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Abstract

We present a mathematical framework for the specification and verification of state-
based conflict resolution algorithms that recover from loss of separation. In particu-
lar, we propose rigorous definitions of horizontal and vertical maneuver correctness
that yield horizontal and vertical separation, respectively, in a bounded amount of
time. We also provide sufficient conditions for independent correctness, i.e., sepa-
ration under the assumption that only one aircraft maneuvers, and for implicitly
coordinated correctness, i.e., separation under the assumption that both aircraft
maneuver. An important benefit of this approach is that different aircraft can ex-
ecute different algorithms and implicit coordination will still be achieved, as long
as they all meet the explicit criteria of the framework. Towards this end we have
sought to make the criteria as general as possible. The framework presented in this
paper has been formalized and mechanically verified in the Prototype Verification
System (PVS).
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1 Introduction

This work is motivated by some recent TMX [1] studies of the KB3D [3,4] Conflict
Detection and Resolution (CD&R) algorithm. These studies explored the capabili-
ties of KB3D to deal with multiple aircraft in complex traffic situations. The traffic
density was approximately three times that of today’s traffic and was generated by
extrapolation from existing traffic patterns. There were almost no situations where
a loss of separation occurred, but for the few cases where it did occur, it became
clear that the algorithm should be generalized to recover from those situations.

In this paper, we present a mathematical framework for the specification and
verification of state-based conflict resolution algorithms that recover from loss of
separation. In particular, the framework provides:

• Rigorous definitions of horizontal and vertical maneuver correctness that yield
horizontal and vertical separation, respectively, in a bounded amount of time.

• Sufficient conditions for maneuvers to be independently correct, e.g., separa-
tion is achieved under the assumption that only one aircraft maneuvers, and
coordinately correct, e.g., separation is achieved under the assumption that
both aircraft maneuver, but without hand-shaking or explicit information ex-
change.

The techniques developed in this paper will apply to any state-based algorithm used
to recover from loss of separation and do not depend upon the use of the KB3D
algorithm. It is expected that verification methods developed here will facilitate the
proof of correctness of many different kinds of algorithms.

The framework presented in this paper has been formalized and mechanically
verified in the Prototype Verification System (PVS) [6] and is electronically available
from http://research.nianet.org/fm-at-nia/KB3D.

2 Basic Concepts

As typical of state-based approaches, our framework is centered around the idea of
modeling aircraft trajectories as linear functions of time into a 3-dimensional vector
space with coordinates x, y, and z. In PVS, we define the type of 3-dimensional
vectors in a Cartesian coordinate system as follows

Vect3: TYPE = [# x, y, z: real #]

The components of a vector v are referenced using the back-quote operator, e.g.,
v‘x, v‘y, and v‘z.

The standard operations on vectors are defined: if u and v are vectors and a is
a scalar, u + v, -u, u - v, u * v, and a*v denote addition, negation, subtraction,
dot product, and scalar multiplication, respectively. We also define

sq(v) : nnreal = v*v
norm(v) : nnreal = sqrt(sq(v))
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where nnreal is the type of non-negative real numbers.
The framework is concerned with two aircraft. We will refer to one as the

ownship and the other as the traffic aircraft. The position and velocity vectors of
the ownship and traffic aircraft are denoted so,vo and si,vi, respectively. For
some definitions, it is convenient to use a relative coordinate system where the
traffic aircraft is located at the origin of the system and is motionless. The relative
position and velocity vectors of the ownship are denoted s and v, respectively, where
s = so-si and v=vo-vi. Furthermore, new velocity vectors for the ownship and
traffic aircraft are denoted nvo and nvi, respectively.

For clarity, we sometimes use standard mathematical notation instead of PVS
code. In this case, vector variables are written in boldface, e.g., v, and their compo-
nents are referenced by sub-indices, e.g., vx, vy, and vz. Position and velocity vectors
for the ownship are denoted so and vo, respectively. Traffic vectors are indexed by
i, e.g., si and vi, and new velocity vectors are denoted by primed variables, e.g., v′

o

and v′
i.

Within the translated frame of reference, some concepts can be elegantly defined.
For instance, if D and H are, respectively, the diameter and height of the protected
zone around each aircraft, the predicates that test if the aircraft are horizontally
or vertically separated are conveniently defined in the relative coordinate system as
follows

horizontal_separation?(s):bool =
sq(s‘x)+sq(s‘y) >= sq(D)

vertical_separation?(s):bool =
abs(s‘z) >= H

separation?(s) : bool =
horizontal_separation?(s) OR vertical_separation?(s)

From these predicates, we define loss of separation as follows

loss_of_separation?(s) : bool = NOT separation?(s)

Therefore, the fact that the ownship and traffic aircraft have lost separation can be
simply expressed as loss_of_separation?(so-si).

3 Correct Maneuvers for Loss of Separation Recovery

We are concerned with the situation where a loss of separation has already occurred.
Many conflict detection and resolution algorithms do not address this situation.
They are developed with the specific goal of detecting a conflict and recovering
before there is a loss of separation. Nevertheless, it is prudent that systems based
on these algorithms be able to provide outputs when they find themselves in a state
they were designed to prevent. It should be noted the KB3D algorithm proofs do
not currently cover the fully general case of multiple aircraft conflicts, and hence it
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is theoretically possible for this undesirable situation to arise in practice. Simulation
studies of KB3D at NASA Langley indicate that this will be a rare event even in
complex traffic scenarios [2].

In this paper we describe a framework for reasoning about algorithmic solutions
to the loss of separation situation. We propose a comprehensive approach to this
problem based on two components:

• A formal definition of the concept of maneuver correctness that yields hori-
zontal or vertical separation.

• A set of simple conditions or criteria that are easily calculated and that guar-
antee independent and coordinated correctness.

We prove that any algorithm that produces loss of separation recovery maneuvers,
which satisfy the criteria, is correct.

An important benefit of this approach is that implicit coordination can be
achieved without having every aircraft execute the same algorithm. Different airlines
can use different algorithms and there still will be safe coordination in the airspace,
as long as these algorithms satisfy the criteria. The criteria embody the “rules of
the road”. Therefore, it is important that the criteria be as general as possible. We
do not want to unnecessarily rule out any good algorithm. In this work, we have
sought to make the criteria as general as we could, but we have not offered a proof
that the criteria are necessary as well as sufficient.

In a loss of separation situation, the protected zones of the ownship and traffic
aircraft overlap. Intuitively, a correct algorithm that recovers from this situation
should eventually achieve separation. In PVS, we can write this condition as follows

EXISTS (t: posreal): separation?(s+v*t)

In other words, there exists a time in the future, i.e., t > 0, where the aircraft are
separated.

