?(accv(p)) THEN trusted ELSE accused ENDIF,
form_decvec(actv)(p) : accusation = IF declared?(actv(p)) THEN failed ELSE working ENDIF,
extract_decvec(accv)(p) : trust = IF working? (accv(p)) THEN trusted ELSE declared ENDIF

In the design of form_accvec we leave deliberately open how declarations are translated. This is achieved
by the uninterpreted function any_accusation. In the current SPIDER, implementation we took the choice
any-accusation(actv,p) = working. It is routine to prove a few lemmas that relate properties of accusation
vectors to properties of active sources vectors.

3.8 The Maximum Fault Assumption

The purpose of the Maximum Fault Assumption is to both (1) hold with specified probability and (2) provide
a basis to conclude correct operation of the SPIDER, protocols. In the absence of diagnosis, the Maximum
Fault Assumption is independent on the local knowledge of the health status of the system. SPIDER does
not tolerate a simultaneous asymmetric fault of both a BIU and an RMU. Moreover we need a majority of
trustworthy nodes of each kind. So the Maximum Fault Assumption is defined by:

1. |TB| > |SB| + |AB|, and
2. |TR| > |SR| + |AR|, and
3. |AB|=0or |AR| = 0.

This Maximum Fault Assumption does not improve by diagnosis, i.e., if diagnosis is able to declare new nodes
then this has no impact on the Maximum Fault Assumption. Hence there is no formal proof that diagnosis
has any positive effect. But there is a meta-level proof: assume that a node becomes benign when declared.
Then declaring a symmetric or asymmetric node increases the majority of the good nodes, and declaring an
asymmetric node may deplete the set of asymmetric nodes of its kind. This meta-level construction, however,
does not allow readmission of transiently faulty nodes: a node that is diagnosed stays benign forever.

To enable readmission we introduce a weaker assumption that we call the Dynamic Maximum Fault
Assumption. It has an additional parameter, U, for the set of nodes that some node does not declare. The
Dynamic Maximum Fault Assumption is defined by:

1. |TB|>|SBNU|+|ABNU]|, and
2. [TR| > |SRNU|+|ARNU|, and
3. |[ABNU|=0or |[ARNU| = 0.

Note that diagnosis improves the Dynamic Maximum Fault Assumption. As more nodes are declared, U gets
smaller, and so it is easier to have a majority of good nodes among U, or to exclude asymmetric nodes from
U. Our hope is that diagnosis will particularly aid in the latter.

A Formal Correctness Proof of the SPIDER Diagnosis Protocol 7

4 An Informal Overview

4.1 The Interactive Consistency Protocol
A message broadcast protocol is called reliable if it satisfies the following two properties:

— validity: every good node receives the value sent by a good node.
— agreement: all good nodes agree in the value sent.

For reliable message passing in the presence of various faults, we use the Interactive Consistency Protocol.
We present the protocol parameterized by two node types, LEFT and RIGHT, that may be instantiated by
the types of BIUs and RMUs, respectively, or by the types of RMUs and BIUs, respectively. For reliable
message broadcast among the PEs, we need the former instance. Indeed, in the Diagnosis Protocol we will
need both symmetric instances. The Interactive Counsistency Protocol works as follows:

1. A single LEFT node, g, as per agreed schedule, broadcasts some value, valid(v), to all RIGHT nodes.

2. Every RIGHT node relays its received value, d, to all LEFT nodes. However, if d = receive_error then
it sends source_error to redirect the blame from itself to the originator of the message.

3. Every LEFT node, p, collects the vector of values it received (one value per RIGHT node). Then it
determines the set of RIGHT nodes it trusts. A RIGHT node from which p receives receive_error is
accused by p. These classifications are merged with p’s Active Sources Vector.

4. Else if p receives some value d,,,j from a majority of trusted RIGHT nodes then it determines d,,,; and,
if dpnqj is non-valid, declares g. Otherwise p determines no_majority and declares g.

5. If LEFT g is declared by p (not including the recent declarations in Step 4) then p forwards source_error
to its PE. Otherwise p forwards the value determined in Step 4 to its PE.

We will refer to Step 1 as a single source broadcast, and to Steps 2 to 4 as a consistent source exchange.
Consistent source exchange will turn out useful outside the Interactive Consistency Protocol.

v
asymm. good
v
V,
good (a)symm.
v
good good
no maj.

Fig. 2. Two counterexamples: Step 5 is essential for agreement (RMU 2 is asymmetric; see Example 1) and the
Symmetric Agreement premise is essential for agreement (RMU 2 is symmetric; see Example 2)

In a previous version of the Interactive Consistency Protocol, in Step 2 a relay turned d into source_error
also in the case where it received a correct value but did not trust the general G. Although this is undeniably
correct, it is undesirable in view of readmission because a declared node has no chance to prove it is good
again.

Step 5 is introduced to ensure agreement under the weaker Dynamic Maximum Fault Assumption. A
version that skips Step 5 and rather forwards the value determined in Step 4 to the PEs, may violate
agreement under the Dynamic Maximum Fault Assumption:

Ezample 1. Let M = N = 3 (Figure 2). Suppose that BIU 1 is asymmetric, but declared; the Dynamic
Maximum Fault Assumption allows the existence of asymmetric, undeclared RMUs. Now let BIU 1 send
valid(v) to the good RMU 1 and to the asymmetric RMU 2, and a different valid(v") to the good RMU 3.

78 Alfons Geser and Paul S. Miner

Let BIU 2 trust all RMUs, and let BIU 3 trust RMUs 1 and 3 only. Then BIU 2 finds a majority value,
valid(v), whereas BIU 3 finds no majority. So the old Interactive Consistency Protocol does not satisfy
agreement for the Dynamic Maximum Fault Assumption.

A similar example shows that the symmetric_agreement? premise is essential:

Example 2. Let M = N = 3. Suppose that BIU 1 is asymmetric and the static Maximum Fault Assumption
holds. Now let BIU 1 send walid(v) to the good RMU 1 and to the symmetric RMU 2, and a different valid (v")
to the good RMU 3. Let BIU 2 trust all RMUs, and let BIU 3 trust RMUs 1 and 3 only. So symmetric
agreement does not hold. Then BIU 2 finds a majority value, valid(v), whereas BIU 3 finds no majority. So
agreement is violated.

4.2 On the Collection of Evidence

During all protocols each node records evidence of faulty behavior of other nodes that it learns through
communication. Some of this evidence may lead to an accusation of a node. Some evidence, for instance a
non-valid result of an Interactive Consistency exchange, may even lead to a declaration of the general by
virtue of the agreement property.

We distinguish between direct and indirect observations that lead to accusations against nodes. A direct
observation is a single event that may lead to the accusation of the sender. Direct observations are:

— No message was received during the reception window;
— An improperly formatted message is received.

These observations take place during all protocols. “Improperly formatted” may also mean that an encoded
message does not pass the parity check. The effect of a direct observation is modeled by the receive_error
token.

Indirect observations are a collection of events that together provide the basis of an accusation. This
involves a majority vote. They come in two kinds: either a node of the same kind, or a node of the other
kind is accused. Let the diagnosing node be a LEFT node.

a majority of RIGHT nodes offer evidence against a LEFT node; that LEFT node is accused.

in a consistent source exchange, a RIGHT node disagrees with the majority; this node is accused.

in an Interactive Consistency exchange from the LEFT, there is no majority; then the general is accused.
in a majority of Interactive Consistency exchanges from the LEFT, a RIGHT relay disagrees with the
majority; this relay is accused.

=W

By the agreement property, an accusation of the Form 3 is made by all LEFT observers, so they may issue a
declaration. We conjecture that, likewise, an accusation of Form 1 can be turned into a declaration. A typical
case is the declaration of a general of an Interactive Consistency exchange on the basis that a majority of
trusted RIGHT nodes vote for source_error. All of these indirect observation mechanisms are in place in the
current SPIDER, implementation.

4.3 The Diagnosis Protocol

The purpose of the SPIDER Diagnosis Protocol is to distribute the local accusations in order to arrive at a
consistent classification of the health status of the ROBUS. It does that by merging the active sources vectors
with new declarations. By the bipartite ROBUS architecture, agreement among all nodes cannot be reached
in one sweep. Rather, agreement among nodes of the same kind is achieved first, i.e., we get declarations.
This step is called the accusation exchange. Agreement among nodes of opposite kind is achieved in the
second sweep, the declaration exchange.

The Diagnosis Protocol shall preserve good _trusting?, symmetric_agreement?, and declaration_agreement?.
By the fact that classifications are merged, the Maximum Fault Assumption is also preserved. We require
moreover that the Diagnosis Protocol establishes the following properties:

— conviction agreement: every declared node is convicted, i.e., it is declared by both kinds of nodes.

A Formal Correctness Proof of the SPIDER Diagnosis Protocol 79

— benign declaring: every benign node is declared.

— symmetric declaring: every symmetric node that is accused by a good node is declared.

— majority declaring: if a set of good LEFT nodes that forms a majority among the undeclared and
non-benign LEFT nodes accuses a node then that node is declared. Likewise for RIGHT nodes.

The properties are rendered in PVS as follows:

conviction_agreement?(acty, act,.) : bool =

Vg, r : good?(q) & good?(r) = declaration_agreement?(acty(q), acti (r)),
benign_declaring? (actvy) : bool = Vdef : benign?(def) = declared?(actv(def))
symmetric_declaring? (actvq, actvgs) : bool =

Vdef : accused?(actvq (def)) & symmetric?(def) = declared?(actvqz(def))
magority -declaring? (actvyy, actvqy, actvgs) : bool =

Vdef : ~working? (magjority (undeclared (actvy) \ benign, working,

solid(form_accvec(AG : actvq (G)(def)))))
= declared? (actq2(def))

where the auxiliary function solid is defined by

solid(accv) (@) : accusation = IF good?(G) THEN accv(G) ELSE working ENDIF

The operator \ denotes set difference.

The requirements are motivated as follows. conviction_agreement? expresses the maximal distribution of
declarations: every node arrives at the same set. Of course we want to declare as many bad nodes as possible:
all benign nodes, all symmetric nodes accused by a good node, and some asymmetric nodes. Example 3 below
shows that in the property majority_declaring?, it is essential that the accusing nodes that are in the majority
are good. In other words, it is essential that the accusing nodes that form a majority are good. solid(accv)
denotes the set of accusations in accv that cannot be shattered.

The Diagnosis Protocol works as follows:

1. BIUs reliably exchange their accusations. If a majority of undeclared BIUs accuse a node then that node
is declared.

2. RMUs reliably exchange their accusations. If a majority of undeclared RMUs accuse a node then that
node is declared.

3. BIUs broadcast their declarations to the RMUs; the RMUs merge these with their declarations.

4. RMUs broadcast their declarations to the BIUs; the BIUs merge these with their declarations.

We exploit the obvious symmetry by providing an accusation exchange protocol and a declaration exchange
protocol, each parameterized with LEFT and RIGHT.
The accusation exchange protocol works as follows:

1. each LEFT node, G, uses the Interactive Consistency Protocol to broadcast, to all LEFTs, its vector of
accusations against any node.

. after Step 1, each LEFT node, p, has collected a vector of received values (one value per general G).

. LEFT nodes from which p received source_error are declared by p.

. If a majority of (then) undeclared LEFT nodes accuse a node then that node is declared.

= o N

The declaration exchange protocol works as follows:

1. by a consistent source exchange, each RIGHT node, r, broadcasts its declaration vector to all LEFT
nodes.

2. each LEFT node, p, merges the received declarations with its own active sources vector.

The following counterexample shows that a majority of undeclared accusers may or may not lead to the
declaration of a node. If a bad accuser is tossed out of the set of undeclared nodes then the majority may get
lost. Even worse, the opposite of its vote may be received. In other words, for property majority_declaring?
it must be good nodes that form the majority.

80 Alfons Geser and Paul S. Miner

L€ asymin.
Symimn.
v
good
r.e.
good

r.e. = receive_error

Fig. 3. A majority that is supported by a symmetric node (see Example 3)

Ezample 3. Let M = N = 3 (Figure 3). Suppose that BIU 1 is symmetric, that BIUs 2 and 3 are good, and
that BIUs have no declarations against each other. Next suppose that RMU 1 is asymmetric and trusted
by the BIUs. We do not care about the other RMUs. Now let the BIUs receive receive_error, valid(v), and
receive_error, respectively, from RMU 1 during some Interactive Consistency exchange. This has the BIUs
2 and 3 accuse RMU 1. We now show that RMU 1 is declared if and only if BIU 1 is not excluded from the
vote of the BIUs. If the RMUs receive receive_error from BIU 1, then they forward source_error to all BIUs,
so all good BIUs declare BIU 1. But then the number of votes (one) that accuse RMU 1 is not sufficient
to form a majority in the set {BIU 2,BIU 3}. So RMU 1 is not declared. However if the RMUs receive a
correct accusation vector from BIU 1 then the number of votes (two) is sufficient for a majority in the set of
all BIUs, and RMU 1 is declared.

Example 3 witnesses the strange fact that diagnosis may profit from a faulty node (BIU 1) going unde-
tected.

5 The Formal Model

The following description is intended to aid the reader in understanding the PVS proofs.

5.1 Majority Votes
Suppose that every LEFT node presents a value to our receiving node. These values form a value vector,
vu. The set of voters for a value v is defined by {i | vv(i) = v}. Some voters can be excluded from the vote
by a filter set H; only votes of members of H are counted. Now v is in the majority among H in wvwv, if
2|H N {i | vv(i) = v}| > |H|. The function majority(H, default,vv) yields this unique majority value v if it
exists, otherwise it yields the default value, default. Two value vectors are called H-similar if they agree for
nodes that are in H. Formally:

similar —vector?(H,vvy, vva) : bool = Vi : H(i) = vu1 (i) = vve (i)
The outcome of the vote agrees for similar vectors:
Lemma 1 (Majority unique).

similar _vector?(H,vvy,vva) b majority(H, default, vvr) = magjority (H, default, vvs)

If the good nodes (of one kind) agree, then the value they vote will be the majority value:

A Formal Correctness Proof of the SPIDER Diagnosis Protocol 81

Lemma 2 (Good vote for majority).

hybrid _majority_good?(H), hybrid_select?(H),
good _vote_for?(vv,v)

l_
magority (H, default,vv) = v

There is one variant of Lemma 2 per node kind. For the BIUs, hybrid_majority_good?(H) stands for |TB| >
|[SBNH|+|ABNH]|; hybrid_select?(H) denotes that 7B C H and BBNH = (). The two properties together
ensure that 2|TBN H| > |H|, i.e., the good are in the majority among H. Since the set of good nodes is a
subset of the set of nodes that vote for v, the value v will be the majority value.

5.2 Counsistent Source Exchange

In view of their role in the Interactive Consistency Protocol, we call the transmitters in a consistent source
exchange relays.
Suppose that dv denotes the vector of values sent by the relays. The function relay_data, defined by

relay_data(dv)(r)(G) : robus_data[T] = input_filter(send(G, dv(G),r)),

describes the values received at r and preprocessed by input_filter. The preprocessing replaces all unexpected
message formats, such as no_majority or source_error, by receive_error. The function elim_relays(dv, actv;)
merges actvy, the active sources vector of the receiver, with the fresh evidence obtained from the received
data vector dv: a node from which receive_error was received is accused. The function vote, defined by

vote(dv, actvy) : robus_data[T] = magjority (trusted(elim_relays(dv, actv;)), no_magority, dv),

yields the majority value among the trusted nodes if it exists, and no_majority else. The consistent source
exchange is modeled in PVS as a function

csz(dv, acty)(r) : robus_data[T] = vote(relay_data(dv)(r), actv;)

The following theorem assumes that a RIGHT node, r, trusts all good nodes; every good LEFT node
G sends a valid message dv(G); all good nodes send the same value d; the set of trusted nodes has greater
cardinality than the set of symmetric or asymmetric nodes. It says that then r determines the value d. The
active sources vector of r is denoted by actv;. The vector of data that the LEFT nodes send is given by dv.
We will abbreviate elim_relays(relay-data(dv)(r), actv;) by elim_csz_relays(dv, actv;)(r).

Theorem 1 (Validity of consistent source exchange).

good _trusting? (actv;), good_message? (dv), good —vote_for?(dv, d),

hybrid_magority_good? (trusted (elim_csz_relays(dv, actv;)(r))),
'_

csx(dv, actvy)(r) =d

Proof. relay_data has the property benign_message? and preserves the pair of properties good_message?
and good_vote_for?. Next trusted(elim_csz_relays(dv, actv;)(r)) satisfies hybrid_select?. Lemma 2 finishes
the proof.

The following lemma is crucial for the agreement theorem below. It states that if two right nodes trust
no asymmetric left node; trust the same symmetric left nodes; and receive the same data vectors, up to data
from non-trusted relays, then they will finally trust the same left nodes.

82 Alfons Geser and Paul S. Miner

Lemma 3 (Trusted agreement).

no_asymmetric? (trusted(actvyy)), no_asymmetric? (trusted(actvys)), (1)
symmetric_agreement?(actvy, actvys), similar _vector? (trusted(actv), dvy, dvs),
l_

trusted (elim_relays(dvy , actvyy)) = trusted(elim_relays(dvs, actvyz))

Proof. Let x be anode. We prove that x is trusted by the active sources vector elim_relays(dvy, actvyy) iff x is
trusted by elim_relays(dvy, actviz). If x is asymmetric then by (1), « is trusted neither by actv;; nor by actv;s.
Because elim_relays(dvy, actvy) trusts less nodes than actv; for all actv;, we get the claim. So let & be non-
asymmetric. Then by symmetric agreement, actv;; (z) = actvia(z). If actvy; trusts z, then dv, (z) = dva(2)
because dvy, dv, are trusted(act;;)-similar. It turns out that then the relays disqualified by dv;,dv, are the
same. Finally, if actv;; does not trust z, neither elim_relays(dvy, actv;y) nor elim_relays(dvy, actv;s) trusts
T.

Theorem 2 (Agreement of consistent source exchange).

good _trusting? (actv;y), good _trusting?(actv;s),

symmetric_agreement?(actv;y, actv;s), good_message?(dv),

—~~
[\
~

no_asymmetric? (trusted(actvy)) & no_asymmetric? (trusted(actvz)) OR

w
~

good _vote_for?(dv) & hybrid_majority_good? (trusted(elim_csx_relays(dv, actvyy)(r1))) & (

i
g

hybrid _majority_good? (trusted(elim_csz_relays(dv, actv;2)(rz))), (
'_

csx(dv, actvyr)(r1) = esz(dv, actvga)(r2)

Proof. By case analysis. If (2) then the vectors received by any two RIGHT nodes are similar. Lemma 3
establishes that the sets of trusted nodes agree for r; and r. Hence r; and ro will arrive at the same result
of the voting. If rather (3) and (4) hold, then esz(dv, actv;y)(r1) = dv(p) = esz(dv, actvz)(rz) for some good
LEFT p by two applications of Theorem 1.

For curiosity we mention the remarkable fact that only the most up-to-date set of trusted nodes,
elim_csz_relays(dv, actv;)(r), needs to satisfy the hybrid_magjority_good? property. This is the best behavior
one may ask for. However in favor of a simple approach we will replace this premise to the more conservative
hybrid_majority_good? (trusted(actv;))).

5.3 Single Source Broadcast and Interactive Consistency
Single source broadcast is modeled in PVS as a function
source_data(d, G)(r) : robus_data[T] = source_filter (input_filter (send (G, d,r)))
where source_filter replaces receive_error by source_error and leaves all other messages unchanged. We will
refer to the sender, G, of the broadcast as the general.

The Interactive Consistency Protocol is then summarized in the function

hom(act, actv,, G,v,p) : robus_data[T] =
IF declared?(act) THEN source_error ELSE csz(source_data(valid (v), Q), actv,)(p) ENDIF

We will abbreviate elim_csz_relays(source_data(valid(v), G), actv,., p) by elim_ic_relays(actv,., G, v,p). Inter-
active Consistency satisfies Validity and Agreement:

A Formal Correctness Proof of the SPIDER Diagnosis Protocol 83

Theorem 3 (Validity of Interactive Consistency).

hybrid_majority_good? (trusted(elim_ic_relays(actv,., G, v,p))),
good _trusting?(actv,.),
—asymmetric(G), ~declared? (act)
'_
hom(act, actv,.,G,v,p) = source_data(valid(v),G)

Proof. Each RIGHT node will get the same message, source_data(valid(v),G,r), since the general, G, is not
asymmetric. So all good RIGHT nodes vote for this message. Moreover source_data satisfies benign_source?
and preserves good_message?. The claim follows by Theorem 1.

Theorem 4 (Agreement of Interactive Consistency).

no_asymmetric? (trusted(actv,)) & no_asymmetric? (trusted(actv,2)) OR
declared?(act;) OR
—asymmetric(G) &
hybrid_majority_good? (trusted(elim_ic_relays(actv,1,G,v,p1))) &
hybrid_majority _good? (trusted(elim_ic_relays (actv,2, G, v,p2))),

good _trusting? (actv,1), good _trusting?(actv,s),

symmetric_agreement?(actv,1, actv,s),

declared?(acty) = declared?(acts)

'_

hom(acty, actv,1,G,v,p1) = hom(acts, actv,2,G,v,p2)

Proof. If the general, G, is declared by p; or by p» then it is declared by each. So hom(act1, actv,1,G,v,p1) =
source_error = hom/(acts, actvr, G,v,p2).

If G is not asymmetric, each RIGHT node will get the same message, source_data(valid(v),G,r). So
all good RIGHT nodes vote for this message. Moreover source_data satisfies benign_source? and preserves
good_message?. By Theorem 2 the claim follows.

As corollaries from Theorem 3 we get that the value sent by good nodes is indeed forwarded by all LEFTs
to their PEs; source_error is forwarded if the general is benign; and the same value, sym_send(g, valid(v)),
is forwarded if the general is undeclared and symmetric.

5.4 Accusation Exchange

Accusation Exchange is split into two parts: the reliable passing of accusation messages, and their voting.
The following PVS function provides accusation message passing:

mafer(acty, actyr, actqy)(p)(G) : robus_datalaccusation_vector _type[D]] =
hom(acty (p)(G), acty(p))(G, form_accvec(act g (G)), p)

Here every general, G, uses the Interactive Consistency Protocol to communicate its accusation vector to
every receiver, p. The accusation vector is formed from G’s active sources vector, acty(G). The receiver
node uses its active sources vector, act,;(p), to identify the trusted relays, and the trust value acty(p)(G),
to decide whether G is declared.

The received accusation vectors are then processed as follows. First the received vector of messages, one
message per LEFT node, is unpacked by unpack_vec, defined by

unpack _vec(v) : accusation_vector _type[D] =
IF wvalid(v) THEN wvalue(v) ELSE any_accusation(v) ENDIF

84 Alfons Geser and Paul S. Miner

If v is a valid message then its value, an accusation vector, can be extracted faithfully. Else we return an
arbitrary value by the uninterpreted function any_accusation(v) : accusation_vector_type[D]. A node can
declare a source from which it receives a non-valid message:

disqualified _sources(dv) : active_vector _type[L] =
AG : IF valid (dv(G)) THEN trusted ELSE declared ENDIF

This declaration set is merged with the active sources vector of the receiver:

elim_disqualified (dv, actv;) : active_vector_type[L] =

merge_active(disqualified _sources(dv), actvy)

The accusation vectors obtained from the undeclared sources form what we call the receiver’s accusation
matriz. A row being the accusation vector received from a node (the accuser), the columns form the vectors
of accusations against a node (the defendant). For each defendant, def, the receiver does a majority vote on
the column of the accusation matrix. Only the votes of undeclared nodes are counted.

court(actvy, dv) : accusation_vector _type[D] =
Adef : majority(undeclared (actv;), working)(AG : unpack_vec(dv(G))(def))

The default value of the majority vote is working, in order to implement the principle “not guilty until
proven guilty”. The full voting complex of the accusation exchange is modeled as

accz(dv, actvy, actvy) : active_vector _type[D] =

merge_active(extract_decvec(court(elim_disqualified (dv, actvy), dv)), actvg)
The complete accusation exchange is the composition of the transmission with the processing primitive:

accz_combo(acty, actyy, actq)(p) : active_vector _type[D] =

accx(mafer(acty, actyy, acta)(p), acty(p), acta(p))

Under reasonable assumptions, accusation exchange satisfies good _trusting?, symmetric_agreement?, and
declaration_agreement?. To reduce technical clutter it is useful to split the proofs into lemmas about the
components, accx and mafer. We render here only the most involved proof of the three:

Theorem 5.

hybrid _majority_good?(undeclared (elim_disqualified (dv, actvy))),
good _trusting?(actvq), good _trusting?(actv,),

good_message? (dv), benign_source?(dv), accusation_message? (dv)
l_

good _trusting?(accz (dv, actv;, actvg))

Proof. From the premises good_message?(dv), benign_source?(dv), and good_trusting?(actv;), the property
hybrid _select?(undeclared (elim_disqualified (dv, actv;))) follows. By the definitions of merge_active and of
extract_decvec, we have to prove that court associates working to each good defendant, def. So let def
be a good node. We have to show that no majority of undeclared sources accuses def. By the premise
accusation_message?(dv), all good LEFT nodes agree in that def is working. By Lemma 2 the claim follows.

Given hybrid_majority_good?(trusted(act, (p))), good_trusting?(acty(p)), good_trusting?(act.(p)), and
good?(@), the result of mzfer satisfies good_message?, benign_source?, and accusation_message?. So we may
conclude:

A Formal Correctness Proof of the SPIDER Diagnosis Protocol 85

Theorem 6.

hybrid_majority _good? (undeclared(elim_disqualified (dv, acty (p)))),
hybrid _majority_good? (trusted(act,;(p))),
good _trusting?(act 41 (p)), good _trusting? (act; (p))

l_

good _trusting? (accx -combo(acty, act,y, actvg)(p))

5.5 Like Accusation Exchange

The exchange of accusation against unlike nodes is exactly what we have just sketched. Exchange of accusa-
tion against like nodes has the additional Step 3. We model it by a merge of the accusation exchange with
the new evidence.

accx_combo_like(acty, acty)(p) : active_vector _type[L] =
merge_active(merge_active(disq_combo(acty, act,;, acty)(p),
disq_combo(acty, act,;, act,;)(p)),

accx_combo(acty, actyy, acty)(p))

The active sources vector disq_combo(acty, acty, acty)(p) expresses the declarations uttered against the
generals from which source_error was received during the accusation exchange against LEFT (i.e., like)
nodes. Similar declarations can be made during the accusation exchange against RIGHT nodes, yielding
disq_combo(acty, act,, act,;)(p). The two active sources vectors are merged to the accxz_combo result.

It is straightforward to show that this merge preserves all properties claimed for accx_combo. So these
properties also hold for accx_combo_like.

5.6 Declaration Exchange

The reliable transfer of the declarations to the opposite kind of nodes is done by a consistent source exchange.
Each node, G, sends its vector of declarations against defendant nodes to all unlike nodes, 7.

declzfer (actqr, actyy)(r) : robus_datalaccusation_vector _type[D]] =
esz(AG : valid(form_decvec(actq (G))), actyy(r))(r)

Theorems 1 and 2 provide validity and agreement of declzfer. The received message, d, containing a decla-
ration vector, is unpacked and merged with the local active sources vector:

get_convictions(d, actvq) : active_vector _type[D] =

merge_active(extract_decvec(unpack_vec(d)), actv 4)

It is easy to prove that the properties symmetric_agreement?, declaration_agreement?, and benign_declaring?
are preserved by get_convictions with a fixed argument d.

Conclusion

We have provided a complete formal model of two of SPIDER’s protocols: Interactive Consistency and
Diagnosis. We have given formal proofs in PVS that under the Dynamic Fault Assumption and the Correct
Active Sources Assumption, Interactive Consistency satisfies Validity and Agreement, and that Diagnosis
preserves the Dynamic Fault Assumption and the Correct Active Sources Assumption and moreover is able
to declare some faulty nodes.

The design effort and the parallel Formal Verification effort showed a remarkable cross-fertilization. The
symmetric_agreement? property was first introduced as a fix to the formal verification. Later it turned out to

86 Alfons Geser and Paul S. Miner

be an essential premise. Considerations for readmission of transiently faulty nodes showed that Step 2 in the
Interactive Consistency Protocol effectively prevented a recovering node from ever being readmitted. The
ensuing redesign uncovered the potential to straighten the PVS code of the Interactive Consistency Protocol.
That in turn lead to the presentation of Interactive Consistency as a combination of single source broadcast
and consistent source exchange, the latter being reused for declaration exchange. The discovery that the
Maximum Fault Assumption was unsuitable for readmission led to a complete redesign that culminated in
the failure of agreement of Interactive Consistency and the recognized need for Step 5.

Probably the most important lesson that we can draw is the following: If our conjecture that all accusa-
tions against like nodes may be turned into declarations turns out true, then the Diagnosis Protocol can be
simplified. The accused value for trust values against like nodes, and the exchange of accusations against like
nodes can be scrapped. This saves N x N + M x M register bits and half the bandwidth of the accusation
exchange.

References

1. Patrick Lincoln and John Rushby. Formal verification of an interactive consistency algorithm for the Draper
FTP architecture under a hybrid fault model. In COMPASS 94 (Proceedings of the Ninth Annual Conference on
Computer Assurance), pages 107-120, Gaithersburg, MD, June 1994. IEEE Washington Section.

2. Paul S. Miner, Mahyar Malekpour, and Wilfredo Torres-Pomales. Conceptual design of a Reliable Optical BUS
(ROBUS). In Digital Avionics Systems Conference DASC, October 2002. To Appear.

3. Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal verification for fault-tolerant
architectures: Prolegomena to the design of PVS. IEEE Transactions on Software Engineering, 21(2):107-125,
February 1995.

4. John Rushby. Systematic formal verification for fault-tolerant time-triggered algorithms. IEEE Transactions on
Software Engineering, 25(5):651-660, September/October 1999.

5. John Rushby. A comparison of bus architectures for safety-critical embedded systems. Technical re-
port, Computer Science Laboratory, SRI International, Menlo Park, CA, September 2001. Available at
http://www.csl.sri.com/~rushby/abstracts/buscompare.

6. T. Basil Smith. Fault tolerant processor concepts and operations. In Fault Tolerant Computing Symposium 14,
pages 158-163. IEEE Computer Society, 1984.

7. Philip Thambidurai and You-Keun Park. Interactive consistency with multiple failure modes. In 7th Reliable
Distributed Systems Symposium, pages 1-8, October 1988.

8. C. J. Walter, R. M. Kieckhafer, and A. M. Finn. MAFT: A multicomputer architecture for fault-tolerance in
real-time control systems. In IEEE Real-Time Systems Symposium, December 1985.

9. Chris J. Walter, Patrick Lincoln, and Neeraj Suri. Formally verified on-line diagnosis. IEEE Transactions on
Software Engineering, 23(11):684-721, November 1997.

Using HOL to Study Sugar 2.0 Semantics

Michael J. C. Gordon

University of Cambridge Computer Laboratory
William Gates Building, JJ Thomson Avenue, Cambridge CB3 0FD, U.K.
mjcg@cl.cam.ac.uk
http://www.cl.cam.ac.uk/ mjcg

Abstract. The Accellera standards-promoting organisation selected Sugar 2.0, IBM’s formal specifi-
cation language, as a standard that it says “will drive assertion-based verification”. Sugar 2.0 combines
aspects of Interval Temporal Logic (ITL), Linear Temporal Logic (LTL) and Computation Tree Logic
(CTL) into a property language suitable for both formal verification and use with simulation test
benches. As industrial strength languages go it is remarkably elegant, consisting of a small kernel
conservatively extended by numerous definitions or ‘syntactic sugar’ (hence the name).

We are constructing a semantic embedding of Sugar 2.0 in the version of higher order logic supported
by the HOL system. To ‘sanity check’ the semantics we tried to prove some simple properties and as
a result a few small bugs were discovered. We hope eventually to obtain a formal semantics that, with
high confidence, matches the official ‘golden’ semantics issued by Accellera.

We are contemplating a variety of applications of the semantics, including building a semantics-directed
Sugar model checker inside HOL. We also hope to investigate generating checkers by executing proof
scripts that rewrite the semantics of particular constructs into an executable form. In the longer term
we want to investigate the use of theorem proving to reason about models with infinite state spaces,
which might involve developing extensions of Sugar 2.0.

1 Background on Accellera and Sugar

The Accellera organisation’s website has their mission statement:

Faced with several syntactically and semantically incompatible formal property languages, Accellera initiated

To improve designers’ productivity, the electronic design industry needs a methodology based on
both worldwide standards and open interfaces. Accellera was formed in 2000 through the unifica-
tion of Open Verilog International and VHDL International to focus on identifying new standards,
development of standards and formats, and to foster the adoption of new methodologies.
Accellera’s mission is to drive worldwide development and use of standards required by systems, semi-
conductor and design tools companies, which enhance a language-based design automation process.
Its Board of Directors guides all the operations and activities of the organisation and is comprised
of representatives from ASIC manufacturers, systems companies and design tool vendors.

a process of selecting a standard property language to “drive assertion-based verification”.

Four contributions were initially considered

After a combination of discussion and voting, some details of which can be viewed on the web!, attention
was narrowed down to Sugar and CBV, and then in April 2002 a vote? selected IBM’s submission, Sugar 2.0.
Sugar 2.0 is primarily an LTL-based language that is a successor to the CTL-based Sugar I [1]. A key idea
of both languages is the use of ITL-like [4] constructs called Sugar Eztended Regular Ezpressions. Sugar 2.0

Motorola’s CBV language;

IBM’s Sugar (the language of its RuleBase FV toolset);

Intel’s ForSpec;

Verisity’s e language (the language of the Specman Elite test-bench).

! http://www.eda.org/vfv/hm/
% http://www.eda.org/vfv/hm/0795.html

88 Mike Gordon

retains CTL constructs in its Optional Branching Extension (OBE), but this is de-emphasised in the defining
document.

Besides moving from CTL to LTL, Sugar 2.0 supports clocking and finite paths. Clocking allows one to specify
on which clock edges signals are sampled. The finite path semantics allows properties to be interpreted on
simulation runs, as in test-bench tools like Vera and Specman?

The addition of clocking and finite path semantics makes the Sugar 2.0 semantics more than twice as
complicated as the Sugar I semantics. However, for a real ‘industry standard’ language Sugar 2.0 is still
remarkably simple, and it was routine to define the abstract syntax and semantics of the whole language in
the logic of the HOL system [3].

In Section 2 we discuss the point of embedding Sugar in HOL. In Section 3, semantic embedding is reviewed
and illustrated on simplified semantics of fragments of Sugar 2.0. In Section 4, the semantics of full Sugar 2.0
is discussed, including finite paths and clocking. Due to space limitations, the complete semantics of Sugar 2.0
is not given here, but can be found on the web.* In Section 5, progress so far in analysing the semantics
using the HOL system is discussed. Finally, there is a short section of conclusions.

2 Why embed Sugar in HOL?

There are several justifications for the work described here. This project started in April 2002 and its goals
are still being defined. Current motivations include the following.

2.1 Sanity checking and proving meta-theorems

By formalising the semantics and passing it through a parser and type-checker one achieves a first level
of sanity checking of the definition. One also exposes possible ambiguities, fuzzy corner cases etc (e.g. see
Section 4.2). The process is also very educational for the formaliser and a good learning exercise.

There are a number of meta-theorems one might expect to be true, and proving them with a theorem
prover provides a further and deeper kind of sanity checking. In the case of Sugar 2.0, such meta-theorems
include showing that expected simplifications to the semantics occur if there is no non-trivial clocking, that
different semantics of clocking are equivalent and that if finite paths are ignored then the standard ‘text-book
semantics’ results. Such meta-theorems are generally mathematically shallow, but full of tedious details —
i.e. ideal for automated theorem proving. See Section 5 for what we have proved so far.

2.2 Validating definitional extensions

A key feature of the Sugar approach — indeed the feature from which the name “Sugar” is derived — is to
have a minimal kernel augmented with a large number of definitions — i.e. syntactic sugar — to enhance the
usability (but not the expressive power) of the language.

The definitions can be validated by proving that they achieve the correct semantics. See the end of Section 5.3
for some examples.

2.3 Machine processable semantics

The current Sugar 2.0 document is admirably clear, but it is informal mathematics presented as typeset
text. Tool developers could benefit from a machine readable version. One might think of using some standard
representation of mathematical content, like MathML?®, however there is currently not much mathematically
sophisticated tool support for such XML-based representations. See the end of Section 5.4 for a bit more
discussion.

Higher order logic is a widely used formalisation medium (versions of higher order logic are used by HOL,
Isabelle/HOL, PVS, NuPrl and Coq) and the semantic embedding of model-checkable logics in HOL is
standard [6,5]. Once one has a representation in higher order logic, then representations in other formats
should be straightforward to derive.

3 There is a ‘Sugar2e’ tool available from NoBug Consulting.
* http://www.cl.cam.ac.uk/ mjcg/Sugar/
® http://www.w3.org/Math/

Using HOL to Study Sugar 2.0 Semantics 89

2.4 Basis for research

We hope to develop semantically-based reasoning and checking infrastructure in HOL to support Sugar 2.0,
and a prerequisite for this is to have a ‘golden semantics’ to which application-specific semantics can be
proved equivalent.

We are interested in the development of property languages that support data operations and variables rang-
ing over infinite data-types like numbers (e.g. including reals and complex numbers for DSP applications).
Some sort of mixture of Hoare Logic and Sugar 2.0 is being contemplated. Incrementally developing con-
structs by extending an existing semantics of Sugar 2.0 is a way to ensure some backward compatibility with
industry-standard language. Also, we might wish to prove sanity checking meta-theorem about our extended
language, e.g. that it collapses to Sugar 2.0 when there are no infinite types.

