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Abstract

Differential temporal dynamic logic dTL2 is a logic to specify
and verify temporal properties of hybrid systems. It extends
differential dynamic logic (dL) with temporal operators that
enable reasoning on intermediate states in both discrete and
continuous dynamics. This paper presents an embedding
of dTL2 in the Prototype Verification System (PVS). The
embedding includes the formalization of a trace semantics as
well as the logic and proof calculus of dTL2, which have been
enhanced to support the verification of universally quantified
reachability properties. The embedding is fully functional
and can be used to interactively verify hybrid programs
in PVS using a combination of PVS proof commands and
specialized proof strategies.

CCS Concepts: • Theory of computation → Logic and
verification.
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1 Introduction

Differential dynamic logic (dL) [37, 39, 45, 48] is a framework
for specifying and reasoning about hybrid programs, i.e., pro-
grams that exhibit both discrete and continuous dynamics.
The core of dL is a proof calculus that contains a collection
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of axioms and rules for the rigorous verification of proper-
ties of hybrid programs. This calculus is implemented in the
KeYmaera X1 theorem prover, which is built up from a small
trusted core that assumes the axioms of dL. KeYmaera X has
been used in the formal verification of several cyber-physical
systems [7, 8, 16, 20, 22–24, 28]. Recently, dL has been em-
bedded within the theorem prover Prototype Verification
System (PVS) [36] resulting in the tool Plaidypvs2 [51]. This
embedding expands the expressive and deductive power of
dL with PVS’s capabilities. For example, PVS’s defined func-
tions, or external library functions such as trigonometric
and other transcendental functions, can be used within the
embedding. Furthermore, meta-reasoning about hybrid pro-
grams, including reasoning about entire classes of hybrid
programs, could be performed in PVS.
One limitation of dL, KeYmaera X, and Plaidypvs is that

they can only reason on the input/output semantics of hy-
brid programs. Nevertheless, it is often the case that the
correctness of a hybrid program is expressed in terms of the
intermediate states that are reached during its execution not
only on its final states. For example, guaranteeing that the
position of an aircraft stays within a geofenced region or
ensuring that eventually in the future an unmanned vehicle
reaches and maintains a certain velocity are properties that
cannot be expressed directly in dL.

Differential temporal dynamic logic (dTL2) was introduced
in [21] to extend dL with temporal logic operators and to
reason about all the states reachable during the execution of
a hybrid program. dTL2 supports existential and universal
quantifiers on execution paths through the temporal opera-
tors globally and eventually.
This paper presents an embedding of dTL2 in PVS as an

extension of Plaidypvs. The original specification in [21]
has been modified to provide a compact denotation for the
semantics that is more amenable to formal verification. In

1https://keymaerax.org
2Plaidypvs with the temporal extension presented in this paper is available
as part of the NASA PVS library at https://github.com/nasa/pvslib/tree/
master/dL.
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addition, the interpretation of temporal operators over traces
and part of the calculus have been refined to allow for a more
natural interpretation of reachability properties for hybrid
programs.

Specifically, the contributions of this paper are
• a formalization of dTL2 trace semantics for hybrid
programs;
• a formalization of dTL2 temporal formulas that in-
cludes the temporal operators eventually and globally
and the universal and existential quantifications over
traces;
• formal verification of dTL2 axioms and deduction rules
in PVS;
• implementation of the proof calculus for dTL2 as proof
rules in PVS.

The embedding is fully functional and supports the formal
verification of hybrid programs in PVS through the use of
PVS proof commands and specialized proof rules, which are
based on the dTL2 proof calculus. To the authors’ knowledge,
this is the first formal specification and verification of a
temporal extension of dL.
The rest of this paper is organized as follows. Section 2

introduces the basic notions related to hybrid programs, dL,
and Plaidypvs. Section 3 introduces dTL2 and its trace seman-
tics. Section 4 presents the proof calculus and its embedding
in PVS. Section 5 provides some examples on how to prove
dTL2 programs in PVS. Finally, Section 6 outlines the related
work, and Section 7 concludes the paper.

2 Hybrid Programs and Differential

Dynamic Logic

This section presents background information on hybrid
programs and their input/output semantics as defined in
[51] and implemented in Plaidypvs.
In the following, V denotes an infinite, but enumerable

set of real-valued variables. More precisely, in Plaidypvs,
variables are represented by indices. The state of a hybrid
program at a moment in time is given by an environment of
type E ≜ [V→ R] that maps the program variables to their
respective values. Real R and Boolean B expressions are rep-
resented by their evaluation functions of type [E → R] and
[E → B], respectively, where B is the Boolean domain. For
instance, cnst (𝑐) ≜ 𝜆(𝑒 : E).𝑐 represents the hybrid program
constant that returns the value 𝑐 ∈ R in any environment.
Similarly, ⊤ ≜ 𝜆(𝑒 : E).TRUE and ⊥ ≜ 𝜆(𝑒 : E) .FALSE rep-
resent the Boolean hybrid program constants that always re-
turn TRUE ∈ B and FALSE ∈ B, respectively. While real and
Boolean expressions can be arbitrary functions, Plaidypvs
provides support for standard arithmetic and Boolean op-
erators by lifting them to the domain of R and B. Given
𝑟1, 𝑟2 ∈ R and 𝑛 ∈ N the following are recognized to be of
type R in Plaidypvs: 𝑟1 + 𝑟2, 𝑟1 − 𝑟2, 𝑟1/𝑟2, 𝑟1 · 𝑟2, −𝑟1,

√
𝑟1,

and 𝑟𝑛1 . It is important to notice that, for instance, in the real

expression 𝑟1 + 𝑟2, the operator + is not the arithmetic addi-
tion, but it is of type R × R → R. Furthermore, the equality
𝑟1 = 𝑟2 is defined as the extensional equality on real number
functions, i.e., ∀𝑒 ∈ E .𝑟1 (𝑒) = 𝑟2 (𝑒). Similarly, given Boolean
expressions 𝑏1, 𝑏2 ∈ B, the following are recognized to be
of type B in Plaidypvs: 𝑏1 ∧ 𝑏2, 𝑏1 ∨ 𝑏2, 𝑏1 → 𝑏2, 𝑏1 ↔ 𝑏2,
𝑏1 = 𝑏2, and ¬𝑏1.

Hybrid programs are syntactically defined as a datatype
H in PVS according to the following grammar

𝛼 ::= 𝑥 := 𝜃 | 𝑥 ′ := 𝜃 & 𝜒 | ? 𝜒 | 𝛼 ;𝛼 | 𝛼 ∪ 𝛼 | 𝛼∗

where 𝑥, 𝑥 ′ ∈ V𝑘 , 𝜃 ∈ R𝑘 , 𝑘 ∈ N, and 𝜒 ∈ B. The statement
𝑥 := 𝜃 denotes a list of simultaneous discrete assignments.
The statement 𝑥 ′ := 𝜃 & 𝜒 models the continuous evolution
of the variables in 𝑥 ′ according to the first order differential
equations described by 𝜃 , while guaranteeing that the solu-
tion satisfies 𝜒 along the evolution. The test ?𝜒 checks if 𝜒 is
satisfied. Hybrid programs can be combined through sequen-
tial execution (𝛼1;𝛼2), nondeterministic choice (𝛼1 ∪𝛼2), and
nondeterministic finite repetition (𝛼∗).

The input/output semantics ⟦·⟧io maps a hybrid program
into a set of environment pairs ⟨𝑒𝑖 , 𝑒𝑜⟩ ∈ E × E. Given a
vector 𝑣 , the notation 𝑣𝑖 denotes the 𝑖-th element of 𝑣 .

⟦𝑥 := 𝜃⟧io ≜ {⟨𝑒𝑖 , 𝑒𝑜⟩ | ∀𝑥 ∈ V. 𝑥 ∈ 𝑥 → 𝑒𝑜 (𝑥) = 𝜃idx (𝑥,𝑥 ) (𝑒𝑖 )
∧ 𝑥 ∉ 𝑥 → 𝑒𝑖 (𝑥) = 𝑒𝑜 (𝑥)}

⟦𝑥 ′ := 𝜃 & 𝜒⟧io ≜ {⟨𝑒𝑖 , 𝑒𝑜⟩ | 𝑒𝑖 = 𝑒𝑜∨
∃𝐷 ∈ D. 𝛿 (𝐷, 𝑥 ′, 𝜃, 𝜒, 𝑒𝑖 , 𝑒𝑜 )}

⟦? 𝜒⟧io ≜ {⟨𝑒, 𝑒⟩ | 𝜒 (𝑒)}
⟦𝛼1;𝛼2⟧io ≜ {⟨𝑒𝑖 , 𝑒𝑜⟩ | ∃𝑒 ∈ E . ⟨𝑒𝑖 , 𝑒⟩ ∈ ⟦𝛼1⟧io ∧

⟨𝑒, 𝑒𝑜⟩ ∈ ⟦𝛼2⟧io}
⟦𝛼1 ∪ 𝛼2⟧io ≜ ⟦𝛼1⟧io ∪ ⟦𝛼2⟧io
⟦𝛼∗⟧io ≜

⋃
𝑛∈N
⟦𝛼𝑛⟧io where 𝛼0 ≜ ? true, 𝛼1 ≜ 𝛼 , and

𝛼𝑛+1 ≜ 𝛼 ;𝛼𝑛 for 𝑛 ≥ 1

where idx (𝑥, 𝑥) is the index for variable 𝑥 in the vector
𝑥 and D ::= {[0, 𝑏] | 𝑏 ∈ R} ∪ {R≥0} denotes the or-
dinary differential expression domain. The predicate 𝛿 :
D×V𝑘×R𝑘×B×E×E holds when there exists a continuous
evolution from environment 𝑒𝑖 to environment 𝑒𝑜 following
the ordinary differential equations 𝑥 ′ = 𝜃 .