But there are two problems with this as a notion of correctness. Almost all
trajectories (except parallel trajectories) eventually lead to this condition. In fact,
they could result in a collision in the process. The second problem is that the time
to reach separation may be extraordinarily long, e.g., when the paths are nearly
parallel. So we need to augment our definition of correctness such that correct
recovery maneuvers do not make things worse and achieve recovery in a bounded
amount of time. To solve the first problem, we must ensure that aircraft do not get
any closer. To solve the second problem, we must consider the time when aircraft
recover from loss of separation.

State-based CD&R algorithms typically decompose the 3D airspace into a hor-
izontal 2-dimensional xy-perspective and a vertical z-perspective. We follow the
same approach and study the horizontal and vertical cases independently. Because
position and velocity vectors are initially given in a 3D coordinate system, we use
the function vect2D to convert from 3D to 2D vectors:

vect2D(v:Vect3): Vect2 = (v‘x,v‘y)

3



where Vect2 is the type of 2D vectors:

Vect2: TYPE = [# x, y: real #]

3.1 Horizontal Maneuver Correctness

In order to express the property that aircraft that have lost separation do not get
any closer in the horizontal plane, we define a notion of horizontal divergence in the
relative coordinate system:

xy_divergent?(s,v): bool =
FORALL (t: posreal): norm(vect2D(s)) < norm(vect2D(s+t*v))

We remark that the 2-dimensional norm of the relative position s=so-si is the
horizontal distance between the ownship and traffic aircraft at time 0. Therefore,
this predicate states that the horizontal distance between the aircraft at any time in
the future t is greater than the horizontal distance at the current time. Furthermore,
we note that xy_divergent? is equivalent to the seemingly more general predicate:1

FORALL (t1,t2: posreal): t1 <= t2 IMPLIES
norm(vect2D(s+t1*v)) < norm(vect2D(s+t2*v))

We assume that there will be an operational constraint that provides a maximum
time for recovery from the horizontal loss of separation condition. We call this config-
urable parameter Th. Thus, at time Th, the aircraft will be located at s+Th*v, which
should be outside of the protection zone, i.e., horizontal_separation?(s+Th*v)
should hold.

Therefore, we say that the ownship’s velocity vector vo is horizontally correct
with respect to the relative position s and the traffic’s velocity vector vi if and only
if

• xy_divergent?(s,vo-vi), and

• horizontal_separation?(s+Th*(vo-vi)).

In PVS, we define the predicate xy_correct? as follows:

xy_correct?[Th](s,vi)(vo): bool =
xy_divergent?(s,vo-vi) AND
horizontal_separation?(s+Th*(vo-vi))

We remark that the predicate xy_correct uses a curryfied list of parameters where s
is a relative position, and vo and vi are the untranslated ownship and traffic velocity
vectors, respectively. Furthermore, vo is not grouped together with s and vi. This is
a matter of style, but here we want to emphasize the fact that xy_correct?(s,vi)
is a correctness predicate for vo. The parameter Th is in brackets because it is a
parameter to an entire PVS theory.

1If the velocity vectors were generalized to non-constant functions of time, then a definition
similar to this would be needed.
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3.2 Vertical Maneuver Correctness

The concept of vertical divergence is one dimensional, and can be defined in the
relative coordinate system as follows

z_divergent?(s,v): bool =
FORALL (t: posreal): abs(s‘z) < abs(s‘z+t*v‘z)

We also assume that there will be an operational constraint that provides a maxi-
mum recovery time. We will call this configurable parameter Tv. This would lead
to the following definition of vertical correctness:

z_correct?[Tv](s,vi)(vo): bool =
z_divergent?(s,vo-vi) AND
vertical_separation?(s+Tv*(vo-vi))

As in the case of xy_correct?, the predicate z_correct? uses a curryfied list of
parameters where s is a relative position, and vo and vi are the untranslated ownship
and traffic velocity vectors, respectively. The parameter Tv is in brackets because it
is a parameter to an entire PVS theory.

4 Time to Exit

Before defining the criteria for loss of separation recovery maneuvers, we introduce
a function that computes the time to exit from horizontal and vertical loss of sepa-
ration.

4.1 Horizontal

We would like to be able to select from the set of divergent maneuvers those which
are most efficient. To do this we need to be able to compute the time to exit the
protected zone. Towards this end, we introduce a function tteh which computes
the horizontal exit time:

tteh(s: (xy_loss?), v:(gs?)): real = THETA(s‘x,s‘y,v‘x,v‘y,1)

where THETA is defined in PVS as follows

THETA(sx,sy,vx:real,vy:real|Delta_ge_0?(sx,sy,vx,vy), eps:Sign):real =
(-sx*vx - sy*vy + eps * sqrt(Delta(sx,sy,vx,vy))) / (sq(vx)+sq(vy))

Delta(sx,sy,vx,vy) : real =
sq(D) * (sq(vx) + sq(vy)) - sq(sx * vy - sy * vx)

where Sign returns values of 1 or −1:

Sign : TYPE = {i:int|i=1 OR i=-1}
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and Delta_ge_0? is a predicate subtype that guarantees that THETA is a well-defined
function, i.e., the square root exists and the division is not zero. Mathematically,
the definition of tteh corresponds to

tteh(s,v) = −sxvx − syvy ±
√

∆(sx, sy, vx, vy)
v2
x + v2

y

where

∆(sx, sy, vx, vy) = D2(v2
x + v2

y)− (sxvy − syvx)2.

and the double sign ± is provided formally by the eps argument. Note that the
arguments to tteh are constrained by the following predicates:

xy_loss?(s): bool = NOT horizontal_separation?(s)

gs?(v) : bool = sq(v‘x) + sq(v‘y) /= 0

which restrict the use of tteh to situations where a loss of separation has occurred
and to where the velocity vector is not zero in the xy-plane.

The key property about tteh is that at time te = tteh(s,v), the aircraft will
be on the circle of radius D, i.e.,

(sx + vxte)2 + (sy + vyte)2 = D2

or more formally2:

Lemma (tteh sq D).
sq(v‘x) + sq(v‘y) /= 0 AND
NOT separation?(s) IMPLIES
sq(s‘x + v‘x*tteh(s,v)) + sq(s‘y + v‘y*tteh(s,v)) = sq(D)

Proof. The location of the aircraft at time t is s + tv. This line intersects the circle
of radius D where

(sx + tvx)2 + (sy + tvy)2 = D2

Expanding and collecting terms yields

(v2
x + v2

y) t2 + 2(sxvx + syvy) t + s2
x + s2

y −D2 = 0.

This is a quadratic equation (at2 + bt+ c) in t with a = (v2
x +v2

y), b = 2(sxvx +syvy)
and c = s2

x + s2
y −D2. The quadratic formula provides a positive solution which is

precisely tteh(s,v).