Sugar 2.0 is explicitly designed for use with simulation as well as formal verification. We are interested
in using the HOL platform to experiment with combinations of execution, checking and theorem-proving.
To this end we are thinking about implementing tools to transform properties stated in Sugar to checking
automata. This is inspired by IBM’s FoCs project®, but uses compilation by theorem proving to ensure
semantic equivalence between the executable checker and the source property.

2.5 Education

Both semantic embedding and property specification are taught as part of the Computer Science undergrad-
uate course at Cambridge University, and being able to illustrate the ideas on a real example like Sugar 2.0
is pedagogically valuable. Teaching an industrial property language nicely complements and motivates aca-
demic languages like ITL, LTL and CTL.

The semantic embedding of Sugar 2.0 in the HOL system is an interesting case study. It illustrates some
issues in making total functional definitions, and the formal challenges attempted so far provide insight into
how to perform structural induction using the built-in tools. Thus Sugar 2.0 has educational potential for
training HOL users. In fact, the semantics described in this paper is an example distributed with HOL.”

3 Review of semantic embedding in higher order logic

Higher order logic is an extension of first-order predicate calculus that allows quantification over functions
and relations. It is a natural notation for formalising informal set theoretic specifications (indeed, it is usually
more natural than formal first-order set theories, like ZF). We hope that the HOL notation we use in what
follows is sufficiently close to standard informal mathematics that it needs no systematic explanation.

We use Church’s A-notation for denoting functions: a ‘lambda-term’ like Az. ¢, where z is a variable and
t a term, denotes the function that maps a value v to the result of substituting v for the variable x in ¢
(the infix notation z — ¢ is sometimes used instead of Az. t). If P is a function that returns a truth-value
(i.e. a predicate), then P can be thought of a set, and we write x € P to mean P(z) is true. Note that
Az. ---x--- corresponds to the set abstraction {z | ---z---}. We write Vz € P. Q(z), 3z € P. Q(z) to mean
Vz. P(x) = Q(x), 3z. P(z) A Q(x), respectively.

To embed?® a language in HOL one first defines constructors for all the syntactic constructs of the language.
This is the ‘abstract syntax’ and provides a representation of parse trees as terms in the logic. The semantics
is then specified by defining a semantic function that recursively maps each construct to a representation of
its meaning.

For Sugar 2.0, a model M is a quintuple (Sy, SoM, RM, PM,Lm), where Sy is a set of states, Sy is the subset of
initial states, Ry is a transition relation (so Ry(s,s’) means s’ is a possible successor state to s), Py is a set
of atomic propositions, and Ly is a valuation that maps a state to the set of atomic propositions that hold
at the state (so Ly s p is true iff atomic proposition p is true in state s).

6 http://www.haifa.il.ibm.com /projects/verification /focs/
" http://cvs.sourceforge.net/cgi-bin/viewcys.cgi/hol /hol98/examples/Sugar2/
8 We shall only be concerned with so called ‘deep embeddings’ here [2].

90 Mike Gordon

3.1 Boolean expressions in Sugar

The syntax of boolean expressions (ranged over by b, by, bs etc.) is built from atomic propositions (ranged
over by p) using negation (—) and conjunction (A):

b:u=p (Atomic formula)
| =b (Negation)
| b1 A bz (Conjunction)

This is defined in HOL by a recursive type definition of a type that represents the syntax of boolean
expressions. Other boolean expressions are added via definitions (e.g. see Section 5.3 for the definition of
disjunction: by V by).

Let 1 range over predicates on Py, called “truth assignments” in the Sugar documentation. The semantics
of boolean expressions is given by defining a semantic function B_SEM such that B_SEM M 1 b if true iff b is
built from propositions in Py and it is true with respect to the truth assignment 1.

If we write (M, 1 = D) for B.SEM M 1 b then the semantics is given by

(M, 1 = p) =pEPyAPELD
A

(M, 1 E T =)

A

(M, L E -b) =M, 1 b))

A
(M, 1 EblADB2) = (M, 1 = b1) A (M, 1 | b2))

Note that the symbol A is overloaded: the first occurrence in the equation above is part of the boolean
expression syntax of Sugar, but the second occurrence is higher order logic.

Before looking at the full semantics of Sugar 2.0, we first consider a simplified semantics in which there is
no clocking, and paths are always infinite. We consider separately the parts of Sugar 2.0 corresponding to
Interval Temporal Logic (ITL), Linear Temporal Logic (LTL) and Computation Tree Logic (CTL).

3.2 ITL: Sugar Extended Regular Expressions (SEREs)

Interval Temporal Logic (ITL) provides formulas that are true or false of intervals of states. Here we just
consider finite intervals, though recent formulations of ITL? allow intervals to be infinite. For Sugar we only
need to consider ITL formulas, as there are no constructs corresponding to ITL expressions (expressions map
intervals to values). Providing more elaborate ITL constructs in Sugar strikes us as an interesting research
topic.

The Sugar subset corresponding to ITL is called Sugar Extended Regular Ezpressions (SEREs). If r, ry, ro
etc. range over SEREs and p ranges over the set Py of atomic propositions, then the syntax is given by:

(Atomic formula)
(Disjunction)

(Concatenation)

(Fusion: ITL’s chop)

(Length matching conjunction)

(Flexible matching conjunction)

(Repeat)

The semantics of SEREs is given by defining a semantic function S_SEM such that S_SEM M w r if true iff w is
in the language of the extended regular expression r. We write (M, w |= r) for S.SEM M w r.

If wlist is a list of lists then Concat wlist is the concatenation of the lists in wlist and if P is some
predicate then Every P wlist means that P(w) holds for every w in wlist.

The semantics S_.SEM M w r is defined in HOL by recursion on r.

9 http://www.cms.dmu.ac.uk/ cau/itlhomepage/

Using HOL to Study Sugar 2.0 Semantics 91

(M, w £ b) =
. w=0D A M 1FE b))
A
(M, w E rl;r2) =
Jul w2, (w=wiw2) A M, w1 |= r1) A (M, w2 | r2))
A

(M, w E ri:r2) =
dwl w2 1. (w = wi[1l]lw2) A
M, willl) E r1) A M, ([1]1w2) E r2))

A
(M, w E {ri}l{r2}) =
M, w E r1) VM w E r2)
A
(M, w E {ri}&&{r2}) =
M, w E r1) A(M, w E r2))
A
(M, w = {r1}&{r2})
Jwl w2. (w = wiw2) A
(M, w F r1) A (M, w1l E r2))
V
(M, w F r2) A (M, wi | r1))))

A
(M, w E r[x]) =
Julist. (w = Concat wlist) A Every (Aw. (M, w | 1)) wlist)

This definition is manifestly primitive-recursive, and so is automatically proved total by HOL [7]. The
intuitive semantics of SERE’s is explained in the Sugar 2.0 documentation [8].

3.3 LTL: Sugar Foundation Language (FL)

Sugar 2.0 has a kernel combining standard LTL notation with a less standard abort operation and some
constructs using SEREs. The suffix “!” found on some constructs indicates that these are ‘strong’ (i.e.
liveness-enforcing) operators. The distinction between strong and weak operators is discussed and motivated
in the Sugar 2.0 literature (e.g. [9, Section 4.11]).

fu=p (Atomic formula)
| —f (Negation)
| £1 A £ (Conjunction)
| XIf (Successor)
| [£1 U £2] (Until)
| {r}(£) (Suffix implication)
| {r1} 1-> {r2}! (Strong suffix implication)
| {r1} 1-> {r2} (Weak suffix implication)
| £ abort b (Abort)

Numerous additional notations are introduced as syntactic sugar. These are easily formalised as definitions
in HOL. Some examples are given in Section 5.3.

Being LTL, the semantics of FL formulas is defined with respect to a path 7, which (in the simplified
semantics here) is a function from the natural numbers to states.

We define a semantic function F_SEM such that F_SEM M = £ means FL formula £ is true of path 7. We write
(M, 7 = r)for FSEMM 7 f.

Note that in the semantics below it is not assumed that paths 7 are necessarily computations of M (i.e. satisfy
Path M =, as defined in Section 3.4). This is important for the abort construct (where the 37’ quantifies
over all paths).

92 Mike Gordon

The notation m; denotes the i-th state in the path (i.e. 7(i)); 7% denotes the ‘i-th tail’ of 7 — the path obtained
by chopping i elements off the front of 7 (i.e. 7 = An. w(n+i)); 7(#9) denotes the finite sequence of states
from i to j in 7, i.e. mmiq1 - - - ;. The juxtaposition 7(b) 7! denotes the path obtained by concatenating the
finite sequence 7(»7) on to the front of the path ='.

The function Ly denotes the point-wise extension of Ly to finite sequences of states (i.e. MAP Ly in HOL and
functional programming notation).

The definition of F_.SEM M 7 £ is by recursion on f.

(M, 7 = b) = (M, Ly(m) | b))

A

(M, 7 | —-f) =M, 7 = £))

A

(M, 7 E fIAf2) =M, # E f1) A M, 7 = £2))
A

(M, = E X1f) =, ot E 1))

A

(M, 7 = [f1 U £2]) =

Jk. (M, 7 E £2) AVj. j<k=> M 7 E £1))
A
(@, 7 = {r}() =
Vi, M, Ly (@) E) = M, @ E £))
A
(M, 7 E {ri}l->{r2}") =
Vi. (M, (L (7)) | r1)
= Jk. j <k A @M Ty (#z09) = r2)
A
(M, 7 E {r1i}l->{r2}) =
Vi. , (Lx (n©V)) E r1)
= (Fkx. j <k AWM By (#09) = r2)

V
Vk. j <k = Ju. M, Ty #09)w = r2))
A
(M, 7 | £ abort b) =
(M, = = £)

\Y

Jjrr. M, 7 = b)) A M, 7%V o))

In this semantics, paths 7 are infinite, as in the classical semantics of LTL for model checking. A version
that also handles finite paths, suitable for evaluation on simulation runs, is given in Section 4.2.

3.4 CTL: Sugar Optional Branching Extension (OBE)

The syntax of the Sugar 2.0 OBE is completely standard. The syntax of the OBE formulas is:

fu=p (Atom)
| —f (Negation)
| £1 A £ (Conjunction)
| EX£ (Some successors)
| E[f; U £,] (Until — along some path)
| EGf (Always on some path)

For the semantics, define Path M 7 to be true iff 7 is a computation of M:

Using HOL to Study Sugar 2.0 Semantics 93

Path M 7 = Vn. Ry (mps Tnt1)

The semantic function 0_SEM is defined so that 0_.SEM M s f is true iff £ is true of M at state s. Write
(M, s = f) for 0_SEM M s £, which is defined by recursion on f by:

(M, s | b) = (M, Ly(s) E b))

A

(M, s | ~f) = -, s | £))

N

(M, s |= f1A£2) = (M, s E £1) A (M, s E £2))
A

((M, s |= EX £)
Ir. Path M 7w A (mp =8) A (M, m E £))

A

(M, s |= [f1 U £2]) =
dr. Path M @ A (mg = 8) A

A

(QM, s | EG £) =
Ir. Path M @ A (mp = 8) AVj. (M, m |= £))

4 Full Sugar 2.0 semantics in higher order logic

The full Sugar 2.0 language extends the constructs described above with the addition of clocking and support
for finite paths.

The clocking constructs allow (possibly multiple) clocks to be declared, see Section 4.1. Clocks define when
signals are sampled, so the next value of a signal s with respect to a clock c is the value of s at the next
rising edge of !c.

Simulators compute finite executions of a model, so to support checking whether a property holds over such
a simulation run, Sugar 2.0 defines the meaning of each construct on both finite and infinite paths.

Adding clocks and finite paths greatly complicates the language, though it is still surprisingly elegant.

We have formalised the full semantics of Sugar 2.0 via a deep embedding in higher order logic. Correspond-
ing to Appendix A.1 of the Sugar 2.0 specification submitted to Accellera [9] we have defined types bexp,
sere, f1 and obe in the HOL logic to represent the syntax of Boolean Expressions, Sugar Extended Reg-
ular Expressions (SEREs), formulas of the Sugar Foundation Language (FL) and formulas of the Optional
Branching Extension (OBE), respectively.

Corresponding to Appendix A.2 of the Sugar documentation we have defined semantic functions B_SEM, S_SEM,
F_SEM and 0_SEM that interpret boolean expressions, SEREs, FL formulas and OBE formulas, respectively.
Due to space constraints we do not give the semantics here, but full details are available on the web at:

http://www.cl.cam.ac.uk/ mjcg/Sugar

The semantics is evolving and we hope to keep the HOL version up to date with respect to the official version.
In the next two sub-sections we discuss clocking and finite paths.

4.1 Clocking

If b is a boolean expression, then the SERE b@c recognises a sequence of states in which b is true on the
next rising edge of c. Thus b@c behaves like {=c[*]; c A b}.

More generally, if r is a SERE and c a variable then r@c is a SERE in which all variables inside r are clocked
with respect to the rising edges of c.

The semantics of clocked SEREs can be given in two ways:

94 Mike Gordon

1. by making a clocking context part of the semantic function, i.e. defining (M, w |§ r) instead of the
unclocked (M, w = r);
2. by translating clocked SEREs into unclocked SEREs using rewriting rules.

With the first approach (1), which is taken as the definition in the Accellera report, one defines

M, w |§ b) =

dn. n > 1 A
(length w = n) N
(Vi. 1 <iAi<n= M wi; E -c) A

(Ma Wn—1 |: cAb)

1
M, w |§ recl) = (M, w |§ r)
together with equations like those in Section 3.2, but with |§ replacing |=. Notice that an inner clock overrides
an outer clock (i.e. c1 is used to clock variables inside r in r@cl: the clock context c is overridden by c1
inside r).

The second approach (2) is to translate clocked SEREs to unclocked SEREs using rewrites

~—

b@c — {-cl*]; cAD}
{r1;r2}ec — {riec};{r2ec}
{ri:r2}ec — {riec}:{r2ec}
{{r1}l{r2}}6c — {riec}|{r2ec}
{{r1}&&{r2}}ec — {ri1ec}&&{r2ec}
{{r1}&{r2}}ec — {riec}&{r2ec}
rlx]ec — {rec}[*]
r@cl@c — rl@cl

these rewrites cannot be taken as equational definitions, but need to be applied from the outside in: e.g. one
must rewrite b@c1@c to b@cl (eliminating c¢) rather than rewriting the sub-term b@c1 first, resulting in
{—c1[*]; c1Ab}@c. We have proved the two semantics for clocking SEREs are equivalent, see Section 5.3.

One can also clock formulas, f@c, and there may be several clocks. Consider:!?
G(req-in -> X!(req-out@cb))Qca

this means that the entire formula is clocked on clock ca, except that signal req_out is clocked on cb. Clocks
do not ‘accumulate’, so the signal req-out is only clocked by cb, not by both clocks. Thus cb ‘protects’

req-out from the main clock, ca, i.e.:
req-out@cb@ca = req_out@cb

As with the clocking of SEREs, this meaning of clocking prevents us simply defining:
reqout@cb = [-cb U (cb A req-out)]

since if this were the definition of req_out@cb then we would be forced to have:
req_out@cb@ca = [-cb U (cb A req.out)]@ca

when we actually want
req-out@cb@ca = req_out@cb

Thus, as with SEREs, we cannot just rewrite away clocking constructs using equational reasoning, but if
one starts at the outside and works inwards, then one can systematically compile away clocking. The rules
for doing this are given in the Sugar 2.0 Accellera documentation as part of the implementation of formal
verification [9, Appendix B.1]. We are currently in the process of trying to validate the clocking rewrites, see
Section 5.3.

10 The discussion of clocking here is based on email communication with Cindy Eisner.

Using HOL to Study Sugar 2.0 Semantics 95

The official semantics uses the approach — like (1) above — of having the currently active clock as an argument
to the semantic function for formulas. In fact two semantics are given: one for ‘weak’ clocking and one for
‘strong’ clocking. The weak clocking is specified in HOL by defining

C
M, ™ = f)
and the strong clocking by defining
!
7)

We shall not give the complete semantics here (they are available on the web), but just show the semantics
of boolean expressions b:

(a, « E b) =
~ . T
vieplw. (M, (Ly («(®V)) |E —clxI50) = (M, Lu(m) | b))
This says that if there is a first rising edge of c at time i, then b is true at i.
]
(a, © £ b) =
~ . T
Jdieplm. (M, (Ly (71—(071))) E —cl*l;c) A (M, Ly(m) E b))

This says that there is a first rising edge, and if it occurs at time i, then b is true at i.

Thus the strongly clocked semantics assumes the clock is ‘live’, but the weakly clocked semantics doesn’t
(compare the concepts of total and partial correctness).

4.2 Finite paths

Sugar 2.0 gives a semantics to formulas for both finite and infinite paths. To represent this, we model a path
as being either a non-empty'! finite list of states or a function from natural numbers to states and define a
predicate finite to test if a path is a finite list. The function length gives the length of a finite path (it is
not defined on paths for which finite is not true).
We interpret the official semantics locution
“for every j < length(m): --+ j -7
as meaning
“for every j: (finite 7 implies j < length 7) implies --- j ---
and we interpret the official semantics locution
“there exists j < length(m) s.t. -+- j -7
as meaning
“there exists j s.t. (finite 7 implies j < length n) and --- j ---”
Define pl 7 n to mean that if 7 is finite then n is less than the length of 7, i.e. the predicate pl is defined by
plmn = finitem = n <lengthw
We can then write “Vi € pl @, --- 4 ---” and “di € pl 7. --- ¢ ---” for the locutions above. The name “pl”
is short for “path length”

Here is a version of the unclocked FL semantics that allows paths to be finite.

(M, 7 | b) = (M, Lu(mo) & b))

A

(M, © | —f) = =M, 7 E £))

A

(M, 7 | f1A£2) = (M, 7 | f1) A (M, 7 | £2))
A

(M, 7 | X'f) =pl a1 A M 7t E £))

' The need for finite paths to be non-empty arose when trying to prove some properties. This requirement does not
seem to be explicit in the Accellera specification.

96 Mike Gordon

A
(M, = = [f1 U £2]) =

Jk eplm.

M, 7% = f2) AVjeplm. j <k = (M, ©3 E f1))
A
(M, m = {r}(£) =

Vieplm. (M, (fy (z®)) | r) = M, @ = £))
A
(M, 7 E {ri}l->{r2}") =

Vieplm. (M, (Ly (#®V)) E r1)

= Jkeplm. j <k A @ (fy (z39)) = r2)

A
(M, = E A{ri}l->{r2}) =

Vjepla. (M, (Ly («(®9)) E r1)

= (Gkeplm. j <k A (M (Ly (#09)) E r2))
Vv
Veeplm. j <k = Ju. (M, (fy (z0¥))w = r2))

A
(M, 7 | £ abort b) =

(M, = E £)

Vv

dj eplm.

0<jAIm. M m E b) AWM 703 Y7 = £)))

This semantics has evolved from an existing unpublished semantics*? of unclocked FL formulas.

5 Progress on analysing the semantics

We have established a number of properties of the semantics using the HOL system. Some of these went
through first time without any problems, but others revealed bugs both in the Sugar 2.0 semantics and
original HOL representation of the semantics.

5.1 Characterising adjacent rising edges

Define:

FirstRise M 7 ¢ i = (M, (g (7©@D)) E —c[x];c)
M, (B (709)) B clxlse)

NextRise M 7 ¢ (i,j)

The right hand sides of these definition occur in the Sugar 2.0 semantics. We have proved that the definitions
of FirstRise and NextRise give them the correct meaning, namely FirstRise M 7 ¢ 1i is true iff i is the
time of the first rising edge of ¢, and NextRise M 7w ¢ (i,]j) is true iff j is the time of the first rising edge
of c after i.

F FirstRise Mmc i =
(Vi- 3 <i = (M Lu(m;) Ec)) A (M, Lu(mi) | c)

Fi<]
=
(NextRise M7 c (i,j) =
(Vk. i <kAk<j = (M, Ly(m) Fc)) A (M, Lu(m;) = <))

!2 Personal communication from Cindy Eisner.

Using HOL to Study Sugar 2.0 Semantics 97

The proof of these were essentially routine, though quite a bit more tricky than expected. Immediate corol-
laries are

F FirstRise M7 T i = (1 =0)
F i<j = (NextRise M7 T (i,j) = (i=3j))

5.2 Relating the clocked and unclocked semantics
If we define ClockFree r to mean that r contains no clocking constructs (a simple recursion over the syntax
of SEREs), then clocking with T is equivalent to the unclocked SERE semantics.
T
F Vr.ClockFreer = (M, w = r) = (M, w F 1))

The proof of this is an easy structural induction, and shows that when the clock is T, the clocked semantics
of SEREs collapses to the semantics in Section 3.2.

We tried to prove a similar result for FL formulas, but at first this turned out to be impossible. The reason
was that the proof required first showing

!
Ve (M7 = f) = 4 7 B)
However, the original semantics had the following:

|
M, 7 £ b) = Ji. FirstRise M 7 ¢ i A (M, Ly(m) = b)

M, © £ b) = 3i. FirstRise M 7 ¢ i = (M, Ly(m) | b)
Instantiating c to T and using the corollary about FirstRise yields

M, = g! b)

Ji. (i=0) A (M, Ly(m) = b)
M, 7 E b)) = 3i. (1=0) = O, Lu(ms) = b)

T T!
With this, clearly (M, 7 |= D) is not equal to (M, 7 | b). The solution, suggested by Cindy Eisner, is to
replace the weak semantics by

M, m |g b) = Vi. FirstRise M 7 ¢ i = (M, Ly(mi) E b)

so that we get

M, B b) = 3i. (1=0) A (M, Ly(m) E b)
m, 7 g b) = Vi. (i=0) = (M, Ly(mi) = b)

!
which makes (M, = IE b) equal to (M, 7 IE b). The same change of 3 to V is also needed for the semantics of

weak clocking for £1 A £2, X! £, {r}(£), {r1}|->{r2} and £ abort b. With these changes, we used structural

induction to prove:'3

FVEm Mo B of) = Mo B f)

However, we were still unable to prove

F Vi.ClockFree f = ((M, w g f) = (M, 7 E 1))

where here ClockFree f means that £ contains no clocked FL formulas or SEREs. The proof attempt failed
because the unclocked semantics for [£1 U £2] had a path length check, but the strongly clocked semantics
didn’t. After restricting the quantification of a variable in the strongly clocked semantics to values satisfying
pl m, the proof went through.

13 See Section 5.4 for further developments!

98 Mike Gordon

5.3 Validating the clock implementation rewriting rules
As discussed in Section 4.1, the semantics of clocked SEREs and formulas can be given in two ways:

]
1. by defining |§ and, for formulas, |§ ;

2. by translating away clocking constructs r@c, f@c and f@c! using rewrites, then using the unclocked
semantics .

The representation in HOL of the direct semantics (1) has already been discussed.

The definition of the translation (2) in HOL is straightforward: one just defines recursive functions SClockImp,
that takes a clock and a SERE and returns a SERE, and FClockImp that takes a clock context and a formula
and returns a formula. Thus roughly!'*

SClockImp : clock — sere — sere
FClockImp : clock — fl1 — fl

We can then attempt to prove that
FVrwe (M, w 'g r) = (M, w = SClockComp c r)

which turns out to be a routine proof by structural induction on r. However, the results for formulas
FVErec (M, n |§ f) = (M, 7 | FClockComp c f)
FVirc (M, n |§I f) = (M, 7 | FClockComp c! f)

are harder, and we have not yet finished proving these (as of 5 July 2002). To see the complexity involved
consider the rewrite for weakly clocked conjunctions [9, page 67]:

(f1 A £f2)6c — [-c W (c A (fl@c A f2@c))]

where W is the ‘weak until’ operator which is part of the definitional extension (i.e. syntactic sugar) defined
as part of Sugar 2.0, namely:

[(f1 w f2] = [f1 U £2] VvV G f1
where U is a primitive (part of the kernel) but V and G are defined by:
f1 VvV f2 = —(=f1 A —f2)
G T = —F(—f)
and F is defined by
Ff = [TUIf£]
Let us define

FClockCorrect Mf = (Vmc. (M, 7 |§ f)

A
!
(Vme (M, w |§ f) = (M, 7 |= FClockComp c! f))

(M, 7 |= FClockComp c f))

It is relatively straightforward to prove the cases for boolean formulas b and negations —f, namely:

F VM. FClockCorrect M b
F VM f. FClockCorrect M f = FClockCorrect M (—f)

For formula conjunction we want to prove:
VM f1 £2. FClockCorrect M f1 A FClockCorrect M f2 = FClockCorrect M (f1 A £2)

where the first A is in higher order logic and the one in £1 A £2 is part of the Sugar formula syntax.

14 We are glossing over details here, like what the type clock exactly is.

Using HOL to Study Sugar 2.0 Semantics 99
We got bogged down in details when we tried to prove this directly, so we first established some lemmas
about V and the unclocked semantics of the defined operators W, G and F.
F M 7 = f1VE2) = M, « = £f1) VvV M, © = £2)
F M, 7 = Ff) = Jieplm. (M, 7+ |= £)
F M 7 = Gf) = Vieplm. (M, 7+ |= f)
F M, = = G£f) = 3Jie€plm.
-
-

M, 7 —f)
M, 7 | Gf) = Jieplm. (M, 7t £ —f) A Vjeplm j<i = M, nd [£)
M, 7 = [f1Wf2) = M, 7 = [f1U£2]) V M, 7 = G £1)

Using these lemmas it is not too hard to prove the desired result about conjunctions. Besides helping with
the proof of this, the lemmas also provide some sanity checking of the definitions.

5.4 Restricting quantifiers

The original semantics specifies that some of the quantifications over integer variables be restricted to range
over values the are smaller than the length of the current path 7 (we represent this using pl7). Our initial
attempts to relate the clocked and unclocked semantics needed additional quantifier restrictions to be added,
as discussed at the end of Section 5.2 above. However, during email discussions with the Sugar 2.0 designers
it became clear that in fact all quantifications should be restricted, for otherwise the semantics would rely
on the HOL logic’s default interpretations of terms like 7/ when 7 is finite and j > length 7.!> With
HOL’s default interpretation of ‘meaningless’ terms, it is unclear whether the semantics accurately reflects
the designers intentions.

Thus the semantics was modified so that all quantifications are suitably restricted. In addition, and in the
same spirit, we added the requirement that all terms 7(%7) occurred in a context where i < j, so that the
arbitrary value of 7(47) when i > j was never invoked. Unfortunately these changes broke the proof of:

FVEm (Mo B of) = Mo B f)

and hence the proof relating the clocked and unclocked semantics. However, it turned out that there was a
bug in the semantics: “1 > k” occurred in a couple of places where there should have been “1 > k”, and
when this change was made the proof of the above property, and the equivalence between the unclocked and
true-clocked semantics, went through.

However, just as we thought everything was sorted out, the Sugar 2.0 designers announced they had dis-
covered a bug and pointed out that without their fix we should not have been able to prove what we had.
This bug had arisen in the semantics of X! formulas when the 3-to-V change to the weakly clocked semantics
(which we discussed in Section 5.2) was made.

Careful manual analysis showed that an error in the HOL semantics had been introduced when the 3-to-V
change was made, and this error masked the bug that should have appeared when we tried to do the proof.
Thus a bug in the HOL semantics allowed a proof to succeed when it shouldn’t have! After removing the
transcription error from the HOL semantics the proofs failed, as they should, and after the correct fix,
supplied by the Sugar designers, was made to the semantics the proofs went through.

This experience with a transcription error masking a bug has sensitised us to the dangers of manually
translating the typeset semantics into HOL. We had carefully and systematically manually checked that
the HOL was a correct more than once, but nevertheless the error escaped detection. As a result, we are
experimenting with ways of structuring IN\TEX source to represent the ‘deep structure’ of the semantics rather
than its ‘surface form’. The idea is to define WTEXcommands (macros) that are semantically meaningful and
can be parsed directly into logic with a simple script. The IXTEX definitions of the commands will then

!5 The logical treatment of ‘undefined’ terms like 1/0 or hd[] has been much discussed. HOL uses a simple and
consistent approach based on Hilbert’s e-operator. Other approaches include ‘free logics’ (i.e. logics with non-
denoting terms) and three-valued logics in which formulas can evaluate to true, false and undefined.

100 Mike Gordon

generate the publication form of the semantics. By giving the commands extra parameters that can be used
to hold strings for generating English, but ignored when translating to HOL, it appears possible to use N TEX
to represent the semantics. However, the resulting document source is rather complex and may be hard to
maintain. The long term ‘industry standard’ solution to this problem is to use XML (e.g. MathML), but
current infrastructure for MathML is either not quite ready (e.g. Publicon'®) or not quite polished enough
for everyday use (e.g. IBM texexplorer!?, Mozilla'® and TtM!?)

6 Conclusions

It was quite straightforward to use the informal semantics in the Sugar 2.0 documentation to create a deep
embedding of the whole Sugar 2.0 kernel. Attempting to prove some simple ‘sanity checking’ lemmas with
a proof assistant quickly revealed bugs in the translated semantics (and possibly in the original). Further
probing revealed more bugs.

It is hoped that the semantics in HOL that we now have is correct, but until further properties are proved
we cannot be sure, and the experience so far suggests caution!

7 Acknowledgements

The Sugar 2.0 team of Cindy Eisner and Dana Fisman patiently answered numerous email questions in
great detail. They also supplied valuable comments and corrections to an earlier version of this paper, and
suggested ways of modifying the HOL semantics to get the proofs described in Section 5 to go through.

References

1. I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh. The temporal logic Sugar. In G. Berry,
H. Comon, and A. Finkel, editors, Proc. 13" International Conference on Computer Aided Verification (CAV),
LNCS 2102. Springer-Verlag, 2001.

2. R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and J. Van Tassel. Experience with embedding
hardware description languages in HOL. In V. Stavridou, T. F. Melham, and R. T. Boute, editors, Theorem
Provers in Circuit Design: Proceedings of the IFIP TC10/WG 10.2 International Conference, Nijmegen, June
1992, IFIP Transactions A-10, pages 129-156. North-Holland, 1992.

3. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: a theorem-proving environment for higher-order
logic. Cambridge University Press, 1993.

4. J. Halpern, Z. Manna, and B. Moszkowski. A hardware semantics based on temporal intervals. In J. Diaz,
editor, Proceedings of the 10-th International Colloquium on Automata, Languages and Programming, volume 154
of LNCS, pages 278-291. Springer Verlag, 1983.

5. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order
Logic, volume 2283 of LNCS. Springer, 2002.

6. S. Rajan, N. Shankar, and M.K. Srivas. An integration of model-checking with automated proof checking. In
Pierre Wolper, editor, Computer-Aided Verification, CAV ’95, volume 939 of Lecture Notes in Computer Science,
pages 84-97, Liege, Belgium, June 1995. Springer-Verlag.

7. K. Slind. Function definition in higher order logic. In J. von Wright, J. Grundy, and J. Harrison, editors, Theorem
Proving in Higher Order Logics: 9th International Conference, Turku, Finland, August 1996: Proceedings, volume
1125 of Lecture Notes in Computer Science, pages 381-397. Springer-Verlag, 1996.

8. www.haifa.il.ibm.com/projects/verification/sugar/literature.html.

9. www.haifa.il.ibm.com/projects/verification/sugar/Sugar_2.0_Accellera.ps.

16 http://www.wolfram.com/products/publicon/

17 http:/ /www-3.ibm.com /software/network/techexplorer/
'8 http://www.mozilla.org/projects/mathml/
19 http:/ /hutchinson.belmont.ma.us/tth/mml/

Extending DOVE with Product Automata*

Elsa L. Gunter! and Yi Meng!

New Jersey Institute of Technology
elsa@cis.njit.edu
ymb@njit.edu
http://www.cis.njit.edu/"elsa

Abstract. With the continuing growth of computer systems including safety critical computer control
systems, the need for reliable tools to help construct, analyze, and verify such systems also continues
to grow. An example of such a tool is DOVE [1, 2]. One of the advantages of DOVE is that it combines
the ease of use provide by a graphical user interface for describing specifications in the form of finite
state machines with the rigor of proving linear temporal logic properties in a robust theorem prover,
Isabelle [5]. In the work described in this paper we increase the utility of DOVE by extending it with
the capability to build systems by specifying components.

1 Introduction

The need for effective assurance in the design of critical systems continues to grow as our dependence on
such systems continues to spread and grow. In many cases, death or injury can be easily caused by any
faults in these critical systems, such as safety critical systems. To try to address this need, there is a growing
variety of formal methods tools. These tools are based on a variety of differing underlying methods. To be
used outside the research community, such a tool must be fairly easy to use, and usually would require a
graphical user interface. The aim of the Design Oriented Verification and Evaluation (DOVE) [1,2], which
was designed by the Defense Science and Technology Organization (DSTO) in Australia, is to provide a
powerful tool to meet this challenge.

DOVE comprises three main components: the graphical editor for drawing finite state machine as spec-
ifications of systems, the animator for exploring various execution paths, and a prover, built on Isabelle
[5], for verifying temporal logic properties of state machine. DOVE combines the ease of use afforded by
a graphical user interface, and the rigor afforded by formalizing and proving properties of a system in a
theorem prover. The ability to model a system using the graphical editor substantially speeds the process
and increases the confidence level, when compared to describing the system as expressions in a language.
The ability to visualize the graph is an early aid to catching simple but important mistakes. The ability to
explore sample executions through animation helps the user to deepen his understanding of state machine
and to do a limited degree of testing. The highest degree of assurance is provided by stating and proving the
needed properties of the system using the prover.

There are limitations to the use of a graphical editor once the system begins to get large. It is difficult to
comprehend, let alone draw, a system that has in excess of one hundred nodes. Programming languages have
used modules as a technique for controlling the complexity of systems. The purpose of the work discussed in
this paper is to extend DOVE with the ability to build systems by composing them from simpler component
machines.

2 Overview of DOVE

DOVE is primarily a tool for producing high assurance system designs. It provides tools for constructing,
presenting and reasoning about formal design-models. DOVE is built in layers with a graphical user interface
that is used for constructing and examining the design-models, and an underlying layer using the theorem
prover Isabelle. The graphical interface of DOVE is written using Tcl/Tk script language. Isabelle is built
in the functional programming language ML, and the proof is carried out by Isabelle.

* This work was supported by ARO Contract Number: DAAD-19-01-1-0473.

102 Elsa L. Gunter and Yi Meng

DOVE uses a state-machine mechanism to model the specification of system behavior. A state machine
in DOVE introduces the notion of a memory at each state, which is updated by each consecutive transition
which describes how to evolve between states. The state machine graph consisted of nodes and edges which
represent states and transitions. There must be at least one node in the state machine and exactly one node
to be defined as the initial state. Each transition has three parts: Let, Guard and Act. The Let part is used
to simplify the other two parts of the transition definition. The transition is only performed if the guard
is satisfied in the correct memory. The Act, referring to action, defines how the memory is changed by the
transition (which only can occur when the transition is performed).

In addition to the visual inspection that the graphical interfaces allows, DOVE provides two other mech-
anisms for analyzing system designs, namely animations and verification. Animation in DOVE begins by
setting initial values for the heap variables (i.e. setting the initial memory), and then is carried out by click-
ing edges of the state machine graph and calculating new values for the heap variables in accordance with
the the corresponding transition definition. This symbolic feature provides a useful way to check whether all
variables are updated as expected and whether the transition, which is protected by the guard definition, is
performed correctly. However, the animation only gives a simple assurance of correctness of the design of the
state machine. A higher level of assurance can be gained by proving whether the design satisfies the given
requirements.

Verification in DOVE provides powerful facilities to express properties and to prove the system satisfies
system requirements. The system requirements must be translated from informal English into a particular
version of linear temporal logic supported by DOVE. DOVE then provides a collection of proof rules and
tactics specialized for proving these linear temporal logic properties.

We have applied the DOVE tool to some medium-sized critical systems. The precise details of those
applications are not relevant to this paper and are not included here. However, we will include a brief
example motivated by our application as an illustration of some of the features of DOVE, and the limitation
we wish to address here. The example system is intended to monitor the behavior of another device. The
example system consists of two components: a component for monitoring whether the device is plugged
in and receiving adequate power, and a component for monitoring when the device is adequately powered
whether it is producing values within an acceptable range.

Figure 1 shows a screen snapshot of the DOVE canvas for the PlugIn Monitor component of the system.
The gridded canvas is the DOVE state machine window which is used for designing the machine. The three
nodes representing the three states in the Plugln Monitor model are Wait, CheckPlugin and CheckUnplug.
The edges with appropriate labels are transitions between these states. Several variables are needed. The
heap variable PluggedIn represents whether the machine is plugged in. the input variable Volt is supplied by
the environment and is monitored to trace when the device is properly plugged in. Finally, an initial state
Wait should be defined in which the machine is unplugged.

The system checks whether the device is plugged in before going from Wait to CheckPlugIn mode. We
have variable Volt as the guard for the three transitions: PlugIn, Unplug and RePlugin. At each transition, if
the guard conditions are meet, the corresponding transition will be taken, and the variables will be updated.
In the initial state, if the device is plugged in and receiving a voltage greater than 10 volts, the transition
Plugin will be taken and PluggedIn will be set to true. The plug monitor will stay in the CheckPlugin state
unless the voltage drops below 9 volts. In that case, it will enter CheckUnplug state and PluggedIn will
be updated to false. Once the device is replugged in and receiving more than 10 volts, it will reenter the
CheckPlugin state. The monitor it will keep running in this loop indefinitely. Here, the Plugln Monitor is
correctly and clearly modeled in DOVE.