𝛿 (𝐷, 𝑥 ′, 𝜃, 𝜒, 𝑒𝑖 , 𝑒𝑜 ) ≜ ∃𝑟 ∈ 𝐷. ∃!𝑓 ∈ [𝐷 → R]𝑘 .
sol(𝐷, 𝑥 ′, 𝜃, 𝑒𝑖 , 𝑓 ) ∧ 𝑒𝑜 = env(𝑥 ′, 𝑓 , 𝑒𝑖 , 𝑟 ) ∧
∀𝑡 ∈ R. (𝐷 (𝑡) ∧ 𝑡 ≤ 𝑟 ) → 𝜒 (env(𝑥 ′, 𝑓 , 𝑒𝑖 , 𝑡)) .

Unpacking this further, the following function characterizes
the environment 𝑒𝑖 , with the continuously evolving variables
𝑥 ′ replaced by values from a function 𝑓 : [𝐷 → R]𝑘 .

env(𝑥 ′, 𝑓 , 𝑒𝑖 , 𝑟 ) ≜ 𝜆(𝑥 ′ : V).
{
𝑓idx (𝑥 ′,𝑥 ′ ) (𝑟 ) if𝑥 ′ ∈ 𝑥 ′

𝑒𝑖 (𝑥 ′) if𝑥 ′ ∉ 𝑥 ′
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The predicate sol ensures that 𝑓 is the solution to the
𝑘-dimensional differential equation 𝑥 ′ = 𝜃 throughout the
domain 𝐷 . Note in the definition of 𝛿 this solution is further
assumed to be unique on the domain 𝐷 .

sol(𝐷, 𝑥 ′, 𝜃, 𝑒𝑖 , 𝑓 ) ≜∀𝑡 ∈ 𝐷. 𝑓 ′ (𝑡) = 𝜃 (env(𝑥 ′, 𝑓 , 𝑒𝑖 , 𝑡))

The choice of a shallow embedding of real and Boolean
expressions within hybrid programs allows for their inter-
pretation directly in the logic of PVS, facilitating the task of
verifying hybrid programs. Moreover, it provides the abil-
ity to extend the set of hybrid program expressions with
user-defined functions. This capability is one of the unique
features of the Plaidypvs implementation of dL.

Example 2.1 The following example shows the function-
ality of Plaidypvs in allowing user-defined functions in a
hybrid program. Consider the hybrid program given by

𝑥 ′ := 6;𝑥 := ⌊𝑥⌋

This program progresses 𝑥 according to the differential equa-
tion 𝑥 ′ = 6 and then assigns to 𝑥 the floor of its value. This
floor function is a user-defined function that takes an input
of type R and returns a value of type R that denotes the
floor of its input. It can be shown that

∀⟨𝑒𝑖 , 𝑒𝑜⟩ ∈ ⟦𝛼⟧io . 𝑒𝑜 (𝑥) ∈ Z.

However, it should be noted that there are intermediate
states, attained by the differential part of the program, where
𝑥 stores non-integer values.

3 Temporal Differential Dynamic Logic

The semantics in Section 2 only allows for reasoning on the
input and output environments of a hybrid program. In order
to reason about the intermediate steps, a more expressive
semantics is needed. In [21], the dTL2 logic is proposed as
an extension of dL to specify temporal properties of hybrid
programs. This section presents an alternative formalization
of the trace semantics and logic of dTL2, which has been
developed in PVS. Several notions presented here differ from
the ones in [21], especially in the denotation of continuous
evolutions. This was a design choice to make the semantics
more compact and amenable to formal verification.

A state can be either a discrete step represented by an envi-
ronment in E, a continuous step representing a continuous
evolution, or an error Λ. It is useful to distinguish two kinds
of continuous steps: finite (diff ) and infinite (inf ). A finite
continuous step diff 𝑏 (𝑒0, 𝜄𝑏) models a continuous evolution
in the range [0, 𝑏] from an initial environment 𝑒0 following
a dynamics 𝜄𝑏 ∈ [[0, 𝑏] → E] such that 𝜄𝑏 (0) = 𝑒0. Similarly,
an infinite continuous state inf (𝑒, 𝜄∞) models a (possibly)
infinite continuous dynamics stating from 𝑒0 and following
the dynamics 𝜄∞ ∈ [R≥0 → E] such that 𝜄∞ (0) = 𝑒0.

Definition 3.1 (State) A state is defined by the following
grammar.

𝜎 ::= 𝑒 | diff 𝑏 (𝑒, 𝜄𝑏) | inf (𝑒, 𝜄∞) | Λ

where 𝑒 ∈ E, 𝑏 ∈ R≥0, 𝜄𝑏 ∈ [[0, 𝑏] → E], and 𝜄∞ ∈ [R≥0 →
E].
The behavior of a hybrid program can be modeled as a

sequence of discrete and continuous states called a trace.
Definition 3.2 (Trace) A trace is a finite and non-empty
sequence of states in the form 𝜎 = 𝜎0 · 𝜎1 . . . 𝜎𝑛 such that for
all 𝑖 < 𝑛 either 𝜎𝑖 ∈ E or 𝜎𝑖 = diff 𝑏 (𝑒, 𝜄𝑏) for some 𝑒 ∈ E,
𝑏 ∈ R≥0, and 𝜄𝑏 ∈ [[0, 𝑏] → E], where 𝜎𝑖 denotes the 𝑖-th
element of the trace. The set of all traces is denoted by T.

From the above definition, it follows that error and infinite
continuous steps can only occur at the end of a trace. A trace
is said to be finite if it terminates with a discrete step or
a finite continuous step, and it is said to be valid when it
does not end with an error. Notice that infinite behaviors
can only occur for hybrid programs with infinite continuous
dynamics and all discrete traces are finite.
Definition 3.3 (Initial & Final Environments)

The initial and final environments of a trace 𝜎 are defined as
follows.

init (𝜎) ≜


𝜎0 if 𝜎0 ∈ E
𝜄𝑏 (0) if 𝜎0 = diff 𝑏 (𝑒, 𝜄𝑏)
𝜄∞ (0) if 𝜎0 = inf (𝑒, 𝜄∞)

final(𝜎) ≜
{
𝜎 |𝜎 |−1 if 𝜎 |𝜎 |−1 ∈ E
𝜄𝑏 (𝑏) if 𝜎 |𝜎 |−1 = diff 𝑏 (𝑒, 𝜄𝑏).

Definition 3.4 (Trace Semantics) The trace semantics
⟦·⟧T maps a hybrid program to a set of traces and is defined
inductively as follows.

⟦𝑥 := 𝜃⟧T ≜ {𝑒𝑖 · 𝑒𝑜 | ∀𝑥 ∈ V. 𝑥 ∈ 𝑥 → 𝑒𝑜 (𝑥) = 𝜃idx (𝑥,𝑥 ) (𝑒𝑖 )
∧ 𝑥 ∉ 𝑥 → 𝑒𝑖 (𝑥) = 𝑒𝑜 (𝑥)}

⟦𝑥 ′ := 𝜃 & 𝜒⟧T ≜ {𝑒 ∈ E | 𝜒 (𝑒)} ∪ {𝑒 · Λ | ¬𝜒 (𝑒)} ∪
{diff 𝑏 (𝑒, 𝜄𝑏) | ∃!𝑓 ∈ [[0, 𝑏] → R]𝑘 . sol( [0, 𝑏], 𝑥, 𝜃, 𝑒𝑖 , 𝑓 ) ∧
𝜄𝑏 = 𝜆(𝑟 : [0, 𝑏]).env(𝑥, 𝑓 , 𝑒𝑖 , 𝑟 ) ∧ ∀𝑡 ∈ [0, 𝑏] .𝜒 (𝜄𝑏 (𝑡))} ∪
{inf (𝑒, 𝜄∞) | ∃!𝑓 ∈ [R≥0 → R]𝑘 . sol(R≥0, 𝑥, 𝜃, 𝑒𝑖 , 𝑓 ) ∧
𝜄∞ = 𝜆(𝑟 : R≥0).env(𝑥, 𝑓 , 𝑒𝑖 , 𝑟 ) ∧ ∀𝑡 ∈ R≥0.𝜒 (𝜄∞ (𝑡))}
⟦? 𝜒⟧T ≜ {𝑒 ∈ E | 𝜒 (𝑒)} ∪ {𝑒 · Λ | ¬𝜒 (𝑒)}
⟦𝛼1;𝛼2⟧T ≜ {𝜎1 · 𝜎2 | 𝜎1 ∈ ⟦𝛼1⟧T ∧ 𝜎2 ∈ ⟦𝛼2⟧T ∧

𝜎1 is finite ∧ final(𝜎1) = init (𝜎2)}∪
{𝜎1 | 𝜎1 ∈ ⟦𝛼1⟧T ∧ 𝜎1 is not finite}

⟦𝛼1 ∪ 𝛼2⟧T ≜ ⟦𝛼1⟧T ∪ ⟦𝛼2⟧T
⟦𝛼∗⟧T ≜

⋃
𝑛∈N
⟦𝛼𝑛⟧T where 𝛼0 ≜ ? true, 𝛼1 ≜ 𝛼 , and

𝛼𝑛+1 ≜ 𝛼 ;𝛼𝑛 for 𝑛 ≥ 1
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The semantics of the continuous evolution comprises four
different cases. The case where the hybrid program does not
continuously evolve and stops at time 0 is modeled by the
set of all environments 𝑒 that satisfy 𝜒 . The case where 𝑒
does not satisfy 𝜒 is modeled by a trace consisting of the
environment 𝑒 followed by an error. Finite and infinite con-
tinuous evolutions are modeled by the states diff and inf ,
respectively. Their behaviors are required to follow the spec-
ification of the differential equations 𝜃 . The semantics of the
test produces an error when the guard 𝜒 is not satisfied. In
the semantics of the sequential operator 𝛼1;𝛼2, it is required
that, if the trace associated with 𝛼1 is finite, its final environ-
ment has to match with the initial environment of the trace
in the semantics of 𝛼2. In addition, all infinite traces in the
semantics of 𝛼1 also belong to the semantics of 𝛼1;𝛼2. For
both the continuous evolution and test semantics, it can be
noticed that an error is produced when the property 𝜒 is not
satisfied.