2In PVS, free variables are universally quantified.
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4.2 Vertical

We would need to be able to select from the set of vertically divergent maneuvers
those which are most efficient. To do this we need to be able to compute the time to
exit the protected zone vertically. We introduce a function ttez, which computes
the vertical exit time:

ttez(s:Vect3, v:(vnz?): real = (sign(v‘z) * H - s‘z) / v‘z

where vnz?(v):bool = v‘z /= 0 and sign is the two-valued sign function:

sign(x:real) : Sign =
IF x >= 0 THEN 1
ELSE -1
ENDIF

The following lemma characterizes the function ttez:

Lemma (z vnz separation).
v‘z /= 0 AND
NOT vertical_separation?(s) AND
tr >= ttez(s,v) IMPLIES
vertical_separation?(s + tr * v)

Proof. Expanding the definition of ttez(s,v) and cross-multiplying yields:

• Case vz > 0: sz + trvz ≥ H.

• Case vz < 0: sz + trvz ≤ −H.

Both cases can be combined into |sz + trvz| ≥ H, which is vertical separation.

5 Loss of Separation Recovery Criteria

The goal of the framework is to establish some simple abstract properties i.e. criteria
that

• are sufficient to prove correctness, and

• are easy to verify for a specific set of horizontal and vertical maneuvers.

5.1 Horizontal Maneuver Criteria

In this section, we will assume that all vectors are given in a 2D coordinate system.
A 2D wrapper for 3D vectors is easily defined using vect2D.

The horizontal criteria is built around a simple predicate called dot_prop:

dot_prop?(s,v): bool = s * v >=0

7



This predicate is defined in terms of two parameters s and v of the translated frame
of reference. The idea for this predicate comes from the observation that a good
relative maneuver v is one where the angle between a head-on vector −s and v is
in the range [π2 , 3π

2 ]. This occurs where the dot product is not positive: −s · v ≤ 0
or more simply when s · v ≥ 0.

This property alone is enough to establish that aircraft will be on divergent
paths: dot_prop?(s,v) implies xy_divergent?(s,v). We will prove this theorem
by first establishing the following lemma:

dot_nneg_tca_npos: LEMMA
dot_prop?(so-si,vo-vi)
IMPLIES
time_closest(so,si,vo,vi) <= 0

where the time of closest approach time_closest(so,si,vo,vi), denoted in math-
ematical notation by τ , is defined as follows

time_closest(p0,q0,u,v): real = IF norm(u-v) = 0 THEN
0

ELSE
-((p0-q0)*(u-v))/sq(norm(u-v))

ENDIF

Here p0 and q0 represent the location of the aircraft at time 0. The trajectory of
the first is given by p(t) = p0 + tu and the trajectory of the second is given by
q(t) = q0 + tv.

p

q

q  + tv

p  + tu

w(t)

0

0

0

0

Mathematically, for the non-parallel case, we have

τ =
−(p0 − q0) · (u− v)

|u− v|2
.

To see that this function indeed computes the time at which two moving particles
achieve the minimum distance between them, we prove the following lemma:
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Lemma (time cpa).
t_cpa = time_closest(p0,q0,u,v)
IMPLIES
is_minimum?(t_cpa,(LAMBDA t: sq_dist(p0+t*u,q0+t*v)))

Proof. The distance between the particles at time t is given by

d(t) = |p(t)− q(t)| = |w(t)|, (1)

where w(t) = w0+t(u−v) and w0 = p0−q0. The distance d(t) achieves a minimum
where d2(t) is a minimum, so we can work with the square of the distance:

d2(t) = w(t) ·w(t) = (u− v) · (u− v) t2 + 2w0 · (u− v) t + w0 ·w0. (2)

This function achieves a minimum when its derivative is 0:

d

dt
[d2(t)] = 2t[(u− v) · (u− v)] + 2w0 · (u− v) = 0.

Solving for t we get

t =
−w0 · (u− v)

|u− v|2
,

which is time_closest(p0,q0,u,v). This solution is valid if |u−v| is not zero. If it
is zero, then the lines are parallel. In this case the function time_closest(p0,q0,u,v)
just returns 0, which is always less than or equal to the square distance.

Next, we show that when this property holds, the time of closest approach is
negative, i.e., it is in the past:

Lemma (dot nneg tca npos).
dot_prop?(so-si,vo-vi)
IMPLIES
time_closest(so,si,vo,vi) <= 0

Proof. The assumption dot_prop?(so-si,vo-vi) simplifies to

(so − si) · (vo − vi) ≥ 0

If vo = vi then time_closest(so,si,vo,vi) = 0 and we are done. Otherwise,
time_closest(so,si,vo,vi) is

−(so − si) · (vo − vi)
|vo − vi|2

,

which, by the premise, must be less than or equal to zero.

This leads us to the main result, that when dot_prop? is true, the aircraft
trajectories are divergent:
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Theorem (dot prop divergent).
v /= zero AND
dot_prop?(s,v) IMPLIES
xy_divergent?(s,v)

Proof. Equation 2 reveals that the square of the distance is a quadratic equation
in t. Since the leading coefficient is positive, the parabola achieves a minimum.
Furthermore, the square distance function is monotonically decreasing before the
minimum point and monotonically increasing after the minimum point. From the
lemma dot_nneg_tca_npos we have time_closest(s,0,v,0) <= 0. Therefore,
for all t > 0, the distance is monotonically increasing, which is the definition of
xy_divergent(s,v).

5.1.1 The Formal xy-Criteria

We introduce the following criteria for horizontal maneuvers:

criteria?(s,vo,vi)(nvo): bool =
nvo /= vi AND
dot_prop?(s,nvo-vi) AND
(dot_prop?(s,vo-vi) IMPLIES
(vo /= vi AND
dot_prop?(s,nvo-vo) OR
vo = vi AND
s*(nvo-vo) > 0))

where s, vo, and vi are 2D-vectors. We lift this predicate to a 3D version as follows:

xy_criteria?(s,vo,vi: Vect3)(nvo: Vect3): MACRO bool =
criteria?(vect2D(s),vect2D(vo),vect2D(vi))(vect2D(nvo))

We need to augment the criteria with a constraint on the time to exit horizontally.
Thus we have:

xy_criteria_tr?(s,vo,vi,tr)(nvo): bool =
NOT horizontal_separation?(s) AND
xy_criteria?(s,vo,vi)(nvo) AND
tteh(s,nvo-vi) <= tr

The horizontal criteria thus require that

• The new ownship’s velocity vector v′
o must be different from intruder’s initial

velocity vector vi.

• The property dot_prop?(s,v′
o − vi) holds, which guarantees that the new

ownship velocity vector v′
o is divergent with respect the initial intruder velocity

vector vi.
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• If the initial situation is one where the aircraft are already divergent, then
we also must have dot_prop(s,v′

o − vo) which further restricts the allowed
maneuvers.