However, the Plugln Monitor is just a simple example of modeling a system. Life is not always so easy.
When dealing with a bigger project in which some models with interaction with each other, some problem
comes up. The ValueOk monitor is a component in which the variable ValueOk shows the status of the value
variable. The state machine of Value Monitor is showed as Figure 2. The three states Wait, CheckValueOk
and CheckValueFault are defined in the Value Monitor state machine. Six transitions connect these states
and update variables if the guard of the transition is satisfied.

In the initial state of Wait, once the variable PluggedIn becomes true, the variable ValueOk will be set to
true. The device will enter CheckValueOk state. This can happen in one of two ways. When the system being
monitored first starts up, the PlugIn Monitor and the Value Monitor synchronize on beginning to monitor

Extending DOVE with Product Automata 103

Fig.1. A simple plug monitor in DOVE

104 Elsa L. Gunter and Yi Meng

K D O¥YE : monitor

File | Edit | view | Definitions | IH 4 !

E?/';'ajt E

aiL. -
- B

R

_Plwgin PlugOk UnplugYalueOk

‘£ E(ck'u’aluéi—il o l.;lnpll?g‘l.r'aluelg-'aulgl

\l':aludull'ru%p

ValudFault

Fig. 2. A monitor for checking values in DOVE

Extending DOVE with Product Automata 105

their states. Thereafter, if the power drops below a certain threshold, then the Value Monitor returns to
its Wait state, and reenters CheckValueOk when it detects that the PlugIln Monitor has determined that
the power has returned to an acceptable level. Once in the ChecValueOk state, if the input variable Test is
shown to be below 5, ValueOk is set to false, the device will enter the CheckValueFault state. If variable Test
is set back to greater than 5, ValueOk is set back to true, and the CheckValueOk state will be reentered.
In both CheckValueOk and CheckValueFault states, if the device is unplugged, the device will go back to
initial Wait state.

Between these two models, the ValueOk Monitor uses the PluggedIn variable, which is written by the
Plugln monitor, as an input variable. Unfortunately, with the current DOVE tools, these two interactive
components could not be composed into one single model. In order to conquer this, we need to extend
DOVE with product automata.

3 Formal Definitions of Automata and Products

In this section we will give a formal definition in higher-order logic of the type of finite state automata used
in DOVE, their semantics of execution, and how we extend this with product automata.

3.1 Finite State Machines

Informally, a finite state machine is a tuple of a set of states, a set of labeled transitions, and an initial
state. In DOVE, the states are augmented with memory when executed. A transition is a directed edge
between a pair of states coupled with a guarded action to be committed when that transition is executed.
The transition may be executed only in the case that the guard holds in the memory of the originating state
of the transition, and in which case the action yields the memory of the terminating state. Memory is an
association of values to variables. The guards are expressed as propositions over the variables in the memory,
and the actions are expressed as assignments of values (given as expressions over the memory’s variable) to
those variables.

This notion of finite state machine (or automaton) is similar to those discussed in the literature, and a
typical example can be found in Chapter 4 of [4]. One way in which DOVE extends this notion is by segre-
gating the variables into two categories, in which DOVE are referred to as input variables and heap variables.
Input variables are read-only in that no transition may alter their values. Their values are considered to be
supplied by the environment. As such, when defining an execution, we must assume that their values may
change at any point during a sequence of transitions. While this is manifest in the proof rules in Isabelle for
proving temporal formulae for state machines defined in DOVE, it is a subtle point which complicates the
definition of an execution and warrants highlighting.

When a user defines a finite state machine in DOVE, they do so using a graphical user interface. This is
used to generate a description in Isabelle of the finite state machine and properties that the user wishes to
prove. This description of the finite state machines in Isabelle is a shallow embedding in the sense that the
variables of the finite state machine are modeled as variables, as opposed to introducing a separate syntax
for variables (in the form of a distinct type of variables). Such a light-weight embedding is advantageous
when the goal exclusively is proving properties in the model. However, it limits the ability to express meta-
properties in the logic, such as stating what a finite state machine is, or what the product of two finite state
machines is. Therefore, in this section, we will adopt a deeper embedding. The definition we will give has
been rendered in higher-order logic. However, as in the informal description above, it is desirable to express
things using set-theoretic notation. In all formal definitions below, such set-theoretic notations should be
interpreted as using a standard rendering of naive set theory in higher-order logic, such as one given by sets
as predicates.

In attempting to formally define what a finite state machine is, we have to decide how to represent the
writable variables versus the read-only variables. Our ultimate goal is to define a product for composing
automata, and in such a composition variables which may be read-only in one component may need to be
writable in some other. Therefore, we will represent these two classes of variables as disjoint subsets of a
single type of variables. For our purposes, the precise type used for representing variables does not matter,
so we will use a type variable for this, allowing it latter to be specialized to integers or strings or perhaps

106 Elsa L. Gunter and Yi Meng

some other complex structure. Having made this choice, we will need to be able to express the requirement
on transitions that they only involve the variables associated with the particular finite state machine. We
will capture this notion of restricted dependence by the following definitions:

sameondom f g =V z.x € dom = (f z = g z)

That is, two functions are the same on a given domain if they have the same values on all elements of that
domain.

f only_depends_on s =V my msy. same_on s my ma = (f mi1 = f ms)

A function on functions only depends on a subset s if it always returns the same value when applied to
functions that are the same on s. The motivation for this definition is that our memories are functions
assigning values to variables, but the guards and actions are only allowed to depend on that part of the
memory that corresponds to the writable and read-only variables.

A transition is well-formed with respect to a set of writable variables and a set of read-only variables
provided that the guard and actions depend only on the union of the writable and the read-only variables,
and the action does not assign any new values to the non-writable variables.

is_transition (state;, states, guard, action) writable_vars read-only_vars =
guard only_depends_on (writable_vars U read_only_vars) A
action only_depends_on (writable_vars U read_only_vars) N\
Y memory var. (~(var € writable_vars)) =
(action memory var = memory var)

We are now in a position to give a formal definition of a finite state machine:

is_fsm (states, labeled_transitions,writable_vars,read_only_vars,
initial _state, initial_condition) =

(writable_vars N read-only_vars = ¢) A

(V ((s1, 82,9, a),l) € labeled_transitions.
is_transition(sy, S2, g, a) writable_vars read_only vars A
s1 € states N so € states) A

(V (t1, 1) € labeled_transitions.
(V (t2,12) € labeled_transitions.(l1 = l2) = (t1 = t2)))

initial _state € states A

initial _condition only_depends_on writable_vars

A tuple of states, labeled transitions, writable variables, read-only variables, initial state, and initial condition
is a finite state machine if

the writable variables and the read-only variables are disjoint,

the transitions are well-formed with respect to the writable and read-only variables,
— the start and end states of each transition are among the states of the machine,

— each transition label occurs at most once

the initial state is one of the states of the machine, and

the initial condition only depends on the writable variables.

3.2 Executions

Up to now we have defined what it means to be a finite state machine; we have in effect described its syntax.
We are still left with describing how to execute a finite state machine; that is, we are left with describing its
semantics. The semantics of a finite state machine is the set of all its executions. So what is an execution?
Informally, it is a sequence of moves through the finite state machine starting from a memory that satisfies the
initial condition of the state machine, and then follows consecutive transitions. More formally, an execution
is a pair of initial memories and a sequence of pairs of labeled transitions and resulting memories, where the

Extending DOVE with Product Automata 107

start state of each transition is the end state of the previous transition and each transition is enabled by the
previous memory. However, this is not a complete description. We need to be more precise about what we
mean by “resulting memories” and “enabled by the previous memory”.

Dove is only capable of dealing with properties that are provable in finite time (safety properties), so we
will use lists for sequences. It wold not be fundamentally different if we extended to both finite and infinite
sequences.

For the sake of readability, we shall make a couple of short definitions.

(last_state initial_state [| = initial_state) A
(last_state initial state (CONS (((s1, s2, g, a),l), memory) :: seq) = s2)

The last state in a list of pairs of labeled transitions and memories is the initial state if the list is empty,
and otherwise is the end state of the transition at the head of the list.

(last_-memory initial_memory [] = initial_memory) A
(last_state initial_memory (CONS (((s1, $2,9,a),l), memory)seq) = memory)

The last memory in a list of pairs of labeled transitions and memories is the initial memory (for the intended
execution) if the list is empty, and otherwise is the memory at the head of the list.

An execution in a finite state machine starting from an initial memory is a list of pairs of labeled
transitions from the finite state machine and memories such that

— either the list is empty or
e the tail of the list is an execution
o the last state of the tail of the execution is the start state of the next transition
e the guard is enabled in some memory that is the same as the previous end memory on the writable
variables (we allow the read-only variables change) and in that memory we execute the action to
acquire the new memory.

is_execution (states, transitions, writable_vars,read_only_vars,
initial _state, initial_condition) initial-memory configlist =
is_fsm(states, transitions, writable_vars, read-only_vars,
initial_state, initial_condition) A
initial _condition initial_memoryA
((configlist=[]) vV
(3 s1 s2 guard action | memory tail_seq.
(con fig-list = (CONS (((s1, s2, guard, action),l), memory)tail_seq)) A
is_execution tail_seq A
((s1, 82, guard, action),l) € transitions A
(last_state initial_state tail_seq = s3) A
(3 mem. same_on writable_vars mem
(last_memory initial _state initial_memory tail_seq) A
guard mem A
action mem = memory

We do not intend to go into the details of the particular linear temporal logic used in DOVE in this
paper, but briefly a finite state machine is said to satisfy a given linear temporal logic formulae provided
every sequence of memories derived from the executions of the finite state machine satisfies the formulae.

3.3 Product Automata

Having defined the syntax and semantics of finite state machines, we are in a position to give the definition
of the product of two finite state machines. Using the labels on the transitions, our product will allow
synchronization of transitions having the same label. The states of the product is the subset of the product
of the states that occurs in the set of transitions of the product (together with the product of the two initial

108 Elsa L. Gunter and Yi Meng

states, if it is not already there). The transitions are effectively the merging of those transitions from the two
automata that have the same label, unioned with the remaining transitions lifted to the product states. We
have to take a little care to generate distinct new labels for the transitions. The writable variables are just the
union of each set of writable variables. The readable variables are the union of each set of readable variables,
minus any that are in the union of the writable variables. The product automaton will only be defined in the
case where the writable variables of each are disjoint. The variables that are in the intersection of the union
of the writable variables and the union of the readable variables are those that are communicating values
between the automata. The initial state is just the product of the two origin initial states, and the initial
condition is the intersection of the original initial conditions.
Let the states of a transition be its start state and its ending state.

statesof ((statey, states, guard, action),label) = {state;, states}

The product is defined as

wvars; Nwvarss =) =
fsm_prod (statesi, transitionsy, wvarsy,rvarsy,init_state;,init_cond)
(statess, transitionss, wvarss, rvarss, init_states,init_conds) =
let prod_trans =
{(((51)32)7 (511) SI2)7 (/\m-glm A me)a ay © a2)7 (la NONE; NONE)) |
((s1,87,91,a1),1) € transitions; A
((s2, 8%, 92,a2),1) € transitions, }U
{(((s1,82), (s1,52),9,a), (I, NONE,SOME s2)) |
(s1,81,9,a) € transitions; A -3 t.(t,1) € transitionss }U
{(((s1,52), (s1,8%),9,a), (I, SOME s;, NONE) |
(s2,8h,9,a) € transitionss A -3 t.(t,1) € transitions; }
and
prod_states = {(init_statey, init_states)} U U statesof ¢
teprod_trans
in
(prod_states, prod_trans, wvars; Uwvarss,
(rvarsy Urvarsz) — (wwvars; Uwvarss), (init_statey, init_states),
A m.nit_cond; m A init_conds m)

It follows from this definition that the product of two finite state machines is again a finite state machine,
provided their writable variables are disjoint. Note that if the writable variables the first automaton are
disjoint from the second automaton, then a; oas = asoa; (for all a; and a» in the definition of the transitions
in the product automaton above). Therefore, the product of two automata in one order is isomorphic to the
product in the other order.

Given an execution sequence, we can project that execution sequence to an execution sequences of of
each of the component automata.

(proji(statesy, trans;, wvarsy, rvarsy,init_statey, init_condy) [| = []) A
(proji (statesy, transy, wvarsy, rvarsy , init_state; ,init_cond;)
(CONS ((t,1), mem) tail_seq) =
if 3t'. (¢',1) € trans;
then CONS (((choose t'. (t',1) € trans;),l), mem) (proj, tail_seq)
else proj, tail_seq

We can prove that if a given initial memory and sequence of transition-memory pairs is an execution of
the product automaton, then the same initial memory together with the projection of that sequence is an
execution of the corresponding component automaton. Therefore, for every sequence of memories derived
from an execution in the product automaton, there exists an almost identical sequence of memories derivable
from a sequence in the component automaton. (The original sequence may have additional memories that
are the same as their immediate predecessors in the sequence on the writable variables of the component

Extending DOVE with Product Automata 109

automaton.) Therefore, for an appropriate class of temporal logic formulae (those that only involve the
writable variables of the component automaton, and are “stuttering” invariant), if a formulae holds of the
component automaton, it automatically also holds of the product automaton. It is our hope in future work
on this system to be able to incorporate this into DOVE.

4 Extending Dove with Products

In the previous section we described the mathematics of the product of two automata. In this section we will
discuss our method of implementing the construction of product automata as an extension to DOVE. Our
current approach is to add an external tool that can parse files produced by DOVE, analyze the contents
of those files to determine the details of the component automata to be composed, construct the product
automaton, determine layout information for it, and finally output all this information into a new file that
can be input into DOVE.

In the course of a DOVE session, various local files are created, such as an smg file, a thy file, an nw
file, etc. The smg file, which stands for “state machine graph” file (for example, plugin.smg), contains all
of the information required to describe the finite state machine. This file includes not only the construction
and layout information about the state machine graph, but also the information to define variables, state
conditions and transitions between states.

An smg is a sequence of lines, each beginning with keyword, followed by data relevant to the item being
added. Firstly, the smg file gives some preferences for display of the state machine. The global variable
gridOn tells us the canvas is gridded by being set it to 1, and not gridded by being set it to 0. The variable
edit_SetGridSize says the size of the grid.

The nodes in the smg file are defined using the keyword file RestoreNode follow by the node number,
node coordinates and node name. For example, in the plugin state machine graph file, we define the Wait
state by

file_RestoreNode 0 {20.0 10.0} Wait

The node number of Wait is 0 and it is located at (20.0, 10.0). The edges in the plugin smg file are created
by the keyword file RestoreEdge followed by edge number, the number of the starting node, the number
of the ending node, their directions, some coordinates it travels through, and the location of the label and
its name. For example, the edge Plugin in the plugin smg file is defined as follows:

file_RestoreEdge O O north 1 south {{20.0 13.0}} {{20.0 11.0} {20.0
12.0} {20.0 13.0} {20.0 14.0} {20.0 15.0}} {20.0 13.0} Plugin

In this example, its edge number is 0, it comes out from north of the node 1 and goes into the south of node
1, its label, Plugin, is at (20.0, 13.0), and it travels through the path of [(20.0, 11.0), (20.0, 12.0), (20.0,
13.0), (20.0, 14.0), (20.0, 15.0)].

The smg file gives two kinds of variables, heap variables and input variables. The heap variables are
defined using the keyword dvd_def. It is followed by information about their names, types, status and some
comments on them. Also we define input variables by div_defs followed by the same information as the
heap variables.

As for the definition of the transitions, the smg file use dtr_defs. It gives a list of all the transitions
followed by details of individual transitions. These details include the comments, status and the content of
the transitions. The content of transition has guard and act definitions in it.

Also it should have an initial state which is defined by the variable di_startStatea value. The initial
condition is given by setting the variable di_predicate. And we can add some comments on the initial state
by di_description.

In addition, the smg file contains some optional information about the finite state machine. For example,
if the state machine has been checked and there is no syntax errors, the variable dchk_smgChecked is set to
be 0, otherwise it equals 1.

From all the information above, we already know enough information to construct the state machine.
Any modifications of the smg file will directly change the state machine in DOVE. By creating a new smg

110 Elsa L. Gunter and Yi Meng

file, we can generate a new finite state machine without starting up the DOVE. We can construct the finite
state machine to which is the composition of more than one component in one model without the need to
interact with DOVE.

Using the above information, we must parse the smg files of component automata to extract information
to reconstruct the automata. Once the automata have been reconstructed, we must build the product au-
tomaton. For this we follow quite closely the mathematical description given in the previous section. SML
data types and functions may be used to compute the constructions previously given as mathematical for-
mulae. Once the product has been constructed, we still need to generate layout information before we can
generate a smg file to add the product automaton to DOVE.

In DOVE, layout information is generated from interactions with the user. The user places nodes at
various locations on the drawing canvas and draws edges between the various nodes, indicating curvature by
the path of the mouse. The layouts may be altered clicking and dragging the various entities to be changed.
DOVE does some work to generate a decent presentation of the graph, but the basic layout information
comes from the user. When we automatically generate the product automata, we must also automatically
generate some positioning for the components; to make the user generate this information would be almost
tantamount to making the user create the product in the first place. To generate this information, we make
use of the graph visualization tool dot ([3]). Dot is applied to a file that lists the nodes and edges of a directed
graph, together with any desired labellings of the nodes and edges, and the desired shape (and color) of the
nodes. The following is an example of a part of an input file for dot for the product of the two automata
given in Section 2:

digraph G {
n8 [label = "CheckPlugin_Wait", shape = circle]

n4 [label = "CheckPlugin_CheckValueOK", shape = circle]

n0 [label = "Wait_Wait", shape = circle]
n8 -> n4 [label = PlugOK_atl_CheckPlugin]

n0 -> n4 [label = "Plugin"]

3

Dot then generates a layout for the graph and out puts it in one of several formats, including gif and
postscript, for example. The mode we used is an expanded form of the same language used for input, where
layout coordinates have been added. The above graph description is translated to:

digraph G {

node [label="\N"];

graph [bb="0,0,2211,516"];
n8 [label=n8, shape=circle,

n8 [label=CheckPlugin_Wait, shape=circle, height="0.56",
pos="1128,488", width="0.56"];

n4 [label=CheckPlugin_CheckValueOK, shape=circle,
height="0.56", pos="1028,212", width="0.56"];

n0 [label=Wait_Wait, shape=circle, height="0.56",
pos="1709,304", width="0.56"];

n8 -> n4 [label=PlugOK_atl_CheckPlugin, pos="e,1048,214
1139,471 1165,429 1223,318 1171,250 1156,231 1092,221
1055,215", 1p="1270,350"];

n0 -> n4 [label=Plugin, pos="e,1048,213 1692,293 1685,289

Extending DOVE with Product Automata 111

1679,285 1675,284 1557,244 1168,219 1057,213", 1p="1633,258"];

3

For each node, the size (height and width) of the circle, and the position of its center is added. Each edge is
extended with path information, consisting of the position and direction of the terminating arrowhead follow
by a sequence coordinates that the edge will pass through, and with the coordinates of the left edge of the
label.

We must parse the information returned from dot and combine it with the non-graphical information for
the product automaton (such as the guards and actions for each transition). Also, the graphical information
produced by dot is not completely suitable for directly inputting into an smg file. We need to perform scaling,
and better layouts seem to be given by thinning the points for layout of the transitions. Once we adjust the
information from dot and combine it with the non-graphical information, we can finally produce an smg file
that describes the product automaton to DOVE. Once this file exists, the user can start up DOVE with it,
and proceed to state and prove properties about it.

5 Future Work

The work described in this paper outlines a way to build the interactive components into one finite state
machine by extending DOVE with product automata. By using the information we get from parsing the smg
file in DOVE, we can create a new state machine graph file by hand without disturbing DOVE. Programming
to perform all of the steps indicated in Section 4 is not yet finished and tested. We anticipate having a
completed prototype by the time of the conference.

Once the product automata is built, we also need to test its correctness and feasibility. We begin this
project because we were attempting to use DOVE to reason about a medium-sized real-world safety-critical
system. This system could be naturally decomposed into a hierarchy of subsystems communicating through
limited intefaces of input and output variables. In attempting to use DOVE, we found ourselves attempting
to compose these subsystems by hand. With the completion of this tool, we will return to this example and
use DOVE to describe this hierarchy and complete the task of proving the required properties.

As described in this paper, we are adding a tool to DOVE that will allow for the automatic construction
of product automata from component automata. However, there is more that we desire. At the end of
Section 3, we indicated that the mathematical theory underlying the product automata should allow us
to automatically translate properties that hold of an individual component automaton to corresponding
properties of the product automaton. DOVE should be extended to support such a feature. The user should
be able to reason about the various components and then have those results automatically carried over to
the product when the product is formed or its theory is subsequently updated. To support this with the full
rigour currently available in DOVE, we would need to be able to prove in Isabelle that the product that we
have externally created is indeed the product as mathematically defined. To be able to prove such a fact
requires a deeper embedding of finite state machines in Isabelle than is currently used. Therefore, adding
this extension would require a siginficant reworking of the foundations of DOVE. It is our opinion that the
benefits would merit such an effort.

References

1. Tony Cant, Katherine Eastaughffe, Jim Grundy, Jim McCarthy, Brendan Mahony, Maris Ozolos, Tim Anstee,
Moira Clarke, Geoff Tench, Helen Daniel, Tony Dekker, Mark Klink, Chuchang Liu, John Yesberg. DOVE User
Manual. December, 2000.

2. M. A. Ozols, K. A. Eastaughffe, A. Cant, S. Collignon. DOVE: A Tool for Design Modelling and Verification
in Safety Critical Systems, in Proceedings of the 16th International System Safety Conference, Seattle, US
September 1998.

3. Eleftherios Koutsofios, Stephen North. Drawing graphs with dot. AT&T Bell Laboratories Technical Report.
1996.

4. Doron A. Peled. Software Reliablity Methods. Texts in Computer Science. Springer-Verlag, New York, 2001.

5. Lawrence C. Paulson. The Isabelle Reference Manual. 2000.

A Higher-Order System for Representing Metabolic Pathways*

Sara Kalvala

Department of Computer Science
University of Warwick, UK
Sara.Kalvala@warwick.ac.uk

Abstract. This paper introduces the topic of metabolic pathways and explores it as a subject for
study by the theorem-proving community. A description of the issues involved is provided, as well as a
justification of why a logic-based description of these pathways might complement the current progress
in the area of Bioinformatics.

1 Introduction

Bioinformatics is the application of computational methods in the understanding of biological systems.
Typically, it involves analysing information stored in large databases; the information itself is obtained from
experiments.

The processes of gene expression and protein function are schematized in Figure 1. Bioinformatic research
on these processes has given rise to three sub-areas:

genomics is the deciphering of the code contained in the DNA, that is knowing what the actual strings are
and which genes exist; understanding how the code of the DNA is actually expressed

proteomics is concerned with understanding the functioning of proteins, which structurally are the products
of DNA translation and functionally are the active agents of life, whether as enzymes or channels or any
other way.

metabolomics studies the biochemical processes that occur within cells, and the complexities of control
that make living organisms.

Each of these topics of research has given rise to a large variety of formalisms developed by often competing
groups. An important issue is finding the right abstraction which allows the different tools to work. Each of
these systems has its own language. ! discusses the fragmentation of bioinformatics protocols, technologies
and standards, that together created a landscape of confusing and poorly integrated web sites and other
services, and suggests that the solution may be a formal model to unify these languages.

The success of research in genomics can be attributed partly to the use of a very simple abstraction, namely
the four letters A,T,C, and G organised into substrings (the genes), which are then strung together to form
chromosomes. Similarly, proteins are formed from a larger alphabet of amino-acids. A paper by Giegerich,
Hinze and Kurtz [3] presents a small model of DNA /proteins in Haskell (Figure 2). Note that this description
of the process of DNA transcription does not scale up to the

However, when we come to proteomics, we start encountering difficulties, as there is no simple representation
for the shape of proteins, and it is still not possible to predict the shape of a protein from knowing its chemical
structure.

Metabolism can be seen as a complex network of reactions depending on the interaction between many
different kinds of molecules. The primary actors are enzymes - proteins that facilitate reactions. Here also
there is a problem with finding the appropriate abstraction for representing the biological system. Graph
theory is usually part of the model, and there are different programs for displaying graphs in a pleasant
fashion on a 2D screen. However, the additions that need to be made to the graphs are:

* Research done partially while author was a Visiting Fellow at the Australian National University.
! See http://www.oreillynet.com/pub/a/network/2002/01/29 /bioday2.html

Representing Metabolic Pathways 113

= = Nucleus -,
N
7 e N
7 ona PGP \

;? 1. Transcriptiunl
| L

' 2. Pusttranscriptiunl

f i\ .
| ! .
' % mRNA i
| \ y
\ / MNuclear
.-"-. m

embrane

‘ 3. Translation ‘ / f
Y
% Polypeptide

4. Posttranslation
#=\ Protein folds up
[y

1
O Effector molecule

K 5. Protein acthﬂtyj_ﬁ/
o
"y 'é,) Active protein

Fig. 1. From DNA to protein function (from www.people.virginia.edu/ rjh9u/trtrpict.html)

114 Sara Kalvala

data Nucleotide = A | C | G | T

data AminoAcid = Asn | Lys | ... -- and so forth (aminoacids)
type DNA = [Nucleotidel

type Protein = [AminoAcid]

type Codon = (Nucleotide, Nucleotide, Nucleotide)

genCode :: Codon -> AminoAcid

genCode (A, A, A)
genCode (A, A, C)

Lys; genCode (A, A, G) = Lys;
Asn -- and so forth

ribosome :: DNA -> Protein
-- the ribosome always starts at ATG
ribosome (A : T : G : x) = Met : map genCode (triplets x)

triplets [1 = []
b

triplets (a : :c:x)=(a, b, c) : triplets x

wc_compl A = T; wc_compl T = A;
wc_compl C = G; wc_compl G = C

complSingleStrand [1 = []
complSingleStrand (a : x) = wc_compl a : complSingleStrand x

dnaPolymerase x = (x, complSingleStrand x)

Fig. 2. Genomics in Haskell

— classes of chemicals
— classes of reactions
— inexact matching of graphs

The data needs to be stored in a rich formalism. The number of macromolecules, reactions, combinations,
etc is huge. The analysis needs to take into account these interrelations between entities. In this paper we
explore the use of higher-order logic to represent and manipulate metabolic information.

2 Biochemical reactions and enzymes

A metabolic pathway is a sequence of biochemical reactions. These reactions are rigorously controlled by a
complex mechanism, in order to maintain balance within cells. The most direct form of control is through
a catalyst. Catalysts are not consumed by a reaction, so that once a molecule of the catalyst facilitates
a reaction, the products are produced, and the catalyst molecule is released back into the environment,
potentially allowing it to facilitate another instance of the reaction. Theoretically, the reactions would still
proceed in the absence of the catalyst, but in a slower rate, sometimes close to zero. It is useful for biochemical
reactions to depend on catalysis, in order to provide control mechanisms.

Most chemical reactions have a hidden component: the energy involved. In inorganic media energy is mutated
into heat, but in living organisms it is stored into complex molecules, which serve as a buffer. Cellular energy
management is based around pairs of related molecules, where one contains a substantial amount of energy
compared to the other. Typical pairs are ATP and ADP (Adenosine Tri and Di Phosphates), GTP and GDP,
and NAD+ and NADH. When energy is required for another reaction, the high energy molecules are used,
and replenish the stock of low energy molecules which then are used when more energy is released elsewhere.

Representing Metabolic Pathways 115

There are other sources of more concentrated energy as well, e.g. in the form of lipids, but these take longer
to release. This energy is first transferred into ATP/GTP molecules which are then used in situ.

Typically one direction of a reaction releases energy while the other consumes, or stores energy. Most reactions
are theoretically reversible, but the difference in energy means that one direction is favoured over another.
Furthermore, even if a reaction ultimately releases energy into the medium and is favoured, it often needs
a lot of energy to be started. Catalysts often work by reducing the energy required for a reaction to occur,
and thus can increase the rate of reaction.

While catalysts can be of one of many types, enzymes are catalysts primarily made up of proteins. Typically,
an enzyme facilitates a reaction by slotting reactant molecules into particular spaces and thus bringing them
into close proximity and at the right spatial relation so that the reaction can occur; once this happens the
product molecules are released into the environment and new reactants occupy the now vacant spaces close
to the protein.

2.1 Classification of enzymes

Enzymes are a large group of proteins; enzyme list from 1992 contains 3196 live entries. With such a large
number, it is important to classify them in a meaningful and useful way. The most accepted method of
classification of enzymes is provided by their EC number. This is a strictly functional classification, based
on 4 numeric fields [1]. The first field specifies the kind of reaction the enzyme catalyzes, while the second
one describes the active atoms involved. This is illustrated in Figure 3

1. Oxidoreductases 1.7. N compounds 24. ...
1.1. CH-OH 1.8. Sulphor 3. Hydrolases
1.2. OXO 1.9. ...

1.3. CH-CH 2. Transferases =

1.4. CH-NH(2) 9.1. 1-carbon group 4. Lyases
1.5. CH-NH 2.2. ketone residues 5. Isomerases
1.6. NADH/NADPH 2.3. acyl 6. Ligases

Fig. 3. Classification of enzymes

It should be remembered that this classification is functional, and the information is usually derived from
biochemical experiments. But enzymes should also be understood to be essentially proteins, produced by
the translation of a gene and then the activation of the protein by taking a particular 3-dimensional shape,
which is a consequence of interaction of its particles with each other and with the environment. Correlating
a known enzyme function to a particular gene is a matter of intense research in the field of bioinformatics.

As an example, one may look at a particular place in the EC classification: EC 1.1.99 consists of malate
dehydrogenases. But there are many malate dehydrogenases, from different organisms. EC 1.1.99.16 repre-
sents a variety of proteins, ie NCBI 1788539 on E.Coli and NCBI 2078007 in P. Aeruginosa. A comparison
of the sequences reveals that they are of different size and are of different sequence — so how do we know
they are the same enzyme? An ortholog cluster is such a group of functionally related enzymes, one from
each organism, which can be postulated to have a common origin. Confirmation of this link can be partially
obtained by applying string matching algorithms, but this is inadequate because the relation between dif-
ferences in the aminoacid structure of proteins and their functionality is not linear. Another approach to
correlation of enzymes lies in understanding the pathways in which the enzyme is used. The understanding
of these relations is crucial for several of the applications of bioinformatics, such as understanding etiology
of diseases and aiding drug design.

116 Sara Kalvala

3 Understanding metabolic pathways

A pathway consists of a sequence of biochemical reactions. Pathways can be classified into several types:
synthesis, degradation, and energy transfe. Each of these pathways is made of reactions that can be classified
in a way similar to the enzyme classification of Figure 3. As many of the molecules in a pathway are recycled,
quite often pathways are shown as cycles, specially when one of the recycled elements is of larger complexity
than some of the products, or when it appears in very few other pathways.

One of the most well known pathways is what is known as Kreb’s cycle, or TCA cycle, illustrated in Figure 4.
This pathway is shown as a cycle because a Citrate molecule is regenerated each time, which is then used
in successive reactions to yield high energy NADH and GTP molecules. The citratemolecule is a product of
the reaction of oxaloacetate with acetyl CoA (co-enzyme A) which is the productderived from “burning” of
sugar. One may note the presence of several enzymes (indicated by the -ase suffix) which drive this cycle.

Metabolic networks are very robust, due to several factors:

1. failure of an enzyme due to a structural change is not always catastrophic, in the sense that impairment
of an enzyme’s function can be partial;

2. if a particular enzyme is non-functional, other enzymes which otherwise have only a weak action can be
modulated to have further effect, as many enzymes can work on different pathways;

3. there may be several pathway variants: similar functions using different reactions and routes, which can
continue ellular function in a reasonable manner.

Within a natural environment, a pathway does not occur in isolation, but is part of an elegant, complex
system [6], where molecules are resources that are shared between many processes, or which are made available
through diffusion or membrane transport mechanisms. Also, innumerable instances of reactions from different
pathways occur simultaneously and in close proximity, and the balance between the concentrations of all
these elements is intricate. The separation into individual pathways, and the concretization into individual
molecules, is merely didactic.

Furthermore, one needs to take into consideration the compartmentalization of the environment through
permeable membranes. Proper cellular function is tied to the mechanisms for transport of molecules —
whether through simple diffusion or across a membrane (between the cytoplasm of a cell and its environment
or between the cytoplasm and the nucleus or organelles such as the mytochondria) through channels. Quite
often proteins are involved in these transport mechanisms, and they are subject to control strategies similar
to the control of reactions.

3.1 Other biochemical networks

Metabolic pathways are just one type of biochemical networks. Other networks are gene regulatory networks
and signal transduction networks, which make sure that the biochemical reactions occur at rates that are
beneficial to the organism, depending on extra-cellular factors as well as internal feedback mechanisms.

A simple form of control for enzymatic catalysis is the control of the production of the proteins from DNA.
The more proteins are created and activated as enzymes, the higher the rate of reaction. By stopping the
production of enzymes, eventually the concentration will bereduced, and the rate of reaction will decrease.
However, the process of protein production may be slow, and the rate of natural degradation of proteins might
be extremely slow, so other mechanisms have evolved, such as signal transduction networks and hormonal
signalling.

As well as having more short-term control of metabolism, organisms also need to perform long-term control.
One particular method of control is through the use of regulons, which control groups of operons which
control gene groupings. Global regulons coordinate regulation of operons in multiple metabolic pathways,
other global regulators act through control of DNA spatial configuration. The biochemical logic in genetic

Representing Metabolic Pathways 117

iu]uy
G=0
CHy
yr ate
CoA
N L
detwdrogenase
cormple
i
H C—C—S—Cof
(acetyl CoA) _ coor
crate 'I3Hz aconitase
H{Eﬁi syhthetase HI:I—I:Z—I:IIII:I' —\T}
GHz coor
coo coor 'I:HE
L citrate i
L=0 C—coo
CH. &y {‘/Hz':'
malate coo .
dehydrogenase oxaloacetate cis-acaonitate aconitase
+
MaDt o ||:|:n:r
Goo- hy
HO-CH jalate Izocitrate H=G-COO°
CH, HIII—IIZ—H
coor coo
HaD®
furmarase
coo ot-ketoglutarate /ﬁ
i coo isocitrate
CH 1
HEDJ L fumarate CHy Jdehydrogenase
coor succinate i
coo sCCiny] Cod =0
i 0 coo
succinate CHy T
i C—5—CoA HAaD* + Cof
detydrogenase CHy i o
} coo G o-ketoglutarate
FAD FHa dehydrogenase complex
coor
succinyl 1\|
oA, &OP
synthetase +
P.

Fig. 4. The TCA cycle (from http://chemistry.gsu.edu/glactone/PDB/Proteins/Krebs/Krebs.html)

118 Sara Kalvala

regulatory circuits provides real-time regulatory control, which can be seen as a branching decision logic,
executing stored programs that guide cellular differentiation extending over many cell generations.

4 Representing metabolic pathways

In this work we are interested in developing suitable representations for the kind of information described
above. Representing this kind of information in a plain, first-order system doesn’t capture the true richness of
the domain, because biochemical processes are characterised by their generality and adaptability, as well as
the inter-relationships between the many entities. Several open research problems—such as discovering evo-
lutionary relatedness, finding alternative pathways, and predicting shape from sequence—depend on finding
these relationships.

Many databases of metabolic information have been developed and are in widespread use by biologists and
biochemists. While ideas of object-orientedness and subclassing mechanisms are sometimes exploited, several
of the languages and techniques are quite ad-hoc, and many of the features that could be implemented by a
good type system are currently processed through extensive explicit programming. We next introduce some
of these systems, and then present a vision for a more appropriate representation.

4.1 Existing technology

Biochemical dynamics are sometimes modelled quantitatively, in order to capture the situation. A popular
model is the e-Cell [10], which represents a simplified cell in an object oriented language (C++) and allows
experiments in which concentrations of molecules can be set and observed at different (virtual) times. How-
ever, there is still a lot that can be gleaned about metabolic processes from a purely qualitative model, and
this is the approach taken by most of the existing systems.

There are many databases with very impressive amount of information about metabolism, such as KEGG
[4], METACYC [5], EMP [9], and UM-BDD |[2], amongst others. Often these databases have grown from an
attempt to use, organize and share in-house data, and some of the software tools have been developed with
these aims in mind.

KEGG (the Kyoto Encyclopedia of Genes and Genomes) is one of the best sources of data. It covers not
only metabolic information but also what is possibly the most complete genome database. It is based on the
DBGET integrated database, and is also linked with LIGAND (a chemical database for enzyme reaction).

According to Peter Karp, the developer of MetaCyc, KEGG mixes information from different organisms.
It also has no information about enzyme inhibitors or subunits, or substrate specificity. MetaCyc contains
information about 4218 reactions organized into 445 pathways, obtained second hand from literature, and
covers 12 organisms. MetaCyc stores super-pathways - groups of pathways linked by common substrates.
Pathways are inferred using a module called PathoLogic. Some problems identified with MetaCyc are missing
or incorrect information.

WIT is a system for reconstructing metabolic networks based on EMP data [7], and it supports the use
of phenotypic data as well as usual biochemical and genomic information. EMP bills itself as the most
comprehensive source of biochemical data. The University of Minnesota’s UM-BDD focuses on bacterial and
archaeal pathways, and the study of enzymes. The information is curated from different sources. Amongst
all the databases, it is the one where the contribution from different sources, including KEGG and EMP, are
acknowledged, and the importance of sharing information is raised.