The following results about the correctness, completeness,
and soundness of the trace semantics w.r.t. the input-output
semantics defined in Plaidypvs have been formally proven
in PVS. These results are fundamental to ensuring that the
temporal extension provided by dTL2 is compatible with
Plaidypvs.
Theorem 3.5 (Completeness) For all hybrid programs
𝛼 , for all ⟨𝑒𝑖 , 𝑒𝑜⟩ ∈ ⟦𝛼⟧io, there exists a finite trace 𝜎 ∈ ⟦𝛼⟧T
such that init (𝜎) = 𝑒𝑖 and final(𝜎) = 𝑒𝑜 .

Thus, the trace semantics has a representative finite trace
for each pair in the input-output semantics.
Theorem 3.6 (Correctness) Given a hybrid program 𝛼 ,
for all finite trace 𝜎 ∈ ⟦𝛼⟧T, ⟨init (𝜎), final(𝜎)⟩ ∈ ⟦𝛼⟧io.
This means that the trace semantics does not introduce any
finite trace whose initial and final environments are not in
the input-output semantics.
Corollary 3.7 (Soundness) For all hybrid programs 𝛼1
and 𝛼2, ⟦𝛼1⟧T = ⟦𝛼2⟧T ⇒ ⟦𝛼1⟧io = ⟦𝛼2⟧io.
Thus, as expected, the trace semantics distinguishes more
programs than the input-output one, but all programs that
are different under the input-output semantics are also dis-
tinguishable under the trace semantics.

To reason about temporal properties of hybrid programs,
the notion of formula is introduced. The following grammars
define the two kinds of formulas presented in dTL2: state
formulas, which are interpreted over a single state, and trace
formulas, which are interpreted over a trace.

𝜙 ::= 𝜃1 ≺ 𝜃2 | ¬𝜙 | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | ∀𝑥 𝜙 | ∃𝑥 𝜙

| [𝛼]st𝜙 | [𝛼]tr𝜋 | ⟨𝛼⟩st𝜙 | ⟨𝛼⟩tr𝜋 (state formula)
𝜋 ::= 𝜙 | ¬𝜋 | □𝜋 | ♢𝜋 (trace formula)

where 𝛼 ∈ H , 𝜃1, 𝜃2 ∈ R and ≺ ∈ {<, >,=,≠, ≤, ≥}. Besides
the standard Boolean operators, dTL2 supports the temporal

operators □ (globally) and ♢ (eventually). The modal opera-
tors [·] (allruns) and ⟨·⟩ (someruns) quantify over the runs
of a hybrid program. Differently from [21], two versions of
these modal operators are defined here. In fact, every state
formula 𝜙 has both a state and a trace interpretation. It is,
therefore, essential to specify both versions of these opera-
tors to obtain a rigorous formalization in a strongly typed
language such as PVS.
State and trace formulas are shallowly embedded in PVS

meaning they are represented by their evaluation functions.
Therefore, state formulas have type [E → B] and trace
formulas have type [T → B]. Given a state formula 𝜙 ∈
[E → B], it is possible to lift it to a trace formula 𝜙tr ∈
[T→ B] in the following way: 𝜙tr = 𝜆𝜎. 𝜙 (init (𝜎)).
Definition 3.8 (Satisfaction of dTL

2
formulas)

The satisfaction of a state formula 𝜙 in a given state 𝜎 , i.e.,
checking if 𝜙 (𝜎) holds, is denoted as 𝜎 |= 𝜙 and defined as
follows:

𝜎 |= 𝜃1 ≺ 𝜃2 ⇐⇒ 𝜃1 (𝜎) ≺ 𝜃2 (𝜎)
𝜎 |= ¬𝜙 ⇐⇒ 𝜎 ̸ |= 𝜙

𝜎 |= 𝜙1 ∧ 𝜙2 ⇐⇒ 𝜎 |= 𝜙1 and 𝜎 |= 𝜙2

𝜎 |= 𝜙1 ∨ 𝜙2 ⇐⇒ 𝜎 |= 𝜙1 or 𝜎 |= 𝜙2

𝜎 |= ∀𝑥 𝜙 ⇐⇒ for all 𝑑 ∈ R, 𝜎 [𝑥/𝑑] |= 𝜙

𝜎 |= ∃𝑥 𝜙 ⇐⇒ exists 𝑑 ∈ R, 𝜎 [𝑥/𝑑] |= 𝜙

𝜎 |= [𝛼]st𝜙 ⇐⇒ for each trace 𝜎 ∈ ⟦𝛼⟧T such that

init (𝜎) = 𝜎, if 𝜎 terminates, thenfinal(𝜎) |= 𝜙

𝜎 |= ⟨𝛼⟩st𝜙 ⇐⇒ exists a trace 𝜎 ∈ ⟦𝛼⟧T such that

init (𝜎) = 𝜎, 𝜎 terminates, andfinal(𝜎) |= 𝜙

𝜎 |= [𝛼]tr𝜋 ⇐⇒ 𝜎 |= 𝜋 for each valid trace 𝜎 ∈ ⟦𝛼⟧T
such that init (𝜎) = 𝜎

𝜎 |= ⟨𝛼⟩tr𝜋 ⇐⇒ it exists a valid trace 𝜎 ∈ ⟦𝛼⟧T such that

𝜎 |= 𝜋 and init (𝜎) = 𝜎

The satisfaction of a trace formula 𝜋 in a given trace 𝜎 , i.e.,
checking if 𝜋 (𝜎) holds, is denoted as 𝜎 |= 𝜋 and defined as
follows:

𝜎 |= 𝜙tr ⇐⇒ 𝜙 (init (𝜎))
𝜎 |= ¬𝜋 ⇐⇒ 𝜎 ̸ |= 𝜋

𝜎 |= □𝜋 ⇐⇒ for all valid traces 𝜎 ′ ∈ suffixT (𝜎), 𝜎 ′ |= 𝜋

𝜎 |= ♢𝜋 ⇐⇒ it exists a valid trace 𝜎 ′ ∈ suffixT (𝜎)
such that 𝜎 ′ |= 𝜋

where the set of suffixes of a dTL2 trace is defined in the fol-
lowing and suffix denotes the standard list suffix operator.

suffixT (𝜎) ≜ {𝑠 | 𝑠0 ∈ E ∧ 𝑠 ∈ suffix (𝜎)}
∪ {diff 𝑏−𝑡 (𝜄𝑏 (𝑡), 𝜆𝑠.𝜄𝑏 (𝑡 + 𝑠)) · 𝜎 ′ | diff 𝑏 (𝑒, 𝜄𝑏) · 𝜎 ′

∈ suffix (𝜎) ∧ 𝑡 < 𝑏}
∪ {𝜄𝑏 (𝑏) · 𝜎 ′ | diff 𝑏 (𝑒, 𝜄𝑏) · 𝜎 ′ ∈ suffix (𝜎)}
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∪ {inf (𝜄∞ (𝑡), 𝜆𝑠.𝜄∞ (𝑡 + 𝑠)) | inf (𝑒, 𝜄∞) ∈ suffix (𝜎) ∧ 𝑡 ≥ 0}

Note that the lifting function from a state formula to a trace
formula is designed to work with the globally and eventually
temporal operators. Since a suffix for a trace can begin at
any point within that trace, the ability to check if the first
value of a suffix satisfies some state formula is essential.

The formula satisfaction rules of all state formulas except
the run quantifications are inherited from Plaidypvs. The
satisfaction of a state formula lifted to traces, is interpreted
over the first element of the trace. The temporal operator
globally □𝜋 is satisfied in a trace 𝜎 when all valid suffixes of
𝜎 satisfy 𝜋 . Similarly, eventually ♢𝜋 is satisfied in a trace 𝜎
when there exists a valid suffix of 𝜎 that satisfies 𝜋 . Differ-
ently from [21], the satisfiability of temporal operators and
run quantifications, i.e., someruns and allruns, is restricted
to valid traces, i.e., traces that do not terminate in error. This
was a specific design choice to allow the verification of reach-
ability properties for all runs of a trace. For instance, consider
the encoding of the loop while (𝑥 ≤ 10){𝑥 := 𝑥 + 1} starting
with 𝑥 = 0 in dL. This can be specified by the hybrid program
𝛼while ≜ 𝑥 := 0; (?𝑥 < 10;𝑥 := 𝑥 + 1)∗; ?𝑥 ≥ 10. The last test
?𝑥 ≥ 10 is necessary to ensure that the execution does not
stop when 𝑥 < 10. The trace semantics of 𝛼 is defined as
follows.