• In the special case where vo = vi, we require that the dot product be strictly
greater than 0.

5.1.2 Some Rationale and Observations

The xy_criteria? at first appears to be more complicated than necessary. In fact,
it is far more complicated than is necessary for the independent correctness theorem.
In later sections, we will prove that this criteria enables the proof of cooperative
correctness.

To establish divergence for the cooperative theorem, we need to prove
xy_divergent?(s,nvo-nvi). From the dot_prop_divergent theorem we know
that we only need to establish dot_prop?(s,nvo-nvi). The converse is also true.
So the first question that arises is whether the two premises

dot_prop?(s,nvo-vi) AND
dot_prop?(-s,nvi-vo)

are sufficient to give us dot_prop?(s,nvo-nvi). In other words if each aircraft
independently ensures that its own new velocity vector is dot_prop? with respect
to the other aircraft’s unchanged velocity, is that sufficient to guarantee that the
combined activity is divergent? Surprisingly this is the case when the aircraft are
initially convergent, but if they are already divergent, these conditions are not ade-
quate. When the aircraft are initially divergent, i.e., dot_prop?(s,vo-vi), we also
need dot_prop?(s,nvo-vo).

5.2 Vertical Maneuver Criteria

In this section, we will assume that all vectors are given in a 3D coordinate system.
Using a similar approach as the horizontal maneuver criteria, we define the vertical
maneuver criteria as follows:

z_criteria?(s,vo,vi)(nvo): bool =
nvo‘x = vo‘x AND nvo‘y = vo‘y
(nvo-vi)‘z /= 0 AND
z_prop?(s,nvo-vi) AND
(z_prop?(s,vo-vi) IMPLIES
(vo-vi)‘z /= 0 AND
sign((vo-vi)‘z)*(nvo-vo)‘z >= 0 OR

(vo-vi)‘z = 0 AND
break_vz_symm(s)*(nvo-vo)‘z > 0)

where z_prop? is defined as

z_prop?(s,v): bool = s‘z * v‘z >=0
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and sign is the two-valued sign function:

sign(x:real): Sign =
IF x >= 0 THEN 1 ELSE -1 ENDIF

As in the horizontal case, we augment the criteria with a constraint on the time
to exit vertically:

z_criteria_tr?(s,vo,vi,tr)(nvo): bool =
NOT vertical_separation?(s) AND
z_criteria?(s,vo,vi)(nvo) AND
ttez(s,nvo-vi) <= tr

The z_criteria?(s,vo,vi)(nvo) predicate is sufficient to establish divergence
in both the independent and coordinated correctness theorems. The premise
nvo‘x = vo‘x AND nvo‘y = vo‘y states that nvo is a vertical maneuver, i.e., nvo
may differ from vo only in the vertical component. The additional premise ttez(s,nvo-vi) <= tr
is necessary to establish that the time to recover is sufficiently small. We will prove
in a subsequent section that even though each aircraft calculates a new velocity
vector using the original velocity vector of the other aircraft, that together they still
diverge and meet the timeliness criteria.

As in the horizontal case, we need to consider a few special cases when the
aircraft are originally diverging, i.e., z_prop?(s,vo-vi):

• If the relative vertical speed is not zero, i.e., vo‘z /= vi‘z, we require
sign((vo-vi)‘z)*(nvo-vo)‘z >= 0.

• Otherwise, i.e., vo‘z = vi‘z, we require break_vz_symm(s)*(nvo-vo)‘z > 0.

In the latter case, we have to deal with the situation where the two aircraft are at ex-
actly the same altitude, e.g., s‘z = 0. Any algorithm break_vz_symm(s:Vect3):Sign
that satisfies the following assumptions will suffice.

break_vz_symm_comm : ASSUMPTION
FORALL (s:Vect3):
s /= zero IMPLIES
break_vz_symm(-s) = -break_vz_symm(s)

break_vz_symm_sz : ASSUMPTION
FORALL (s:Vect3):
s‘z /= 0 IMPLIES
break_vz_symm(s) = sign(s‘z)

Here is an example of such an algorithm.

break_vz_symm(s:Vect3) : Sign =
IF s‘z > 0 OR

s‘z = 0 AND s‘x < 0 OR
s‘z = 0 AND s‘x = 0 AND s‘y < 0 THEN

12



1
ELSE
-1

ENDIF

Our framework does not prescribe any particular algorithm. Note that break_vz_symm
“breaks the tie” when the aircraft are at the exact same altitude. It insures that one
will go up and the other will go down. The example algorithm resolves the problem
by using the x and y components. Since all components cannot simultaneously be
equal to zero, otherwise the aircraft would have already collided, there is always
something to break the symmetry. Of course other techniques could be used such
as the order of the aircraft identifiers or other operational factors.

6 Independent and Coordinated Correctness

We now focus our attention to the formal proofs that our criteria are sufficient
conditions for independent and coordinated correctness. The independent case as-
sumes that only one aircraft perform the recovery maneuver. The coordinated case
assumes that both aircraft simultaneously perform the recovery maneuver.

6.1 Horizontal Correctness

In this section, we will assume that all vectors are given in a 2D coordinate system.
In the independent case, we want to prove that any horizontal maneuver for the
ownship nvo that satisfies xy_criteria_tr? is also xy_correct?. Formally, we
want a theorem of the form

xy_criteria_tr?(s,vo,vi,Th)(nvo)
IMPLIES
xy_correct?[Th](s,vi)(nvo)

When both aircraft seek to recovery from the loss of separation it is conceivable that
the combined result might not be satisfactory. Therefore, we must establish criteria
whereby we can be assured that the collective action produces an appropriate relative
velocity vector. In other words, we want a distributed solution that is coordinated.
Formally, we want a theorem of the form

xy_criteria_tr?( s,vo,vi,Th)(nvo) AND
xy_criteria_tr?(-s,vi,vo,Th)(nvi)
IMPLIES

xy_correct?[Th](s,nvi)(nvo)

That is if nvo and nvi satisfy the criteria with respect to their own frame of reference,
i.e., nvo with respect to s,vo,vi and nvi with respect to -s,vi,vo, then together
they are correct.
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6.1.1 Independent Horizontal Correctness

We begin with the following theorem which provides a useful result:

Lemma (xy indep lem).
nvo /= vi AND
NOT separation?(s) AND
dot_prop?(s,nvo-vi) AND
Th >= tteh(s,nvo-vi)
IMPLIES
xy_correct?[Th](s,vi)(nvo)

Proof. To establish xy_correct?[Th](s,vi)(nvo), we must prove

1. xy_divergent?(s, nvo-vi) and

2. horizontal_separation?(s + Th *(nvo - vi)).