All these systems seem to work on the premise that metabolic pathways are graphs, ie lists of reaction pairs.
The way each of these reactions, and the consituent molecules, is stored and accessed is an engineering
issue, but mostly they use a straight-forward database representation. However, because they represent
“large, noisy, complex data-sets and knowledge sets” (in the words of Peter Karp), there are bound to be
inconsistencies and information of limited certainty. It seems sensible to apply some of the expertise of the
theorem-proving community in developing a well-thought out representation for this knowledge.

Representing Metabolic Pathways 119
4.2 Pi-Calculus models of bionetworks

There is substantial work on models of biological networks by Regev, Priami, et al. using Stochastic Pi
Calculus [8]. Reactions between molecules are activated by the exchange of signals, and hiding is used to
model specificity, and creation of intermediate compounds. Their models are quite detailed, and capture
numerical reasoning along with the qualitative description. It is unclear if the numerical results obtained by
running the stochastic pi-calculus descriptions correspond to real-world data, and if the semantics of the two
systems correspond to each other. Furthermore, the descriptions are given in great detail, but this detail
makes it difficult to get a clear picture and reason about the pathways in a structured fashion. And there
is scope to explore families of reactions, something that would be aided with the use of a richer type-based
language, which better capture the general rules and polymorphic nature of metabolism.

5 Use of higher-order formalisms

While the databases that have been described above contain a lot of information about metabolic processes,
one aspect they all seem to be lacking is an appropriate ontology for the system. The databases take their
queue from encyclopaedias, which store information which must then be processed by the scientist who builds
ontologies in an informal fashion. There are projects aimed at building ontologies for biosystems (such as
the use of Description Logics for building the Tambis Ontology (TaO); these logics aim at improving the
understanding of the way information is stored in the databases, rather than looking purely at the biological
systems themselves. Typical ontologies use a small number of concepts, such as relations, instances, and
axioms.

The use of a logical formalism for describing metabolic data can move the paradigm for computational models
of metabolism significantly. Rather than considering a database, where the power exists in the capture of
a great amount of details and the existence ofvisualization and access tools, a logical model would offer
simplicity and the power to add new information in a simple and consistent manner. Rather than testing a
new model for a pathway as a new graph in the database, one could write it as a functional composition of
possibly polymorphic functions, and reason about it within the established logical rules and deduce properties
such as liveness of the cycle.

Several formalisms which have been developed initially by logicians and later eagerly adapted by computer
scientists for the purpose of describing computational systems are particularly suitable for capturing the
workings of metabolic pathways:

Temporal logic: a system of inference rules that allows one to reason about the evolution of a system, in
terms of eventual outcomes, invariants, entailments, and fairness amongst several processes. The goal
is to know the outcomes of a process not by simulating it for a long (abstract) time but by analytical
reasoning.

Linear logic: a system of inference rules that allows one to model resources, and propositions that hold at
one point and may not hold at the other. One of the main simplifications of traditional inference systems
is that once a theorem is said to hold, it needs to be assumed to always hold; this makes it difficult to
model transient properties inherent to biological systems. Linear logic solves this issue by allowing some
assumptions to be used only a finite number of times, which therefore makes it suitable for representing
chemical processes.

Type theory: simple data types do not capture the richness of groupings and dependencies existing in
natural systems. Recent interest in object-oriented modelling shows that bioinformaticists are keen on
exploring new type systems, but object-orientation itself is more geared towards programmability that
description. The interaction between quantification, subtyping, and polymorphism of systems such as
F <: allow a richer description of data.

All these approaches can be implemented within Higher-Order Logic, and in fact several implementations
in different proof systems already exist. New extensions allow the description of probabilistic algorithms

120 Sara Kalvala

and reasoning about them. In this poster simple models of enzymatic pathways using all three formalisms
above will demonstrate the usefulness of these advanced logical systems to bioinformaticists. This is work in
progress, and it is expected that a second pass at a logical model that integrates the separate descriptions
in the three formalisms above will be developed.

References

1. Nomenclature Committee. Classification and Nomenclature of Enzyme-Catalysed Reactions. International Union
of Biochemistry and Molecular Biology.

2. Lynda Ellis, Douglas Hershberger, Edward Bryan, and Lawrence Wackett. The University of Minnesota biocatal-
ysis/biodegradation database: emphasizing enzymes. Nucleic Acids Research, 29(1), 2001.

3. Robert Giegerich, Ralf Hinze, and Stefan Kurtz. Straight to the heart of computer science via functional pro-
gramming. In Proceedings of the Workshop on Functional and Declarative Programming in Education, 1999.

4. Minoru Kanehisa. Toward pathway engineering: a new database of genetic and molecular pathways. Science and
Technology Japan, 59, 1996.

5. Peter D. Karp, Monica Riley, Suzanne M. Paley, and Alida Pellegrini-Toole. The MetaCyc database. Nucleic
Acids Research, 30(1), 2002.

6. Boehringer Mannheim. Biochemical pathways chart. wall chart, 2000.

7. R. Overbeek, N. Larsen, N. Maltsev, G. D. Pusch, and E. Selkov. Metabolic reconstruction using the WIT/WIT2
systems. Technical Report ANL/MCS-P694-0997, Argonne National Labs, 1997.

8. Corrado Priami, Aviv Regev, Ehud Shapiro, and William Silverman. Application of a stochastic name-passing
calculus to representation and simulation of molecular processes. Information Processing Letters, 80(1), 2001.

9. Evgeni Selkov. Emp database.

10. M. Tomita, K. Hashimoto, K. Takahashi, T. Shimizu, Y. Matsuzaki, F. Miyoshi, K. Saito, S. Tanida, K. Yugi,
J.C. Venter, and C Hutchison. E-CELL: Software environment for whole cell simulation. Bioinformatics, 15(1),
1999.

Higher-Order Pattern Unification and Proof Irrelevance

Jason Reed

Carnegie Mellon University
Pittsburgh, PA 15213

jcreed@andrew.cmu.edu

Abstract. Extending the type theory of a logical framework with a proof irrelevance modality has
several potential advantages, including the ability to represent subset types and invariants for proof
compression. Although the extended theory is well-behaved, it is not yet completely clear how to modify
the implementation of a logical framework to accommodate proof irrelevance. The unification algorithm
in the logical framework Twelf, in particular, works by a process of constraint simplification that
depends on the notion of pattern substitution. Adapting this algorithm to work with proof irrelevance
requires generalizing the definition of pattern. We propose such a definition, guided by work with proof
irrelevance and strictness, and make progress towards proving its correctness.

1 Introduction

1.1 Higher-Order Pattern Unification

Our starting point is an algorithm for higher-order pattern unification using explicit substitutions due to
Dowek et al. [3]. The difficulties of variable capture involved in higher-order unification are avoided by a
reduction [2] to first-order equational unification in a language with explicit substitutions [1]. This first-order
algorithm specializes nicely for a decidable subset of unification problems, the pattern fragment. The strategy
of constraint simplification for solving general unification problems — trying to solve equations which are
in the pattern fragment and postponing constraints produced by those that aren’t, which may later be
resolved by substitutions arising from other equations — though not complete, has been found to work well
in practice.

Informally, pattern is a term where all the variables (by which we mean metavariables amenable to
substitution) occur above a sequence of distinct deBruijn indices, i.e. bound variables. If all variables have
atomic type (and we can easily transform problems to have this property) then this means each variable
must occur under a substitution whose range is a set of distinct deBruijn indices, a pattern substitution.
Pattern substitutions are desirable because they have one-sided inverses, and so are injective. Equations of
the form X|[¢] = b therefore have at most one solution, written b[¢]~!.

1.2 Proof Irrelevance

Constants are naturally injective; if we have a constant ¢ : 7, — --- — 7, = 7 of n arguments, the terms
¢ My---M, and ¢ M| --- M), are equal if only if M; = M/ for all 1 < i < n. There are times when this
is not the desired behavior. Sometimes we would like to be able to make certain arguments to a function
‘irrelevant’ when it comes to deciding equality. This can occur when some arguments to a function are
meant to be thought of as witnesses of provability rather than pieces of data whose structure matters. This
phenomenon is proof irrelevance. Generally, suppose we use the following signature in the dependent type
system LF ([4]):

t,u : type

p:Ilx:t. type

c: Ha:t.Ily: (p x).u
a:t

b,b :p a.

122 Jason Reed

Intuitively, we have an object a of type ¢, and some predicate p on objects of type ¢. The function c¢ takes
two arguments: an argument x of type ¢, and an argument y of type p x (which might be thought of as a
proof that p holds of z) and returns an object of type u. As the preceding discussion describes, c a b # c a b’
because not all of ¢’s arguments are the same on both sides of the equation — b and ' differ. We would
like to declare instead a d : Hz:¢.I1y + (p z).u, where the <+ symbol is supposed to be a promise that the
argument y ‘doesn’t matter’ in the output of d. We proceed to discuss some applications of proof irrelevance
in more detail.

1.3 Encoding Subset Types

The example above is really a trivial case of the use of proof irrelevance to obtain adequate encodings of
subset types, which can be useful when representing programming languages and logics in a logical framework.
A subset type is a formal version of the common mathematical set-formation syntax {z € X | ¢(x)} for some
predicate ¢ on X. As a typical example of its usefulness, suppose we wish to represent a lambda calculus
which has a ‘relevant’ binder A=! which requires the variable it binds to occur at least once. We could try
doing this by beginning with the usual untyped lambda calculus

tm : type
app : tm — (tm — tm)
lam: (tm — tm) — tm

and defining a predicate
occurs : (tm — tm) — type

via the logic program

occurs_var : occurs(Az.x)

occurs_appl : occurs(Az.app My Ms) « occurs(Ax. M)
occurs_appr : occurs(Az.app My Ms) < occurs(Az.M>)
occurs_lam : occurs(Az. lam(M z)) < (ITy:tm.occurs(A\x.M z y))

which captures the proposition that an open term uses its free variable, and declaring a constant
olam: It : (tm — tm).IIp : occurst.tm

However, because the binding of the proof p is the usual, “relevant” binding, this encoding is not adequate:
There are generally multiple LF terms which represent a given object-language term. This is because there
are potentially many proofs that a variable occurs bound — in fact there will be one proof per occurrence
of the variable. Therefore we want to equate all terms using olam that differ only in which occurrence proof
they use. That is, we should declare instead

olam : IIt : (tm — tm).IIp + occurst.tm

and the new encoding is adequate. Though the revised olam still requires the existence of a proof p that
occurst holds, it doesn’t care which proof in a certain sense, which is guaranteed by the type system.

1.4 Subterm Omission in Proof-Carrying Code

In a language like Java, some measure of safety of running code is insured by running the code ‘in a sandbox,’
inside a trusted virtual machine. Proof-carrying code [5] is another technique which aims to achieve the same
(if not greater) safety properties without sacrificing runtime efficiency to emulating a virtual machine. The
burden of making a program safe falls instead on the author of the program, the code producer. The recipient
of a program, the code consumer requires a proof that the program received satisfies some safety policy, and
so the code producer must send with the program a formal certificate of safety which can be mechanically
checked by the code consumer to actually prove that the program won’t violate the policy.

Higher-Order Pattern Unification and Proof Irrelevance 123

Unfortunately, these certificates can sometimes be large, even on the order of the size of the size of the
program being proved safe. Techniques for reducing proof size are desirable. Although the problem of finding
a proof for a given proposition is typically undecidable, a proof may have many subproofs which could be
easily and efficiently reconstructed by the code consumer. For instance, as part of a large proof that shows
that a program always computes a certain mathematical function correctly, it might be necessary to show
some trivial fact, say 3 +4 = 7. Now the formal correctness of this program depends on every last detail
of the proof being correct, but there is no need to send a proof of 3 + 4 = 7 across the network — there
can simply be a blank spot in the proof with an instruction saying, “please check that in fact 3+4=7." The
trade-off here is saving network bandwidth by perhaps spending more time reconstructing proofs on the code
consumer end.

In practice, proofs are frequently represented as terms in a type theory like LF, and checked with a tool
like Twelf ([8]). In this case, the idea of omitting subproofs really means omitting subterms. The question to
be addressed is, when can a subterm be safely omitted? Twelf already has facilities for providing sufficient
conditions for termination of predicates considered as logic programs. When we can show using these tools
that searching for a proof of P (which is what is meant by “running the logic program P”) always terminates,
and we know a proof of P, then we can be sure that the code consumer can also find a proof of P. What we
do not know is that the code consumer will find the same proof. It may seem like a desirable property of a
type system that if we replace a subterm S of a term M with a different subterm S’ of the same type, then
M is still well-typed, but dependent types systems do not necessarily have this property exactly because of
the dependence of types on terms. For example, in the signature

a, z :type

b:a — type
c:IIz:a.(b x)
d:IIz:a.(bzx) = 2
ki,ke:a

we have the typing
F(dki)(ck): 2

but not
- F (d kl)(c kz) 2

even though we have only changed one subterm of type a to another.

If we introduce proof irrelevance, however, then it can be shown that replacing one subterm under an
irrelevant application with another preserves the whole term being well-typed. Therefore, it is safe to omit
a subproof of a large proof if we can show that the subproof can be decidably recovered (i.e. if the predicate
can be shown to be terminating) and occurs under an irrelevant application.

1.5 Extending Unification

The task before us is to modify the pattern unification algorithm to work in a language with proof irrelevance,
and in particular to find the right notion of pattern. A similar situation arises with the notion of strict
definitions [7], which depends on the definition of pattern spines. In the absence of irrelevance, a pattern
spine is again a list of distinct bound variables. In [9] we found a modification of the definition of pattern
spine which satisfies the same critical lemma as the original, again an injectivity property. The changes
made were adding an ‘irrelevant cons’ to the syntax of spines and requiring distinct bound variables at
‘relevant’ positions and allowing any term at ‘irrelevant’ positions. We imitate these changes in a definition
of pattern substitution, and observe that one-sided inverses again exist, for an appropriate notion of equality
of substitutions. The theory here is simply-typed throughout, though we expect an extension to full dependent
types to be reasonably straightforward.

124 Jason Reed
2 Syntax

We define the Ao‘-calculus, an extension of the typed Ao-calculus with term variables [1] to include proof
irrelevance in the sense of [6]. For uniformity of syntax, we have a sort of modalities p with which we
annotate function types, function abstractions, context and substitution conses, and applications (written
©). The modality r refers to the usual (‘relevant’) notion from A-calculus and i gives the ‘irrelevant’ version.

Modalities p ==r]|i

Types AB:=a|A—-"B

Contexts I' :=e|A+T

Terms a,b ==1|X](ao’b) | Nya|als]
Substitutions s,t ==id|1]|a-*s]|sot

3 Typing

There are two typing judgments,

Term Typing I'-a:* A a has type A for modality p
in the context I

Substitution Typing I'F s : I"" s is a substitution for the
variables of I in I

Note that the term typing judgment is also annotated with a modality. We abbreviate :* by : and : by +.
The meaning of the irrelevant typing judgment is given by the context operation —%, defined recursively
by

.69:.

(A#I)® = A (1)

and the rule
I'ra: A

I'Fa+ A

I'? is the context I" with all irrelevant assumptions promoted to ‘real’ assumptions, so the typing rule allows
us to conclude that a + A if we can derive a : A when we are allowed to use even irrelevant assumptions.
The remaining typing rules are

AFTF1:A4 AFTHT:T

A*TCEHD:B I'ta:A—-"B I'tb:*B
'eXyb:A-"B I't(ao"b): B
rrid:r
I'-s: 1" I'Fa:* A
I't-als]:* A
I's:1' I'~¢:1"
I'ktos: I

'Fs: I I'Fa:*A
I'Fats:AHrT

Fxl—X:TX

Higher-Order Pattern Unification and Proof Irrelevance 125

4 Reduction

We list a set of reduction rules which are a straightforward adaptation of those in Ao, including those added
in [1] (Id, IdR, VarShift, Scons) for critical pairs arising from the addition of term variables.

Beta (Ay.a)b — (a[b-*id])

Eta My(ao*1) —bifa=,b[t]
App (aotb)[s] — (a[s] o b[s])
VarCons 1[a -* s] —a

Id alid] —a

Abs (Mpa)[s] = Mi(a[L-# (so1)])
Clos (als])[¢] —afs o]

IdL id os — 5

IdR soid =S

ShiftCons To(a-*s) —s
AssEnv (syo0s3)o0 53 -+ 810 (sz 0 s3)

MapEnv (a Hs)o —aft] # (sot)
VarShift L —id
Scons [s] #(tos) > s

It remains to work out what normalization and confluence properties this system enjoys. It seems likely
that weak or strong normalization of any fragment should follow easily from the same property holding of
the corresponding fragment in the underlying calculus without irrelevance by a simple erasure of modality
information. However, to whatever extent the property would depend on the typability of a term, we might
encounter difficulty dealing with full dependent types, since erasing irrelevance from a dependently typed
term may not result in a well-typed term.

We might also consider adding a reduction rule

Irrel ats—ats

to capture the intended meaning of an irrelevant cons, but this clearly destroys any hope of weak nor-
malization. We expect to handle the necessary quotienting-out of terms at irrelevant conses in a different
way.

5 Pattern substitutions

We define a judgment spat™Z! where s is a substitution, n a natural number, and I a list of natural
numbers. Its intended meaning is that s is a pattern substitution using deBruijn indices from I which are
no greater than n.

1" pat”=
spat"2! m<n,m¢lI spat">!
m - spat"2lm a i spat"z!

From this we can define pattern terms via a judgment a pat"=!, defined by the rules

spat"z!

X[s] pat™=!

apat™Z! m<n,m¢l apat™Z!

aof mpat"2tm a ol bpat"!

126 Jason Reed

Definition 1. A Ao‘-term is a Ao*-pattern if all of its subterms of the form a = (X[s] by ---by) are such
that a pat™2! for some n,I. A pattern substitution is a Ao‘-substitution all of whose Ao‘-normal forms s
are such that s pat"=! for some n, 1.

Note that in the absence of any confluence result we hedge our definition of of pattern substitutions by
referring to all normal forms rather than the normal form of the substitution s. Since we do not have
substitution variables, we hope that in fact the normal forms of substitutions are well-behaved, and this
inelegance can be removed.

The proof in [3] that pattern spines have one-sided inverses is constructive, and so can be described
algorithmically. We first give a direct description, and then sketch how to modify the algorithm. By unrolling
the induction definition, a pattern substitution ¢ is of the form

ay K1 ao M2 A, Hn Tm

Put

where
bi:{j If dj.p; =r Aaj =1;
a fresh variable X otherwise.
Observe that

£o& =" arl€] M as[€] 42 - anl€] A"

For any i, if p; is r, then by definition of £ and pattern substitutions we have a;[€] —* i. Otherwise, p; is i,
and we have some term a;[¢] occurring at an irrelevant position in the substitution £. The intended meaning
of irrelevance is that this is just as good as any other term at the same type, in particular the deBruijn index
i. Therefore, in a certain sense (and determining the right way to formalize this is the subject of our current
effort) we have

Eofm 1M1 Q2. ..p e AT 4% 4q

To modify the algorithm, we add modality annotations to the existing rules in a straightforward way,
and add two rules,

NDI nfa- g~ = (n[g]Y)[1]
UDIt"o(at¢) ™t =("oc) o?

which cause irrelevant conses to act as if they were deBruijn indices that ‘never occur,’ in the sense that they
never match other indices during application of an inverse substitution to a term (INDI is like ND# in [3])
and they never occur in the range of 1™ during composition of a substitution with an inverse substitution
(UDI is like UD1).

6 Future Work

Computing the inverse is not the only operation on substitutions involved in the unification algorithm of
[3]. We must also extend the definition of intersection £ N ¢ to transform equations of the form X[¢] = X[(],
and the pruning substitution £|¢ to correctly handle flexible occurrences of metavariables. Moreover it may
be that the notion of flexible occurrence can be extended to include occurrences of metavariables anywhere
under irrelevant application while maintaining the correctness of the overall algorithm. We intend to work
out the appropriate extensions of these concepts towards a complete unification algorithm for higher-order
patterns in the extended theory, and answer the basic questions of normalization and confluence mentioned
above.

Higher-Order Pattern Unification and Proof Irrelevance 127

References

1. Martin Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit substitutions. In Conference
Record of the Seventeenth Annual ACM Symposium on Principles of Programming Languages, San Francisco,
California, pages 31-46. ACM, 1990.

2. Gilles Dowek, Thérése Hardin, and Claude Kirchner. Higher-order unification via explicit substitutions. In
D. Kozen, editor, Proceedings of the Tenth Annual Symposium on Logic in Computer Science, pages 366—374,
San Diego, California, June 1995. IEEE Computer Society Press.

3. Gilles Dowek, Thérese Hardin, Claude Kirchner, and Frank Pfenning. Unification via explicit substitutions: The
case of higher-order patterns. In M. Maher, editor, Proceedings of the Joint International Conference and Sympo-
stum on Logic Programming, pages 259-273, Bonn, Germany, September 1996. MIT Press.

4. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of the Association
for Computing Machinery, 40(1):143-184, January 1993.

5. George C. Necula and Peter Lee. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Langauges (POPL ’97), pages 106-119, Paris, January 1997.

6. Frank Pfenning. Intensionality, extensionality and proof irrelevance in modal type theory. In Proceedings of the
16th Annual Symposium on Logic in Computer Science (LICS’01), 2001.

7. Frank Pfenning and Carsten Schiirmann. Algorithms for equality and unification in the presence of notational
definitions. In T. Altenkirch, W. Naraschewski, and B. Reus, editors, Types for Proofs and Programs, pages
179-193, Kloster Irsee, Germany, March 1998. Springer-Verlag LNCS 1657.

8. Frank Pfenning and Carsten Schiirmann. System description: Twelf — a meta-logical framework for deductive
systems. In H. Ganzinger, editor, Proceedings of the 16th International Conference on Automated Deduction
(CADE-16), pages 202-206, Trento, Italy, July 1999. Springer-Verlag LNAI 1632.

9. Jason Reed. Proof irrelevance and strict definitions in a logical framework. Unpublished Manuscript, 2002.

A Verification of Rijndael in HOL

Konrad Slind

School of Computing, University of Utah

Abstract. We present a verification of the Rijndael symmetric block cipher in the HOL-4 theorem
prover. In general, the proofs were easy: they proceeded largely by symbolic execution along with a
few applications of algebraic rewrite rules, which were also easy to prove. However, the proofs depend
on tight control of symbolic execution; otherwise, the problem size became too large for an interactive
system. An important aspect of the formalization was to phrase Rijndael as a functional program.

1 Introduction

Rijndael [1,2] is a collection of algorithms that encrypt and decrypt data. It recently won the AES (Ad-
vanced Encryption Standard) competition to find a successor to DES. It was designed to be suitable for
implementation in software and hardware (from smartcards to full custom VLSI).

One of the attractions of verifying the functional correctness of such a system is the simplicity of its
specification:

Vkey. decrypt key o encrypt key =1

Of course, the essential further requirement of a cipher is that it be hard to break: decryption of encrypted
data should be infeasible in the absence of the key used to encrypt. Our work does not address this problem,
which appears far more difficult to settle. The usual methodology seems to be one of falsification: proposed
ciphers are subjected to a variety of attacks; if none work, the cipher is deemed “secure”, at least for the
time being.

The two specification documents for Rijndael, one by its authors Rijmen and Daemen, and one from the
AES organizers, are admirably done. Each step in the algorithm is explained carefully and there are useful
glossaries aimed at avoiding any possible confusion. As well, there are appendices giving exact values for
the intermediate values of the state after each of the important steps in a sample computation. However,
for verification purposes, much of the specification has an unfortunate emphasis on arrays and updates on
them. We therefore translated Rijndael into a purely functional program.

2 Technical Preliminaries

Many of the operations applied in Rijndael are operations involving the Galois field GF(2%). This has a
carrier set of 256 items, which is the number of elements enumerated by 8 bits. The byte b7bgbsbsb3bsby by is
considered as a polynomial with coefficients in {0, 1}:

b7l‘7 + bexﬁ + b5$5 + b4l‘4 + b3$3 + bgl‘2 + blﬁ? + bo

Polynomial addition is bitwise exclusive-or, and so is subtraction. Multiplication of polynomials is harder,
since we need to be closed under the operation. Thus multiplication is performed modulo an irreducible
polynomial of degree 8; the chosen one for Rijndael is

m(z) =28+t +23 2 +1

Written in hexadecimal, this is 11B. Naively done, modular multiplication of polynomials is slow (mul-
tiplying through, then running a division algorithm) but it turns out that the full operation isn’t needed:
instead, multiplication by a constant suffices. In order to multiply a polynomial b(z) by z, i.e., by hex 02,

A Verification of Rijndael in HOL 129

we can left shift (<) followed by a conditional xor with 11B (which truncates to 1B). This is the xtime
operation:!

xtime b = (b < 1) xor (if b < 80 then 0 else 1B)

With this primitive we can multiply a polynomial by any constant: the operation will be written as an
infix e. Multiplication with higher powers of x can be achieved by iterating xtime and intermediate results
can be added with xor: for example, multiplying 57 by 13 2 yields

57 e 13 = 57 e (01 xor 02 xor 10)
= 57 xor xtime(57) xor xtime(xtime(xtime(xtime(57))))
= 57 xor AE xor 07
=FE

There is also another notion of multiplication involved in Rijndael: one where the polynomials have
coefficients in GF(2%), i.e., are bytes. However, that notion serves mainly at the specification level for the
algorithm and does not manifest itself in the code. Similarly, since we are dealing with a field, there are also
multiplicative inverse operations, but they are also not explicit in the code of the algorithm and so will not
be discussed.

3 Rijndael as a functional program

We will present Rijndael as a program in SML. Translation to other functional programming languages
should be easy. Since the algorithm deals extensively with bits and bytes, it is helpful if the host programming
language supports operations on these types. The SML library provides a structure Word8 implementing
bytes (the type word8). Literals for bytes may be written in hexadecimal in the format Owxh; ho. Exclusive-
or is provided by xorb. Rijndael is defined for three keylengths: 128, 192, and 256 bits. Our verification is
for a keylength of 128.

3.1 The state

The algorithm operates by repeatedly transforming a state of 16 8-bit bytes. In the original specifications,
the state is represented as a 4x4 array. The algorithms access the state by byte, by row, and by column.
Instead of an array, we represent a state by a 16-tuple of bytes.

type state = word8 * word8 * word8 * word8 *
word8 * word8 * word8 * word8 *
word8 * word8 * word8 * word8 *
word8 * word8 * word8 * word8

The plaintext input bobl bgb3b4b5b6 b7b8 bgb10b11b12b13b14b15 is moved into the state by proceeding from left to
right through the input and placing the bytes into ‘columns’. The inverse operation is used in decryption.

fun to_state (b0,bl,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15)

(b0,b4,b8,b12,
b1,b5,b9,b13,
b2,b6,b10,b14,
b3,b7,b11,b15)

fun from_state (b0,b4,b8,bl12,
b1,b5,b9,b13,
b2,b6,b10,b14,
b3,b7,b11,b15) = (b0,b1,b2,b3,b4,b5,b6,b7,b8,
b9,b10,b11,b12,b13,b14,b15)

These functions show how pattern matching on tuples is used throughout instead of array indexing.

! Note that the < in this definition is a comparison on bytes, and the literals 80, 0, and 1B are hexadecimal.
2 All literals are hexadecimal

130 Konrad Slind

3.2 Rounds

The main steps of the algorithm are orchestrated by the round computation. We have phrased this and its
inverse as recursive functions.

fun Round O [key]l state = AddRoundKey key (ShiftRows (SubBytes state))
| Round n (key::keys) state =
Round (n-1) keys
(AddRoundKey key
(MixColumns (ShiftRows (SubBytes state))))
| Round _ _ _ = raise Fail "Round: bug";

fun InvRound O [key]l state = AddRoundKey key
(InvSubBytes (InvShiftRows state))
| InvRound n (key::keys) state =
InvRound (n-1) keys
(InvMixColumns
(AddRoundKey key
(InvSubBytes (InvShiftRows state))))
| InvRound _ _ _ = raise Fail "InvRound: bug";

In a round, the main operations on the state are to perform byte substitution using so called sbozes, to
shift the rows of the state, and to mix the columns of the state. We will discuss these in turn.

Sboxes The Shozx is a permutation on bytes designed to be resistant to linear and differential cryptanalysis.
We create the function and its inverse InvSbox from vectors of bytes.

val Sbox = curry Vector.sub (Vector.fromList

[Owx63,0wx7c,0wx77,0wx7b,0wxf2,0wx6b,0wx6f,0wxch,O0wx30,0wx01,0wx67,0wx2b,0wxfe,Owxd7,0wxab,0wx76,
Owxca,Owx82,0wxc9,0wx7d,Owxfa,Owxb9,0wx47,0wxf0,0wxad,Owxd4,O0wxa2,0wxaf ,0wx9c,Owxad,0wx72,0wxcO,
Owxb7,0wxfd,Owx93,0wx26,0wx36,0wx3f,Owxf7,0wxcc,Owx34,0wxab,0wxeb,0wxfl,0wx71,0wxd8,0wx31,0wx15,
Owx04,0wxc7,0wx23,0wxc3,0wx18,0wx96,0wx05,Owx9a, 0wx07,0wx12,0wx80,0wxe2,0wxeb, 0wx27,0wxb2, Owx75,
Owx09,0wx83,0wx2c,Owxla,Owxlb,Owx6be,Owxba,Owxal,0wx52,0wx3b,0wxd6,0wxb3,0wx29,0wxe3,0wx2f, Owx84,
Owxb3,0wxdl,0wx00,Owxed, Owx20,0wxfc,Owxbl,Owxbb,Owx6a,0wxcb,Owxbe,0wx39,0wx4a,Owxéc,0wxb8, Owxct,
OwxdO,Owxef,Owxaa,Owxfb,Owx43,0wx4d,Owx33,0wx85,0wx45,0wxf9,0wx02,0wx7f,0wx50,0wx3c,0wx9f, Owxa8,
Owxb1,0wxa3, Owx40,0wx8f,0wx92,0wx9d, Owx38, 0wxfb, Owxbc,0wxb6,0wxda,0wx21,0wx10,0wxff,Owxf3,0wxd2,
Owxcd,OwxOc,Owx13,0wxec, Owxbf,0wx97,0wx44,0wx17,0wxc4,Owxa?,0wx7e,0wx3d,0wx64,0wxbd,0wx19,0wx73,
Owx60,0wx81,0wx4f,Owxdc,Owx22,0wx2a,0wx90,0wx88,0wx46,0wxee,Owxb8,0wx14,0wxde,Owxbe ,Owx0b, Owxdb,
Owxe0,0wx32,0wx3a,0wx0a,0wx49,0wx06,0wx24,0wxbc,Owxc2,0wxd3,0wxac,0wx62,0wx91,0wx95,0wxed, Owx79,
Owxe7,0wxc8,0wx37,0wx6d,Owx8d, Owxdb, Owx4e,Owxa9,Owx6c,0wx56,0wxf4,0wxea,0wx65,0wx7a,0wxae, Owx08,
Owxba,Owx78,0wx25,0wx2e,Owxlc,Owxab,O0wxb4,Owxc6,0wxe8,0wxdd, Owx74,0wx1f,0wx4b,Owxbd,Owx8b,Owx8a,
Owx70,0wx3e, Owxbb,0wx66 ,0wx48,0wx03,0wxf6,0wx0e,Owx61,0wx35,0wx57,0wxb9,0wx86,0wxcl,Owxld, Owx9e,
Owxel,Owxf8,0wx98,0wx11l,0wx69,0wxd9,Owx8e,0wx94,0wx9b,0wxle,0wx87,0wxe9,0wxce,Owxb5,0wx28, Owxdf,
Owx8c,Owxal,O0wx89,0wx0d,O0wxbf,O0wxe6,0wx42,0wx68,0wx41,0wx99,0wx2d,0wx0f ,0wxb0,0wx54,0wxbb,O0wx16])
o Word8.toInt

val InvSbox = curry Vector.sub (Vector.fromList

[0wx52,0wx09,0wx6a,0wxd5,0wx30,0wx36,0wxab, 0wx38,Owxbf ,0wx40,0wxa3,0wx9e,0wx81, 0wxf3,0wxd7,Qwxfb,
Owx7c,Owxe3,0wx39,0wx82,0wx9b, Owx2f,Owxff,Owx87,0wx34,0wx8e,0wx43,0wx44,0wxc4,Owxde,Owxe9, Owxcb,
Owxb4,0wx7b,0wx94,0wx32,0wxab,0wxc2,0wx23,0wx3d, Owxee ,Owx4c,0wx95,0wx0b,0wx42,0wxfa,Owxc3, Owx4e,
Owx08,0wx2e,Owxal,Owx66,0wx28,0wxd9, Owx24,0wxb2,0wx76,0wx5b,0wxa2,0wx49,0wx6d,0wx8b,0wxdl, Owx25,
Owx72,0wxf8,0wxf6,0wx64,0wx86,0wx68,0wx98,0wx16,0wxd4,0wxa4,0wxbc,0wxcc,0wxbd,Owx65,0wxb6,0wx92,
Owx6c,0wx70,0wx48,0wxb0,0wxfd, Owxed, Owxb9, Owxda, Owxbe,Owx15,0wx46,0wx57,0wxa’,0wx8d,0wx9d, Owx84,
Owx90,0wxd8, Owxab,O0wx00,0wx8c,Owxbc,Owxd3,0wx0a, Owxf7,0wxe4,0wx58,0wx05,0wxb8,0wxb3,0wx45,0wx06,
OwxdO,Owx2c,Owxle,Owx8f,Owxca,Owx3f,Owx0f,0wx02,0wxcl,Owxaf,Owxbd,0wx03,0wx01,0wx13,0wx8a,0wx6b,
Owx3a,0wx91,0wx11l,0wx41l,0wx4f,0wx67,0wxdc,Owxea,O0wx97,0wxf2,0wxcf,Owxce,O0wxf0,0wxb4,Owxeb,0wx73,
Owx96,Owxac,Owx74,0wx22,0wxe7,0wxad, Owx35,0wx85,0wxe2,0wxf9,0wx37,0wxe8,0wxlc,O0wx75,0wxdf, Owxbe,
Owx47,0wxfl,0wxla,Owx71,0wx1ld,Owx29,0wxch,Owx89,0wx6f,0wxb7,0wx62,0wx0e,Owxaa,Owxl8,0wxbe, Owxlb,
Owxfc,Owxb6,0wx3e,Owx4b,0wxc6,0wxd2,0wx79,0wx20,0wx9a,0wxdb,O0wxc0,O0wxfe,0wx78,0wxcd,Owxba, Owxf4,
Owx1f,Owxdd,Owxa8,0wx33,0wx88,0wx07,0wxc7,0wx31,0wxbl,0wx12,0wx10,0wx59,0wx27,0wx80,0wxec, Owx5f,
Owx60,0wxb1,0wx7f,0wxa9,0wx19,0wxbb, Owxéa,Owx0d, Owx2d,0wxeb,0wx7a,0wx9f ,0wx93, Owxc9,0wx9c, Owxef,
Owxa0,Owxe0,Owx3b,0wx4d, Owxae, Owx2a,Owxf5, Owxb0,Owxc8,0wxeb, Owxbb,0wx3c,0wx83,0wxb3,0wx99, Owx61,
Owx17,0wx2b,0wx04,0wx7e,Owxba,Qwx77,0wxd6,0wx26,0wxel,0wx69,0wx14,0wx63,0wx55,0wx21,0wx0c,O0wx7d])
o Word8.toInt

3.3 Byte Substitution

A byte substitution step applies an sbox to each element in the state: we phrase this as a higher-order
function for re-use:

A Verification of Rijndael in HOL 131

fun genSubBytes S (b0O,bl1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15)

(S b0, S bl, SDb2, S b3, S b4, S b5, Sb6, S b7,
S b8, S b9, S b10, S bill, S bl2, S bi3, S bil4, S bilb)

val SubBytes = genSubBytes Sbox
val InvSubBytes = genSubBytes InvSbox

3.4 Shift Rows

In a row shift step, the first row is not altered, the second row is left-shifted by one, the third row is left-shifted
by 2, and the fourth row is left-shifted by 3.

fun ShiftRows (b00,b01,b02,b03,
b10,b11,b12,b13,
b20,b21,b22,b23,
b30,b31,b32,b33)

(b00,b01,b02,b03,
b11,b12,b13,b10,
b22,b23,b20,b21,
b33,b30,b31,b32)

fun InvShiftRows (b00,b01,b02,b03,
b11,b12,b13,b10,
b22,b23,b20,b21,
b33,b30,b31,b32)
(b00,b01,b02,b03,
b10,b11,b12,b13,
b20,b21,b22,b23,
b30,b31,b32,b33)

3.5 Mix Columns

The mixing of columns is relatively complex in its operation. Each column in the state is treated as a four-
term polynomial over GF(2%) and multiplied modulo z* + 1 with a fixed polynomial. A higher-order function
captures the general pattern for the forward and reverse operations:

fun genMixColumns MC (b00,b01,b02,b03,
b10,b11,b12,b13,
b20,b21,b22,b23,
b30,b31,b32,b33)
= let val (b00’, b10’, b20’, b30’) = MC (b00,b10,b20,b30)
val (b01’, bi1l’, b21’, b31’) MC (b01,b11,b21,b31)
val (b02’, b12’, b22’, b32’) MC (b02,b12,b22,b32)
val (b03’, b13’, b23’, b33’) MC (b03,b13,b23,b33)
in
(b00’, b01’, b02’, bO3’,
b10’, bll’, bl2’, bl3’,
b20’, b21’, b22’, b23’,
b30’, b31’, b32’, b33’)
end

val MixColumns = genMixColumns MultCol
val InvMixColumns = genMixColumns InvMultCol

132 Konrad Slind

In the forward direction, the fixed polynomial is a(z) = 03z® + 0122 + 01z + 02. After some massaging, we
arrive at the following transformation on the column:

fun MultCol (a,b,c,d) =
((Owx02 **x a) xorb (Owx03 **x b) xorb c xorb d,
a xorb (Owx02 ** b) xorb (Owx03 ** c) xorb d,
a xorb b xorb (Owx02 ** c) xorb (Owx03 **x d),
(Owx03 **x a) xorb b xorb ¢ xorb (Owx02 ** d))

The inverse operation is harder, in the sense that larger coefficients are used: the fixed polynomial is ¢~ (z) =
0Bz> + 0Dz? + 092 + OE. The column transformation is:

fun InvMultCol (a,b,c,d) =
((OwxOe ** a) xorb (OwxOb ** b) xorb (OwxOd ** c) xorb (Owx09 ** d),
(Owx09 **x a) xorb (OwxOe ** b) xorb (OwxOb ** c) xorb (Owx0d ** d),
(Owx0d ** a) xorb (Owx09 ** b) xorb (OwxOe ** c) xorb (OwxOb ** d),
(OwxOb ** a) xorb (OwxOd ** b) xorb (0wx09 ** c) xorb (OwxOe ** d))

These operations are defined in terms of multiplication by a constant, represented by the infix ** symbol:

fun xtime b = (b << Owxl) xorb (if b < Owx80 then Owx0 else Owx1B)

fun (OwxO ** v) Owx0
| (c **x v) = if andb(c,0wx01) = Owx01
then v xorb ((c >> Owxl) ** (xtime v))
else ((c >> Owxl) ** (xtime v))

There is also an exponentiation operation, used to generate the key schedule:

fun exp (x,0) = OwxO1
| exp (x,n) = x ** exp (x,n-1)

4 Generating the key schedule

An important part of Rijndael is the calculation of the key schedule (a list of round keys) from the original
key, as a preliminary step to the round computations. In each round, a new round key is added to the state
pointwise with AddRoundKey:

fun AddRoundKey
(k0,k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12,k13,k14,k15)
(b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15)
(b0 xorb kO, bl xorb k1, b2 xorb k2, b3 xorb k3,
b4 xorb k4, bS5 xorb kb, b6 xorb k6, b3 xorb k3,
b8 xorb k8, b9 xorb k9, bl0 xorb k10, bll xorb kii,
b12 xorb k12, bi13 xorb k13, bl4 xorb k14, b1l5 xorb ki15)

The specification calls for the key schedule to be generated by operations on 32-bit words. In our version
of ML (Moscow ML), only 31-bit words were available, so we rephrased the algorithm over quadruples of
bytes. We will pass over the code in silence, since it is somewhat involved and the details are not important
for the correctness proof.

local open Int nonfix o
fun SubWord(b0,bl,b2,b3) (Sbox b0, Sbox bl, Sbox b2, Sbox b3)
fun RotWord(b0,bl,b2,b3) (b1,b2,b3,b0)
fun Rcon i = (exp(Owx02, i-1), Owx00,0wx00,0wx00) : word8x4
fun unpack [] A = A
| unpack ((a,b,c,d)::(e,f,g,h)::(i,j,k,1)::(m,n,0,p)::rst) A

A Verification of Rijndael in HOL 133

= unpack rst ((m,i,e,a,n,j,f,b,0,k,g,c,p,1,h,d)::4)

| unpack otherwise _ = raise Fail "generate_keysched (unpack)"
in
fun mk_keysched top (bO,bl,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15) =
let fun expand n (sched as (h::_::_::last::_)) =
if n>top then unpack sched []
else let val h’ = if n mod 4 <> O then h
else SubWord(RotWord h) xor4 Rcon(n div 4)
in expand (n+1) ((h’ xor4 last)::sched)
end
in

expand 4 [(b12,b13,b14,b15),(b8,b9,b10,b11), (b4,b5,b6,b7),(b0,bl,b2,b3)]
end
end

Finally, the top-level functionality can be obtained by a function that takes a key and generates the
key schedule before building the encryption and decryption functions. The encryption function uses the key
schedule and the decryption function uses the inverse of the key schedule.

fun preCrypt key =
let open Int
val Nr = 10
val keysched = mk_keysched (BlockSize * (Nr+l) -1) key
val (keyO::keys) = keysched
val (ikeyO::ikeys) = List.rev keysched
in
(from_state o Round (Nr-1) keys o AddRoundKey key0O o to_state,
from_state o InvRound (Nr-1) ikeys o AddRoundKey ikey0 o to_state)
end

5 The verification of Rijndael

Rijndael is directly encoded in HOL with only a few alterations from the SML program.