⟦𝛼while⟧T ≜ {(𝑥 = 0) · Λ , . . .

(𝑥 = 0) · (𝑥 = 1) · · · · · (𝑥 = 9) · Λ , . . .

(𝑥 = 0) · (𝑥 = 1) · · · · · (𝑥 = 10)}

In [21], [𝛼while]tr♢(𝑥 = 10) cannot be proven since the defi-
nition of [·] quantifies over all traces, even non-valid ones.
In the formalization presented here, this property is satis-
fied since non-valid traces, i.e., those ending in error, are
discarded.
The formal specification developed in this work helped

uncover other interesting details hidden in the original pa-
per on dTL2. As already mentioned, PVS is a strongly typed
system, thus two versions of the run quantifiers have been
introduced. In [21], just one operator is defined whose be-
havior is discriminated by the type of its argument (state
or trace formula) and the lifting of state formulas is not rig-
orously defined. This leads to some confusion when these
quantification operators are applied to state formulas, which
can be interpreted over both states and traces. Notice that
the behavior of a state formula is different when lifted to the
trace domain, i.e.,

[𝛼]st𝜙 ≠ [𝛼]tr𝜙tr and ⟨𝛼⟩st𝜙 ≠ ⟨𝛼⟩tr𝜙tr .

The state interpretation has been defined to be compatible
with dL. Thus, the formula is checked on the last environ-
ment of the trace (the output environment) and the trace
is assumed to be finite. However, the trace interpretation
is compatible with the classic temporal logic interpretation,
where the formula is checked on the initial environment of

the trace. Therefore, it is key to ensure the correct quantifi-
cation operator is used in the dTL2 proof rules to obtain a
sound calculus.
The following interesting equivalence between the trace

allruns and the state allruns has been formally proven in
PVS for finite traces, which incidentally may lead to simpler
specifications.
Lemma 3.9 For all hybrid program 𝛼 and state formula 𝜙 :

[𝛼]st𝜙 ⇐⇒ [𝛼]tr□♢𝜙tr .

Proof. (→). Suppose [𝛼]st𝜙 , let 𝜎 ∈ ⟦𝛼⟧T. If 𝜎 is a finite trace,
then

(□♢𝜙tr ) (𝜎) ⇐⇒ ∃𝜎 ′ ∈ suffixT (𝜎) valid such that 𝜙tr (𝜎 ′)

This can be made true by choosing 𝜎 ′ = final(𝜎), i.e., the
suffix containing only the final environment of 𝜎 ′. Since
[𝛼]st𝜙 , by definition 𝜙tr (𝑡𝑟𝑎𝑐𝑒′), and the property is shown.
(←). Suppose [𝛼]tr□♢𝜙tr . Then for all valid and finite

traces 𝜎 in ⟦𝛼⟧T, □♢𝜙tr . It follows that the suffix defined
as the last environment of 𝜎 also satisfies the formula □♢𝜙tr ,
i.e., (□♢𝜙tr ) (final(𝜎)). By definition of □ and ♢, it follows
that (𝜙) (final(𝜎)) and, by definition of [·]st , it can be con-
cluded that [𝛼]st𝜙 . □

4 Embedding the dTL
2
Calculus in PVS

This section presents the proof calculus of dTL2 as formalized
in Plaidypvs. Reasoning about statements involving temporal
properties on hybrid programs relies on the sequent calculus
of dTL2 that is built upon the sequent calculus of dL already
implemented in Plaidypvs. In this section, the dTL2-Sequent
is defined and the temporal rules of dTL2 are presented as
formally proven lemmas in PVS. Due to the changes in the
formula satisfaction of Definition 3.8, which discard error
traces, certain proof rules differ from the ones defined in
[21].

In the dTL2 calculus, temporal operators are allowed in the
proof calculus with the restriction that they can be nested at
most twice, i.e., the only combinations allowed are □♢ and
♢□. While this can look like a stringent limitation, all pos-
sible nesting of temporal operators can be expressed as the
nesting of at most two temporal operators. The combination
of the temporal operators with the dTL2 run quantifications
allows for reasoning on the reachable states of different com-
putational paths. This corresponds to a non-trivial fragment
of CTL∗. Nevertheless, notice that the nesting of Boolean
operators inside temporal formulas to express (for instance)
liveness properties of the form □(𝜙 → ♢𝜓 ) is not yet sup-
ported in dTL2.

4.1 The dTL
2
-Sequent

The dTL2-sequent in PVS is denoted Γ ⊢ Δ, where Γ and
Δ are lists of Boolean hybrid program expressions and ⊢ is
a predicate that returns a value in B (PVS’s Boolean type)
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associated with the statement
∀𝑒 ∈ E .

∧
𝑖

Γ𝑖 (𝑒) =⇒
∨
𝑗

Δ 𝑗 (𝑒),

where =⇒ is the implication in PVS. The expressions Γ,Δ
in this context are referred to as the dTL2-antecedent and
dTL2-consequent, respectively. The dTL2-sequent can be un-
derstood simply as the statement “the conjunction of the
antecedent formulas implies the disjunction of the conse-
quent formula”.
When proving a statement about hybrid programs with

temporal operators in Plaidypvs, the method of proof relies
on the use of the defined logical rules of dTL2 to manipulate
the sequent so that the conjunction of the resulting statement
after the application of the rules implies the original. In order
to have a formally verified statement at each proof step, the
rules of dTL2 are written as formally proven lemmas in PVS.
A dTL2 rule is applied to rewrite the statement of the

sequent so that the sequent has no temporal operators, at
which time the task of proving can now be done using the
logic of dL with the rules specified in Plaidypvs.

4.2 Trace Formulas Normalization

The proof rules of dTL2 are defined over normalized trace
formulas. Normalization becomes necessary to reason on
both a temporal property and the final state of a trace, if it
exists. More details on the necessity of normalization can be
found in [21].

The satisfaction of a normalized trace formula 𝜉 is defined
by cases depending if the trace is terminating or infinite.
Definition 4.1 Given 𝜎 ∈ T and 𝜙,𝜓 ∈ B, normalized
formulas are defined as follows.

𝜎 |= 𝜙 ⊓ □𝜓 ⇐⇒
{
𝜙 (final(𝜎)) and 𝜎 |= □𝜓 if 𝜎 is finite
𝜎 |= □𝜓 otherwise

𝜎 |= 𝜙 ⊔ ♢𝜓 ⇐⇒
{
𝜙 (final(𝜎)) or 𝜎 |= ⋄𝜓 if 𝜎 is finite
𝜎 |= ⋄𝜓 otherwise

𝜎 |= (𝜙 ◀ 𝜋) ⇐⇒
{
𝜙 (final(𝜎)) if 𝜎 is finite
𝜎 |= 𝜋 otherwise

where 𝜋 is either □♢𝜓 or ♢□𝜓 .
The first normalized trace formula is the normalized globally
formula which extends the globally temporal operator □𝜓
by also checking if 𝜙 is satisfied on the last state when the
trace is finite. The second normalized trace formula is the
normalized eventually formula which is equivalent to ⋄𝜓
for infinite traces and in the finite case either 𝜙 is satisfied
on the last state or ⋄𝜓 holds. The last normalized formula
handles the nested temporal operators. In the infinite trace
case the normalized formula reduces to the nested temporal
operator while the finite case is satisfied by checking the last
state of the trace on 𝜙 .

□𝜙 { ⊤ ⊓ □𝜙 □♢𝜙 { 𝜙 ◀□♢𝜙

♢𝜙 { ⊥ ⊔ ♢𝜙 ♢□𝜙 { 𝜙 ◀♢□𝜙

Figure 1. Rewrites for the normalization of trace formulas.

The proof calculus of dTL2 includes rules to normalize any
trace formula. These rewriting rules are given in Figure 1.
With these rules, onemore layer is added to the proof method
of dTL2. In fact, the replacement of any non-normalized
formulas with an equivalent normalized formula is needed
before applying any other dTL2 rule.

4.3 dTL
2
Rules

A dTL2 rule has the form
𝑃

𝑄

meaning that 𝑃 implies𝑄 . The following double-bar notation
𝑃

𝑄

is introduced to denote that 𝑃 and 𝑄 are equivalent.
The dTL2 rules are shown in Figure 2 and the associated

dual rules are in Figure 3. Both sets of rules are formal-
ized and proved correct in PVS and have been included in
Plaidypvs.

As mentioned before, the modification of the satisfaction
relation in Definition 3.8 that considers just valid traces
causes some rules defined in [21] to no longer hold. For
instance, consider the rule ( [?]⊓) in [21] given by

(¬𝜒 ∨𝜓 ) ∧ 𝜙
[? 𝜒]tr (𝜓 ⊓ □𝜙)

(4.1)

This statement is true for both directions of the implication
if error traces are considered. However, without error traces
the backward implication is not true anymore. This is be-
cause there is no guarantee that the initial state satisfies the
Boolean expression in the test.
Nevertheless, it is useful to have these equivalences as

rewriting rules, especially in PVS where this property will
allow for a direct simplification of the sequent. To this aim,
in addition to the original rules in [21] that still hold remov-
ing error traces, a set of modified equivalence rules have
been added to the dTL2 PVS formalization. For instance, the
rewriting rule in (4.1) has been replaced with the following
one in Plaidypvs.