First, from lemma dot_prop_divergent, we have xy_divergent?(s,nvo-vi). Now
for the second part, we use lemma tteh_sq_D, to obtain

[sx + te(v′
ox − vix)]2 + [sy + te(v′

oy − viy))]2 = D2,

where te = tteh(s,nvo-vi). To establish horizontal_separation?(s + Th * (nvo - vi)),
we must show that

[sx + Th(v′
ox − vix)]2 + [sy + Th(v′

oy − viy)]2 ≥ D2.

But this follows immediately from the fact that te ≤ Th and the fact that v′
o and vi

are xy-divergent.

The predicate dot_prop?(s,nvo-vi) is a sufficient condition for independent
correctness. However, we prefer the following final theorem:

Theorem (xy independent).
xy_criteria_tr?(s,vo,vi,Th)(nvo)
IMPLIES
xy_correct?[Th](s,vi)(nvo)

Proof. Since xy_criteria?(s,vo,vi)(nvo) implies the premises of xy_indep_lem,
this theorem is an immediate consequence of xy_indep_lem.

The advantage of this theorem is that the criteria is identical with what is needed
for coordinated correctness. Using this strategy, we will be assured of correctness if
only one or if both aircraft attempt to recover simultaneously.
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6.1.2 Coordinated Horizontal Correctness

We have successfully proved the following theorem:

Theorem (xy coordinated).
xy_criteria_tr?( s,vo,vi,Th)(nvo) AND
xy_criteria_tr?(-s,vi,vo,Th)(nvi)
vect2D(nvo) /= vect2D(nvi) AND
Th >= tteh(s,nvo-nvi)
IMPLIES
xy_correct?[Th](s,nvi)(nvo)

Since the definition of xy_correct? is symmetric:

xy_correct_symm: LEMMA
xy_correct?[Th](s,nvi)(nvo) IFF xy_correct?[Th](-s,nvo)(nvi)

the theorem is true from either aircraft’s perspective. We remark that the second
and third premises vect2D(nvo) /= vect2D(nvi) and Th >= tteh(s,nvo-nvi)
involve both nvo and nvi, the new velocity vectors of both aircraft. Unfortunately,
only one of these is known locally in each aircraft. The presence of this premise
means that the job of showing that a particular algorithm satisfies this premise can-
not be inferred from xy_criteria_tr? alone and has to be done for each algorithm
separately.

The premise nvo /= nvi, i.e., v′
o 6= v′

i, does not cause us much concern. If for
some reason, a horizontal algorithm (that satisfies the criteria) puts the aircraft in
this situation where they are parallel, we know that on the next iteration of the
algorithm, that it will no longer be in the divergent situation. This next iteration
will compute new resolutions that will remove this parallel condition.

We will prove this theorem by first establishing some lemmas. Once again we
will work with 2D vectors. The first key lemma shows that if the maneuvers of
the originally xy-converging aircraft meet the criteria, then they are simultaneously
xy-diverging:

Lemma (xy converging div coordinated).
NOT dot_prop?(s,vo-vi) AND
dot_prop?(s,nvo-vi) AND
dot_prop?(-s,nvi-vo)
IMPLIES
divergent?(s,nvo-nvi)

Proof. To obtain divergent?(s,nvo-nvi), we use theorem dot_prop_divergent
which was proven in Section 5.1. It tells us that we only need to prove that
nvo /= nvi and dot_prop?(s,nvo-nvi), e.g., s · (v′

o − v′
i) ≥ 0. From the premises

we have

s · (vo − vi) < 0,

s · (v′
o − vi) ≥ 0,

−s · (v′
i − vo) ≥ 0.
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Expanding these, we obtain

−sxvox − syvoy + sxvix + syviy > 0,

sxv′
ox + syv

′
oy − sxvix − syviy ≥ 0,

−sxv′
ix − syv

′
iy + sxvox + syvoy ≥ 0.

Adding these equations together yields

sxv′
ox + syv

′
oy − sxv′

ix − syv
′
iy > 0

or more succinctly
s · (v′

o − v′
i) > 0,

which implies dot_prop?(s,nvo-nvi). Also since the relation is strictly greater
than 0, we have v′

o 6= v′
i as needed.

The next lemma shows that criteria-satisfying maneuvers of aircraft that are are
originally xy-diverging aircraft are simultaneously xy-diverging.

Lemma (xy diverging div coordinated).
diverging_div_coordinated: LEMMA
dot_prop?(s,vo-vi) AND
nvo /= nvi AND
dot_prop?(s,nvo-vo) AND
dot_prop?(-s,nvi-vi)
IMPLIES
% Relative recovery maneuver nvo,nvi is diverging
divergent?(s,nvo-nvi)

Proof. Once again we will obtain divergent?(s,nvo,nvi) using theorem dot_prop_divergent.
We only need to prove dot_prop?(s, nvo - nvi) since nvo /= nvi is provided as
a premise. The dot_prop? premises give us

s · (vo − vi) ≥ 0,

s · (v′
o − vo) ≥ 0,

s · (vi − v′
i) ≥ 0.

Adding these together yields

s · (vo − vi + v′
o − vo + vi − v′

i) ≥ 0,

which simplifies to

s · (v′
o − v′

i) ≥ 0.

Hence, dot_prop?(s, nvo - nvi) holds.
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The next lemma shows that criteria-satisfying maneuvers of aircraft that are
originally horizontally parallel, e.g., vo = vi, are simultaneously xy-diverging:

Lemma (xy static div coordinated).
static_div_coordinated: LEMMA
vo = vi AND
s*(nvo-vo) > 0 AND
-s*(nvi-vi) > 0
IMPLIES
divergent?(s,nvo-nvi)

Proof. Once again we seek to obtain nvo /= nvi and dot_prop?(s,nvo-nvi). We
substitute the first premise into premises two and three, obtaining

s · (v′
o − vi) > 0,

−s · (v′
i − vi) > 0,

Adding these together yields

s · (v′
o − vi) + s · (vi − v′

i) > 0

Combining we have

s · (v′
o − vi + vi − v′

i) > 0

which simplifies to s · (v′
o−v′

i) > 0. Hence, dot_prop?(s,nvo-nvi) holds. Also the
strict inequality insures that v′

o 6= v′
i holds as required.

Combining these three lemmas we get

Theorem (xy div coordinated).
nvo /= nvi AND
xy_criteria?(s,vo,vi)(nvo) AND
xy_criteria?(-s,vi,vo)(nvi)
IMPLIES
divergent?(s,nvo-nvi)

Proof. By case analysis and lemmas xy_diverging_div_coordinated,
xy_static_div_coordinated, and xy_converging_div_coordinated.

In order to handle the time to exit horizontally, we use the following lemma.