5.1 Bytes

An interesting modelling question is how best to represent bytes. In SML, bytes (word8) are an abstract type,
enumerated by 256 literals. HOL does not however have bytes built in, so we were confronted with several
choices: bytes may be represented by an enumerated type, or by the numbers up to 256, or by 8-tuples of
truth values. Although it is inefficient in a sense, we chose the latter representation.

To start, we define a few byte constants:

ZERO F,F,F,F,F,F,F,F)
F,F,F,F,F,F,F,T)
F,F,F,F,F,F,T,F)
)
)

THRE F,F,F,F,F,F,T,T

(
NE = (
TWO (
E=(
NINE = (F,F,F,F,T,F,F,T
ONEB = (F,F,F,T,T,F,T,T)
EIGHTY = (T,F,F,F,F,F,F,F)
B=(F,F,F,F,T,F,T,T)
D= (F,F,F,F,T,T,F,T)
E=(F F F,F,T,T,T,F)
Infix operators for ‘exclusive-or’ on bits and bytes are defined, along with an infix ‘and’ operation on
bytes:

134 Konrad Slind

zxory=-(z=y)
(a7b7c7d7e7f7g7h)
XOR

(ai,b1,c1,dy,e1, f1,91,h1)

__ [axor a,bxor by, cxor ci,d xor di,
e xor e1, f xor fi,g xor g, h xor hy

AND eAelaf/\flag/\glah/\hl

(a,b,c,d,e,f,g,h) _<a/\a1,b/\b1,c/\cl,d/\d1,>
(a1,b1,c1,d1,e1, fi,91,h1)

A few trivial algebraic theorems then follow: ZERO is the identity for XOR, commutativity, and asso-
ciativity.
Fx XOR ZERO =z
F (z XOR y) = (y XOR x)
F (z XOR y) XOR z = 2 XOR (y XOR z)

5.2 The state

The functions to_state and from_state for mapping into and out of a state are exactly the same as the ML
definitions. That they are inverses of each other is trivial:

F Vs. from_state(to_state s) = s
F Vs. to_state(from_state s) = s
5.3 Applying an sbox to the state

The functions SubBytes and InvSubBytes for applying an sbox to a state are exactly the same as the
ML definitions. The sboxes are each defined by a 256-way pattern match. The inversion theorem for these
functions is a consequence of the inversion theorem for sboxes, which is proved by analyzing all 256 cases
and evaluating the sboxes.

F Vw. InvSbox(Sbox w) = w
F Vs. InvSubBytes(SubBytes s) = s

5.4 Shifting rows

The functions ShiftRows and InvShiftRows for shifting rows in a state are exactly the same as the ML
definitions. The inversion theorem for these functions is trivial to prove.

F Vs. InvShift Rows(ShiftRows s) = s

5.5 Multiplication

The definitions of the multiplication functions largely follow the definitions. The xtime function is slightly
different, owing to our representation:

Xtime(b77b67b5;b4;b3;b2;b1;b0) =
if b7 then (bg, bs, by, 2b3, —b2, b1, =bo, T')
else (bg,bs,bs,b3,b2,b1,b0, F')

The xtime function enjoys a distributive property:

Va b. xtime(a XOR b) = (xtime a) XOR (xtime b)

A Verification of Rijndael in HOL 135

Multiplication by a constant is a direct translation.

by ® by = if by = ZERO then ZERO else
if (b AND ONE) = ONE
then b, XOR ((RightShift b;) e (xtime b,))
else (RightShift b;) e (xtime b,)

Termination of the function is proved by regarding the first argument as a number. The e operation
distributes over XOR.:

FVryz ze(y XOR z) = (xey) XOR (rez)

5.6 Column mixing

With column mixing, the proofs became larger. We need the inversion theorem
F Vs : state. InvMixColumns(MixColumuns s) = s

for the final proof, but naive case analyses became too large and we had to resort to much more basic steps.
To see the problem let’s consider the action on a column (a,b,c,d). In the forward direction, we have

a —Fl(a b,c,d)
F(a, b, c,d)
c —Fg((l b,c,d)
Fy(a,b,c,d)

and in the reverse we build up

"no_ Gl

=G
C” = G3
d" =G,

and we wish to show that a = a”,b =b",c = ¢",d = d". Consideration of a should illustrate our strategy.

= (TWO e a) XOR (THREE e b)) XOR ¢ XOR d
b = o XOR (TWO e b) XOR (THREE e ¢) XOR d
¢ = a XOR b XOR (TWO e ¢) XOR (THREE s d)
d' = (THREE) XOR b XOR ¢ XOR (TWO e d)

—~
Q\
“0:
Q'\

)
a' b’ d d’)
a' b'c ,d")
a,b’c d)

Thus

a"=(Eea’) XOR (Bed') XOR (De') XOR (NINE e d')
Ee¢ ((TWO ea) XOR (THREE e b)) XOR ¢ XOR d)) XOR
Be(a XOR (TWO ¢b) XOR (THREE ¢ ¢) XOR d)) XOR
De (¢ XOR b XOR (TWO e ¢) XOR (THREE ¢ d))) XOR

(NINE o (THREE » 0) XOR b XOR ¢ XOR (TWO e d)))

NN S N

By use of associativity and commutativity of XOR and distribution of e over XOR, we can separate
the problems into subproblems involving only one variable, each of which are easy to solve by case analysis
on the 256 ways of forming a byte.

=(Ee(TWO ea) XOR E ea XOR D e XOR NINE ¢ (THREE ¢ q))
é}O.IETHREE) XOR E o (TWO o) XOR D o) XOR NINE s)
fi;o.fi XOR E o (THREE » ¢) XOR D s (TWO o ¢) XOR NINE o ¢)
EEO.I; XOR E o d XOR D » (THREE o d) XOR NINE o (TWO e d))

=a XOR ZERO XOR ZERO XOR ZERO

=a

136 Konrad Slind

5.7 Joe Hurd’s good suggestion

The computation of the key schedule is fairly complex. If we needed non-trivial properties of it in order
to show correctness, significant extra work would be required. After listening to a preliminary presentation
on this work, Joe Hurd suggested that it might suffice merely to treat the key schedule as an arbitrary
list of keys. In fact, since the round computation consumes one key per round, it suffices to show that the
key schedule is an arbitrary key list of length 11. With this fact, the final correctness proof had no more
impediments.

To prove this was, again, not simply a matter of symbolic evaluation. First we proved an invariant on
the key expansion routine.

FVnt.
3<nAn<44
=
Jh. expand (n + 1) (h::t) = expand n t

This leads directly to a theorem relating the first and last calls of the key expansion routine.

FVabcd.
3hy hy hs hg hs he hy hg hg hig hiy hia hiz hig his hig har hig hig hoo
hay b2z has hag has hos hor hog hag hao hsy hsz hag hsy has hse har hag hsg hao.
expand 44 [hqo; h3o; has; har; hae; has; haa; has; haz; ha; hso; hao; hos;
hat; hae; has; hag; hass haos hot; heos hag; his; hat; his; has;
hia; has; haos hais haos hos hs; hrs hes his; has has ha; has a; b; ¢; d]

expand 4 [a; b; ¢; d]
From this we quickly get that the length of the list returned by mk_keysched is 11.

F ‘v’key Elhlh2h3h4h5h6h7h8h9h10h11.
mk keysched key = [h1; ho; hs; ha; hs; he; hr; hs; ho; hao; ha

This theorem can be immediately used to build a representation of the key schedule suitable for symbolic
execution.

5.8 Correctness
The statement of correctness is

Vkey plaintext.
let (encrypt, decrypt) = preCrypt key
in
decrypt (encrypt plaintext) = plaintext

The definition of preCrypt is merely an organizational device aimed at making a neat statement of the
final theorem. In the definition, the key schedule and its reverse are built from the key, and then the pair of
functions (encrypt, decrypt) is returned. The encryption function copies the input into the state, makes an
initial scrambling step with the first key, and then makes 10 rounds of further scrambling before transferring
the final state to the output. The proof shows that the decryption function basically reverses these steps.

preCrypt key =
let sched = mk keysched key in
let isched = REVERSE sched
in
((from_state o Round 9 (TL sched)
o AddRoundKey (HD sched) o to_state),
(from_state o InvRound 9 (TL isched)
o AddRoundKey (HD isched) o to_state))

A Verification of Rijndael in HOL 137

The proof of correctness starts by expanding the definition of preCrypt. Then the lemma on the length of
key schedules is used to replace the variables representing the key schedule and its reverse by corresponding
lists of eleven variables. Now the 10 rounds of encryption and the 10 rounds of decryption are unwound,
giving a large formula. The proof finishes by rewriting with the inversion lemmas.

5.9 An alternative decryptor
Daemen and Rijmen present an alternative implementation of the inverse round computation:

fun EqInvRound O [key] state = AddRoundKey key
(InvShiftRows
(InvSubBytes state))
| EqInvRound n (key::keys) state =
EqInvRound (n-1) keys
(AddRoundKey key
(InvMixColumns
(InvShiftRows
(InvSubBytes state))))

The alternative differs from the original in that the calls to InvShiftRow and InvSubBytes are swapped,
as are the calls to AddRoundKey and InvMixColumns.

InvRound with a key schedule ks is equivalent to EqInvRound with InvMixColumn mapped over ks
(except for the first and last elements). The mapping operation over the key schedule is called InvMixify:

InvMix [z] = [z]
InvMix (h :: t) = InvMixColumns h :: InvMix ¢

InvMixify (h::¢) = h :: InvMix ¢

In the alternative version of preCrypt, the forward computation is unchanged, and only the inverse
rounds and their key schedule are altered:

preCryptAlt key =
let sched = mk keysched key in
let isched = InvMixify (REVERSE sched)
in
((from_state o Round 9 (TL sched)
o AddRoundKey (HD sched) o to_state),
(from_state o EqInvRound 9 (TL isched)
o AddRoundKey (HD isched) o to_state))

With the lemmas

F Vs. InvShiftRows (InvSubBytes s) = InvSubBytes (InvShiftRows s)
F Vs k. InvMixColumns (AddRoundKey s k)

AddRoundKey (InvMixColumns s) (InvMixColumuns k)

it is easy to prove

F preCryptAlt = preCrypt.

6 Conclusions

The verification of Rijndael was relatively easy, which is good. One aspect of the problem was learning—by
trial and error—which definitions led to exponential symbolic evaluations. Lemmas about the generation of

138 Konrad Slind

the key schedule and the mixing of columns were the main examples and required the majority of the effort.
Symbolic execution allowed the avoidance of any intimidating abstract algebra. Rijndael, when rendered as
a functional program, is also quite simple, and could be taught to undergraduates with little difficulty. Thus,
it may be useful as a pedagogical example of verification technology.

There are several interesting avenues to explore:

— We anticipate that proofs for the other key lengths will be straightforward.

— The code we have proved correct encrypts and decrypts only a single block. So-called modes of opera-
tion specify various ways to encrypt arbitrary streams of data. Extending our work to these should be
straightforward.

— We would like to investigate the generation of hardware, e.g., gate arrays, directly from the HOL for-
mulation. There has already been much work on putting Rijndael into hardware, but the provision of a
path from higher-order logic to hardware seems appealing.

— Finally, encryption is one of a family of similar operations characterized by invertibility; for example,
compression/decompression and encoding/decoding. It would be interesting to see if commonalities can
be found in the correctness proofs of these algorithms.

References

1. Joan Daemen and Vincent Rijmen, The design of Rijndael: AES - the Advanced Encryption Standard, Information
Security and Cryptography, no. 17, Springer-Verlag, 2002.

2. United States National Institute of Standards and Technology, Advanced Encryption Standard,
http://csrc.nist.gov/encryption/aes/, 2001.

The K Combinator as a Semantically Transparent Tagging
Mechanism

Konrad Slind and Michael Norrish

School of Computing, University of Utah
Cambridge University Computer Laboratory

Abstract. The K combinator provides a semantically transparent tagging mechanism which is useful
in various aspects of mechanizing higher order logic. Our examples include: numerals, normalization
procedures, named hypotheses in goal-directed proof, and rewriting directives.

1 Introduction

Combinatory logic is based upon the two combinators S and K:

Sfgx=[fxz(ga)
Kry==z

As is well-known, these two definitions are equivalent in power to Turing machines and the untyped
lambda calculus. Combinators have also been used as the basis of abstract machines that implement func-
tional programming languages, like Miranda [9]. General purpose computing machines based on combinators
have even been realized as hardware. It is amazing that such a simple syntax is so powerful.

Our purpose is to expound another use of combinators, the K combinator in particular. On examination
of S and K, one can (fancifully perhaps) see a split between S, which takes care of the functions, and K,
which takes care of the data. Our interest is in representing particular external data in higher order logic.
We will use instances of the K combinator in HOL as a tagging mechanism. The approach depends on the
fact that an application

Kt ty

has both the same type and the same meaning as t;. We can put whatever well-formed term we wish in
to. Thus if we want to somehow associate t» with ¢1, we can transparently replace ¢; by K ¢; t2. One use
of this flexibility is to have t, be data that can be interpreted by external tools. Our examples show that
the external tools can range from object-language syntax facilties like parsers and prettyprinters to proof
support systems, to automated reasoners.

As might be expected, the K combinator is also used in functional programming. For example, in ML,
with its left-to-right call-by-value evaluation strategy, the infix function before defined by

fun (z before y) =z

has the following behaviour: an expression M before N is evaluated by evaluating M, then IV, and then
the value of M is returned. Typically, evaluating N results in a side-effect (otherwise the use of before is
pointless).

From our viewpoint, K is far more useful in higher order logic than in a programming language because one
can both create and eliminate applications of K in logic, while only elimination is possible in a programming
language.

In the following, we shall use some tags that are instances of the I combinator. This doesn’t detract from
our message, as we are thinking (not in any formal way) of K as a family of combinators:

Koz=x
Kizozi=2
Kozxias=2

140 Konrad Slind and Michael Norrish

Each K,, has type isomorphic to o — 8" — «. Only the first two members of this family are used in our
examples.

1.1 Related Work

Kalvala has studied the application and implementation of tags [7]. The basic difference between her approach
and ours is that she changes the underlying term structure to insert tags, while our tags arise from definitions
and do not therefore require any changes to the kernel of the logic. Howe uses a tagging mechanism to attach
types to the untyped terms of the Nuprl logic in [5]. Hutter [6] provides a tour de force of annotation
uses, showing how they can be used to support such disparate applications as first order theorem proving
heuristics (e.g. basic ordered paramodulation), window inference, rippling, and analogical reasoning. Like
Kalvala, Hutter’s approach requires altering the basic term structure.

2 Numerals

Our implementation of numerals for the natural numbers is similar to Harrison’s in his HOL Light system. In
contrast with earlier implementations of HOL, numerals are no longer members of an infinite set of constants.
Instead they are walues, constructed using three constants: 0, NB1 and NB2. The two NB constants are
defined

NBl(z) =2z +1
NB2(z) = 2z + 2

Thus the number five is NB1(NB2(0)). This scheme has the advantage of unique representations for all
numbers.

We use a K(combinator, called NUMERAL, to tag all numerals explicitly at the outermost level. As
Harrison notes in [4], this has the advantage that numerals are not sub-terms of other numerals. We have
also found the tag idea useful in our implementation of arithmetic on these numerals. This implementation
is based on Barras’s implementation of “call-by-value” rewriting [1], to which we pass a variety of rewrite
rules.

We begin by allowing addition to happen under the NUMERAL tag:

NUMERAL(z) + NUMERAL(y) = NUMERAL(z + y)

A naive implementation of addition could then use the following rules:

O+z==x

z+0==x
NBI1(z) + NBl(y) = NB2(z + y)
NBI1(z) + NB2(y) = NB1(SUC(z + y))
NB2(z) + NBl(y) = NB1(SUC(z + y))
NB2(z) + NB2(y) = NB2(SUC(z + y))

Here the SUC (“successor”) constant is being used liked a carry flag, to ripple along the rest of the com-
putation. Unfortunately, in the absence of rules to pre-empt it, rewriting using the equations above won’t
emulate this rippling very well because all of the z + y terms on the RHSs will be evaluated before the carry
flag is used.

The first step of our solution is to not provide any rules for addition directly. Instead, all additions have
to happen under a family of three P tags: Py, Py, and P», where P, (m) is defined to have the value m +n

The K Combinator as a Semantically Transparent Tagging Mechanism 141

(naturally, we won’t be expanding P, terms using this definition). Py is thus another Ky tag. Py corresponds
to the use of SUC above. P5 is necessary because

P (NB2(z) + NB2(y)) = 2z +2) + 2y +2) + 1
=2 +y+2)+1
— NB1(Ps(z +1))

Luckily, there is no comparable need for a P3 flag when adding numbers under P,. We also change the rule
for addition under NUMERAL to be

NUMERAL(z) + NUMERAL(y) = NUMERAL(P,(z + ¢))

Next, we need rewrite rules to calculate the effect of P; and P2 when applied to single arguments (the
situation does not arise for Py):

P,(0) = NB1(0) P,(0) = NB2(0)
P, (NB1(z)) = NB2(z) P,(NB1(z)) = NB1(P (z))
P, (NB2(z)) = NB1(P:(2)) P»(NB2(z)) = NB2(P(z))

Finally, our set of equations for addition (omitting + y clauses when a clause for y + z is already present)
is then:

Po(0+)
Py (NB1(z) + NBI(y))
Py (NB1(z) + NB2(y))
Po(NB2(z) + NB2(y))

NB2(Py(z + y))
NBL1(P,(z + y))
NB2(P,(z + y))

Pi(0+2) =Py (z
P,(NB1(z) + NBl(y)) = NBL(P; (z + y))
P, (NBI1(z) + NB2(y)) = N
P, (NB2(z) + NB2(y)) = NB1(P2(z + v))

Py(0 +z) =Py(z

P,(NB1(z) + NB1(y)
P.(NB1(z) + NB2(y)
P.(NB2(z) + NB2(y)

NB2(P:(z + y))
NB1(Ps(z +v))
NB2(Ps(z +v))

(
(
(
)
) (
) = NB2(Py(z +y))
) (
)
) (
) (
) (

Our P, tags can be seen as a specialised use of rewriting control, which we explore further below in
Section 7.

3 Normalization

We have also used tags to implement a simple near-linear method for selecting and moving sub-terms to
either end of a chain of arguments to an associative and commutative operator.

For example, when writing proof tools, it can be useful to have a particular conjunct at the front of the
term, in a known position. If the input term is

PLAP,A...Q...AP,

and we wish to have @ at the front of the term, one approach to achieving this would be to prove the original
term equal to a new one
QAN(PLN...ANP,)

142 Konrad Slind and Michael Norrish

General tools for doing such reordering proofs will necessarily take at least O(n logn) time however, and if the
terms are very big this cost can be significant. Alternatively, one might write a bespoke “term-reorganiser”
that carefully descended the term and did exactly the right sequence of transpositions to bring @ to the
front.

With tags, we have another alternative again. Define a “marker” Ky tag, and descend the term to wrap
it around @. Then use the following theorems and HOL’s general rewriter to bring marker(Q)) to the front:

P A marker(Q)) = marker(Q) A P
P A (marker(Q) A R) = marker(Q) A (P A R)
(marker(Q) A P) A R = marker(Q) A (P A R)

The final stage of the operation is to remove the marker wrapper from Q).

The use of the rewriter makes the implementation very simple, yet the efficiency will be close to linear
(only a linear number of swaps will be made, but the rewriter may do some unnecessary work traversing
other parts of the term looking for rewrites).

4 Constraint Tagging

The second author’s implementation of Cooper’s algorithm in HOL creates formulas that include terms of
the form

n

\/ P(n)

1

for fixed n. Because n is fixed, such formulas could be expanded directly into n disjuncts, but it is more
efficient to keep the disjuncts unexpanded so that later simplification can reduce the size of n. This would
be the result of the so-called “d-elimination” stage of the procedure, which might also replace n with an
expression parameterised by variables that are in turn bound by other finite constraints.

HOL doesn’t have an explicit parameterised disjunction operator, so we represent such formaulas with

. 1<iAi<nAP3)

For reasons of efficiency within the procedure, it is useful to be able to quickly locate the pair of constraints
on variable i, and there is no guarantee that they will always be maintained at the front of the body of the
quantification, as here. We wrap them inside a K; tag, where the additional information is the variable 1.
This makes it easy to locate constraints over particular variables. The formula then becomes

3. K1 <iAi<n)iAP(i)

5 Named hypotheses in proofs

Declarative proof interfaces have been a subject of recent interest in the interactive theorem proving com-
munity. In such a system [12, 3, 8,13, 10], proofs are not given as a sequence of commands that alter a proof
state—a procedural proof— but as a sequence of high-level assertions that closely follow the outline provided
by a rigorous informal proof. Declarative proof systems offer readability and consequent advantages such as
learnability and maintainability. In these systems, however, the original procedural proof interface—which
is often appropriate in the heat of a proof—is either unavailable, hidden, or deprecated.

This motivates the study of how combinations of declarative and procedural proof may be achieved.
In fact, Harrison’s work implemented declarative proof by procedural proof. However, he implemented a
separate proof interface which one had to use to perform declarative proofs. In contrast, later work by
Wiedijk [11] augmented the native procedural proof interface of HOL with declarative elements. One could
mingle declarative steps with procedural steps, or indeed use only declarative steps. Importantly, only a single
interface to proof was required. Unfortunately, Wiedijk’s implementation was mostly aimed at showing how

The K Combinator as a Semantically Transparent Tagging Mechanism 143

easy it is to build such an interface (it took about 40 lines of ML), and hasn’t yet been developed into a
user-friendly interface.

An important aspect of declarative proof is the attaching of names to hypotheses. In contrast, an impor-
tant aspect of procedural (tactic) proof in the HOL88/90/98/4 implementations of HOL is that hypotheses
in a goal are not named: they are a set. (The pros and cons of this have been extensively discussed in the
HOL user community.) Thus any attempt to implement declarative proof in these systems will have to solve
the problem of how to name and use hypotheses without having to rebuild the entire infrastructure of tactic
proof.

Tags can be used to implement named hypotheses. We simply define a version of K; as a logical constant

Named (z : bool) (y : @) = @

Then an assumption A can be named n by K-expanding it to Named A n. Once a few simple tactics are
written to access hypotheses by name, named hypotheses can exist in full harmony with unnamed hypotheses.
This gives us a clean basis upon which to try to build declarative proof interfaces that co-exist with the
existing interfaces.

An interesting subtlety, perhaps specific to HOL, is how to use named assumptions in tactics. For instance,
the first-order model-elimination tactic MESON_TAC has type thm list — tactic. It uses the supplied
theorems to prove a goal. Suppose we wish to provide a function ASM of type string — thm for fetching a
named assumption from the hypotheses of a goal and making it a theorem, by assuming it. Thus we would
be able to apply, e.g., MESON_TAC [ASM "foo"] in order to use an assumption labelled with foo to prove a
goal. However, the expression ASM "foo" must evaluate to a theorem, and the type of ASM forbids ASM from
accessing the goal! (Using top_goal won’t work.) Devious hackery is required. We manage to wriggle free
of the conundrum by having ASM return an instance of reflexivity F foo = foo, where foo is a variable. The
preprocessing phase of MESON_TAC — which does have access to the goal — has been adjusted to find
such trivial instances and turn them into accesses into the hypotheses of the goal.

6 Other operations on hypotheses

Two other applications of tagging support the abbreviation of subterms and the hiding of hypotheses.

1. In larger proofs, formulas with many repeated subterms can occur. To aid readability, abbreviation
tactics have been written. Such a tactic will create a new assumption v = M where M is the term to
abbreviate, and v is a variable acting as its abbreviation, and replace all occurrences of M by v. However,
such abbreviations don’t work well with other tactics. For example, rewriting with the assumptions will
re-expand any occurrences of v in the goal. For this reason, abbreviation tactics add the hypothesis in the
reversed form M = v. However, this refinement is defeated by cleverer tactics that attempt to eliminate
(by substituting throughout the goal) all equality hypotheses v = M or M = v.! Such hypotheses often
occur as the result of rewriting with injectivity theorems.

The workaround is to introduce a Ky tag

Abbrev (z : bool) = x

and then an abbreviation v = M would be represented by the expansion Abbrev(v = M), and would
be resistant to elimination by clever simplification tactics.

2. Another problem with larger proofs is extraneous hypotheses that clutter up the assumptions. They
make the full goal hard to read, slowing interactive proof development. One way to deal with this is
to eliminate them explicitly via a weakening tactic, but sometimes that is overly prescriptive. Another
approach that may be useful would be to to introduce a Kj tag

Hidden (z : bool) = x

and have the system prettyprinter omit assumptions of the form Hidden M.

! Note that the variable is restricted to occur on only one side of the equality, in order to preserve provability.

144 Konrad Slind and Michael Norrish

7 Rewriting directives

A basic functionality for a rewriter is to take a list of rewrite rules and apply them exhaustively to a term.
Many other styles of rewriting are usually also required in proof assistants (rewriting with/without a back-
ground set, rewriting with/without the current assumptions, conditional rewriting, higher-order rewriting,
etc), which leads to a large number of very closely related rewriting entrypoints, distinguished from each
other by elaborate naming conventions, or multiple options, which may be confusing or hard to learn.

We can tackle some aspects of the complexity of this interface by using tags. Notice that the user may
not want to treat all rules in R equally. For example, suppose one rule I r should be used twice, and the rest
exhaustively. Our solution to this scenario requires some help from the meta-language. We define in HOL

BOUNDED (b: bool) (n:a) =15
and in ML

datatype usage = UNBOUNDED
| BOUNDED of int ref

fun Atmost th n = < ... create |- BOUNDED th n ... >

An invocation Atmost (- M) i, where 7 is an integer, creates the theorem F BOUNDED M n, where n is
a variable named i. This enables us to invoke the rewriter (which has to be altered, see below) with a list of
theorems as follows:

REWRITE_TAC [Atmost r 2, ...]

The rewriting engine pre-processes each rule to see if any are tagged with usage information. Those that
aren’t are paired with the ML value UNBOUNDED, and added to the set of rewrite rules. (Each element in the
background set is paired with UNBOUNDED, reflecting the idea that such rules should be used exhaustively.)
A rule that is tagged with a usage restriction is paired with the ML value BOUNDED (ref n), where n is the
supplied restriction. Once each rule has been mapped to being UNBOUNDED or BOUNDED, the rewriting process
starts. When a rule is matched against the subterm being rewritten, it can be either unbounded, in which
case the rewrite goes through, or bounded, in which case there is a check to see if the rule has been used
up (i.e., its reference cell holds ‘0’). If so, then the replacement doesn’t happen. If not, the reference is
decremented, and the replacement happens.

In HOL, only minor changes were made to the rewriting mechanism in order to have it process such tags.
What is pleasant is that the code is completely backwards compatible: existing applications of the rewriter
in tactic scripts do not need to be changed.

As future work, we wish to add in a rewriting directive for conditional rewriting. There are essentially
two ways to implement conditional rewriting in goal-directed proof. The standard approach demands that all
conditions be proved before replacement takes place. This is usually the desired behaviour, but occasionally
the proof of the conditions fails, and it can become an awkward business to get the rewrite to happen. The
alternate approach assumes the conditions, thus ensuring that the rewrite happens, leaving the conditions
to be polished off later. Accomodating the two styles would seem to require multiple entrypoints, but we
envision having a Force tag that would signal which manner of rewriting should be used on a conditional
rewrite rule. One interesting outcome is that it may be possible to perform induction proofs via forced
and bounded higher-order rewriting (since an induction theorem has the form of a conditional higher-order
rewrite).

8 Conclusions and Future Work

We have seen how some common implementation issues in higher-order logic theorem provers can be handled
with a notion of transparent tagging. We hope that giving a name to a common practice will encourage others
to come forward with their own tales of using K to support proof.

The K Combinator as a Semantically Transparent Tagging Mechanism 145

The device is not without its drawbacks. For example, it seems best to restrict the scope of a tag’s usage:
tags are best when only their implementor is aware of their existence. Thus, eliminating a tag as soon as
possible seems to be good practice. Otherwise, unrelated proof tools may need to know about the tags used
by each other, making for a development nightmare. It is true that some tags, like those for numerals, do
persist; however, they don’t seem to cause much trouble (perhaps that is because they represent constants).

Another (related) worry is nesting of tags. In that case, the semantics of K mean that no confusion of
meaning is possible, but confusion of proof tools may certainly happen. For example, what if an assumption
is named twice? With different names? Tag creation and elimination could be made idempotent, but the
issue remains, especially when tags supporting different proof tools overlap.

A further limitation is that tags need to be well-typed terms. If that is a problem, one can use strings,
uninterpreted constants, or the names of free variables in order to provide tags that can be externally
interpreted. If, for example, one wished to attach hyperlinks—in the logic—to theorems, a string tag

URL (t : bool) (s : string) =t

might be a possibility.

We have seen how tagged terms may be implemented: what about tagged types? To follow our initial
insight, we need types that act like K. This may correspond to so-called phantom types, in which superfluous
type variables are used to enforce extra invariants via type inference. The paper [2] provides a range of
applications of phantom types in interfacing C to ML, including the use of type inference to enforce array
bound constraints. Thus, like tags, phantom types are useful for building interfaces between a type theory
and the outside world. It may be possible to create phantom types in HOL as well.

References

1. Bruno Barras, Proving and computing in HOL, Theorem Proving in Higher Order Logics, 13th International
Conference, TPHOLs 2000, Portland, Oregon, USA, August 14-18, 2000, Proceedings (Mark Aagaard and John
Harrison, eds.), Lecture Notes in Computer Science, vol. 1869, Springer, 2000, pp. 17-37.
2. Matthias Blume, No longer foreign: Teaching an ML compiler to speak C "natively”, Electronic Notes in Theo-
retical Computer Science 59 (2001), no. 1, 1-16, http://www.elsevier.nl/locates/entcs/volume59.html.
3. John Harrison, A Mizar mode for HOL, Theorem Proving in Higher Order Logics, 9th International Conference,
TPHOLS'96 (Turku, Finland), Lecture Notes in Computer Science, no. 1125, Springer-Verlag, 1996, pp. 203-220.
, Theorem proving with the real numbers, CPHC/BCS Distinguished Dissertations, Springer, 1998.
5. Doug Howe, A type annotation scheme for Nuprl, Theorem Proving in Higher Order Logics, 11th International
Conference, TPHOLs’98 (Canberra, Australia), Lecture Notes in Computer Science, no. 1479, Springer-Verlag,
October 1998, pp. 207-224.
6. Dieter Hutter, Annotated reasoning, Annals of Mathematics and Artificial Intelligence 29 (2000), 183-222.
7. Sara Kalvala, Annotations in formal specifications and proofs, Formal Methods in Systems Design 5 (1994),
no. 1/2, 119-144.
8. Donald Syme, Three tactic theorem proving, Proceedings of the 12th International Conference on Theorem Proving
in Higher Order Logics (TPHOLs'99) (Nice) (Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery,
eds.), LNCS, no. 1690, Springer-Verlag, 1999, pp. 203-220.
9. David A. Turner, Miranda: A non-strict functional language with polymorphic types, Proceedings of the 2nd
Conference on Functional programming languages and computer architecture (Nancy, France) (J.-P. Jouannaud,
ed.), Lecture Notes in Computer Science, vol. 201, Springer-Verlag, September 1985, pp. 1-16.
10. Markus Wenzel, Isar—a generic interpretative approach to readable formal proof documents, Proceedings of the
12th International Conference on Theorem Proving in Higher Order Logics (TPHOLs’99) (Nice) (Y. Bertot,
G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery, eds.), LNCS, no. 1690, Springer-Verlag, 1999, pp. 167-185.

11. Freek Wiedijk, Mizar: An impression, available at http://www.cs.kun.nl/"freek/mizar/mizarintro.ps.gz,
1999.

12. , Mizar Light for HOL Light, Theorem Proving in Higher Order Logics, 14th International Conference,
TPHOLSs 2001 (Edinburgh), Lecture Notes in Computer Science, no. 2152, Springer-Verlag, 2001, pp. 378-393.

13. Vincent Zammit, On the implementation of an extensible declarative proof language, Proceedings of the 12th
International Conference on Theorem Proving in Higher Order Logics (TPHOLs’99) (Nice) (Y. Bertot, G. Dowek,

A. Hirschowitz, C. Paulin, and L. Thery, eds.), LNCS, no. 1690, Springer-Verlag, 1999, pp. 185-202.

Real Numbers in Real Applications
Abstract

John Harrison!

Intel Corporation
johnh@ichips.intel.com

Abstract. The formalization of mathematics in theorem provers and
proof checkers, including continuous mathematics such as real analysis,
is sometimes undertaken purely for intellectual interest. For example,
the Mizar Mathematical Library includes a large number of analytical
theorems. But a surprising phenomenon is how useful non-trivial math-
ematics can be in verification applications.