¬𝜒 ∨ (𝜓 ∧ 𝜙)
[?𝜒]tr (𝜓 ⊓ □𝜙)

(4.2)

In addition, the direction of (4.1), which still holds, has also
been included in Plaidypvs.

Figure 2 groups the dTL2 proof rules by the type of hybrid
program they consider. The rules with [; ] are the sequential
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[𝛼]tr (( [𝛽]tr (𝜙 ⊓ □𝜓 )) ⊓ □𝜓 )
[𝛼 ; 𝛽]tr (𝜙 ⊓ □𝜓 )

( [; ]⊓)
[𝛼 ; 𝛽]tr (𝜙 ⊓ □𝜓 )

[𝛼]tr (𝜙 ⊓ □𝜓 ) ∨ ⟨𝛼⟩𝑠𝑡 ( [𝛽]tr (𝜙 ⊓ □𝜓 ))
( [; ] ⊓ con)

[𝛼]tr (( [𝛽]tr (𝜙 ⊔ ♢𝜓 )) ⊔ ♢𝜓 )
[𝛼 ; 𝛽]tr (𝜙 ⊔ ♢𝜓 )

( [; ]⊔)
[𝛼]tr (( [𝛽]tr (𝜙 ◀□♢𝜋)) ◀□♢𝜋)

[𝛼 ; 𝛽]tr (𝜙 ◀□♢𝜋)
( [; ] ◀□)

[𝛼]tr (( [𝛽]tr (𝜙 ◀♢□𝜋)) ◀♢□𝜋)
[𝛼 ; 𝛽]tr (𝜙 ◀♢□𝜋)

( [; ] ◀♢)
[𝛼]tr𝜉 ∧ [𝛽]tr𝜉
[𝛼 ∪ 𝛽]tr𝜉

( [∪]𝜉)

¬𝜒 ∨ (𝜙 ∧𝜓 )
[?𝜒]tr (𝜙 ⊓ □𝜓 )

( [?]⊓)
¬𝜒 ∨ (𝜙 ∨𝜓 )
[?𝜒]tr (𝜙 ⊔ ♢𝜓 )

( [?]⊔)
¬𝜒 ∨ 𝜙

[?𝜒]tr (𝜙 ◀□♢𝜓 )
( [?] ◀□)

¬𝜒 ∨ 𝜙
[?𝜒]tr (𝜙 ◀♢□𝜓 )

( [?] ◀♢)

𝜙 ∧ [𝑥 := 𝜃 ]𝑠𝑡 (𝜓 ∧ 𝜙)
[𝑥 := 𝜃 ]tr (𝜓 ⊓ □𝜙)

( [:=]⊓)
𝜙 ∨ [𝑥 := 𝜃 ]𝑠𝑡 (𝜓 ∨ 𝜙)
[𝑥 := 𝜃 ]tr (𝜓 ⊔ ♢𝜙)

( [:=]⊔)
[𝑥 := 𝜃 ]𝑠𝑡𝜙

[𝑥 := 𝜃 ]tr (𝜙 ◀ 𝜋)
( [:=] ◀)

¬𝜒 ∨ (𝜙 ∧ [𝑥 = 𝜃&𝜒]st (𝜓 ∧ 𝜙))
[𝑥 = 𝜃&𝜒]tr (𝜓 ⊓ □𝜙)

( [′]⊓)
(¬𝜒 ∨ 𝜙 ∨𝜓 ) ∧ [𝑥 = 𝜃&𝜒 ∧ ¬𝜙]st𝜓 ∧ (¬𝜒 ∨ ⟨𝑥 = 𝜃⟩𝑠𝑡 (¬𝜒 ∨ 𝜙))

[𝑥 = 𝜃&𝜒]tr (𝜓 ⊔ ♢𝜙)
( [′]⊔)

(¬𝜒 ∨𝜓 ) ∧ [𝑥 = 𝜃&𝜒]st𝜓 ∧ (⟨𝑥 = 𝜃⟩𝑠𝑡¬𝜒 ∨ [𝑥 = 𝜃 ]st ⟨𝑥 = 𝜃⟩st𝜙)
[𝑥 = 𝜃&𝜒]tr (𝜓 ◀□♢𝜙)

( [′] ◀□)

(¬𝜒 ∨𝜓 ) ∧ [𝑥 = 𝜃&𝜒]st𝜓 ∧ (⟨𝑥 = 𝜃⟩𝑠𝑡¬𝜒 ∨ ⟨𝑥 = 𝜃⟩𝑠𝑡 [𝑥 = 𝜃 ]st𝜙)
[𝑥 = 𝜃&𝜒]tr (𝜓 ◀♢□𝜙)

( [′] ◀♢)

(𝜙 ∧𝜓 ) ∧ [𝛼∗]st [𝛼]tr (𝜙 ⊓ □𝜓 )
[𝛼∗]tr (𝜙 ⊓ □𝜓 )

( [∗]⊓)
𝜙 ∨𝜓 ∧ [𝛼 ;𝛼∗]tr (𝜙 ⊔ ♢𝜓 )

[𝛼∗]tr (𝜙 ⊔ ♢𝜓 )
( [∗]⊔)

𝜙 ⇒ [𝛼]tr (𝜙 ⊔ ♢𝜓 )
[𝛼∗]tr (𝜙 ⊔ ♢𝜓 )

(ind⊔)

𝜙 ∧ [𝛼∗]st [𝛼]tr (𝜙 ◀ 𝜋)
[𝛼∗]tr (𝜙 ◀ 𝜋)

( [∗] ◀)
∀𝑟 > 0. (𝜑 (𝑟 ) ⇒ ⟨𝛼⟩tr (𝜑 (𝑟 − 1) ⊓ □𝜓 ))

(∃𝑟 𝜑 (𝑟 )) ∧𝜓 ⇒ ⟨𝛼∗⟩tr ((∃𝑟 ≤ 0. 𝜑 (𝑟 )) ⊓ □𝜓 ) (con⊓)

Figure 2. Rules of the dTL2 proof calculus.

composition rules. The sequential composition is the case
that required the most care in the development of the dTL2

formalization. Notice that these rules keep a temporal op-
erator in the statement, even with replacement. This may
seem like a problem if the goal is to eventually rely on the
proof rules of dL, but notice that unless 𝛼 or 𝛽 are defined
by a sequential hybrid program, in one or two more replace-
ment rules the temporal statement can be transformed into
a non-temporal statement. This exact situation can be seen
in Example 5.4.

The rule [∪] for the non-deterministic choice extends the
corresponding rule of dL. The assignment rules, [:=], behave
as expected since the traces that satisfy the semantics of an
assign statement always end in a finite and discrete trace.

Therefore, the normalized formula is always interpreted in
the finite case.
For the test rules [?], the only valid traces in the seman-

tics are the ones where the test passes, meaning the initial
environment belongs to the Boolean expression in the test.
This forces any valid traces to be finite, in addition, they
will have a length equal to one and the element in the trace
list will be of type E. Thus, the normalization formulas will
all be in the first case of their definition. For example, the
temporal statement in rule ( [?]⊓) is equivalent to the state-
ment 𝜒 ⇒ 𝜙 ∧ 𝜓 . In fact, since the trace is of length one,
the globally and eventually operators are equivalent in these
rules.

Traces that satisfy the differential hybrid program can be
either finite or infinite. An added level of complexity comes
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⟨𝛼⟩tr ((⟨𝛽⟩tr (𝜙 ⊓ □𝜓 )) ⊓ □𝜓 )
⟨𝛼 ; 𝛽⟩tr (𝜙 ⊓ □𝜓 )

(⟨; ⟩⊓)

⟨𝛼⟩tr (⟨𝛽⟩tr (𝜙 ⊔ ♢𝜓 )) ∨ ⟨𝛼 ;⊥⟩tr (𝜙 ⊔ ♢𝜓 )
⟨𝛼 ; 𝛽⟩tr (𝜙 ⊔ ♢𝜓 )

(⟨; ⟩⊔)
⟨𝛼 ; 𝛽⟩tr (𝜙 ⊔ ♢𝜓 )
⟨𝛼⟩𝑠𝑡 (⟨𝛽⟩tr (𝜙 ⊔ ♢𝜓 ))

(⟨; ⟩ ⊔ con)

⟨𝛼⟩tr ((⟨𝛽⟩tr (𝜙 ◀□♢𝜋)) ◀□♢𝜋)
⟨𝛼 ; 𝛽⟩tr (𝜙 ◀□♢𝜋)

(⟨; ⟩ ◀□)

⟨𝛼⟩tr ((⟨𝛽⟩tr (𝜙 ◀♢□𝜋)) ◀♢□𝜋)
⟨𝛼 ; 𝛽⟩tr (𝜙 ◀♢□𝜋)

(⟨; ⟩ ◀♢)
⟨𝛼⟩tr𝜉 ∨ ⟨𝛽⟩tr𝜉
⟨𝛼 ∪ 𝛽⟩tr𝜉

(⟨∪⟩𝜉)

𝜒 ∧ (𝜙 ∧𝜓 )
⟨?𝜒⟩tr (𝜙 ⊓ □𝜓 )