Lemma (xy divergent separation).
xy_divergent?(s,v) IMPLIES
xy_los?(s) AND
tr >= tteh(s,v)
IMPLIES
horizontal_separation?(s+tr*v)
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Proof. Using lemma tteh_sq_D proven in Section 4.1, we have

(sx + tteh(s,vo − vi) ∗ (vox − vix))2 + (sy + tteh(s,vo − vi) ∗ (voy − viy))2 = D2

Given tr >= tteh(s,vo-vi), we easily obtain horizontal_separation?(s+tr*(vo-vi)).

Finally, we can prove that the criteria imply coordinated correctness, assuming
Th >= tteh(s,nvo-nvi) and nvo /= nvi.

Theorem (xy coordinated).
xy_criteria_tr?( s,vo,vi,Th)(nvo) AND
xy_criteria_tr?(-s,vi,vo,Th)(nvi) AND
vect2D(nvo) /= vect2D(nvi) AND
Th >= tteh(s,nvo-nvi)
IMPLIES
xy_correct?[Th](s,nvi)(nvo)

Proof. This theorem follows immediately from lemmas xy_divergent_separation
and
xy_div_coordinated.

6.2 Vertical Correctness

In this section, we will assume that all vectors are given in a 3D coordinate system.
As in the horizontal case, we want an independent correctness theorem of the form

z_criteria_tr?(s,vo,vi,Tv)(nvo)
IMPLIES
z_correct?[Tv](s,vi)(nvo)

and a coordinated correctness theorem of the form

z_criteria_tr?( s,vo,vi,Tv)(nvo) AND
z_criteria_tr?(-s,vi,vo,Tv)(nvi)
IMPLIES

z_correct?[Tv](s,nvi)(nvo)

6.2.1 Independent Vertical Correctness

The main result of this subsection is:

Theorem (z independent).
z_criteria_tr?(s,vo,vi,Tv)(nvo)
IMPLIES
z_correct?[Tv](s,vi)(nvo)

Proof. This theorem follows immediately from the definition of z_criteria_tr?
and lemma z_prop_independent below.
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Before we prove z_prop_independent, we need the following lemma:

Lemma (z prop divergent).
z_prop?(s,vo-vi) AND
vo‘z - vi‘z /= 0
IMPLIES
z_divergent?(s,vo-vi)

Proof. From z_prop?(s,nvo-vi), we have sz(voz − viz) ≥ 0. This gives us two
cases:

• Case sz ≤ 0 and (voz − viz) ≤ 0: −sz < −(sz + t(voz − viz)).

• Case sz ≥ 0 and (voz − viz) ≥ 0: sz < sz + t(voz − viz).

Together these cases yield |sz| < |sz+t(voz−viz)|, which is z_divergent?(s,vo-vi).

Lemma (z prop independent).
z_los?(s) AND
z_prop?(s,nvo-vi) AND
(nvo-vi)’z /= 0 AND
Tv >= ttez(s,nvo-vi)
IMPLIES
z_correct?[Tv](s,vi)(nvo)

Proof. To establish z_correct?[Tv](s,vi)(nvo) we must prove z_divergent?(s,nvo-vi)
and vertical_separation?(s + Tv * (nvo - vi)). Lemma z_prop_divergent
suffices to prove the first conjunction and lemma z_vnz_separation proved in sec-
tion 4.2, gives us vertical_separation?(s + Tv * (nvo - vi)).

6.2.2 Coordinated Vertical Correctness

We have proven the following theorem:

Theorem (z coordinated).
s /= zero AND
z_criteria_tr?( s,vo,vi,Tv)(nvo) AND
z_criteria_tr?(-s,vi,vo,Tv)(nvi)
IMPLIES
z_correct?[Tv](s,nvi)(nvo)

In contrast to the horizontal case, we have proved vertical coordinated correctness
without any premise that uses non-local information. The premise s /= zero states
that the aircraft are not in the same position, e.g., the theorem holds as long as the
aircraft have not yet collided.

The theorem z_coordinated is proven through a series of theorems and lemmas.
The first theorem states that the predicate z_criteria implies coordinated vertical
divergence.
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Theorem (z div coordinated).
s /= zero AND
z_criteria?(s,vo,vi)(nvo) AND
z_criteria?(-s,vi,vo)(nvi)
IMPLIES
z_divergent?(s,nvo-nvi)

Proof. Lemma z_prop_divergent establishes z_divergent?(s,nvo-nvi) given
z_prop?(s, nvo - nvi) and nvo‘z /= nvi‘z. We consider three cases:

• Case vo_z /= vi_z and z_prop?(s,vo-vi): From the premises and case anal-
ysis we obtain:

s‘z * (vo - vi)‘z >= 0 AND
sign((vo - vi)‘z) * (nvo - vo)‘z >= 0 AND
sign((vi - vo)‘z) * (nvi - vi)‘z >= 0

From the first premise, we get two cases:

– Case 0 >= s‘z AND 0 > (vo - vi)‘z: The two sign premises become

(vo - nvo)‘z >= 0 AND
(nvi - vi)‘z >= 0

– Case 0 <= s‘z AND 0 < (vo - vi)‘z: The two sign premises become

(nvo - vo)‘z >= 0 AND
(vi - nvi)‘z >= 0

From either of these we have s‘z * (nvo - nvi)‘z >= 0, which is z_prop?(s, nvo - nvi).

• Case vo_z /= vi_z and NOT z_prop?(s,vo-vi): From the premises, we get

s‘z * (nvo‘z - vi‘z) >= 0 AND
-s‘z * (nvi‘z - vo‘z) >= 0 AND
s‘z * (vo‘z - vi‘z) < 0

From these we easily obtain s‘z * (nvo - nvi)‘z >= 0, which is z_prop?(s, nvo - nvi).

• Case vo_z = vi_z: From the z_criteria? premises we have

break_vz_symm(s) * (nvo - vo)‘z > 0 AND
break_vz_symm(-s) * (nvi - vi)‘z > 0

If s‘z = 0, we trivially have s‘z * (nvo - nvi)‘z >= 0, so we are done. If
we have both s‘z <= 0 and (nvo - nvi)‘z <= 0 we are done.

When s‘z /= 0, break_vz_symm(s) = sign(s‘z). So when s‘z >= 0, these
premises become
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1 * (nvo - vo)‘z > 0 AND
-1 * (nvi - vi)‘z > 0

But since vo‘z = vi‘z this gives us (nvo‘z - nvi‘z) >= 0 from which we
have s‘z * (nvo - nvi)‘z >= 0.

In all three cases, algebraic simplifications yield nvo‘z /= nvi‘z.

The next three lemmas state that the predicate z_criteria_tr? implies co-
ordinated vertical separation for originally diverging aircraft, originally converging
aircraft, and originally parallel aircraft, respectively.