One might guess that for verification of concrete floating-point algo-
rithms, only the most basic ”algebraic” properties of reals and simple
combination formulas for transcendental functions would be needed. But
we will draw on our own experience to show that this is not so, and one
needs a surprising amount of pure mathematics. Thus we can, should we
so wish, justify the formalized development of much apparently ”imprac-
tical” pure mathematics even in crudely utilitarian terms.

A PVS Service for MathWeb

A. A. Adams', A. Franke?, and J. Zimmer?*

! School of Systems Engineering
The University of Reading
A.A.AdamsORdg.ac.uk
2 AGS, Universitit des Saarlandes
{jzimmer,afranke}@ags.uni-sb.de

Abstract. MathWeb is a system which allows mathematical software programs to intercommunicate.
The aim is to allow manual or automatic queries from, say, a higher order theorem prover to a first
order theorem prover or from a computer algebra system to a theorem prover. We present an imple-
mentation of a basic PVS service in MathWeb. The service offers a black box which takes PVS-syntax
conjectures and interprets the resulting PVS output as to whether the proof attempt succeeded or not.
The main implementation allows access to the PVS Real Analysis Library and defaults to running the
grind strategy (“strategy” is the PVS term for what is often called a tactic in other systems) on the
submitted conjecture. Customisation to access other libraries and strategies is possible, and we present
an instantiation of this to access Gottliebsen’s continuity checker for the Real Analysis Library. We
also give an overview of the difficulties of accessing PVS is this way with suggestions for abstracting
the core prover away from the existing EMACS interface.

1 Introduction

In this paper we present an initial implementation of a PVS-MathWeb-Interface [PVS-MWI] and details of
the proposal for a full implementation of such an interface. PVS is a higher order theorem proving system
designed for interactive use primarily in formal methods development. Theory developments in real analysis,
however, have made it a useful tool for work in supporting computer mathematical assistance but the need
for theorem proving technology in this area lends itself more to a black box theorem proving system than an
interactive theory development platform. In addition, interoperability with various other systems is important
in this application domain. The MathWeb software bus is a useful broker and integration architecture for
such systems and as such is an obvious platform into which to link the PVS system, and in particular the
real analysis capabilities of Gottliebsen’s development [8,9].

We begin with some background information on MathWeb in the next section and then proceed with
background on PVS and the Real Analysis Library. Next we present some of the problems of running PVS,
designed to be an interactive theory development system, as a black box prover in section 4. In sections 5 and
6 we first present the proposed PVS-MWI and then the prototype implementation. We finish by considering
the ramifications of this work and future directions for such a development in section 7.

2 Background: MathWeb

The MathWeb software bus has been developed, primarily at the University des Saarlandes, to act as an
intermediary between various pieces of software which perform symbolic calculations of some form. The
original aim was to allow theorem provers [TP] and computer algebra systems [CAS] to interact. Previously,
a number of pairings of such systems had been connected but this necessitated working out the exact details
of external communication for each system in turn. The advantage of a system like the MathWeb software
bus is that any system connected to it can be connected to any other system without worrying about
operating system level details of their communication. In particular, any system which has a straightforward
command-line interface can be fairly easily connected to MathWeb.

The details of connecting systems together requires more than simply the operating system level of
connections, of course. Problems which must still be addressed for each system include:

* This work was supported by the EU Grant Calculemus HPRN-CT-2000-00102.

148 Adams et al.

— Translation between the object languages of the TP or CAS.
— Control of the processing occurring in each system.
— Synchronisation of a mutual symbolic calculation effort.

Use of the OZ language (using the Mozart implementation: see [12]) allows MathWeb to provide a solid
platform in which these problems may be addressed while at the same time providing a fully transparent
system of communication on a local host, a LAN or fully distributed over the internet.

3 Background: PVS Real Analysis Library

First we consider the uses of formalisations of real analysis in general and then give details of the formalisation
in PVS.

3.1 Formalisation of Real Analysis

The formalisation of real analysis and related continuous mathematics topics, is currently an area of great
interest. Most of the major higher order logic systems currently available have one or more efforts underway
to develop a formalisation of real numbers, transcendental functions, or similar. This development stems
from a number of different application areas, including:

— Formal Methods used to support the development of air traffic control systems. This requires a formali-
sation of geometric aspects of air flight, which requires trigonometric functions as part of the library of
underlying concepts: [3]. The development in PVS of a Real Analysis Library has been useful in such
work.

— Formal proof that a hardware implementation of the IEEE floating point operations require an underlying
concept, of the operations over the reals to be present to allow formal proof that the rounding operation
is not introducing errors: [10]. This led to the development of a Real Analysis Library in HOL-Light,
much of which has been ported to HOL-98.

Development of theories of real analysis, complex analysis and related topics are available or under current
development in PVS [5,8], HOL (HOL-Light and 98) [10], Isabelle (Isabelle/NSA) [6], ACL2 (actually a
variant called ACL2(r)) [7] and Coq.

3.2 The PVS Real Analysis Library

The particular work we are interested in here is the development of a Real Analysis Library for PVS.
The initial work on this library was done by Dutertre [5]. PVS already included a base type of real as
an axiomatised sub-type of number. Dutertre developed various parts of fairly abstract real analysis. That
development started with a theory of sequences of reals (PVS has polymorphic sequences as part of the base
system), developed explicit convergence criteria for sequences and then functions on the reals, and finally
defined abstract notions of continuity and differentiation. With some changes to make concepts such as
continuity and differentiation more useful for concrete functions, Gottliebsen [8] extended this library with
further work on real functions, including the definition of infinite sequences and power series. The definition
of power series allowed an analytic definition of a number of the transcendental functions, including In, exp,
sin, cos an tan. The properties of these functions were developed as a lemma data base to the point where
they were sufficiently characterised that further lemmas can generally be proved without reference to the
underlying power series. The definition of any new transcendental function would require a power series style
of definition, however, and a similar background of properties would need to be added for the new function
to be useful.

A PVS Service for MathWeb 149

3.3 Automated Proving Using the PVS Real Analysis Library

The PVS Real Analysis Library was primarily developed to support research in improving the capabilities of
Computer Algebra Systems [CAS] such as Maple and Mathematica. As such, the aim was to couple a CAS
and PVS together to produce a stronger (i.e. capable of producing correct answers in more circumstances).
The original project looked primarily at the contents of the computational mathematics being considered
by each system rather than at practical measures for coupling such system together. The utility of PVS in
these circumstances was as a black box which could handle logical side conditions on various computations.
In particular the inability of CAS to show satisfiability or unsatifiability of sets of constraints on real-valued
parameters with equalities and inequalities involving transcendental functions, causes great problems in the
area of definite integration (amongst many others). In addition, the same problem area of definite integration
leads to a need for a good continuity checker for parametric real functions, another area in which CAS are
particularly weak.

The automatic proving features of PVS were originally designed to perform “routine” tasks during inter-
active proving. The scope of these “routine” tasks has gradually increased to the point where these automatic
routines can now handle fairly complicated problems without any user intervention. PVS’ automated proof
procedures build up in a hierarchy of rewriting, ground term evaluation and definitional unfolding. The top-
level generic automated procedure which we are interested in is grind. This strategy has a large number of
optional arguments which control the operation of the underlying procedures to guide the proof search. While
PVS has a strategy language in which specialised strategies may be developed, it is often more useful to
use this language to define a special-purpose strategy which simply calls grind with appropriate arguments.
The continuity checker developed by Gottliebsen [9] uses this method. Investigations continue into the best
parameter settings for grind to cope with satisfiability problems.

Recent work at the NASA Langley Research Centre and ICASE has led to some interesting developments
in special purpose tools for automated proof of formulae involving real numbers. See [4] for details.

4 Running PVS as a Black Box

As mentioned above, PVS was designed very much as an interactive system. The developers of the system,
who are also themselves one of the primary user groups, use the system in this way. Only a few small projects
have tried to use PVS as a back end system with a different interface and as such, the integration of PVS
as an automated system available via MathWeb produces some interesting implementations problems. This
section will look at the structure of PVS and explain where the MathWeb interface should sit in the systermn.

4.1 The Structure of the PVS System

The main user interface for PVS is written in Emacs (also compatible with XEmacs). The core engine is
written in Allegro Common Lisp and distributed as a run-time library only. The PVS development team
are considering options for releasing the source code of the core engine, but it was not available at the time
this project was undertaken, although Owre of SRI has been particularly helpful in identifying the hooks
between the core engine and the Emacs interface. On first evaluation, the system is deceptively simple, and
may be considered as shown in figure 1.

Looking closely at the details, however, we see that there is not such a strong divide between the operations
of the Emacs Lisp Interface and the Allegro CL core. The Allegro CL Core writes information directly to
temporary files, for instance, which the Emacs Lisp Interface then copies to the permanent storage position.
Message passing is also not quite as simple as we would wish: the Allegro CL Core prints out large amounts
of text delimited by message markers such as

:pvs-msg :end-pvs-msg

which are parsed by the Emacs Lisp Interface and displayed (or not) in the correct manner (via the interaction
window, via the message bar or written to Emacs buffers). In addition, as well as input from the user, the
Emacs Lisp interface controls the timing with the core engine by sending appropriate signals to let the core
engine know that it is ready to process the next part of its output. The Allegro CL Core waits for these
messages before it proceeds with the proof attempt.

150 Adams et al.

Emacs Display Managed Files
I/0 I/0

Emacs Lisp Interface

Messages

Allegro CL Core

Fig. 1. A Naive View of the PVS System

4.2 Design of the PVS-MWI

The eventual aim of the PVS MathWeb service is also to be able to offer an interactive proof session. This
would comprise simply the ability to perform interactive proofs and to parse the produced proof script. The
theory management aspects, such as adding new theorems to a library, are not expected to be supported in
this manner. For the moment, and as a first step, however, we aimed at allowing the MathWeb server to send
a problem in PVS syntax to a PVS core engine running as a stand-alone process, and to interpret the results
as success or failure. This initial project aims to develop an understanding of the issues and to identify the
aspects of PVS that are suitable for such an interface, and those which require revision to ensure a robust
system.

Given that most PVS development and usage is expected to continue via the good interactive interface
already available, the ability to talk to an external server such as MathWeb is seen as a side goal of the main
development, but one which should not interfere with the primary development path. Thus we present a
design here which would allow our aims of an automatic or interactive proof session to be sent to PVS, and
the resulting proof script to be interpreted. Then we will present the aspects of PVS which are relevant to
this design, and finally present the existing state of our interface, which achieves the basic aim of allowing
automatic proof attempts in PVS with the very limited result of checking for success or failure. The design
presented here is to work with the PVS system in its current form. See section 7 for a discussion of changes
to the core engine which would allow a cleaner PVS-MWTI interface without degrading with the existing
interface.

4.3 Existing PVS System

Figure 2 shows a more detailed breakdown of the actions of the PVS Allegro CL Core and the Emacs Lisp
Interface

The Interface reads files from the permanent file store, which provide persistence across sessions for theory
development, proof scripts and other support mechanisms. It also controls information flows into the Emacs
buffers which hold the raw output of the Core Engine, the interactive session with the user and theory/proof
files currently under development. The Core Engine outputs messages to the Interface (interpreted via the
raw output buffer), and also writes proof scripts directly to the temporary file store. Most importantly of
all, the Interface sends commands directly to the Core Engine. These commands include start-up routines,
the loading of theory files and libraries, and proof commands.

A PVS Service for MathWeb 151

Emacs

Buffers

Interface Core

Temp

Files

Fig. 2. A Model of PVS Operation

4.4 Automated Proving in PVS

Before we consider our proposed and initial implemented interfaces to PVS in MathWeb, we must present
an unusual aspect of PVS, which will inform our discussion later. PVS is not strictly an LCF-style system.
Proofs are not necessarily produced by a sequence of atomic logical operations. Instead, a number of the PVS
strategies are written as compiled programs which are linked in to the system. This was a design decision
to enhance the usability of PVS by speeding up the proof process of particular heavily used strategies
such as grind. Since PVS does not produce proof objects as such, but only proof scripts, this does not
lead to problems generally. In order to allow greater assurance, however, PVS has a facility whereby these
external proof procedures can be called as transparent strategies instead. These transparent versions expand
to individual logical operations, and it is expected that the actions of the transparent and opaque versions
of the strategies will have the same effects given the same inputs. The thinking behind this is that while
proceeding with a development the user is interested in quick results from the decision procedures. Once
a development has been completed the user may then gain extra confidence (or insight into the resulting
proofs) by re-proving the theorems to expand the proof procedures. This will become important when we
consider the output of a call to PVS from an external system, which may or may not require a proof object
as well as an indication of success or failure.

5 Proposed PVS-MWI

To produce a complete MathWeb service for PVS we wish to replace the interface segment with a new facility.
This new PVS-MWI need not duplicate the entire functionality of the existing interface. For instance, it
need not write to permanent PVS files. Nor is there any requirement to write information to Emacs buffers.
However, it will need to read from the permanent files of the PVS installation, and from the temporary files
written by the Core Engine. The PVS-MWI also needs to communicate directly with the Core Engine.

152 Adams et al.

5.1 The Automatic PVS Proof Service

As mentioned above, we are not aiming to provide a replacement for the existing Emacs interface. Instead
we aim to provide a PVS server which will allow proofs to be performed either automatically or interactively
over a remote connection, almost certainly via another program. While much of the Emacs interface deals
with developing theories and associating proofs with their formulae etc., we are not concerned with such
issues. However, there is one issue regarding theories that we must address: the context in which a formula
to be proved is valid. It is unlikely that many users will wish to use simply the base PVS logic and initial
developments (the “prelude” theories) only. It is more likely that a particular theory context will be required,
such as the real analysis library, the context offered by the current version of the PVS-MWI.

Since there is a substantial time-lag in loading large theories such as the Real Analysis Library, it is
expected that each service offered over MathWeb will actually be an image with the appropriate theory pre-
loaded. Thus, instead of simply asking for a PVS service, the client program would have to specify PVS+ Lib,
where Lib might be Reals. To ensure efficient communication, the ideal interface should also indicate the
type of information expected as a return. There would be no point in returning a proof to a computer algebra
system for instance, whereas (mega requires prover services to return an appropriate proof object. We can
classify the modes of operation required of the interface as shown in table 1 below.

| Query Mode | Responses |
Prove Positive, No Object True/Unknown
Prove Positive&Negative, No Object True/Unknown/False
Prove Positive, Object True/Unknown&Proof
Prove Positive&Negative, Object |True/Unknown/False&Proof|

Table 1. Modes of PVS Interaction

As mentioned above, the modes which require the return of a proof object (in the case of PVS an expanded
proof script is the best that is available) will require a slightly different form of the strategy command passed
to the PVS core engine. Thus the command in a client which passes a conjecture for proof to PVS should
have five arguments:

1. the conjecture (a formula in PVS syntax or another syntax which the PVS-MWI can convert into PVS
syntax);

No default value;

2. a flag indicating whether an attempt to prove the formula True is required or an attempt to prove the
formula true or false: PVS does not return “False”, it simply returns True or fails to complete a proof;
Default value: True Only;

3. the name of a strategy to call to attempt to prove the conjecture;

No default value;

4. the name of the theory in which context the proof of the conjecture should be attempted;
Default value: prelude;

5. a flag to indicate whether a proof object should be returned;

Default value: False.

Should a PVS-MWI contain a translation mechanism from, say, OpenMath notation into PVS notation then
a flag indicating the syntax used in stating the conjecture may be needed. Likewise should the interface be
capable of returning proof objects in different formats then an extra argument indicating the required return
format would be useful.

Note that the lack of a default value for the strategy to be applied allows for an “empty” strategy to be
passed in to indicate that a user wishes to perform an interactive proof.

The current interface must perform a fair amount of processing of PVS I/0 at start-up and during each
proof attempt. In the long run much of this work should be ameliorated with access to extend the PVS
Allegro Common Lisp Core with appropriate flags indicating the status of PVS in a “black box” mode.

A PVS Service for MathWeb 153

It should be noted that there are a number of non-standard cases to be considered for a full-featured
automatic proof service:

— A conjecture may be submitted that is syntactically or type incorrect.

— PVS does not attempt to prove a conjecture false, so any false conjecture submitted will simply lead to
a failure of proof, indistinguishable from a case where the proof strategy is not strong enough to prove
the conjecture.

6 Current Version of the PVS-MWI

In this section we will describe the current minimal implementation of the PVS-MWI. This is a working
service, available for installation as part of MathWeb, but includes only parts of the full service described in
the previous section. See the later section 7 for details of ongoing development in this project.

6.1 Starting PVS

Originally, running PVS in a shell required the execution of the Allegro Common Lisp image directly, rather
than invoking the distributed shell script which normally starts PVS. Since then Owre has added a switch to
the shell script which runs PVS as a stand-alone program: pvs -raw. This still only starts the core engine of
PVS, however, and there are various steps which must be then taken to put the system into a usable mode
as a proving tool. The first of these has been made obsolete by the most recent release of PVS (2.4). We are
in the process of updating the PVS-MWI to take account of this release.

Load the latest patch files (if patch files are present).

Change to the “Package” PVS (see the Common Lisp documentation [13] for a description of packages).
Change the working directory in which PVS operates (in interactive sessions this is called the context).
Run a simple test proof of “1=1" using “(grind)” in the context of the Real Analysis Library. This
pre-loads the entire library into the current image.

=W =

6.2 Successful Proof Process

The PVS Core Engine function prove-formula-decl is the function called to start the proof process. The
arguments of this function include the conjecture for which proof is to be attempted, the PVS theory which
forms the context of the conjecture and proof attempt, and a strategy which is to be applied.

At specific points in the proof attempt process, the PVS Core Engine outputs a message indicating to
the Emacs interface that it is in a particular state and ready to proceed with the next stage of the proof.
At each of these points, the PVS Core Engine expects a token from the Emacs interface to indicate that
it is ready to proceed with the next phase of the proof. This interaction is due to the requirements of the
Emacs interface to display messages, update the interaction buffer, and copy text to and from temporary
file storage. The sequence of interactions is shown below. The text in courier typeface is the output from
the PVS Core Engine (... indicates other lines appearing first). The conjecture being proved is NOT (0=1),
by using the strategy (grind) in the context of the Real Analysis Library.

:pvs-msg Formula typechecked :end-pvs-msg
:pvs-eval (setq pvs-in-checker t) :end-pvs-eval

This shows that the Core Engine has completed type checking of the conjecture. Note that this does not
necessarily mean that type checking has succeeded, simply that it hasn’t failed. See section 7 for a discussion
of this. The next line indicates that the Core Engine is now entering proof check mode. Once a token (“t”
is appropriate) has been sent to the Core Engine, we get the following:

154 Adams et al.

Rerunning step: (GRIND)

Trying repeated skolemization, instantiation, and if-lifting,
Q.E.D.

:pvs-eval (setq pvs-in-checker nil) :end-pvs-eval

The name of the conjecture being proved (important when the interface is maintaining a record of a theory
and linking a proof to lines of a theory file) is test (the specification of the conjecture in the argument of
prove-formula-decl is required is have a name). The initial form of the sequent in the proof is printed and
the steps to be automatically attempted in the roof are shown (in this case simply the single step (GRIND)).
The progress of the strategy is reported (Trying. ..) and then success is indicated with Q.E.D. followed by
the fact that the Core Engine is dropping out of proof checker mode. Again, a token is sent to the Core
Engine, resulting in the following output:

:pvs—eval (pvs-ready) :end-pvs-eval

A final token submitted to the Core Engine returns “I"”. This is the evaluation result of prove-formula-decl,
but is not an indication of the success or failure of the proof attempt, simply a place-holder return value.

6.3 Unsuccessful Proof Process

The above sequence shows what happens when PVS is presented with a conjecture which is provable by
the strategy requested. This is not always the case, however, so we must consider how the Core Engine acts
when presented with a conjecture unprovable by the strategy. This can be because the strategy is not strong
enough to prove a true conjecture or because the conjecture is false. Note for our initial implementation of a
PVS-MWI we have not implemented a recovery scheme for cases where an ill-formed conjecture is submitted
(either with a syntax error or an identified type-checking error). Nor has recovery from an apparent “infinite
loop” been implemented by sending a break signal and recovering from the resulting break level of the Allegro
Common Lisp session in which the Core Engine runs.

To demonstrate an unsuccessful proof attempt we will present the interaction which occurs when the
conjecture 0=1 is presented to the (grind) strategy:

:pvs-msg Formula typechecked :end-pvs-msg
:pvs-eval (setq pvs-in-checker t) :end-pvs-eval

An identical start to the previous sequence, with the formula correctly type checked and the Core Engine
reporting that it is now in proof checker mode.

{1} (0 =1)

Rerunning step: (GRIND)

Trying repeated skolemization, instantiation, and if-lifting,
this simplifies to:

test :

[1] (0 =1)

x**xWarning: Fewer subproofs (0) than subgoals (1)
No change on: (SKIP)

test :

[1] (0 =1)
Postponing test.

A PVS Service for MathWeb 155

[1] (0 =1)

:pvs-eval (setq pvs-in-checker nil) :end-pvs-eval

Having received a token, the (grind) strategy this time fails to prove the conjecture. The critical point here
is actually the lack of an appearance of Q.E.D. being the easiest method of detecting failure. Another token
is then sent to the Core Engine, which has indicated that it has dropped out of proof checker mode:

Would you like the partial proof to be saved?
(**%01d proof will be overwritten.x**)
(Yes or No)

Now we see the unwanted interaction designed for the full Emacs interface coming into play, asking the user
for instructions with regard to the partial proof developed in attempting to prove the conjecture. The Core
Engine actually does very little depending on the answer here. The primary operation is carried out by the
Emacs Interface in copying the temporary proof file into the appropriate part of the proof file underlying
the current theory. On sending “yes” the Core Engine returns:

Use M-x revert-proof to revert to previous proof.
:pvs—eval (pvs-ready) :end-pvs-eval

For the purposes of a replacement interface, however, “no” is a more appropriate response, to which the
Core Engine gives:

:pvs—eval (pvs-ready) :end-pvs-eval

After either of these, a further token is required to reset the Core Engine to it’s top-level read-eval-print
loop, with the final response of:

("" (GRIND))

that is, the partial proof.

6.4 The Implemented Basic PVS-MWI
Thus the basic PVS-MWI that has been implemented has the following features:

— Only the actual conjecture (in PVS syntax) is a required argument. To this is added the “test: lemma
7 text. Default values of the Real Analysis Library for the context and (grind) for the strategy are
included.

— Three main functions are provided:

Function|Description
prove Simply attempts to prove the conjecture and returns “True” if suc-

cessful. If this fails it returns “I Don’t Know!”

provetf |Attempts to prove the conjecture True and returns “True” if suc-

cessful. If this fails then it attempts to prove the negation of the

conjecture and returns “False” if this succeeds. If both fails it re-

turns “I Don’t Know!”

provects | This assumes that the conjecture is of the form of continuity of a

real-valued function. It calls Gottliebsen’s continuity-checker (cts)

and returns “True” if this succeeds and “I Don’t Know” otherwise.

Proof of discontinuity has not been implemented so proof of the

negation here is not supported.

— In all cases where a proof attempt fails, the PVS-MWI answers “no” to the question posed about
recording the partial proof and correctly resets the Core Engine to the top-level prompt.

156 Adams et al.

7 Conclusions and Future Work

The existing interface is simply a prototype and requires a fair amount of further work to be truly useful,
Nevertheless, the exercise has proved very useful in a number of ways, which we will consider here, before
addressing the future direction of this work.

Taking a system such as PVS which was designed as an interactive theory development platform with
a specific Emacs interface, and allowing its use as a black box back end theorem prover has proved more
complicated than might be initially expected. However, the areas where optional settings may be added in
to make this an easier proposition have now been identified and development of PVS in this direction should
not prove difficult.

Related work on system specific interface such as the Maple-PVS link [1] should also benefit from this
exploration of the PVS system and developments in this area.

Various aspects of the MathWeb software bus have been tested and occasionally broken during this
development. This paper has not focussed on such details as race conditions between the interface and
the PVS Core Engine; zombie PVS processes caused by failures of the broker architecture; and similar.
Nevertheless the development of the MathWeb architecture has undoubtedly benefitted from including PVS
in its family as proof system server. Developments in using other higher order systems as servers in MathWeb
will be easier following the lessons learned here. Specification of a generic black box automated theorem
proving service derived from the PVS service is one concrete outcome for the MathWeb system from the
prototype PVS-MWL

7.1 Exploration of PVS as a Back End System

As mentioned many times above, PVS was primarily developed as a theory development platform and it will
certainly continue to be used in such a fashion. Indeed, further enhancement of the capabilities as a black
box system require a good theory development platform to be available. However, identifying the areas of the
existing PVS system where the theory development platform is unnecessarily embedded in the core engine
will prove a useful exercise in informing future development of PVS. Once a theory has been developed it
is quite often useful to allow black box use of automated strategies in the context of that theory and the
work shown here will hopefully allow further development of the PVS Core Engine to support this need.
Availability of PVS theories as black box systems should also stimulate development of more and more
complicated theory systems in addition, benefitting the PVS community as a whole.

7.2 Implementation of the Full PVS-MWI

The main task of the development of a full PVS-MWI would be the development of an interactive proof
ability. Extension of the existing prototype to cover black box proving as shown in section 5 should be
relatively straightforward, providing changes to the PVS Core Engine as described below are undertaken.

Some rationalisation of the existing system would be required, most specifically a separation from the
current dependence on the Real Analysis Library as the default context. An early decision would need to
be made as to whether a generic PVS prover might be offered or whether specific provers offering a single
context would be better. Each has its advantages, and the decision would also be informed by the changes
that might be made to the Core Engine of PVS.

It had been thought that automated proof checking using prove-formula-decl generated separate type
checking conditions (tccs). On communication with PVS developers, however, it turns out that tces generated
when performing a proof with this function are folded into the goal, so that whenever “Q.E.D.” is generated,
one can be sure that any tccs have also been verified. However, this behaviour may be the cause of occasional
infinite loops during the automated proof attempts. A more sophisticated approach to using PVS as an
automated back end proving system might do something more intelligent with the tccs.

7.3 Proposed Developments of the PVS Core Engine

We list here suggested amendments to the Core Engine which are feasible without altering the existing Emacs
interface code substantially.

A PVS Service for MathWeb 157

Switching off the printing of most of the messages.

Not requiring a token passed in at the various points noted above.

Ignoring the “partial proof” to be saved or not when a failure of proof occurs.

A robust timeout setting returning a failure of the proof attempt after a certain number of CPU cycles.
Defining a new proof function which returns a T or NIL as well as the proof if successful.

In addition, Allegro Common Lisp run-time images of the Core Engine with various libraries pre-loaded

would improve the efficiency of start-up of a PVS-MWI which offered services in those contexts.

References

1.

2.

10.
11.

12.
13.
14.

A. A. Adams, M. Dunstan, H. Gottliebsen, T. Kelsey, U. Martin, and S. Owre. Computer Algebra meets
Automated Theorem Proving: Integrating Maple and PVS. In Boulton and Jackson [2], pages 27—42.

R. J. Boulton and P. B. Jackson, editors. Theorem Proving in Higher Order Logics: 14th International Conference.
Springer-Verlag LNCS 2152, 2001.

V. Carreno and C. Muifioz. Aircraft Trajectory Modeling and Alerting Algorithm Verification. In Harrison and
Aagaard [11], pages 90-105.

B. Di Vito and C. Muioz. New PVS Prover Strategies for Real Arithmetic.
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS2-library /pvslib.html.

B. Dutertre. Elements of Mathematical Analysis in PVS. In von Wright et al. [14], pages 141-156.

J. D. Fleuriot and L. C. Paulson. Mechanizing Nonstandard Real Analysis. LMS Journal of Computation and
Mathematics, 3:140-190, 2000.

R. A. Gamboa and M. Kaufmann. Non-Standard Analysis in ACL2. Journal of Automated Reasoning, 27(4):323—
351, Nov 2001.

H. Gottliebsen. Transcendental Functions and Continuity Checking in PVS. In Harrison and Aagaard [11], pages
198-215.

H. Gottliebsen. Automated Theorem Proving for Mathematics: Real Analysis in PVS. PhD, School of Computer
Science, University of St Andrews, 2001.

J. Harrison. Theorem Proving with the Real Numbers. Springer-Verlag, 1998.

J. Harrison and M. Aagaard, editors. Theorem Proving in Higher Order Logics: 13th International Conference,
TPHOLs 2000. Springer-Verlag LNAT 1869, 2000.

The Mozart Implementation of the OZ Programming Environment. http://www.mozart-oz.org/.

G. L. Steele Jr. Common Lisp: The Language, Second Edition. Digital Press (Bedford, MA), 1990.

J. von Wright, J. Grundy, and J. Harrison, editors. Theorem Proving in Higher Order Logics: 9th International
Conference. Springer-Verlag LNCS 1125, 1996.

Formalizing Real Calculus in Coq

Luis Cruz-Filipe*

Department of Computer Science, University of Nijmegen, The Netherlands
Center for Logic and Computation, IST, UTL, Portugal
lcf@cs.kun.nl
http://www.cs.kun.nl/"1cf

Abstract. We have finished a constructive formalization in the theorem prover Coq of the Funda-
mental Theorem of Calculus, which states that differentiation and integration are inverse processes.
This formalization is built upon the library of constructive algebra created in the FTA (Fundamental
Theorem of Algebra) project, which is extended with results about the real numbers, namely about
(power) series.

Two important issues that arose in this formalization and which will be discussed in this paper are
partial functions (different ways of dealing with this concept and the advantages of each different
approach) and the high level tactics that were developed in parallel with the formalization (which
automate several routine procedures involving results about real-valued functions).

1 Introduction

In this paper we show how a significant part of real analysis can be formalized in Coq. We deal with differ-
entiation and integration, proving the Fundamental Theorem of Calculus (which states that differentiation
and integration are in some sense inverse processes) and Taylor’s Theorem (which allows us to express a
function in terms of its derivatives while giving an estimate for the error), as well as defining some standard
constructions such as function definition by power series and as an indefinite integral.

In parallel with the development of the theory some automation tools (tactics) were built with two aims:
allowing a significant part of the proofs to be done automatically and enabling the proof assistant to perform
the kind of computation that the average person working in this field can do. With these tools, Coq can
prove a large number of results involving derivatives and calculate the derivative of functions in a wide class,
looking also at the context where this computation is being done. We hope to extend the system in a near
future to be able to solve the problem of integrating rational functions, providing both an answer and a
proof that this answer is correct.

The basis for this work was chapter 2 of Bishop’s book on constructive analysis ([3]). The formalization
was built upon the algebraic hierarchy developed at the University of Nijmegen, described in [7] and available
in the Coq library, which included most of the results about real numbers that were needed, namely most
of sections 1 to 3 of [3] (where real numbers are defined and their main properties are proved); new results
about series were formalized, and sections 4 (dealing with continuity, sequences and series of functions), 5
(differential calculus and Taylor’s theorem) and 6 (integration and the Fundamental Theorem of Calculus)
were completely formalized. Work is in progress regarding section 7 (which is concerned with exponential
and trigonometric functions and their inverses).

Our work centered on formalizing the definitions of basic notions in differential and integral calculus,
including notions of:

— continuous function;

— derivative;

differentiable function;

— Riemann integral;

(convergent) sequence or series of functions;
— Taylor sum and Taylor series of a function.

* This author was supported by the Portuguese Fundagdo para a Ciéncia e Tecnologia, under grant SFRH / BD /
4926 / 2001.

Formalizing Real Calculus in Coq 159

Using these definitions, many theorems in this area were formally proved inside Coq; the most important
among these were:

— the preservation of continuity through algebraic operations on functions;

— the uniqueness and continuity of the derivative function;

— the derivation rules for algebraic operations on functions and the chain rule for composition;
— Rolle’s Theorem and the Mean Law;

— integrability of any continuous function;

— the Fundamental Theorem of Calculus;

— preservation of limits and derivatives through limit operations;

— convergence criteria for series of functions (the ratio test and the comparison test);

— Taylor’s theorem.

In section 2 we briefly describe some characteristics of this formalization, including the consequences of
working with Coq and of working constructively.

The basic notion which had to be defined and studied at the beginning of the work was the notion of
partial function, as most of the common functions of analysis are partial (for example, the logarithm and
tangent functions). In section 3 we present the different approaches that were studied and why we chose the
one we did.

Section 4 describes how procedures were built that deal with a large class of the most common goals
which show up in the area of differential calculus. At the end, we will briefly compare this formalization with
similar work already done in other proof systems.

2 Formalizing Mathematics in Coq

Before we go into the specific details of our work, we will briefly discuss some specific Coq issues that influence
the way in which our formalization is done.

Coq is a proof tool based on a type system with inductive types called the Calculus of Inductive Construc-
tions (CIC). Through the Curry-Howard isomorphism, proofs are identified with terms and proof-checking
with type checking; the construction of a proof then becomes simply the interactive construction of a term
which is at the end type-checked.

In the CIC there are two main universes for terms: Set and Prop. Set is meant to be the type for sets
and other structures we want to reason about; Prop is the type of propositions. There is also an infinite
family {Type(i) : i € IN} such that both Set and Prop have type Type(0) and Type(i) : Type(i + 1),
but types in this family will be irrelevant in this paper.

The logic associated with the CIC through the Curry-Howard isomorphism is intuitionistic; this means
that to formalize mathematics we must either add the axiom of double negation (in order to be able to work
classically) or work constructively. We chose the second alternative, and decided to work following Bishop’s
approach (see [3]). From our point of view, this is the most general way to work: constructive mathematics
results being valid classically, we can always switch to classical reasoning if we want and we will still be able
to use all the results we have proved so far!.

The main characteristic of constructive reasoning is the absence of proofs by contradiction. All proofs have
computational content, that is, they provide algorithms to effectively extract witnesses of their statements.
So, for example, a proof of an existentially quantified statement Jz: A.Pz will amount to an algorithm that
presents an element ¢ of type A such that Pt holds.

One of the immediate consequences of this is that some weak form of the Axiom of Choice should be also
available for use; that is, if the only way we can prove a statement like Jz : A.Pz is by giving an element
satisfying P, then it is also natural to have an operator that allows us to extract such an element from every
proof of such a statement.

Unfortunately, Coq does not allow us to define an operator of this kind with type Prop — Set for two
different reasons. At a mathematical level, consistency of the system requires such an operator not to be
allowed to exist (see [4], pp. 81-83). On the other hand, Coq comes with a program extraction mechanism

! An approach following the first alternative was independently chosen by Micaela Mayero, see [11].

160 Luis Cruz-Filipe

(briefly described in Chapter 17 of [4]) which allows programs to be derived from informative proofs; for
efficiency reasons, this mechanism assumes that proof objects (living in Prop) are irrelevant, as they contain
no computational interest. The existence of this operator would undermine this assumption.

Another problem is equality. In type theoretical systems, the natural equality to use is Leibniz equality
(given z,y: A, z = y iff VP : A — Prop.Pz < Py); however, this turns out to be too strong a concept
for most purposes. Therefore, we have to define ourselves a structure with our own equality. This is done
through the notion of setoid: a setoid is a pair (S, =g) where =g is an equivalence relation on S.

For the purpose of formalizing real analysis, equality turns out actually not to be so basic a notion, as it
is undecidable on the set of real numbers. However, given two real numbers it is always possible to tell when
they are distinct (although if they are not distinct we may never know). This motivates us to use what are
called setoids with apartness: setoids where a second relation #g, called strong apartness, is defined, with
the following properties:

— irreflexivity: for all = : S, =(z#sx);

— symmetry: for all z,y : S, if z# sy then y#sz;

— co-transitivity: for all z,y, z : S, if x# sy then either z# g5z or z#sy;
— compatibility with equality: for all z,y : S, x =g y iff =(z#sy).

The last property actually allows us to do away with equality altogether, although it is not usually done.
Functions and relations on setoids are usually required to reflect this apartness relation; that is, if f is
a (unary) function from a setoid S; to a setoid S, then the following property holds: for any two elements
z,y : So,
f(x)#szf(y) - x#S1y .

This property is known as strong extensionality of f. Predicates in general might not be required to have
a similar property (and indeed in many interesting cases they do not), but sometimes the following weaker
condition, known as well definedness, is required: for all z,y : S,

xr=g5y— P(x)—>P(y) .

From now on, we will use the term “setoid” to mean “setoid with apartness” and denote the equality
and apartness relations in a setoid simply by = and # respectively whenever the carrier set is clear from the
context.

At this point we run into another problem of Coq. These definitions work out nicely, but it turns out
that if we want to use equality and apartness in a nice way they cannot have type S — S — Prop, as would
be normal for relations. For this reason, and our desire to use the weak form of the Axiom of Choice which
we already mentioned previously, we chose to use also Set as the universe for propositions and define our
logical connectives to work in this universe with the usual properties.

3 Partial Functions

In our work we only consider partial functions from one setoid to itself. The reason for this is that we are
mainly interested in working with real-valued real functions, which satisfy this condition; but generalizing
to arbitrary partial functions is quite straightforward and will be done in the near future.

3.1 How to Define Them

Throughout this section A will denote an arbitrary setoid.

The main characteristic of partial functions is that they need not be everywhere defined. Thus, it is
natural to associate with each partial function f: A4 A a predicate domy : A— Set.