(⟨?⟩⊓)
𝜒 ∧ (𝜙 ∨𝜓 )
⟨?𝜒⟩tr (𝜙 ⊔ ♢𝜓 )

(⟨?⟩⊔)
𝜒 ∧ 𝜙

⟨?𝜒⟩tr (𝜙 ◀□♢𝜓 )
(⟨?⟩ ◀□)

𝜒 ∧ 𝜙
⟨?𝜒⟩tr (𝜙 ◀♢□𝜓 )

(⟨?⟩ ◀♢)

𝜙 ∧ ⟨𝑥 := 𝜃⟩𝑠𝑡 (𝜓 ∧ 𝜙)
⟨𝑥 := 𝜃⟩tr (𝜓 ⊓ □𝜙)

(⟨:=⟩⊓)
𝜙 ∨ ⟨𝑥 := 𝜃⟩𝑠𝑡 (𝜓 ∨ 𝜙)
⟨𝑥 := 𝜃⟩tr (𝜓 ⊔ ♢𝜙)

(⟨:=⟩⊔)
⟨𝑥 := 𝜃⟩𝑠𝑡𝜙

⟨𝑥 := 𝜃⟩tr (𝜙 ◀ 𝜋)
(⟨:=⟩ ◀)

(𝜒 ∧ 𝜙 ∧𝜓 ) ∨ ⟨𝑥 = 𝜃&𝜒 ∧ 𝜙⟩st𝜓 ∨ [𝑥 = 𝜃 ]st (𝜒 ∧ 𝜙)
⟨𝑥 = 𝜃&𝜒⟩tr (𝜓 ⊓ □𝜙)

(⟨′⟩⊓)
(𝜒 ∧ (𝜙 ∨𝜓 )) ∨ ⟨𝑥 = 𝜃&𝜒⟩st (𝜙 ∨𝜓 )

⟨𝑥 = 𝜃&𝜒⟩tr (𝜓 ⊔ ♢𝜙)
(⟨′⟩⊔)

(𝜒 ∧𝜓 ) ∨ ⟨𝑥 = 𝜃&𝜒⟩st𝜓 ∨ ([𝑥 = 𝜃 ]𝑠𝑡 𝜒 ∧ ⟨𝑥 = 𝜃⟩st [𝑥 = 𝜃 ]st𝜙)
⟨𝑥 = 𝜃&𝜒⟩tr (𝜓 ◀□♢𝜙)

(⟨′⟩ ◀□)

(𝜒 ∧𝜓 ) ∨ ⟨𝑥 = 𝜃&𝜒⟩st𝜓 ∨ ([𝑥 = 𝜃 ]𝑠𝑡 𝜒 ∧ ⟨𝑥 = 𝜃⟩st [𝑥 = 𝜃 ]st𝜙)
⟨𝑥 = 𝜃&𝜒⟩tr (𝜓 ◀♢□𝜙)

(⟨′⟩ ◀♢)

𝜙 ∨ ⟨𝛼∗⟩st ⟨𝛼⟩tr (𝜙 ⊔ ♢𝜓 )
⟨𝛼∗⟩tr (𝜙 ⊔ ♢𝜓 )

(⟨∗⟩⊔)
𝜓 ∧ (𝜙 ∨ ⟨𝛼 ;𝛼∗⟩tr (𝜙 ⊓ □𝜓 ))

⟨𝛼∗⟩tr (𝜙 ⊓ □𝜓 )
(⟨∗⟩⊓)

𝜙 ∨ ⟨𝛼∗⟩st ⟨𝛼⟩tr (𝜙 ◀ 𝜋)
⟨𝛼∗⟩tr (𝜙 ◀ 𝜋)

(⟨∗⟩ ◀)

Figure 3. Dual rules of the dTL2 proof calculus.

from the fact that a differential can end at any time in the exe-
cution, which leads to interesting behaviors when reasoning
about the temporal properties of a system. All the differential
rules [′] transform a temporal formula into a temporal free
formula that can then be handled by the proof calculus of
dL. In the ( [′] ◀ ♢) and ( [′] ◀ □) rules there is a nesting
of allruns and someruns operators that handles the case of
infinite traces. The proof of these rules requires leveraging
the uniqueness of a solution to a differential equation. For
example, in the proof of ( [′] ◀□) one branch assumes that
for a differential system [𝑥 = 𝜃 ]⟨𝑥 ′ = 𝜃⟩𝜓 and a given initial
state 𝑒𝑖 a function 𝑓 exists such that sol(R≥0, 𝑥, 𝜃, 𝑒𝑖 , 𝑓 ). Then,
the nesting of the modal operators someruns and allruns re-
quires proving that for a state occurring at time 𝑟 , where

𝑒𝑜 = env(𝑥, 𝑓 , 𝑒𝑖 , 𝑟 ), there exists a unique solution 𝑔 on R≥0
with 𝑒𝑜 as the initial state such that ∀𝑡 ∈ R≥0. 𝑔(𝑡) = 𝑓 (𝑡 +𝑟 ).

The last set of rules in Figure 2 are the repetition rules [∗].
Since only finite, but unbounded, repetitions are allowed,
these are proved through various induction arguments. The
rules ( [∗]⊓) and ( [∗] ◀) transform a temporal statement
about a repetition into a temporal statement about the hybrid
program in the repetition, which can then be handled by the
other rules.
The rule (ind⊔) is the induction rule and extends its dL

analog. Rule (con⊓) is a convergence rule for the decreasing
invariant 𝜑 that extends the corresponding rule in dL. Rules
(ind⊔) and (con⊓) do not have a dual counterpart.
The dual rules in Figure 3 are organized similarly to Fig-

ure 2 and behave analogously to their counterpart. Similarly
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to the rules in Figure 2, the dual rules in Figure 3 are modified
from the rules for dTL2 found in [21] due to the elimination
of error traces.

5 Proving Temporal Properties in Plaidypvs

With the work presented in this paper, Plaidypvs now allows
for reasoning about hybrid programs using dTL2 within PVS.
Examples that showcase the types of properties that are now
possible to prove formally using this temporal extension can
be found in the PVS library . The proof structure of these
examples generally follows the following procedure. First,
given a statement written with the temporal operators ♢ and
□ the replacement formulas from Figure 1 are used. Then
the rules from Figure 2 and Figure 3 are used until either the
statement can be proven through algebraic manipulations
or by calling rules from the core of dL.
The following examples are proven in PVS. These exam-

ples show both the functionality of Plaidypvs and give details
of the proof method.

Example 5.1 Consider the hybrid program discussed in
Example 2.1 given by

𝑥 ′ := 6;𝑥 := ⌊𝑥⌋ (5.1)
This hybrid program has the property that every output of
the variable 𝑥 is an integer, written in the logic of dL as the
following sequent.

⊢ [𝑥 ′ := 6;𝑥 := ⌊𝑥⌋] (𝑥 ∈ Z). (5.2)
As noted in Example 2.1, it is possible that there is a run with
intermediate states where 𝑥 takes non-integer values. This
statement written in dTL2 is

⊢ ⟨𝑥 ′ = 6;𝑥 := ⌊𝑥⌋⟩tr♢(𝑥 ∉ Z). (5.3)
The specification of this hybrid program and these proper-
ties in Plaidypvs is shown in Figure 4. The PVS function
State_Trace lifts a state formula 𝜙 to a trace one 𝜙tr . The
lemma eventually_not_int formalize the property in (5.3),
while the lemma end_state_int formalize the property in
(5.2).

Figure 4. Specification of the input/output property (5.2)
and temporal property (5.3) for the hybrid program (5.1).

These properties specified in Plaidypvs are proved using
the interactive theorem prover environment of PVS. For the

non-temporal rule, the application of dL rules is done using
proof strategies specified in Plaidypvs. Figure 5 illustrates
part of the proof tree consisting of dL commands. The com-
mands (dl-assert) and (dl-grind) simplify the statement using
rewrites. The (dl-solve) command solves linear differential
equations. For the proof of the temporal property, the ap-

Figure 5. Prover session in Plaidypvs for the non-temporal
sequent (5.2).

plication of the dTL2 rules transforms the statement to a
non-temporal statement. This can be seen in Figure 6. At
this point, the application of dL rules can be done to com-
plete the proof. Notice that the problem reduces to proving

Figure 6. Prover session in Plaidypvs for the temporal se-
quent (5.3).

the statement that there is some run of the differential equa-
tion that reaches a non-integer state. This can be shown by
applying the dl-solve prover command.

Example 5.2 The dynamics of a fixed-wing aircraft turning
at a constant velocity, as depicted in Figure 7, can be modeled
as the following hybrid program

𝛼fw ≜ (𝑥 ′ := −𝑦,𝑦′ := 𝑥),

where 𝑥 and 𝑦 denote the 2D position of the aircraft turning
[51]. The following temporal property

𝑃 ⊢ [𝛼fw ; ?⊥]tr□♢𝑃, (5.4)

where 𝑃 ≜ (𝑥 = 𝑥0 ∧ 𝑦 = 𝑦0), states that with the turning
dynamics, the aircraft returns to its original position an arbi-
trary number of times. Note that the semantics of the hybrid
program 𝛼fw ; ?⊥ exclusively contains the infinite traces of
𝛼fw . In fact, any finite trace will end in an environment that
does not satisfy ⊥ and the corresponding trace will end with
an error, according to Definition 3.4.
The specification of the hybrid program and property in

Plaidypvs is given in Figure 8.
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Figure 7. Visualization of fixed-wing aircraft dynamics as
described in Example 5.2. The aircraft turning at a constant
rate repeatedly crosses the point (𝑥0, 𝑦0).