Lemma (z diverging sep coordinated).
z_criteria_tr?( s,vo,vi,tr)(nvo) AND
z_criteria_tr?(-s,vi,vo,tr)(nvi) AND
z_prop?(s,vo-vi) AND (vo-vi)‘z /= 0
IMPLIES
vertical_separation?(s + tr*(nvo - nvi))

Proof. From lemma z_vnz_separation (Section 4.2), it suffices to prove

tr >= ttez(s, (nvo - nvi))

This is obtained by case analysis and simple algebraic manipulations.

Lemma (z converging sep coordinated).
z_criteria_tr?( s,vo,vi,tr)(nvo) AND
z_criteria_tr?(-s,vi,vo,tr)(nvi) AND
NOT z_prop?(s,vo-vi)
IMPLIES
vertical_separation?(s + tr*(nvo-nvi))

Proof. We need to prove nvo_z /= nvi_z and tr >= ttez(s, (nvo - nvi)). The
first part, nvo_z /= nvi_z, follows from the z_prop? premises after expanding
z_criteria_tr?. To obtain the second part, we must prove that

tr >= (sign((nvo - nvi)‘z) * H - s‘z) / (nvo - nvi)‘z

This is obtained by case analysis and simple algebraic manipulations.

Lemma (z parallel sep coordinated).
s /= zero AND
z_criteria_tr?( s,vo,vi,tr)(nvo) AND
z_criteria_tr?(-s,vi,vo,tr)(nvi) AND
z_prop?(s,vo-vi) AND (vo-vi)‘z = 0
IMPLIES
vertical_separation?(s + tr*(nvo-nvi))

Proof. We need to prove

NOT (nvo - nvi)’z = 0 AND tr >= ttez(s, (nvo - nvi))
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so that we can use lemma z_vnz_separation to obtain:
vertical_separation?(s + tr*(nvo-nvi)). As in the previous cases, this is ob-
tained by case analysis and algebraic manipulations.

Lemma (z sep coordinated).
s /= zero AND
z_criteria_tr?( s,vo,vi,tr)(nvo) AND
z_criteria_tr?(-s,vi,vo,tr)(nvi)
IMPLIES
vertical_separation?(s + tr*(nvo-nvi))

Proof. By case analysis and lemmas z_diverging_sep_coordinated,
z_converging_sep_coordinated, and z_parallel_sep_coordinated.

Theorem. z_coordinated

s /= zero AND
z_criteria_tr?( s,vo,vi,Tv)(nvo) AND
z_criteria_tr?(-s,vi,vo,Tv)(nvi)
IMPLIES
z_correct?[Tv](s,nvi)(nvo)

Proof. By lemmas z_sep_coordinated and z_div_coordinated.

7 A Simple Vertical Algorithm

We have constructed a prototype vertical resolution algorithm that satisfies the
vertical criteria. It can be expressed in PVS as follows

z_recovery(s,vo,vi:Vect3,t:posreal): Vect3 =
LET v = vo-vi,

nvz = (sign_vz(s,v)*H - s‘z)/t IN
IF z_prop?(s,v) AND

abs(v‘z) >= abs(nvz) THEN
(vo‘x, vo‘y, vo‘z)

ELSE
(vo‘x, vo‘y, nvz+vi‘z)

ENDIF

with the following subfunctions:

% Break tie when relative vertical speed is zero
break_vz_symm(s:Vect3) : Sign =
IF z(s) > 0 OR

z(s) = 0 AND x(s) < 0 OR
z(s) = 0 AND x(s) = 0 AND y(s) < 0 THEN
1
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ELSE
-1

ENDIF

sign_vz(s,v:Vect3): Sign =
IF z_prop?(s,v) AND v‘z /= 0 THEN
sign(v‘z)

ELSE
break_vz_symm(s)

ENDIF

This algorithm has been proved to satisfy the vertical criteria:

z_recovery_criteria_tr : THEOREM
LET nvo = z_recovery(s,vo,vi,Tv) IN
NOT vertical_separation?(s) IMPLIES
z_criteria_tr?(s,vo,vi,Tv)(nvo)

The framework therefore provides an immediate proof that this algorithm satisfies
the vertical correctness properties for both the independent version:

z_recovery_independent : THEOREM
NOT vertical_separation?(s) IMPLIES
LET nvo = z_recovery(s,vo,vi,Tv) IN
z_correct?[Tv](s,vi)(nvo)

and the coordinated version:

z_recovery_coordinated : THEOREM
NOT vertical_separation?(s) AND
s /= zero IMPLIES
LET nvo = z_recovery(s,vo,vi,Tv),

nvi = z_recovery(-s,vi,vo,Tv) IN
z_correct?[Tv](s,nvi)(nvo)

8 A Simple Horizontal Algorithm

9 Practicality of the Criteria

We have a theoretical result that establishes that the criteria are sufficient to meet
our correctness properties. But can these criteria be satisfied by reasonable algo-
rithms? For the vertical case, we have a prototype algorithm, so we know that
the vertical criteria are satisfiable. But for the horizontal criteria we have not even
shown that there exists an algorithm that satisfies the criteria. In both cases, we
would also like to gain some insight into how restrictive the criteria are. Therefore,
we have created some simple Java programs to graphically display the vectors which
meet the criteria given a specific scenario.
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9.1 Vertical Criteria Visualization

We begin with the following scenario:

so = (1.5, 2.2, 0.8)
si = (−1.0,−2.0, 1.1)
vo = (5.0,−180,−23.0)
vi = (−10.0, 160,−52.0)

The vectors displayed in green are the allowed vertical maneuvers:

The original ownship vector is displayed in blue and the original traffic vector is
displayed in magenta. The gray lines indicate the range of possible vectors when
the vertical speed is limited to ±200 mph or ±17, 600 fpm, which clearly is a larger
range than is really needed. As expected one aircraft is given vectors with increased
vertical speed, while the other aircraft is given decreased vertical speed maneuvers.
Note that some of the allowed traffic vectors have decreasing vertical speed. Thus,
there are solutions where both aircraft have decreasing vertical speed.

For initial trajectories that lead to a close vertical encounter:

so = (1.8, 0.0, 0.4)
si = (−1.5, 0.0, 1.3)
vo = (−180, 0, 31.0)
vi = (160, 0,−52.0)

more drastic maneuvers are needed:
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The triangles indicate the locations of the aircraft at the closest point of approach.

9.2 Horizontal Criteria Visualization

The following scenario places the aircraft in an initially divergent situation:

so = (100, 150)
si = (−120,−200)
vo = (80, 0)
vi = (−10, 56)

The vectors displayed in green are the maneuvers that satisfy the horizontal criteria
where only the heading has been changed.
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The original ownship vector is displayed in blue and the original traffic vector is
displayed in magenta.