In the algebraic hierarchy which we started from, we have a notion of subsetoid as being the subset of
elements of a setoid S satisfying some property P with the equality relation induced from S; formally, an
element of a subsetoid is a pair (x,p), where is an element of S and p is a proof that Pz holds. Using
this notion, it seems natural to associate every partial function f with a total function on the subsetoid of
the elements of A which satisfy domy. That is, the type of partial functions will be a dependent record type
looking like (in Coq notation):

Formalizing Real Calculus in Coq 161

Record PartFunct :=

{dom : S->Set;
dom_wd : (pred_well_def S dom);
fun : (CSetoid_fun (Build_SubCSetoid S dom) S)}

Here, dom is the domain of the function; the second item of the record simply states that this predicate is
well defined?; and the third item is a setoid function from the subsetoid of elements satisfying the predicate
to S.

Then functional application will be defined as follows: given a partial function f, an element z: A and a
proof H:(domy), f(x) is represented by the lambda term

(fun f (z, H)) ,

where fun extracts the subsetoid function from the partial function record.

There are several problems with this definition. One of them is that proofs get mixed with the elements (in
the subsetoid construction), which does not seem very natural from a mathematical point of view (where we
normally forget about the proof, as long as we know that it exists); another important one is that the terms
that we construct quickly get bigger and bigger. For instance, if we have two partial functions f,g: AA A
and we want to compose them, the relevant predicate domg.y will look like

domgos := Ax: A.(IHy : (domy x).(domy (fun f (x, Hy)))) .

Assuming that for some x : A we know that H has type (domgos), that is, H is a pair consisting of a
proof Hrof (doms x) and a proof that (dom, (fun f (x, Hy))), then, denoting by m; and . the left and right
projections, (g o f)(z) will reduce to

(fun g ((fun f (z,(m H))), (7 H))) .

This last expression has several unpleasant characteristics, namely it is totally unreadable and very
unintuitive; the fact that we are simply applying g to the application of f to x is totally hidden among the
pairing and unpairing operations and the proof terms appearing in the expression. Also, if f and g happen
not to look at the proof at all (as is the case if they are total functions), they still have to apply projections to
recover the argument from the setoid element. This makes the simplification procedure very time consuming.

Thus, a different approach is needed, and we turn to a common alternative which has already been used
for example in the Automath system (see for example [2]). As before, we associate to every partial function
f the predicate domy, but now we identify f with a function of two arguments: a setoid element and the
proof that it satisfies dom ;. That is, our type of partial functions will now be:

Record PartFunct :=

{dom : S->Set;
dom_wd : (pred_well_def S dom);
fun : (x:5) (dom x)->S;

fun_strx : (x,y:S) (Hx:(dom x)) (Hy: (dom y))
(((fun x Hx) [#] (fun y Hy))->(x[#]1y))}.

In this definition, dom and dom_wd are as before, but the last item of the record type (which was itself
a record) has been unfolded into two components: the function itself (as an element of a product type) and
the proof of strong extensionality of that function (which was previously hidden in the type of the setoid
function). Given f, z and H as before, functional application now looks like

(fun f =z H)

which differs from the previous representation in that we removed one functional application (the pairing
operation) and that the element x and the proof H are kept completely separated. This means that, for

2 Although this is not required from the predicate in order to build the subsetoid, it turned out to be fundamental
for our work, namely to prove results about composition—the chain rule for derivative, for example.

162 Luis Cruz-Filipe

example, if f is total then it can be computed in a much simpler way, because x is directly available and no
extra reduction is needed to get it.

Also comparing with the previous example, the application of a functional composition can be written
more nicely given f, g, and H as

(fun g (fun f z (m H)) (7 H)) .

Notice that in many cases we won’t even need to perform any computation on (m; H) and (m, H), because
we won’t need to look at the structure of these proofs.

3.2 Working with Function Domains

Once we have partial functions, natural operations with them immediately suggest themselves. The most
obvious one (which we have already mentioned) is composition, but algebraic operations (defined point-wise)
are also important, at least from the analytical point of view. However, as soon as we try to define this it
turns out that it is useful to do some work just with domains.

Since we have identified function domains with predicates, it turns out that what we need is simply a
mapping between operations on subsets and operations on logical formulas; that is, given predicates P and @)
that characterize subsets X and Y of A we want to define predicates that characterize the sets XNY, XUY,
A, § and the property X C Y. These can be simply taken to be Az: A.(P z) A (Q z), Az: A.(P z) V (Q z),
Az: AT, Az:A.L and Az: A.(P) — (Q z), respectively. These constructions preserve well definedness (that
is, if P and @ are well defined then so will all the predicates defined from them).

As we are concerned with real analysis, it is also important to look at the specific kind of domains we
will find. Constructively, it turns out that the most important one is the compact interval, which can be
characterized by two real numbers a and b and a proof that a < b. The predicate corresponding to the
interval [a, b] is, of course, simply \z:R.a <z Az <b.

The reason for this domain to be so important is that all function properties (continuity, differentiability,
etc.) are always constructively defined for compact intervals. Bishop argues (see [3]) that point-wise definitions
make no sense in constructive mathematics for the reason that equality is undecidable, and so the information
that a function f is continuous at some point z is useless because most times we will not be able to know
whether we are exactly at x or not. However, if we work with compact intervals we will often be able to tell
that we are inside them (unless we happen to be exactly on the boundary), and so use that information.
Another important reason is that constructively it is not necessarily true that e.g. point-wise continuity in
a compact interval implies uniform continuity in that interval (a counterexample can be constructed with
some extra assumptions, see for example [1]), and so in practice it is more natural to begin with the uniform
concept altogether.

The other important kind of domain is the interval. In practice, it is difficult to find examples where we
really want to work in a domain which is not an interval or a union of two or three intervals, and the main
operations (differentiation, integration) and theorems (Rolle’s theorem, Taylor’s theorem, the Fundamental
Theorem of Calculus) always require that the function(s) involved be defined in an interval.

We model intervals as an inductive type with nine constructors, corresponding to the nine basic kinds of
intervals: the real line, the left infinite open or closed, the right infinite open or closed and the finite open or
closed on either side. To each kind of interval a constructor is associated: for example, finite, closed intervals
are identified with applications of a constructor clcr® of type ITa,b : IR.interval. To each of these the
obvious predicate is associated, and a property P defined for functions in a compact interval is generalized
by

P':= (Al:int, f : fun)(Va,b:R)((a < b) = ([a,b] C I) = (P [a,b] f)) .

This approach implies that we often have to state very similar lemmas for properties holding in compact

intervals and in arbitrary intervals. This is not felt as a disadvantage, however, and is in fact quite close to

Bishop’s formulation, as most proofs of such properties require distinct reasonings for the compact and the
general case.

3 Closed Left Closed Right

Formalizing Real Calculus in Coq 163
4 Automation

We will now discuss what kinds of goals we would reasonably expect to be automatically proved and how
successful we have been so far in getting the proof assistant to prove them by itself.
So far we have mainly developed a theory of differentiation, so one of the goals we would expect to pop
up very often and which should be automatically proved would be given representations of two functions f
and g to prove the relation
g is the derivative of f. (1)

We must also keep in mind that we are doing constructive mathematics, where continuity plays a key
role: intuitively, one can argue that all functions that we can define constructively are continuous, but no one
reasonably expects this ever to be proved (see [3]); therefore, to make proofs easier, it is typically assumed
in the statement of every lemma that all the functions involved are continuous. This means that we expect
to come quite often across goals such as

f is continuous. (2)

Finally, the third goal comes as a typical side condition of the lemmas we must apply to prove any
statement of the previous two kinds: given a set X and a function f, prove that

X C dom(f). (3)

In order to get a better understanding of why goals of type 3 show up so often, we have to look at how we
define equality of two functions. This concept is parameterized by domains, that is, for every two functions
f and g and subset X of IR, we say that f and g coincide on X (f =x g) iff they are both defined in X and
they coincide on every point of X, that is, for any element x : X and any appropriate proof terms H, and
H!.,

vz:Xva,H; f(man) :g(xaH;) (4)

Two comments are due on this definition:

— The inclusion of X in the domains of both f and g is essential if we want to get something that looks
like an equality, namely a transitive relation. If we did not require this condition then every function
would be equal in every set to the undefined function, and no substitution properties? would hold.

— The reason why we explicitly state that f and g are defined in X is to make proof development easier.
This way, we are left with three independent goals to prove: the two inclusions and (4), which we can
prove independently.

If we did not state the inclusion explicitly, then we would only have to prove

Vz:XaHE,H’m f(l',Hz) = g(I,Hé))

which differs from the third one in that the proof terms are existentially quantified. However, the exis-
tential quantifiers make this goal much more difficult to prove and less suited to automation, which is
why we chose the first approach.

We begin by considering goals like (3). Typically, they are proved by looking at the algebraic structure
of f and the knowledge that inclusion is preserved through algebraic operations, that is, if X C dom(f;)
and X C dom(f,) then X C dom(f; + f2) and similarly for other operations. There are some side conditions
that have to be verified when division shows up, but these too are usually taken care of by one of a small
group of lemmas.

When f has no algebraic structure, there is also a small number of results we can use, namely the facts
that constant and identity functions are defined everywhere and that any function which is continuous in X,
has a derivative in X or is the derivative in X of some function is also defined in X.

With this knowledge, we can (and we have) easily implement a tactic with the Coq Hints mechanism
which simply looks at the form of the goal and chooses the right lemma to apply from a not too big list.
This turns out to be satisfactory enough for small to medium sized goals, although it doesn’t always work

4 Like if f =x g and f is continuous in X then so is g.

164 Luis Cruz-Filipe

when the structure of f is too complicated. In those situations, typically the user has to break down f in
smaller parts by himself, and then invoke the automatic prover.

Goals like (2) work in quite a similar way, and have been treated in the same way.

When we turn to goals like (1), however, things turn out to be quite different. From a naive perspective,
we would expect this situation to be similar to the previous ones, as we intuitively reason in this situation
by cases using a small set of lemmas—the derivation rules. However, when we analyze the situation more
carefully it is not as simple as it looks, as we show with a small example. Let f and g be functions everywhere
defined by the rules f(z) = 3z + 4 and g(z) = 3, respectively. If we want to prove f' = g, then we would
like to begin by applying the derivation rule for the sum; however, in order to do this we also need to have
a function that is the sum of two other functions on the right side, and this is not the case. Hence we are
stuck.

The trick to to this is, obviously, to replace g by what we get if we differentiate f by using the differen-
tiation rules—in this case, by h such that h(z) =3« 1+ 0. Then we can easily prove that f' = h and we are
left with the goal g = h, which is also easy to prove. The problem, then, amounts to finding h.

Intuitively, we would like to make some kind of recursive definition that looks at the algebraic structure
of f. However, there is no inductive structure in the class of partial functions, so this is not directly possible.
However, the Coq tactic language allows us to do something similar: we meta-define (that is, we define in
the meta-language) an operator that looks at the structure of f and correspondingly builds h. This operator
recognizes algebraic operations, functional composition and can look at the context for relevant information
(for instance, if there is a hypothesis stating that for some functions f; and fo the relation f{ = fo then it
will use fy as a derivative for f;); however, the proof is still left to be done by the user.

Another, and more powerful, approach is to use reflection (a method which is described in full detail
in [8]). We select among the class of all partial functions those whose derivative we know how to compute,
and model this as an inductive type PF. This type will have not only constructors for constant and identity
functions and algebraic operations on these, but also two special constructors that allow us to add any
function about which we know something from the context. This will allow us, for instance, to prove that
(2f)" = 2g if we know from the context that f' = g.

On PF we will define two operations: a canonical translation map [-] : PF — (IR IR) to the real-valued
partial functions and a symbolic differentiation operator ' : PF — PF with the property (stated as a lemma)
that for every s : PF

[s'] is the derivative of [s]. (5)

Our problem now amounts to the following: given a function f, how do we determine an element s : PF
such that [s] = f? That is, how can we define a (partial) inverse to [-]? Again, this is done at the tactic level
in Coq: we meta-define an operator by case analysis that looks at the structure of f and breaks it down;
whenever it finds an algebraic operator, constant or identity function, it replaces this by the corresponding
constructor in PF; whenever it finds a function that it knows nothing about (that is, an expression like
“f”) it tries to find an hypothesis in the context that allows it to use one of the two special constructors.
If everything goes well, we get indeed an element s with the required property; otherwise we get an error
message.

With these tools we can then write down our tactic as follows: given f and g,

. Find s : PF such that [s] = f;

. Compute s';

. Replace f by [s];

. Replace g by [¢'];

. Prove that [s] = f;

. Prove that [s'] = g;

. Apply lemma (5) to prove that [s'] is the derivative of [s].

N OOt W N

Steps 3 and 5 may seem superfluous, as s was constructed so that [s] = f would hold. The problem,
however, is that we did not define this construction as an element of type (R4 R) — PF (because no such
element with the required properties exists), so we cannot prove anything in general about this operation.
Still, step 5 turns out to be trivial, as simplification on [s] yields f and we just have to invoke reflexivity of
equality.

Formalizing Real Calculus in Coq 165

Step 6 is the tricky one. In the most cases, this will reduce to proving some inclusions of domains (which
we have already automated) and then equality of two algebraic expressions (which the Rational tactic,
described in [8], can normally deal with); in some cases, however, this step leaves some work to be done,
for example if the equality between [s'] and ¢ relies on the fact that any two derivatives of a given function
must coincide. Even in this cases, however, experience has shown that the goal has been much simplified, so
that we do profit from this tactic.

At the present moment, the biggest limitation of this tactic is that it cannot deal with division or
functional composition. However, experience shows it to be much more efficient (both regarding computation
time and the size of the constructed proof-terms) than the first approach. Also the limitations turn out not
such a big problem as they could seem, actually, because we can always add the relevant steps as hypothesis
to the context and prove them later; but they still are limitations, and it is interesting to see why we can’t
deal with these cases in the same way as we dealt with the others.

When we look at the constructive rule for derivation of a division or composition of two functions, they
turn out to differ from the other rules in that they have some side conditions that have to be met; as an
example, to apply the rule for division, we have to prove that the absolute value of the denominator of the
fraction we want to derive is always greater than some positive constant. In order to prove that this side
conditions always hold (which we have to do if we want to prove something like V[s'] = [s]’), we have to add
in the constructor of PF corresponding to division an argument stating something about the interpretation
of one of the other arguments. But this is not possible in Coq, because we cannot simultaneously define an
inductive type and a recursive function over that type (although type theory allows us to do this, namely in
this situation).

The case of composition is even worse, as one of the goals we get says something about one function
being the derivative of another in an unknown interval. One way to solve this problem would be to make
our tactic interactive in some way, but there is no obvious way to do this.

Presently, as we said, these limitations turn out not to be such a big deal. Division is not such an
important operation when we work constructively, as most situations that use division can be rewritten so
as to use only multiplication; and for composition we can usually achieve our goals by adding hypothesis to
the context and applying the chain rule by hand. When none of this works, we can still rewrite the function
on the right-hand side of the goal with the first operator we define and proceed by hand.

5 Related Work

This same fragment of real analysis has already been formalized in some systems by different people. We
will now briefly describe these formalizations and how they differ from ours.

Micaela Mayero (see [11]) has formalized differential calculus in Coq, including notions of (point-wise)
continuity and differentiability, derivation rules, and some work on transcendental functions. However, she
does not treat integral calculus or more general theorems like Rolle’s theorem. This is because her motivation
is not formalizing real analysis in itself, but showing how such a formalization can be used for other purposes,
whence she develops just the theory that she needs for her examples. For the same reason, she argues that
it makes more sense for her to work classically—which makes her work totally distinct from ours.

Mayero’s treatment of partial functions also differs from ours. As we do, she always associates a domain
with every function; however, they are kept completely separated: functions have type R — IR, domains
IR — Prop, and the domain is always explicitly stated in the formulation of the lemmas. Although this
makes it possible to write things down in a way closer to usual mathematical notation (that is, f(x) instead
of f(xz,H) or something similar) it does have the disadvantage that you can write down things like %,
although it is not clear what they mean.

In the PVS system, Bruno Dutertre (in [5]) has also developed a classical theory of real analysis, including
the main definitions in differential calculus. Building upon this work, Hanne Gottliebsen built a library
of transcendental functions described in [9], where she defines exponential, logarithmic and trigonometric
functions, proving similar results to ours. She then defines an automatic procedure to prove continuity of a
large class of functions, which works in a similar way to ours, and shows how it can be used interactively
with Computer Algebra systems to guarantee the correctness of applications of the Fundamental Theorem
of Calculus.

166 Luis Cruz-Filipe

John Harrison’s HOL-light system (described in [10]) is another proof assistant that comes with a library
of real analysis; once again, the reasoning in this system is classical. The results included in this library
include the usual results on preservation of continuity through algebraic operations, derivation rules, Rolle’s
theorem and the Mean Law.

Also included in the system is a library of transcendental functions, where exponential and trigonometric
functions are defined as power series and their inverses as inverse functions. Finally, integration is defined
and the Fundamental Theorem of Calculus is proved.

6 Conclusions and Future Work

We have shown how to formalize an important fragment of constructive real analysis and how to use this
formalization to build automation tools that can (partly) solve some problems in this area, by providing
not only an answer but also a proof that this answer is correct. Presently we deal only with differentiation
in a restricted class of functions, but work is being done to generalize the setting to all the elementary
transcendental functions. We hope to complete this work with similar results regarding integration, namely
by providing a way to integrate rational functions and prove the result correct.

In doing so, we have also shown that it is possibly to build and use modular libraries of mathematical
formalizations, as our work was done using a library of real numbers which was already developed and to
which no changes were made (although some results had to be added dealing with specific problems). We
have also provided evidence to Bishop’s claim that it is indeed possible to do useful mathematics without
the double negation rule.

Acknowledgments

Support for this work was provided by the Portuguese Fundacdo para a Ciéncia e Tecnologia, under grant
SFRH / BD / 4926 / 2001.

The author would also like to thank H. Barendregt, H. Geuvers and F. Wiedijk both for the many
discussions throughout the development of this work, which contributed to its successful outcome, and for
their suggestions regarding the contents and form of this paper.

References

1. Beeson, M., Foundations of constructive mathematics, Springer-Verlag, 1985

2. Benthem Jutting, L. S. van, Checking Landau’s “Grundlagen” in the Automath System, in Nederpelt, R. P.,
Geuvers, J. H. and de Vrijer, R. C. (Eds.), Selected Papers on Automath, North-Holland, 1994

3. Bishop, E., Foundations of Constructive Analysis, McGraw-Hill Book Company, 1967

4. The Coq Development Team, The Coq Proof Assistant Reference Manual Version 7.2, INRIA-Rocquencourt,
December 2001

5. Dutertre, B., Elements of Mathematical Analysis in PVS, Proc TPHOLS9, LNCS 1125, Springer, 1996

6. Geuvers, H. and Niqui, M., Constructive Reals in Coq: Azioms and Categoricity, in Callaghan, P., Luo, Z.,
McKinna, J. and Pollack, R. (Eds.), Proceedings of TYPES 2000 Workshop, Durham, UK, LNCS 2277

7. Geuvers, H., Pollack, R., Wiedijk, F. and Zwanenburg, J., The algebraic hierarchy of the FTA project, in Cal-
culemus 2001 Proceedings, Siena, Italy, 13-27, 2001

8. Geuvers, H., Wiedijk, F. and Zwanenburg, J., Equational Reasoning via Partial Reflection, in Theorem Proving
in Higher Order Logics, 13th International Conference, TPHOLs 2000, Springer LNCS 1869, 162-178, 2000

9. Gottliebsen, H., Transcendental Functions and Continuity Checking in PVS, in Theorem Proving in Higher Order
Logics, 13th International Conference, TPHOLs 2000, Springer 2000

10. Harrison, J., Theorem Proving with the Real Numbers, Springer-Verlag, 1998

11. Mayero, M., Formalisation et automatisation de preuves en analyses relle et numrique, PhD thesis, Universit
Paris VI, dcembre 2001

The DOVE Approach to the
Design of Complex Dynamic Processes

Brendan Mahony

Defence Science and Technology Organisation,
Department of Defence,
PO Box 1500, Edinburgh, South Australia 5111,
Australia

Abstract. DOVE is a Isabelle-based, graphical tool for the trusted design and analysis of state machine
designs. Work is currently underway aimed at increasing the scope of DOVE to include complex,
dynamic and real-time processes. This paper describes a refinement approach to the design and analysis
of complex processes, including a formal development of the approach in Isabelle. It is argued that the
addition of a network feedback operator and associated refinement rules makes the refinement calculus
of Back a powerful development tool for process networks, allowing essentially arbitrary decomposition
of network properties over subcomponents. The feedback operator is shown to be ‘compositional’ with
respect to an implementation language of digital input/output processes with local state. Some simple
examples are considered.

1 Introduction

The effective and economical development of complex, dynamic and real-time systems is a matter of con-
siderable interest to the Australian Defence engineering community and to the engineering community in
general. This is especially so where the systems under development serve critical functions and require the
highest levels of trust and assurance when fielded into service. Many existing regulatory authorities demand
the highest levels of mathematical rigor in the analysis of security-critical and safety-critical systems, levels
of rigor which present a considerable challenge to the current state-of-the-art in the mathematical analysis
of complex systems. The DOVE design and analysis environment aims to offer developers a powerful and
usable tool for supporting the development and presentation of assurance cases for critical systems.

The current version of the DOVE tool [7] comprises a sophisticated state-machine reasoning tool devel-
oped in the Isabelle/HOL environment [25] and a graphical user environment which supports and encourages
a highly visual approach to the design and analysis of state-machine based systems. Although the use of a
general theorem proving approach to treating the properties of state-machines allows the treatment of larger
state-spaces than the competing technology of model-checking, the state-machine formalism still does not
scale well to large systems with complex interacting components. Nor does it allow, or even offer the prospect
of, the treatment of real-time or physical process components. The effective treament of such components
requires the adoption of an analog process model, or at least the inclusion of analog aspects in a discrete
model such as adopted in so-called hybrid-systems approaches.

A common approach to the problem of composing interacting systems is the dataflow network. It enjoys
widespread recognition and has been adopted in many existing informal development approaches. Dataflow
networks also admit a natural and highly intuitive visual representation as directed graphs in which the
nodes represent system components and the edges represent informational or even physical flows. Finally,
dataflow networks readily allow the treatment of analog components, it is only necessary to make use of
continuous functions to model some or all of the dataflows involved.

The work presented in this paper considers the use of dataflow networks to provide a formal basis for the
design and tractable analysis of networks of interacting processes, both digital and analog.

1.1 Compositional development

The separation of formal specifications into assumptions about the environment of a process and commit-
ments made by the process has a venerable formal methods pedigree [11], stretching back through Hoare’s

168 Brendan Mahony

axioms [10] to the germination of the idea in work by Floyd [9] and even Turing [29]. By supporting the
meaningful specification of open systems, the assumption/commitment approach has become the cornerstone
of many compositional approaches to treating complex systems.

The adoption of what we term the assumption/commitment paradigm in the development of process
networks may be traced to Misra and Chandy [20], who used assumption/commitment specifications on
system traces to develop a compositional method for the verification of safety properties in networks of
CSP-like processes. Subsequently, many other authors have used similar approaches to develop methods
for the verification of various subclasses of process properties. Some such approaches are due to Pandya
and Joseph [26]; Abadi and Lamport [1]; Stglen, Dederichs, and Weber [27]; and Stglen [28]. In every case
however, the methods offer complex verification conditions and (with the exception of that of Stglen) allow
the treatment of at best a restricted class of process properties. Furthermore, they rely for their effectiveness
on specialised (and somewhat baroque) process models with narrow areas of application. The primary reason
for such complexity and restrictions lies in the difficulty of defining a general, compositional model of network
construction.

One difficulty in modeling network construction has been the common approach of defining a parallel
hookup operator which includes both parallelism and feedback capabilities. The complexity of such all-
purpose operators tends to overwhelm the search for tractable approaches to reasoning. As observed by
Katis et al [12], it is preferable (at least in the abstract) to define separate parallel and feedback hookup
operators. Another difficulty has come from the tendency to treat feedback in terms of recursive function
theory. A more promising approach has been suggested by Katis et al [12]. They describe a relational feedback
operator based directly on a naive notion of fixed points. As demonstrated in the remainder of this paper,
making use of a separate feedback operator based directly on this naive notion of fixed points greatly improves
the tractability of reasoning about networks of processes.

1.2 Refinement

A separate development of the assumption/commitment paradigm has seen the utilisation of predicate trans-
former semantics in support of compositional development methods for sequential programs. Weakest pre-
condition program semantics were first suggested by Dijkstra [8] and have been blended successfully with
the assumption/commitment paradigm independently by Back [4], Morgan [21], Morris [23], and Nelson [24].
These formalisms have much in common and are referred to collectively as the refinement calculus.

The refinement calculus is a broad-spectrum, specification/programming language together with a col-
lection of refinement rules that support top-down design. High level specifications are refined to mixtures
of specification and program code and finally into pure program code. The pure code subset of the refine-
ment calculus is called the implementation language and will vary with the problem to which the refinement
calculus is being applied. For example, Morgan’s program refinement calculus adopts Dijkstra’s guarded
commands as its implementation language.

The refinement calculus approach has been used successfully in several case studies in the specification
and design of real-time and reactive processes [13, 15,17, 18]. The purpose of this paper is to formally define
an extension of Back’s predicate-transformer model so as to allow its use in the treatment of interacting
processes. By formally, in this case, we mean that the extension has been developed using a formal modelling
tool, namely Isabelle’s HOL modelling environment [25].

Following Katis et al we describe a network construction model which allows processes to be hooked up
in sequence, parallel, and via feedback. The sequence operator is well known, being originally described by
Dijkstra. The parallel operator has been the subject of considerable interest in recent years, first defined by
Martin [19] and then investigated in detail by Back and Butler [5,6] and also Mahony [14]. The feedback
operator is partially a contribution of this paper, having been suggested by the relational operator of Katis et
al. Following the usual refinement calculus approach we define a collection of novel refinement laws involving
these operators that support the top-down development of process networks from abstract specifications to
concrete implementations.

The resulting refinement environment represents a powerful tool for the analysis of both liveness and
safety properties of dynamic proceses. Furthermore, it is a tool which does not depend for its effectiveness on
a particular model of computation. In particular, it is in principle possible to adopt either digital or analog

DOVE: Complex Dynamic Processes 169

o A
S
(=

~

Fig. 1. Example process network.

process models and even to mix them. This represents a clear advance in analytical completeness over the
restrictive classes of properties and systems treated by most of the methods described above and a clear
advance in tractability over the more complete, though still model-specific, method of Stglen [28].

1.3 Summary of paper

The balance of the paper has the following outline. In Section 2 the basics of predicate transformer algebra
are introduced. In Section 3 the three network hookup operators are defined and refinement rules introduced.
In Section 4 an implementation language for networks of IFO machines is introduced. This language is used
in Section 5 to present some examples in the use of the refinement calculus. Finally, the results of the paper
are summarised in Section 6 and the network refinement calculus compared to existing network verification
methods.

2 Predicate transformer basics

This section briefly introduces the basics of predicate transformer algebra, as presented by Back and von
Wright [3]. The formal text in this paper follows the syntax and conventions of the Isabelle/Isar implementa-
tion of HOL [25]. In particular, proofs are presented in the Isar style [30] of proof-programming. Briefly, the
proof justifications fall into three broad categories. The keywords rule, intro, and elim indicate the use of the-
orems as inference rules. The keyword simp indicates the unwinding of definitions. The keywords auto, fast
and blast indicate the use of automated proof procedures. In general, the full Isar proof script is presented,
but where the full proof is particularly tedious we elide it, offering instead a brief informal justification.

This paper aims to address the high-assurance design and analysis of complex processes. Processes are
viewed as hierarchical networks of process elements communicating along dedicated channels. Such processes
may be represented using annotated graphs such as that depicted in Fig. 1. Various forms of polygons are
used to represent classes of network elements and directed arcs are used to represent information flows
or process components. This ability to render process networks in a graphic form is an important tool for
communicating their component structure and will form the basis of a graphical user interface for interacting
with process hierarchies in a forthcomming version of the DOVE tool. We make judicious use of it throughout
this paper.

The properties of processes are expressed through predicates. The reader is assumed to be familar with
the algebraic properties of predicates, but briefly a predicate ¢::B* is a boolean-valued function of process
state 2. The usual boolean operators are lifted to act on predicates, with the following operator precedents:
=, A, V, =, ¥, 3. The standard boolean order is lifted pointwise to define the entailment order (=) on
predicates.

We identify three basic models for describing processes/specifications that, given inputs from X construct
outputs from I.

The simplest model of process is as a logical function f::2 — I' from input states 2 to output states I'.
Functions allow us to describe from each input precisely the desired output. Such detail is of course necessary
for an implementation, but is often tiresome in the early stages of design.

170 Brendan Mahony

An easier option is to specify a range of allowed results. This can be done using a relation R::X & T
which is a function from input states 2 and output states I' to the booleans. The natural lifting of the
boolean order to relations yields the entailment order on relations (also written =) which increases as more
choices are added to a relation. The range of choices allowed by a relation is known as the nondeterminism
exhibited by a relation. A relation S::2 < I', such that S = R, may be thought of as an implementation of
R.

In the abstract, relational entailment offers a simple, and therefore attractive, model for treating the
design process, but in practice relational verifications tend to be hard to deal with and to involve numerous
repetitive and complex calculations. In addition, it can be difficult to treat incompleteness and inconsistency
in specifications in an entirely satisfactory manner. These problems can be overcome by adopting the pred-
icate transformer as the basic process model. Predicate transformers were introduced by Dijkstra [8] as a
generalisation of relations.

A predicate transformer p::X — I is a function from predicates over output states B!, which we refer to
as effects, to predicates over input states B>, which we refer to as presumptions.

2.1 The refinement calculus

Predicate transformers offer a richer algebraic structure in which to model and analyse computational mech-
anisms, than do either functions or relations. Indeed Dijkstra seems to have found predicate transformers too
rich in structure and immediately began suggesting “healthiness criteria” intended to restrict attention to
those predicate transformers sufficiently relation-like in nature to be comprehended using his existing rela-
tional intuitions. As our understanding of the algebra of predicate transformers has grown, we have gradually
come to appreciate the power of such unintuitive features as magic, coercion, and angelic non-determinism,
however one healthiness criteria remains. We make use only of those predicate transformers which are mono-
tonic with respect to entailment, since these are rational in the sense that stronger presumptions are required
to achieve stronger effects.

In the following, we use the term process as a synonym for monotonic predicate transformer, since this
makes it easier to convey the intuitions behind the predicate transformer model.

defs monotonic_def: monotonicp =V yedp > ¢y =>podp = py

Though we do not present the proofs, all of the operators presented in this paper construct monotonic
predicate transformers.
The pointwise lifting of the entailment ordering is called refinement (- € _) and is read “is refined by”.

defs refbyeq.def: pCE q=Vopep ¢p = q¢

The term refinement alludes to a view of top-down design as the process of removing the “impurities”
of incompleteness and nondeterminism in a specification until all that is left is the “pure” code which was
originally intended. This view is supported perfectly by the refinement relation since every refinement of
a process is able to achieve all of its effects under the same or weaker presumptions. Thus from a process
design standpoint, it is always acceptable to replace a process with a more refined process.

Much of process design can be viewed in terms of finding solutions to problems in process refinement
and the algebra of predicate transformers provides an ideal tool (we call it the refinement calculus) for
actually calculating solutions to design problems. This calculational facility often allows predicate transformer
based verification systems to be simpler than corresponding relational systems. In the refinement calculus,
verification laws tend to require fewer human-supplied parameters (many parameters can be replaced by
calculated most-general solutions) and fewer verification conditions (most-general solutions are solutions by
construction). In fact, these laws tend to be so much simpler that we call them refinement laws, so as to
focus attention on their use as design development tools rather than design checking tools.

The approach to network design taken in this paper involves the definition of a collection of pred-
icate-transformer operators that allow the modeling of process designs and implementations, together with
refinement laws for introducing and eliminating these operators during design development.

Again, though the proofs are not presented, all of the operators presented in this paper are monotonic
with respect to the refinement relation. This property is called vertical compositionality by Zwiers et al [31].

DOVE: Complex Dynamic Processes 171

O =
(a) assertion (b) coercion
(c) function (d) specification

Fig. 2. Predicate transformer embeddings.

Compositionality is critical to the utility of the entire refinement approach, since it allows network designs
to be decomposed in such a way that the subcomponents may be developed in isolation, possibly by separate
design teams.

A second aspect of compositionality noted by Zwiers et al is horizontal compositionality. This requires
an operator to preserve implementations in the sense that when its arguments are implementations its result
is also an implementation. We call such operators code-preserving. It is important to realise that, in the
context of the refinement calculus, horizontal compositionality is a function of the implementation language.
All refinement calculus operators must be monotonic, but only program operators need be code-preserving.

Following Morgan [22] we express refinement laws in a vertical style which emphasises the transformation
aspects of the refinement process. In the vertical style, the specification is presented above a design, separated
by a horizontal rule and with any side-conditions to application of the law placed to the right of the rule.

For example, we write
P
q

for the proposition G = p C q.

2.2 Predicate transformer embeddings

Predicates may be embedded as predicate transformers in two ways, either as an assertion about the process
state or as a coercion of the process state. Assertions and coercions can be represented as lollipop-style nodes
on a network graph, as depicted in Fig. 2(a) and 2(b).

defs
assert_def: {A} = dpe A A ¢
coerce_def: [A] £ Alpe A = ¢

Assertions are refined by weakening their predicate and coercions by strengthening it.

lemma assertW': % N

by (simp add: pand_def)

172 Brendan Mahony

[¥]

lemma coerceS: [— =
by (simp add: pimp_def)

Simple functions become point-replacement operators when embedded as predicate transformers. They
are represented on network graphs as diamond shaped nodes, see Fig. 2(c).

defs function_def: {fy £ A¢ ae ¢ (f a)

Relations may be embedded as predicate transformers to give abstract specifications of desired relations
between inputs and outputs. Following Morgan [21], we introduce the specification statement as the pri-
mary method of expressing relational specifications. In addition to a relation between inputs and outputs
(the commitment), the specification statement also includes an assumption about the properties of inputs.
Specification statements are represented graphically by rectangular nodes, partitioned into assumption and
commitment compartments, as shown in Fig. 2(d).

defs spec.def:[A/E] £ A¢p aeAaA(VbeEab= ¢ b)

The main refinement laws dealing with specification statements allow the utilisation of the assumption
when strengthening the commitment and the weakening of the assumption.

lemma commitS: M (labeA aAE,ab)=E
" [A/E] ? '
by (auto)
lemma assumeW: M Al A
O [A2/E] T
by (simp)

A deterministic specification is refined by the corresponding function.
[A/da beb="fa]
)

lemma funl:

by (simp)

3 Network constructors

We support three methods for hooking up the inputs and outputs of processes, as shown in Fig. 3. The
first method is sequential hookup, which is modeled by function composition. The second is parallel hookup,
which is modeled by the predicate transformer product operator. The third is feedback hookup, which is
essentially coerces one of a process’s outputs to have the same value as one of its inputs.

3.1 Sequential hookup

Composing processes sequentially is a simple matter of passing the outputs of one to the inputs of the second.
In the functional model this is achieved through function composition, in the relational through relational
join, and in the predicate transformer through reverse function composition. Sequential hookup is monotonic,
associative, and its identity hookup is the identity function 1.

defs
fseq_def: f>> g = laeg (f a)
rseq_def: R> S=ldabe(dceRacASch)
seq-def: p > q = A¢ep (q ¢)

DOVE: Complex Dynamic Processes 173

(a) sequence

(b) parallel (c) feedback

Fig. 3. Hookup mechanisms.

The technique for sequential decomposition of a specification, is to first express the commitment as a
sequential composition.

[A/E> F]
[A/E] > [AbeJaeA a A Eab/F]

lemma midlI:
by (auto)

We also require rules for introducing coercions and for transferring information from coercions to speci-
fications.
p

[¢] > p
by (simp add: pimp_def)

lemma coercel:

[¢] > [A/E]

[¢] > [¢ A A/E]
by (simp add: pimp_def pand_def)

lemma assumeS:

3.2 Parallel hookup

Hooking up two processes in parallel creates a single process which accepts pairs of inputs and produces
pairs of outputs. This is straightforwardly modeled in the function model of computation by the function
product operator.

defs fprod_def: fi1xfr= A(al, az) o (fl ag, I az)

It is equally straightforward to define product operators for predicates and relations. However, lifting the
notion to predicate transformers proved more difficult and a number of approaches [14] were proposed before
agreement was found. The basic idea of this predicate-transformer product is quite straightforward, that is to
map effect predicates over a product space to presumption predicates by mapping the individual components
separately. Thus, the process p; X p2 maps 1 X ¥2 to (p1 ¥1) X (p2 ¥2). Unfortunately, few predicates over
a product space are a product of predicates over the individual components. However this basic premise can
be used to define the predicate-transformer product using a technique similar to the “sum-of-the-rectangles”
approach to defining area in geometry. The image of ¢ under p; X py is the union of the images of all the
“rectangles” contained in ¢.

defs product_def: p1 X p2 = Ape\/ 1 2|1 X 2 = ¢ e (p1 Y1) X (P2 ¥2)

174 Brendan Mahony

—_— —
a b
—_—— >

Fig. 4. Introducing a feedback loop.

This definition was first proposed by Martin [19] and has been analysed in some detail by Back and
Butler [5,6]. Another possible approach to defining a product is to make use of a relational decomposition
property [19] to lift the relational product operator [14]. It turns out that both approaches yield the same
operator.

The basic technique for introducing a parallel hookup is to decompose the assumptions and the commit-
ments according to the desired subcomponents.