Figure 8. Specification of temporal property given in (5.4)
on the dynamics of a turning fixed-wing aircraft.

The property (5.4) can be proven in Plaidypvs using the
rules of dL and dTL2. After the rewrites in Figure 1 are ap-
plied, the sequent is

𝑃 ⊢ [𝛼fw ; ?⊥]tr𝑃 ◀□♢𝑃 . (5.5)

Applying the ( [; ] ◀ □) then the ( [′] ◀ □) rule generates
three subgoals

𝑃 ⊢ ¬⊤ ∨ ([?⊥]tr𝑃 ◀□♢𝑃) (5.6)
𝑃 ⊢ [𝛼fw]st ( [?⊥]tr𝑃 ◀□♢𝑃) (5.7)
𝑃 ⊢ ⟨𝛼fw⟩st¬⊤ ∨ [𝛼fw]st ⟨𝛼fw⟩st𝑃 (5.8)

Figure 9 depicts the interactive theorem prover environ-
ment with the subgoals (5.6), (5.7), and (5.8). The proof of
subgoal (5.6) uses the ( [?] ◀□) rule, as well as the differential
weakening rule (dl-weak) and propositional simplification
rule (assert) from Plaidypvs and is given by

⊤ (dl-assert)⊢ ¬⊥ ∨ 𝑃 ( [?] ◀□)⊢ ([?⊥]tr𝑃 ◀□♢𝑃) (dl-weak)
𝑃 ⊢ [𝛼]st ( [?⊥]tr𝑃 ◀□♢𝑃)

Figure 9. The interactive theorem prover environment of
PVS with the three subgoals (5.6), (5.7), and (5.8).

The proof of subgoal (5.7) also uses the ( [?] ◀□) rule and
the (dl-assert) rule from Plaidypvs.

⊤ (dl-assert)
𝑃 ⊢ ¬⊥ ∨ 𝑃 ( [?] ◀□)

𝑃 ⊢ ([?⊥]tr𝑃 ◀□♢𝑃) (dl-assert)
𝑃 ⊢ ¬⊤ ∨ ([?⊥]tr𝑃 ◀□♢𝑃)

The proof of the final subgoal (5.8) is shown in Figure 10.
The (dl-hide) rule hides part of a disjunction, the (dl-cut) rule
is the differential cut rule that splits the sequent in two cases:
one shows that the dynamics never leaves a region, and the
other restricts the continuous dynamics to that region. The
(dl-solve) replaces a continuous evolution with the solutions
of its differential equation. The (dl-inv) rule is the differen-
tial invariant rule that checks if a property is an invariant
through rules of differentiation and substitutions. See [51]
for more details about these rules.

Example 5.3 The example depicted in Figure 11 shows that
an aircraft beginning in an unsafe region, under some return-
to-safe dynamics, eventually returns and stays in a safe re-
gion. Let 𝑆 ∈ R2 be the safe region, 𝑠 ∈ R2, and 𝐶𝑠,𝑟 be the
circle of radius 𝑟 > 0 centered at 𝑠 such that 𝐶𝑠,𝑟 ⊆ 𝑆 . Define
the return-to-safe dynamics for some 𝑘 > 0
rts ≜(?(𝑥,𝑦 ∉ 𝐶𝑠,𝑟 ); (𝑥 ′ = −𝑘 (𝑥 − 𝑠𝑥 ), 𝑦′ = −𝑘 (𝑦 − 𝑠𝑦)))

∪ (?(𝑥,𝑦 ∈ 𝐶𝑠,𝑟 ); (𝑥 ′ = 0, 𝑦′ = 0))
which corresponds to the aircraft flying towards the point
𝑠 , until it is within 𝑟 to it, at which point the aircraft stops
moving. For a starting point 𝑝0 ∉ 𝐶𝑠,𝑟 , it can be shown these
dynamics will eventually always be in 𝑆 .

[rts∗; ?⊥]tr♢□(𝑥,𝑦 ∈ 𝑆).
Normalizing this expression becomes:

[rts∗; ?⊥]tr𝑥,𝑦 ∈ 𝑆 ◀♢□𝑥,𝑦 ∈ 𝑆.
Applying the ( [; ] ◀♢), ( [∗] ◀) rule generates two subgoals
⊢ [?⊥]tr (𝑥,𝑦 ∈ 𝑆 ◀♢□𝑥,𝑦 ∈ 𝑆) , (5.9)
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...

𝑥 (0)2 + 𝑦 (0)2 = 𝑥2
0 + 𝑦

2
0 ⊢

∃𝑡 ≥ 0. 𝑥 (0) cos(𝑡) − 𝑦 (0) sin(𝑡) = 𝑥0∧
𝑥 (0) sin(𝑡) + 𝑦 (0) cos(𝑡) = 𝑦0 (dl-solve)
𝑥2 + 𝑦2 = 𝑥2

0 + 𝑦
2
0 ⊢ ⟨𝛼⟩st𝑃 (dl-weak)

𝑃 ⊢ [𝑥 ′ = 𝑦,𝑦′ = −𝑥 &𝑥2 + 𝑦2 = 𝑥2
0 + 𝑦

2
0]st ⟨𝛼⟩st𝑃

⊤ (dl-assert)
𝑃 ⊢ 𝑥2 + 𝑦2 = 𝑥2

0 + 𝑦
2
0

⊤ (dl-assert)
⊢ 2𝑥 (−𝑦) + 2𝑦𝑥 = 0

(dl-inv)
𝑃 ⊢ [𝛼]st𝑄

(dl-cut)
𝑃 ⊢ [𝛼]st ⟨𝛼⟩st𝑃 (dl-hide)

𝑃 ⊢ ⟨𝛼⟩st¬⊤ ∨ [𝛼]st ⟨𝛼⟩st𝑃

Figure 10. Proof of subgoal (5.8) in Example 5.2

Figure 11. Visualization of Example 5.3, which shows an
aircraft returning to a safe region 𝑆 . This shows one run
where the aircraft flies to the boundary of the circle of radius
𝑟 around some point 𝑠 ∈ 𝑆 .

⊢ [rts∗]st [rts]tr ( [?⊥]tr (𝑥,𝑦 ∈ 𝑆 ◀♢□𝑥,𝑦 ∈ 𝑆) ◀♢□𝑥,𝑦 ∈ 𝑆)
(5.10)

The proof of subgoal (5.10) uses the ( [?] ◀♢) rule and propo-
sitional simplification rule (assert) from Plaidypvs and is
given by

⊤ (dl-assert)⊢ ¬⊥ ∨ (𝑥,𝑦 ∈ 𝑆 ◀♢□𝑥,𝑦 ∈ 𝑆)
( [?] ◀♢)⊢ [?⊥]tr (𝑥,𝑦 ∈ 𝑆 ◀♢□𝑥,𝑦 ∈ 𝑆)

Applying the dL differential weakening (dl-weak) rule to
subgoal (5.10) gives the simplified sequent
⊢ [rts]tr ( [?⊥]tr (𝑥,𝑦 ∈ 𝑆 ◀♢□𝑥,𝑦 ∈ 𝑆) ◀♢□𝑥,𝑦 ∈ 𝑆) .

(5.11)
Applying the ( [∪]𝜉) to subgoal (5.11) gives the following
two subgoals
⊢[?(𝑥,𝑦 ∈ 𝐶𝑠,𝑟 ); (𝑥 ′ = 0, 𝑦′ = 0))]tr
( [?⊥]tr (𝑥,𝑦 ∈ 𝑆 ◀♢□𝑥,𝑦 ∈ 𝑆) ◀♢□𝑥,𝑦 ∈ 𝑆) , (5.12)

and
⊢[?(𝑥,𝑦 ∉ 𝐶𝑠,𝑟 ); (𝑥 ′ = −𝑘 (𝑥 − 𝑠𝑥 ), 𝑦′ = −𝑘 (𝑦 − 𝑠𝑦))]tr

( [?⊥]tr (𝑥,𝑦 ∈ 𝑆 ◀♢□𝑥,𝑦 ∈ 𝑆) ◀♢□𝑥,𝑦 ∈ 𝑆) (5.13)

Both subgoals (5.11) and (5.12), can be simplified to dL ex-
pressions using the rules of dTL2, and have been proven
in Plaidypvs. The details of the proof of subgoal (5.13) are
shown in Figure 12.

Example 5.4 Plaidypvs supports reasoning on subtypes of
hybrid programs. This feature allows a user to define features
of the hybrid program without specifying the exact instance
to prove general properties about a family of programs. For
example, consider the collection of differential equations
with unique solutions of the form

𝐹 ≜ {𝑥 ′ = 𝑓𝑥 , 𝑦
′ = 𝑓𝑦 | ∃𝜖 > 0 ∀𝑡 ∈ R≥0.𝑓𝑦 (𝑥 (𝑡), 𝑦 (𝑡)) > 𝜖}

that models a collection of aircraft dynamics as depicted in
Figure 13. Take an element 𝑓 ∈ 𝐹 , then it can be shown that

[𝑓 ; ?(𝑦 ≥ 0)]tr♢□𝑦 ≥ 0 (5.14)

meaning that a differential equation defined where the de-
rivative of 𝑦 is increasing eventually reaches the safe region
defined by the set 𝑦 ≥ 0 and will stay in that set for the
remainder of the run.
The PVS specification of the problem is shown in Fig-

ure 14. Figure 15 gives an example of calling a rule in the
interactive theorem prover environment for the proof of the
specification of (5.14).