[AXxB/EXF]

([A/E]) x ([B/F])
by (auto simp add: pprod_def)

lemma spec_prod:

Since, as already conceded, few predicates (or relations) are of rectangular form, this is a highly restrictive
approach to introducing products. However there are some points that can be made in favour of this situation.

Primarily, it must be noted that there should be no great imperative to decompose processes in parallel at
an early stage of design. In fact, in the general case, this is likely to be a highly ambitious aim. Consider what
such a decomposition implies about a design, namely that the subcomponents of a given process admit such
a strong decoupling of their behaviour that their further development may be done in complete isolation.
Seen in this light, it is clear that the introduction of products should not be forced, but rather that products
should be allowed to arise naturally from the design process as the elements of the design become more
concrete and determined. Indeed, some process components may exhibit such strong coupling of behaviour
that it never becomes convenient to explicitly separate them.

An artificial imperative to perform such decompositions has been introduced into a number of existing
approaches due to the coupling of the product and the feedback operators. In order to make use of the
properties of a feedback loop in a design it is thus necessary to “discover” a suitable decomposition of the
process components. This forms a major barrier to the use of such methods and is a strong argument in
favour of a decoupled approach to modeling parallel processes.

3.3 Feedback hookup

The third method of hooking up the inputs and outputs of processes is through the introduction of feedback.
The essence of feedback, as it is for iteration and recursion, is the construction of a fixed point. To see this,
consider the simple (abstract) network element depicted in Fig. 4. The effect of introducing a feedback loop
(depicted as a dashed line) from the output y to the input x is to equate their two values, necessitating the
discovery of a fixed point of the process when viewed as an input/output transformer. The only difference
is that in the cases of iteration and recursion the desired fixed point is a program while in the feedback
case the desired fixed point is some user-defined data structure. This of course has profound implications
for modeling feedback since it cannot be treated straightforwardly through the existing, complex models for
treating iteration and recursion. Perhaps the very focus on highly-developed fixed-point theories for treating
iteration and recursion has been something of a distraction in the treatment of feedback (we discuss other
approaches in Sect. 6). In fact, as was pointed out clearly by Katis et al [12], the situation with feedback is
actually much simpler. The introduction of a feedback loop may be viewed quite simply as the strengthening
of an existing specification to require that an output have the same value as a given input. It is this model

DOVE: Complex Dynamic Processes 175

X' =X
X X
D . T %e
a b
=

Fig. 5. Definition of feedback.

of feedback which we adopt, embodying it in the predicate transformer model by (as depicted in Fig. 5)
introducing the appropriate coercion and hiding the feedback variable so as to protect it from outside effects.

defs feedback_def:
(plpas=(Vx o (p>[(A1x" e x’' =x) X true]) (true X ¢) (x, a))

Since a feedback loop introduces a hidden coercion, it is important to have a clear intuition as to the
potential effects this may have. The first and most obvious danger is that the component process may have
no fixed points, making the feedback process inconsistent and therefore unimplementable. A more subtle
danger is that the component process may have many fixed points, even if it is itself deterministic. Thus a
feedback process may be nondeterministic even if its component process is deterministic.

Introducing a feedback loop is simply a matter of expanding the input/output spaces of a specification
to accommodate the feedback component.

[A/E]
([A(x, a)e A a/A(x, b) (x’, b)eE b b’]]

lemma spec_fbI.
by (simp)

After applying spec_fbl, the designer is free to use other refinement laws to introduce the desired prop-
erties of the feedback component. The important question in this is how the designer should go about
introducing assumptions about the behaviour of the feedback component. Our suggested approach harks
back to Morgan’s [21] original arguments in favour of the positive applications of miracles. We propose that
the designer introduce the desired properties as coercions of the feedback component on the input side so
as to allow them to be used as assumptions in subsequent development. Such refinements would conform to
the following general outline.

have
[A/E]

c
([A(x::@, a)e A a/ A(x::a, b) (x’, b)eE b b’])
by (rule spec_fbl [rule_format])

also have ...

C

([F] > ([A(x:a, a)® A a/A(x::a, b) (x’, b)e E b b’])]
by (intro monotonic_operators, rule coercel)

also have ...

C

([F] > [F A (A(x::a, a)e A a) / A(x::a, b) (x’, b)eE b b’])
by (rule monotonic_operators, rule assumeS)

This style of development turns out to be a safe application of miracles because the fixed point properties
of the feedback components mean that these coercions can eventually be eliminated using the following
refinement rule.

([E] >()]

lemma fb_coerceE: Vxaefst (f (x,a) =x= E (x, a)

(H)

by (auto)

176 Brendan Mahony

Thus, once the dataflow element has been refined to an implementation (function), any coercions on the
feedback components as inputs that have been used to aid that development can be eliminated, provided
they are in fact established on the feedback components as outputs.

4 Input/output machines with feedback

The astute reader will have noted (perhaps with some annoyance) that we have not yet mentioned any
concrete model of process behaviour which would legitimately allow us to consider the above formalism a
refinement calculus for process networks. The paper has been so presented in order to stress the fact that
all of the refinement calculus mechanisms of network composition are independent of the concrete process
model to be adopted. Thus we are free to fit the refinement calculus approach onto virtually any (state-based)
process model which supports any or all of the sequential, parallel and feedback forms of hookup.

Of course, in order to present any interesting examples in the use of the refinement calculus, it is necessary
to choose a particular concrete process behaviour model. The first decision in choosing a model is determining
how best to represent observations of the system components and an important part of this is deciding on an
appropriate model for time. In the large informal case studies we have done in network refinement we have
generally been concerned with physical flows such as water levels and line voltages [13,15,17, 18] and have
made use of the real numbers to model time. Unfortunately real-analysis support in Isabelle is not really
mature enough to be used for giving the sort of simple examples in refinement that we wish to present here.
Instead we model system observables using the natural numbers as our model of time.

Another important decision concerning such a model is the selection of a class of specifications which
may be considered terminal points of the design process, that is to say the process implementations. In the
program refinement calculus the assignment statements (deterministic, total specifications) are used as the
basis of the implementation language, the general class of implementations then being the closure of the
assignments under the various program operators. The introduction of the feedback operator complicates
this approach by having the potential to introduce non-determinism and even magic, even when applied to
deterministic processes. We must be careful how feedback is used in the implementation language if we are
to ensure the functionality of all implementations. Of course, a comparable problem also exists in the case
of the while operator, the difference being that a while statement may introduce incompleteness rather than
nondeterminism or inconsistency. Our approach to treating this problem is to construct an implementation
language in such a way as to ensure that feedback loops do not introduce nondeterminism or inconsistency.
An alternative approach might have been to follow the lead of the while-loop and introduce notions of
partial-correctness (all fixed points are refinements) and total-correctness (there is exactly one fixed-point).

The rest of this section is devoted to presenting a simple model of multi-threaded computation based
on digital traces and an implementation language which we call IFO machines, input/output machines with
feedback.

4.1 Traces

Temporal observations of I/O machines are modeled by t¢races. The simple traces are functions from the
natural numbers to instantaneous observations of the inputs or outputs of the I/O machine. We write 2* for
the simple traces over 2. More complex traces are built up as tuples of simple traces. We find it convenient
to adopt a subscript notation for indexing of trace elements, for example writing t, for the n*" element of
the trace t.

Complex traces are composed/decomposed using the tzip/tunzip functions.

defs
tzip_def: tzip £ At e (Ane ((fst t),, (snd t),))
tunzip_def: tunzip = At e (Anefst t,, Anesnd t,)

Values may be attached to the front of simple traces.

DOVE: Complex Dynamic Processes 177

defs tcons_def: attt = Aneif n = O then aelse t,_; fi

An indexed collection of predicates/relations can be lifted to a trace predicate/relation by conjoining
their pointwise applications.

defs dpprod_def: Il @ £ AteVned, t,

In theory, the distributed product operator offers the power to express any desired predicate/relation
over traces. This is because every trace t has a corresponding characteristic predicate y t which identifies
exactly the given trace. The characteristic predicate of a trace may be expressed as the distributed product
of the trace’s elements

xt=Inelses =t,

and hence any predicate/relation may be characterised as a disjunction of distributed products.

¢ =Vt|pteyt

For the purposes of this paper this theoretical completeness is sufficient, but it should be noted that in
practice some form of sophisticated temporal logic would be convenient for expressing and reasoning about
the properties of traces.

Trace predicates that may be expressed as distributed products or finite disjunctions of distributed
products are what Alpern and Schneider [2] refer to as safety properties. These are characterised formally
as: those predicates for which, any trace excluded by the predicate has a finite prefix, that has no extensions
that satisfy the predicate. The dual notion of liveness is also introduced, a liveness property being one for
which, every finite trace has an extension that satisfies the predicate. Informally, safety properties may be
violated in a finite time, while liveness properties may not. These notions of safety and liveness have taken
a central role in the search for tractable reasoning systems for distributed networks. A special form of safety
property is the invariant which may be expressed as the distributed product of a constant function, that is
in the form (I7n e I) for some instantaneous predicate I.

4.2 TIFO machine constructors

The basis of the IFO machine language is the I/O dynamic, which consists of a predicate transformer
of instantaneous states applied pointwise to an entire trace. In order to define this notion of “pointwise”
application, the distributed product operator is lifted to processes in much the same way that the binary
product was lifted.

defs
dfprod_def: Il f £ At nef, t,
drprod_def: I R= At se(¥ne R, t, s,)
dprod_def: Il p £ Ape(\/ @|([Ined,) = ¢ o (I[Inep, D))

The distributed product operator builds processes which calculate output traces by iteratively applying
sequential programs pointwise to their input traces. Actually the distributed product operator is somewhat
too general to be considered a real process operator, since it allows the sequential programs to vary with time.
In order to realise this a process would need to have some innate sense of absolute time, where in actuality
processes are only able to gauge the passage of time through the explicit use of devices such as clocks and
counters. In light of this observation, we introduce a restricted form of distributed product (do _od) in which
the iterating program may not vary with the passage of time. This operator we call the dynamic program,
or the do-loop, and presented in graphical form as an oval shaped network element as shown in Fig. 6(a).

defs dynamic_def: dopod £ IInep

While a complete approach to developing process networks would require the adoption of a particular
sequential programing language for expressing dynamic programs, for the purposes of this paper it is adequate
to abstract away from such details.

The basic introduction rule for dynamics allows a trace specification involving an invariant assumption
and an invariant effect to be refined to a dynamic specification.

178 Brendan Mahony

(a) dynamic (b) latch

Fig. 6. 10 process elements.

[[IneA/IIne E]
do[A/E]od

lemma spec_dynl:
proof (simp)

It is sufficient to observe that every trace property achieved by an invariant effect is satisfied by achieving
the effect at every point in the trace.

fix ¢ a assume al: Yn:Ne A a, and a2: Vbe(Vn:NeFE a, b,) > ¢ b
show dQe(VYbe(VYn:Ned, b,) = ¢ b)A(YnbeE a, b= &, b)
by (simp add: a2)
qed

For the most part the observations we made in regard of the strong decoupling required by the product
introduction rule apply again to this rule. An interesting point in this case is the fact that the decoupling
appears to restrict us to the treatment of invariant properties. In fact, the restriction merely introduces a
requirement to refine the trace specification by weakening assumptions and strengthening effects to the point
where it is expressed by some invariant behaviour. Arbitrary trace properties may be freely used at any point
up to the introduction of a dynamic design. The restriction at this point is not artificial, but rather a natural
result of adopting the dynamic as the basic computational device. Of necessity, a dynamic can only effect
behaviour that can be achieved by repeatedly performing the same (invariant) task. Nor is the choice of
the dynamic particularly unfortunate or artificial, the majority of embedded, control and communications
applications adopt exactly this architecture of tightly scheduled repetitive behaviour.

The main advantage in adopting dynamics as the basis for a network implementation language is the
observation that deterministic dynamic processes are causal. We don’t attempt to define this notion in the
general case, but in the deterministic case a causal process is one for which the first n inputs uniquely
determine the first n outputs. That is, the process does not look forward in time when determining the
current output. Clearly this is a necessary requirement for any notion of process implementation.

Any process constructed from causal network elements using sequential and parallel hookup will also
be causal, but, unfortunately, causality is not necessarily preserved under feedback, nor is it sufficient to
preserve determinism under feedback. In order to preserve causality and determinism, we follow Stglen [28]
and introduce the stronger notion of guardedness. A (deterministic) process is guarded if and only if the
(n+1)*™ output is uniquely determined by the first n inputs. For a detailed discussion of guarded trace
functions the reader is directed to Stglen [28].

The guardedness of a process may be ensured by introducing a delay or latch element into the network.
Latches are depicted in network graphs as small triangles, as shown in Fig. 6(b).

defs latch_def: a> = (At e a#t)

A feedback loop is causal if the enclosed (causal) process is guarded in the feedback component. This
may be ensured by restricting feedback loops to be of the form

(p> (a>) x 1)
where p is a causal process. We call such feedback loops guarded-feedback loops and write
lac—p]

as shorthand for the above process.

DOVE: Complex Dynamic Processes 179

Fig. 7. Elided network connectives.

In addition to dynamics and latches, the causal processes 1, (tzip) and (tunzip) are useful network
connectives. We introduce abbreviations @ and & for the processes (tzip) and (tunzip) respectively. We do
not explicitly represent these processes on network graphs, since it is straightforward to infer their presence
from the way in which explicit network elements are connected. For example, since a dynamic must have a
single input stream and a product must be between processes, if can be inferred that the diagram of Fig. 7
refers to the process

(® > dopod) x 1.

We are now in a position to define the IFO network language.

— A dynamic machine do (f) od is an IFO machine for any function f.
The processes 1, © and Q are IFO machines.

If p and q are IFO machines then so are p > g and p X q.

— If p is an IFO machine then so is (a«— p].

In the case that p is of the form
&> do{g)od> R

it is straightforward to show that
lae—p]

uniquely constructs the feedback trace x which satisfies the recursive equations

Xp = a
(Xn+17 tn) = g(xn, Sn), neN

where s and t are respectively the global input and output. Thus, guarded feedbacks ensure the preservation
of both determinism and causality and all IFO machines are both deterministic and causal.

5 Some simple examples

In this section we present example refinements which illustrate the basic application of the network refinement
calculus.

5.1 Accumulating a sum

We begin with a straightforward, but thorough exercising of the refinement calculus approach. In order
to improve the readability of the example, we elide lambda bindings representing state variables, under the
convention that the names of the state variables and the context identify the formal arguments to the lambda
abstraction. For example, given state variables x and y, we would write x = y for the relational abstraction
AXyoex =y.

A simple network application is to calculate a running sum of the values being passed along input s,
passing the results on output t. This may be expressed very straightforwardly as a relational specification.

180 Brendan Mahony

a a7
s N t

Fig. 8. The summing machine.

let 2SUM = (Ynet, = 37 _, sk

A simple solution to this problem is to use a feedback component a to store the previous value of the
sum. The relationship between a and s is:

let 7PSUM =ap=0A (Vneas: = X._,Sk

The desired property of t can then be effected by adding a to s at each cycle as shown in Fig. 8.
The refinement argument begins by introducing the feedback component.

have [true / 7SUM]
C

([true/ ?SUM])
by (rule spec_tbl)

Next we focus on the design of the internal component, first coercing the feedback property on the input
side.

have [true/ 7SUM]
C

[?7PSUM] > ([7PSUM / ?SUM])
proof —apply coercel and assumeS qed

Now we focus on refining the specification statement, requiring first that b be a latched copy of t and
that t be the sum of a and s at each point.

have [PPSUM / 7SUM]
C

[7PSUM/ b = (0#t) A (VYnet, = a, + sp)]
proof (rule commitS [rule_format])

The entailment is easily demonstrated by induction.
qed

The next step is to decompose the commitment relation, introducing relational sequencing and product,
then lifting these to the process level.

also have ...
C

[7PSUM /
(b=t A(¥net, =a, + sy,))
> ((b = O#fa) x (t = s))]
(is-C[-/?SELT > _])
by (rule commitS [rule_format], auto)
also have ...
C

[?PSUM/ ?SELT] > ((0>) x 1)

DOVE: Complex Dynamic Processes 181

proof —apply midl and spec_prod qed
Focusing on the summing element, we begin by eliminating the assumption.

have [?PSUM / ?SELT]
C

[true/ ?SELT]
by (rule assumeW [rule_format], auto)

Since both b and t depend on both a and s, we zip them up to allow a dynamic implementation to use
them both. We write as for the zipping of a and s and bt for the zipping of b and t.

also have ...
C

© > [true/ 7SELT (tunzip as) (tunzip bt)] > Q
by (rule spec_zipl)

Focusing on the dynamic element, we re-express the commitment as an relational invariant, so as to
implement it as a dynamic.

have [true / ?SELT (tunzip as) (tunzip bt)]
C

[true/I[Ine(b=a+sAt=a+s)]
proof —apply commitS qed
also have ...
C
do((a’, t) :==(a+ s, a+ s))od
proof —apply spec_dynl qed

Thus, we have shown that the design of Fig. 8 achieves the required commitment, provided that the
feedback component properly stores the partial sums.

finally have [true/ 7SUM]
C

([7PSUM] > © > do((a’, t) = (a+s, a+s))od > Q) > ((0) x 1) .

The final step is then to eliminate the feedback input coercion, by demonstrating that the feedback
component does store the partial sums.

also have ...
C
(0—© > do((a’, t) := (a+s, a+s))od > R)
proof —convert body to single function, then apply fb_coerceE qed

Thus we are now left with a pure IFO implementation of the summing machine specification.

finally have [true/(Ynetn= };_,sk)]
C

(0— ©® > do{(a’, t) := (a+s, a+s))yod > X] .

5.2 The magic of refinement

Our second example examines the potential dangers involved in introducing feedback assumptions and also
the protections built in to the refinement approach.

The main fear with making use of feedback assumptions is the possibility that the assumptions may
become self-fulfilling prophecies. Since an implementation need only achieve its commitment when its inputs

182 Brendan Mahony

satisfy the necessary assumptions, might it not be possible to use the postulated feedback assumptions to
construct an implementation which achieves its commitment only because it has been assumed to do so?
For example, consider the following refinement sequence.

have [true/As te A s t]
C

([Ux,s)eAsx] >[Ax,s)e A sx/Ax, s) (x/,t)eAsx A Ast])
proof —apply spec_tbl, coercel, assumeS, and commitS qed

At this point in the design process we have set up a potentially dangerous situation. Since x is already
assumed to satisfy the required property A s x, we can get a refinement of the specification statement by
simply copying the input x across to the outputs x’ and t.

also have ...
C

([A(x, s) @ A 5 x] >(A(x, s) o (x, x))]
proof —apply commitS, then funl qed

The design process seems to have gone completely wrong! It is clear that any further development from
this point could not possibly result in an implementation of the original specification, but what could have
gone wrong? We have carefully made use of trusted refinement laws and what we have arrived at is a design
which we know cannot achieve the desired result. Is there a problem with the definition of feedback, or worse
still a problem with the notion of refinement?

Neither of these. What has happened is that we have made a bad design choice, a choice which has led
us to a complete dead end. It is not just that we can no longer get to an implementation that satisfies the
specification, it is no longer possible to get to any implementation at all. In order to get code from the above
design we must eliminate the input coercion and this we can no longer do. This coercion is our protection
against making incorrect use of the feedback assumptions it allows us to introduce. It can only be removed
when we have been able to establish the required effect on the outputs absolutely and without recourse
to any feedback assumptions. This is not a unique phenomena in the refinement calculus, there are many
situations where we are allowed the freedom to introduce designs that have no implementation. The basic
argument in favour of risking such unsafe decisions is that the work required to ensure a design decision is
safe is comparable to the work required to construct an implementation. In most cases, it is far better to
risk the occasional deadend refinement sequence, than to be continually put to the work of checking that
every design decision is safe.

That said, there are situations in which this is not the case, primarily in the development of large-
scale projects in which multiple developers and indeed teams of developers are involved. Postponing the
elimination of the input coercion until the final stage of design becomes a considerable risk when there are
numbers of developers responsible for the various subcomponents of a system. In such cases it is imperative
to have a method of eliminating the coercion before the commencement of separate development efforts on
subcomponents. Fortunately it is possible to introduce variants on spec_fbl and fb_coerceE which support a
more localised approach to dealing with feedback assumptions.

[A/E]
{A} > ([A(x, a)® A a/ A(x, a) (x/, b)e E a b])

lemma spec_fbl5:

by (simp)

lemma fb_coerceE5:
{A} > ([E] > [A(x, a)e A a/F])

([A(x, a)e A a/F])
by (simp, blast)

(Ax, s)e As A (JteF (x,s) (x, 1) = E

The important aspect of the variant feedback introduction rule spec_fbl, is that the environment as-
sumption is retained external to the feedback loop. The variant coercion elimination rule fb_coerceE, then
makes use of this external assertion to allow the input coercion to be eliminated once the designer has fin-
ished making use of it in the design of the feedback component. Thus the coercion is eliminated at a more
appropriate time, prior to the commencement of subcomponent development efforts.

DOVE: Complex Dynamic Processes 183

% b,

S

|
-

S

-
o

Fig. 9. Using separate calculating units.

5.3 A liveness example

Our final example explores the use of liveness properties as feedback assumptions. Even though the refinement
rules for introducing feedback assumptions do not distinguish between liveness and safety, the importance
this distinction has played in previous formalisms seems to demand that some attention be paid to the
matter. However, we do feel justified in only considering a simple and somewhat contrived example of their
use.

A stream processing machine accepts intermittent communications of natural numbers on a channel a;.
For each communication on channel a; it must calculate the value f1 (f2 ai,) and output it on channel b;.
Since calculating the functions f1 and f, may take a number of cycles, we simply require that for every
communication on a; there is eventually a response on b;. A similar requirement is placed on a second
channel ap, with the exceptions that the processing functions are applied in the opposite order and that
outputs are placed on a second channel bs.

In formalising these requirements, we model the notion of an intermittent channel as a trace over the
natural numbers extended with a null element L (N,). Thus a trace of an intermittent channel consists
of natural numbers intermixed with null communications. We write da, for the requirement that the n
communication on the intermittent channel a is a proper communication. Formally, we express the eventual
calculation of some function f by the following specification.

let 7CALC f = A(a::(N.)*) (b:(NL)") e
(Vneda, = (Amen <mA by =f ap))

The requirement on b; is then
?CALC (fl o fz) a bl

and that on by is
?CALC (f2] f]_) ag b2.

Both these requirements are liveness properties, because they do not dictate a deadline for when the calcu-
lations must be finished. Of course, it is not really intended that arbitrarily long times be allowed for the
calculations. Rather this is a convenient way of leaving the determination of the calculation times until later
in the design process, when more is known about the mechanics of the calculations.

The symmetry of the problem suggests the possibility of decomposing the process into one element for
calculating f1 and one for calculating f». The idea would be to send inputs on a; directly to the f, processing
element, then to the f; processing element and vice versa for inputs on ay. The resulting process topology is
depicted in Fig. 9.

The first step is then to introduce feedback components for passing these intermediate calculations
between the two processing elements. We retain the original assumption, so as to allow the early elimination
of the feedback coercion as described in the previous section.

184 Brendan Mahony

have [true/ 7CALC (fj_ o fz) al bj_ A 7CALC (fz o f]_) ap b2]
C

{true} >

E[true/ ?CALC (f]_ o fz) a; b1 A ?CALC (fg [} fl) ap bz]J

proof —apply spec_fbl, qed

The strategy for using these intermediate channels is to perform f, processing on messages from a;, then
pass them along c; for f1 processing before outputing them on b;. Similarly ¢, is used for intermediate
calculations of messages on the ap channel.

This strategy is implemented by introducing the intended properties of the intermediate channels as
feedback assumptions, then using these properties to show that the proposed behaviour of the output channels
satisfies the original requirements.

also have ...
C
{true} >
([7CALC f, ag c1 A 7CALC f1 ap ¢c] >
[?CALC 5 ay ¢c1 A 7CALC f1 ap co/
?CALC (fy o f2) ag by A PCALC (f2 o f1) az bz])
proof —apply coercel and assumeS qed
also have ...
C
{true} >
E[7CALC foa; ¢y A 7CALC fq1 ap Cz] >
[7CALC f; a3 ¢ A 7CALC f1 ap c2/
?CALC f ay ¢1’ A PCALC f1 ap ¢’ A
?CALC f1 ¢1 by A ?7CALC f5 ¢ bz]J
proof (intro monotonic_operators, rule commitS [rule_format])

Eventually calculating one function and then eventually calculating the other is equivalent to eventually
calculating the composition of the two functions.

qged
The last step in this design is to remove the feedback coercions that we have now finished making use of.

also have ...
C
{true} >
E[7CALC fo a3 ¢y A 7CALC {1 ap 02] >
[true/
?CALC 5 ay ¢1’ A PCALC f1 ap ¢’ A
?CALC f1¢1 by A PCALC f5 ¢ bz]]
by (intro monotonic_operators, rule assumeW [rule_format], auto)
also have ...
C

([true/
?CALC fp a3 ¢1’ A 7CALC f1 ap ¢’ A
?CALC f1 ¢1 by A 2CALC £y ¢z bz])
by (rule fb_coerceE; [rule_format], auto)
also have ...
C

([true/
?CALC fo a1 c1’ A 7CALC fq ap ¢’ A

DOVE: Complex Dynamic Processes 185

7CALC fic1 b1 A ?CALC fr co bz]J
by (intro monotonic_operators, rule assumeW [rule_format], auto)

The next step in the development would be to decompose the internal specification in parallel, but we
leave that as an exercise for the interested reader. The purpose of this section was to demonstrate the use of
liveness properties as feedback assumptions, in this case the properties 7CALC {7 a3 ¢; and 7CALC {1 ap ca.
The result has been a fairly banal repetition of our previous treatments of feedback assumptions. Indeed, the
most novel aspect of the design derivation was the utilisation of the “localised” elimination rule fb_coerceE,
that was introduced in Sect. 5.2. This is not surprising, since the introduction rules for feedback coercions
make no distinction between liveness and safety properties.

6 Conclusions

This paper has considered the application of the refinement calculus to the specification and design of
process networks consisting of sequential, parallel and feedback elements. The sequential and parallel hookup
operators are well known from the literature [3, 5], but to the best of our knowledge the predicate transformer
feedback operator is a novel generalisation of the relational operator proposed by Katis et al [12].

In order to make use of feedback assumptions in process developments, we have suggested the novel use
of coercions on the feedback components as inputs. We have shown how these magical annotations may be
eliminated from the final implementation (fb_coerceE) or even from earlier stages of the design in the case of
large-scale developments (fb_coerceE5). The addition of these refinement laws makes the refinement calculus
a powerful tool for analysing process networks, capable of treating both safety and liveness properties with
equal simplicity.

An important aspect of the resulting network refinement-calculus is its abstraction from any underlying
model of process computation. The network refinement-calculus is potentially able to support a wide range
of implementation models either in isolation or even in combination.

As a means of providing concrete examples of the network refinement-calculus in action, we have intro-
duced the IFO machine as a simple, abstract model of process computation. The basic building block of the
IFO language is the dynamic, a novel, if straightforward, generalisation of the product operator. Specialised
refinement rules have been introduced to support IFO implementations and some examples given in the
refinement of IFO machines. Again we stress that the refinement calculus is not restricted in its application
to these IFO machines. It could just as easily have been applied to dataflow/stream-processing functions,
real-time automaton, state machines, or indeed any state-based model of process computation. Applying the
network refinement-calculus to event-based models may be more problematic since they sometimes lack a
clear distinction between input and output components.

It is worth noting here that the various hookup introduction rules make no distinction between the use of
safety and liveness properties, either in assumptions or in commitments. In fact we had no need of introducing
the notions at all until we came to the introduction rule for IFO dynamics. The treatment of liveness has
generally been a problematic aspect of network design formalisms. Misra and Chandy [20] restricted their
approach entirely to safety properties, while Lamport’s TLA [1] finesses the problem by introducing the
arcane notion of the closure of a liveness property to overcome a prohibition on the use of liveness properties
as feedback assumptions. More recently, Stolen has proposed a feedback verification rule which allows the
use of liveness properties, but once again it involves the difficult computation of closures and in addition
the introduction of an invariant property (with a safety component). All of these difficulties stem from the
treatment of feedback through the sophisticated notion of recursion, rather than through the more naive
notion of fixed-point. Although at the function level, these notions are almost identical, at the relational level
they differ vastly. A recursion-based view of feedback immediately places the focus on finite traces and safety,
forcing an indirect treatment of infinite traces and hence liveness. By adopting the naive fixed-point approach
suggested by Katis et al [12], we have rendered the distinction between safety and liveness irrelevant. The
resulting feedback-hookup introduction rule is vastly simpler, involving no calculations at all.

Apart from the gains made in adopting the naive fixed-point view of feedback, the adoption of predicate-
transformer semantics offers significant gains in tractability over pure relational semantics. A significant
strength of predicate-transformer semantics is the ability to provide a clear, semantic separation between

186 Brendan Mahony

assumptions and commitments. While the assumption and commitment associated with a specification state-
ment are semantically unique, any given relational specification admits quite arbitrary assumption/commitment
decompositions which must be treated through the introduction of adaptation rules. The availability of (dis-
tinct) assertions and coercions also greatly adds to the power and flexibility of the refinement calculus, as
compellingly demonstrated by our approach to the introduction and elimination of feedback assumptions.
By introducing feedback properties as coercions we flag an intention to make the feedback property true. If
assertions were used, it would instead indicate that we were assuming that they were already true. Such a
distinction could not be made in a pure relational model.

A number of future research directions are suggested by the issues raised in this paper. The interface
between trace-based design and sequential program code needs considerable elaboration. It would certainly
be useful to be able to introduce more general program operators than the simple nonterminating loop
of spec_dynl. This might allow, for example, the clear decomposition of a program into initialisation and
processing phases. An important future direction of this work is also to apply the refinement calculus to truly
real-time processes. In order to do this a computation model based on continuous functions of real-time [16]
may be adopted. However, it will require considerable development of the Isabelle real-analysis environment
to make this feasible. Work in this direction is currently underway in collaboration with the SVRC at the
University of Queensland.

Acknowledgements

The work reported in this paper has been supported in part by Australian Research Council grant number
A4913006: Formal methods for the specification and refinement of time-based systems and processes.

This paper has been has been a long time in the gestation and the author wishes to acknowledge valuable
discussions with (in temporal order) Ian Hayes, Colin Millerchip, Keith Duddy, Colin Fidge, Tony Dekker,
Lindsay Groves, Tony Cant, Jim McCarthy, Jamie Shield, and Clare Mahony. Thanks also is due to the
feedback (sic) received from anonymous reviewers of earlier versions of this paper.

References

1. M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on Programming Languages and
Systems, 17(3):507-534, May 1995.

2. B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters, 21(4):181-185, 1985.

3. R. Back and J. von Wright. Refinement Calculus: A Systematic Introduction. Graduate Texts in Computer
Science. Springer, 1998.

4. R. J. R. Back. A calculus of program derivations. Acta Informatica, 25:593-624, 1988.

5. R. J. R. Back and M. J. Butler. Exploring summation and product operators in the refinement calculus. In
Mathematics of Program Construction, volume 947 of LNCS, pages 128-158. Springer-Verlag, 1995.

6. R. J. R. Back and M. J. Butler. Fusion and simultaneous execution in the refinement calculus. Acta Informatica,
35(11), 1998.

7. T. Cant, J. McCarthy, and B. Mahony. Dove: Design oriented verification and evaluation. http://www.dsto.
defence.gov.au/esrl/itd/dove/index.html.

8. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, New Jersey, 1976.

9. R. W. Floyd. Assigning meanings to programs. In Mathematical Aspects of Computer Science. American Math-
ematical Society, 1967.

10. C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12(10), October
1969.

11. C. B. Jones. The search for tractable ways of reasoning about programs. Technical Report Series UMCS-92-4-4,
Department of Computer Science, University of Manchester, 1992.

12. P. Katis, N. Sabadini, and R.F.C. Walters. Span(graph): A categorical algebra of transition systems. In M. John-
son, editor, Algebraic Methodology and Software Technology, volume 1349 of LNCS. Springer, 1997.

13. B. P. Mahony. The Specification and Refinement of Timed Processes. PhD thesis, University of Queensland,
1991. ftp://ftp.it.uq.edu.au/pub/Thesis/brendan_mahony.ps.Z.

14. B. P. Mahony. Calculating the least conjunctive refinement and promotion in the refinement calculus. Formal
Aspects of Computing, 11:75-105, 1999.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

DOVE: Complex Dynamic Processes 187

B. P. Mahony and I. J. Hayes. A case-study in timed refinement: A central heater. In J. M. Morris and R. C. Shaw,
editors, Proceedings of the 4" Refinement Workshop, Workshops in Computing, pages 138-149. Springer-Verlag,
1991.

B. P. Mahony and I. J. Hayes. Using continuous real functions to model timed histories. In Proceedings of the
6th Australian Software Engineering Conference (ASWEC91), 1991.

B. P. Mahony and I. J. Hayes. A case-study in timed refinement: A mine pump. IEEE Transactions on Software
Engineering, 18(9), September 1992.

B. P. Mahony, C. Millerchip, and I. J. Hayes. A boiler control system: A case study in timed refinement. In
International Invitational Workshop - Design and Review of Software Controlled Safety-Related Systems, Ottawa,
June 1993.

C. Martin. Preordered Categories and Predicate Transformers. PhD thesis, Oxford University Computing Labo-
ratory, Programming Research Group, 1991.

J. Misra and K. M. Chandy. Proofs of networks of processes. IEEE Transactions on Software Engineering,
SE-7(4):417-426, 1981.

C. C. Morgan. The specification statement. ACM Transactions on Programming Languages and Systems, 10(3),
July 1988. Reprinted in [22].

C. C. Morgan and T. Vickers, editors. On the Refinement Calculus. Springer-Verlag, 1992.

J. M. Morris. A theoretical basis for stepwise refinement and the programming calculus. Science of Computer
Programming, 9:287-306, 1987.

G. Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on Programming Language and Systems,
11(4):517-561, 1989.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle’s logics: HOL. http://www.cl.cam.ac.uk/Research/HVG/
Isabelle/dist/Isabelle2002/doc/logics-HOL.pdf.

P. K. Pandya and M. Joseph. P-A logic — a compositional proof system for distributed programs. Distributed
Computing, 5(1):37-54, 1991.

K. Stglen, F. Dederichs, and R. Weber. Specification and refinement of networks of asynchronously communicating
agents using the assumption/commitment paradigm. Formal Aspects of Computing, 8, 1996.

K. Stglen. Assumption/commitment rules for dataflow networks—with an emphasis on completeness. In
Hanne Riis Nielson, editor, Programming Languages and Systems—ESOP’96, 6th European Symposium on Pro-
gramming, volume 1058 of LNCS, pages 356—372. Springer, 1996.

A. Turing. Checking a large routine. In Report of a Conference on High Speed Automatic Calculating Machines,
pages 67—69, 1949.

M. Wenzel. The Isabelle/Isar reference manual. http://www.cl.cam.ac.uk/Research/HVG/Isabelle/dist/
Isabelle2002/doc/isar-ref.pdf.

J. Zwiers, J. Coenen, and W. P. de Roever. A note on compositional refinement. In 5" Refinement Workshop.
Spinger-Verlag, 1992.

188

Adams, A. 147
Allen, Stuart 23
Andrews, James H. 1
Aydemir, Brian 12

Barzilay, Eli 23

Cant, Tony 33
Cruz-Filipe, Luis 158

Dawson, Jeremy 36,48

Fairtlough, Matt 48
Franke, A. 147

Gabbay, Murdoch J. 60
Geser, Alfons 71
Gordon, Mike 87
Granicz, Adam 12

Author Index

Gunter, Elsa 101

Harrison, John 146
Hickey, Jason 12

Kalvala, Sara 112

Mahony, Brendan 33,167
McCarthy, Jim 33

Meng, Yi
Miner, Paul

101
S. 71

Norrish, Michael 139

Reed, Jason

121

Slind, Konrad 128,139

Zimmer, Z.

147

189

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
August 2002 Conference Publication
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Theorem Proving in Higher Order Logics
727-01-22-01
6. AUTHOR(S)
Edited by
Victor A. Carreno, César A. Muiloz, and Sofiéne Tahar
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
NASA Langley Research Center L-18211
Hampton, VA 23681-2199
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
National Aeronautics and Space Administration NASA/CP-2002-211736
Washington, DC 20546-0001

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified—Unlimited
Subject Category 61 Distribution: Standard
Availability: NASA CASI (301) 621-0390

13. ABSTRACT (Maximum 200 words)

The TPHOLSs International Conference serves as a venue for the presentation of work in theorem proving in higher-
order logics and related areas in deduction, formal specification, software and hardware verification, and other
applications. Fourteen papers were submitted to Track B (Work in Progress), which are included in this volume.
Authors of Track B papers gave short introductory talks that were followed by an open poster session. The FCM
2002 Workshop aimed to bring together researchers working on the formalisation of continuous mathematics in
theorem proving systems with those needing such libraries for their applications. Many of the major higher order
theorem proving systems now have a formalisation of the real numbers and various levels of real analysis support.
This work is of interest in a number of application areas, such as formal methods development for hardware and
software application and computer supported mathematics. The FCM 2002 consisted of three papers, presented by
their authors at the workshop venue, and one invited talk.

14. SUBJECT TERMS]] i]] — J15. NUMBER OF PAGES
Theorem proving; Formal methods; Reasoning; Verification; Logic; Deduction; Speci-| 198
fication 16, PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION |19. SECURITY CLASSIFICATION [20. LIMITATION
OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