Note that this statement is trivial for finite traces. This can
be seen by considering the sequential operator with a test
at the end. In one case the differential equation reaches the
set in the test, thus the test is redundant. In the other case,
the dynamics never allow a solution to reach the region in
the test, so no traces belong to the semantics, making the
statement vacuously true.
This property becomes very interesting when considering

infinite traces. In fact, it can be shown that for time going
to infinity, the solution of the differential equation will stay
in the set. This case is non-trivial to prove as it relies on
showing that the differential equation satisfies

⟨𝑓 ⟩st [𝑓 ]st𝑦 ≥ 0 (5.15)
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⊤ (dl-assert)⊢ ¬⊤ ∨ ¬⊥ ∨ 𝑥,𝑦 ∈ 𝑆
( [?] ◀♢)⊢ ¬⊤ ∨𝑄

⊤ (dl-assert)⊢ ¬⊥ ∨ 𝑥,𝑦 ∈ 𝑆
⊢ 𝑄

(dl-weak)
⊢ ([(𝑥 ′ = −𝑘 (𝑥 − 𝑠𝑥 ),

𝑦′ = −𝑘 (𝑦 − 𝑠𝑦))]tr𝑄

.

.

.

⊢ ⟨(𝑥 ′ = −𝑘 (𝑥 − 𝑠𝑥 ), 𝑦′ = −𝑘 (𝑦 − 𝑠𝑦))⟩st¬⊤∨
⟨(𝑥 ′ = −𝑘 (𝑥 − 𝑠𝑥 ), 𝑦′ = −𝑘 (𝑦 − 𝑠𝑦))⟩st

[(𝑥 ′ = −𝑘 (𝑥 − 𝑠𝑥 ), 𝑦′ = −𝑘 (𝑦 − 𝑠𝑦))]st𝑥,𝑦 ∈ 𝑆
( [′ ] ◀♢)

⊢
(
[(𝑥 ′ = −𝑘 (𝑥 − 𝑠𝑥 ), 𝑦′ = −𝑘 (𝑦 − 𝑠𝑦))]tr ( [?⊥]tr (𝑥,𝑦 ∈ 𝑆 ◀♢□𝑥,𝑦 ∈ 𝑆) ◀♢□𝑥,𝑦 ∈ 𝑆)

)
(dl-hide)

⊢ ¬
(
?(𝑥,𝑦 ∉ 𝐶𝑠,𝑟 )]

)
∨
(
[(𝑥 ′ = −𝑘 (𝑥 − 𝑠𝑥 ), 𝑦′ = −𝑘 (𝑦 − 𝑠𝑦))]tr (𝑄 ◀♢□𝑥,𝑦 ∈ 𝑆)

)
( [?] ◀♢)

⊢ [?(𝑥,𝑦 ∉ 𝐶𝑠,𝑟 )]tr(
[(𝑥 ′ = −𝑘 (𝑥 − 𝑠𝑥 ), 𝑦′ = −𝑘 (𝑦 − 𝑠𝑦))]tr ( [?⊥]tr (𝑥,𝑦 ∈ 𝑆 ◀♢□𝑥,𝑦 ∈ 𝑆) ◀♢□𝑥,𝑦 ∈ 𝑆)

)
◀♢□𝑥,𝑦 ∈ 𝑆

( [; ] ◀♢)
⊢ [(?(𝑥,𝑦 ∉ 𝐶𝑠,𝑟 ); (𝑥 ′ = −𝑘 (𝑥 − 𝑠𝑥 ), 𝑦′ = −𝑘 (𝑦 − 𝑠𝑦)))]tr

( [?⊥]tr (𝑥,𝑦 ∈ 𝑆 ◀♢□𝑥,𝑦 ∈ 𝑆) ◀♢□𝑥,𝑦 ∈ 𝑆)

Figure 12. Proof of subgoal (5.13) in Example 5.3 where 𝑄 = [?⊥]tr (𝑥,𝑦 ∈ 𝑆 ◀♢□𝑥,𝑦 ∈ 𝑆).

Figure 13. Visualization of aircraft dynamics described in
Example 5.4. The velocities are given by the general type that
ensures the velocity in the 𝑦 direction is positive, i.e. 𝑓𝑦 ≥
𝜖 > 0. With velocities of this type, the aircraft eventually
gets to the safe region 𝑦 ≥ 0.

Figure 14. Specification of the set of differential equations
𝐹 and the reachability property defined in (5.14).

which amounts to showing that the solution to the differen-
tial equation satisfies the property that it will reach the set

Figure 15. The interactive theorem prover environment
with one of the dTL2 normalization rewriting rules called as
a lemma in the proof for (5.14).

𝑦 ≥ 0 and remain there for all time after. Figure 16 shows
this property in the interactive theorem prover.

Figure 16. The interactive theorem prover where the only
non-trivial statement is to show Equation (5.15).

This type of stability property is useful in the field of
safety-critical air traffic systems, where it is important to
verify that a vehicle has the ability to reach and stay within
some geofenced area.
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6 Related Work

Extensive work has been done in the field of formal verifi-
cation of hybrid systems and different languages and tech-
niques have been proposed to specify and analyze these
systems. Among these techniques, dL([37, 40, 46, 48]) has
been introduced as a rigorous formalism to reason about
the combination of discrete and continuous dynamics. This
formalism has been successfully applied to the verification
of different applications such as robotics [7, 24], aircraft col-
lision avoidance [8, 20], reinforcement learning [16], and
railways [22, 23].
In [6], the authors formally verified the soundness of dL

in Coq and Isabelle. The work in [6] focuses on a full formal
verification of soundness of dL, with the goal of a formally
verified prover kernel for KeYmaera X. This work resulted in
proof checkers in Coq and Isabelle for dL proofs. In contrast
to [6], the goal of Plaidypvs is a verified embedding of dL and
dTL2 in PVS that allows for the specification and verification
of hybrid programs within the PVS theorem prover.
Over the years, several extensions of dL have been pro-

posed. For instance, differential game logic has been intro-
duced in [44, 47] to model adversarial cyber-physical sys-
tems. There are also extensions for distributed hybrid sys-
tems (quantified differential dynamic logic, [42]), stochastic
hybrid systems (stochastic differential dynamic logic, [43]),
and differential algebraic programs (differential-algebraic
dynamic logic, [41]),
A temporal extension of dL, called differential temporal

dynamic logic, was defined in [38]. This logic enhanced dL
with the temporal operators globally and eventually. In [21],
the differential temporal dynamic logic has been further
extended with nested temporal operators. Recently, a signal
temporal logic extension to dL has been defined in [2]. In
this logic, the scope of temporal operators can be bound to a
certain time interval. To the best of the authors’ knowledge,
these temporal extensions of dL have not been formally
formalized in a theorem prover.
There has been significant work done in the PVS theo-

rem prover [1, 52], Event-B [13], and Isabelle/HOL [15, 17–
19, 50, 53, 55, 56] on the verification of hybrid systems outside
the dL framework. In addition, PVS has been successfully
applied to several applications including formal verification
of aircraft avoidance systems [31], path planning algorithms
[4, 9], unmanned aircraft systems [29], position reporting
algorithms of aircraft [14, 27], sensor uncertainty mitigation
[35], floating-point round-off error analysis [26, 54], genetic
algorithms [49], nonlinear control systems [5], and struc-
tured natural language requirements [10]. PVS has decades
of developments that give it many unique features and au-
tomation capabilities. In addition to advanced real number
reasoning [11, 25, 30, 32–34], previous work has connected
PVS to the automated theorem prover for real-valued func-
tions MetiTarski [3, 12]. The development of Plaidypvs adds

to this extensive collection of PVS theories providing a new
framework for the formal verification of hybrid programs
within PVS.

7 Conclusion

This paper presents a PVS formalization of dTL2, a temporal
extension of dL. This formalization has been implemented as
part of the Plaidypvs tool and is available in the NASA PVS
library. The addition of temporal operators to dL enhances
the logic with the possibility of reasoning about intermediate
states of different computational paths of a hybrid program.
The combination of dL run quantifiers and temporal op-
erators enables an interesting fragment of the differential
counterpart of CTL∗. To the best of the authors’ knowledge,
this is the first formalization of a temporal extension of dL
and the first functional implementation of dTL2.

The goal of Plaidypvs and its temporal extension is to add
hybrid systems reasoning to the ecosystem of PVS. Since
Plaidypvs is embedded in PVS, it can leverage the numer-
ous theories already formally verified and available. In fact,
the embedding enables user-defined functions and meta-
reasoning about hybrid programs. These are unique features
of Plaidypvs with respect to existing implementations of dL.

In the future, the authors plan to implement proof strate-
gies to automatically verify dTL2 formulas within PVS. Dif-
ferent extensions of dTL2 can be explored. For instance, the
addition of the Until and Release operators, or the support
for liveness properties of the form □(𝜙 → ♢𝜓 ). Another
interesting direction is the extension of the language to in-
clude discrete infinite traces and operators for parallel and
synchronous compositions of hybrid programs. These fea-
tures would enable the modeling of a wider range of reactive
hybrid systems. Another topic of future interest includes
extending the semantics of Plaidypvs to allow for reasoning
on differential systems that do not have unique solutions.
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