Next we look at an originally convergent case where the aircraft are nearly
parallel.

so = (120,−200)
si = (−120, 200)
vo = (−10, 80)
vi = (10, 80)

The criteria allows a large set of coordinated maneuvers.
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There are some situations where one of the aircraft has no unilateral means of escape
by modifying heading only.

so = (200, 200)
si = (−90,−200)
vo = (−20,−30)
vi = (40, 56)

The ownship does not have sufficient speed and enough original separation to escape
the traffic.

The triangles indicate the locations of the aircraft at the closest point of approach.
The perspicacious reader may be wondering how this can happen given that we have
a independent proof of correctness. The answer is simply that the proof merely
guarantees that if there is a maneuver that satisfies the criteria, then divergence
is guaranteed. However, in this case there are no heading-only vectors that satisfy
the criteria. This illustrates that a proof that seeks to establish that an algorithm
satisfies the criteria must show that a solution is always produced and not just that
all generated solutions are correct.

In this case there are combined heading and ground speed recovery maneuvers
that meet the criteria. For example, if the ground speed is doubled so that the
ownship’s speed exceeds that of the traffic aircraft, then the heading changes shown
in pink meet the criteria:
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This example also suggests that our correctness property is too strong. In future
work, we will explore how to weaken the correctness property to allow some tempo-
rary convergence before divergence is achieved.

The following scenario

so = (−2.4, 0)
si = (2.5, 0)
vo = (0, 400)
vi = (200, 200)

suggests that the current criteria does not allows find all possible solutions. In-
tuitively, there are clearly some more maneuvers available to the traffic (magenta)
aircraft e.g., the opposite direction from the ownship up to an angle of 90o and down
to −90o.

The following scenario

so = (1.5, 2.2)
si = (−1.0,−2.0)
vo = (200,−100)
vi = (200, 100)
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shows a case where the criteria leads to fairly drastic horizontal maneuvers

10 Validation

In this section, we want to illustrate with a few examples how some of the concepts
presented in this paper can be validated on specific values. This type of validation
is useful during the verification process since it helps to catch specification errors
before the formal proofs are attempted.

Given the following state information for the ownship and traffic aircraft (In
PVS, comments are preceded by the character % and go to the end of the line):

so : Vect3 = (-3,2,16500) % [nm,nm,ft]
si : Vect3 = (1,1,16000) % [nm,nm,ft]
vo : Vect3 = (600,0,0) % [knots,knots,ft/min]
vi : Vect3 = (0,500,0) % [knots,knots,ft/min]

we can use the PVSio [5] interface to the PVS ground evaluator, to check that the
aircraft are in loss of separation:

<PVSio> horizontal_separation?(so-si);
==>
FALSE

<PVSio> vertical_separation?(so-si);
==>
FALSE

<PVSio> loss_of_separation?(so-si);
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==>
TRUE

Assume that a given loss of separation recovery algorithm returns the following
velocity maneuver for the ownship:

nvo:Vect3 = (50,700,1000) % [knots,knots,ft/min]

We can check that this new velocity guarantees horizontal separation at time Th
equal to 1 minute, e.g., 1

60 hours, and vertical separation at time Tv equal to 1
2

minutes:3

<PVSio> horizontal_separation?((so-si)+Th*(nvo-vi));
==>
TRUE

<PVSio> vertical_separation?((so-si)+Tv*(nvo-vi));
==>
TRUE

Note that we cannot use the PVS ground evaluator to check whether nvo satisfies
the correctness predicates or not. These predicates specify horizontal and vertical
divergence, and those properties are expressed using unbounded universal quantifi-
cation over all positive real numbers (for time t). This requires the full power of a
general purpose theorem prover, such as PVS, not just a ground evaluator.

On the other hand, we can check using the PVSio interface that nvo satisfies
both the horizontal and the vertical criteria:

<PVSio> xy_criteria?(so-si,vo,vi)(nvo);
==>
TRUE

<PVSio> z_criteria?(so-si,vo,vi)(nvo);
==>
TRUE

Furthermore, nvo satisfies the criteria when the time to exit horizontally Th is equal
to 1 minute and the time to exit vertically Tv is equal to half a minute:

<PVSio> xy_criteria_tr?(so-si,vo,vi,Th)(nvo);
==>
TRUE

<PVSio> z_criteria_tr?(so-si,vo,vi,Tv)(nvo);
==>
TRUE

3The reason Th is given in hours and Tv in minutes is because ground speed is given in knots,
i.e., nautical miles per hour, while vertical speed is given in feet per minute.
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Therefore, by theorems xy_independent (Section 6.1.1) and z_independent (Sec-
tion 6.2.1), we can formally establish that nvo is an independently correct horizontal
and vertical maneuver for the ownship, i.e., xy_correct?[Th](so-si,vi)(nvo) and
z_correct?[Tv](so-si,vi)(nvo) both hold.

Assume that at the same time as the ownship’s recovery algorithm returns nvo,
the traffic’s recovery algorithm returns nvi:

nvi : Vect3 = (800,50,-1000) % [knots,knots,ft/min]

We can check that nvi also satisfies xy_criteria_tr and z_criteria, from the
traffic perspective:

<PVSio> xy_criteria_tr?(si-so,vi,vo,Th)(nvi);
==>
TRUE

<PVSio> z_criteria_tr?(si-so,vi,vo,Tv)(nvi);
==>
TRUE

Therefore, by theorems xy_div_coordinated (Section 6.1.2) and
z_div_coordinated (Section 6.2.2), we can formally establish that if the ownship
maneuvers according to nvo and the traffic aircraft maneuvers according to nvi the
aircraft will horizontally and vertically diverge, i.e., xy_divergent?(so-si,nvo-nvi)
and z_divergent?(so-si,nvo-nvi) both hold. From Theorem z_coordinated
(Section 6.2.2), we can also establish that nvo and nvi satisfy coordinated vertical
correctness, e.g.,
z_correct?[Tv](so-si,nvi)(nvo) holds. Finally, from Theorem xy_coordinated
(Section 6.1.2) and since

<PVSio> Th >= tteh(so-si,nvo-nvi);
==>
TRUE

we can establish that nvo and nvi satisfy coordinated horizontal correctness, e.g.,
xy_correct?[Th](so-si,nvi)(nvo) holds.

11 Concluding Remarks

In this paper, we have developed a framework for reasoning about the correctness of
algorithms that recover from loss of separation. The framework develops concepts
of correctness for both horizontal and vertical recovery maneuvers. The framework
consists of simple criteria from which the correctness properties of general state-
based loss of separation recovery algorithms can be proved. These criteria are easily
computed, and therefore if one can show that maneuvers returned by specific al-
gorithms satisfy the criteria, then their correctness is guaranteed. This verification
approach is illustrated below:
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The framework is illustrated with an example of a vertical algorithm that satisfies
the criteria. Future work will develop horizontal algorithms that satisfy the criteria
as well.

Not all problems are satisfactorily solved by this framework. We have seen cases
where our xy-criteria is too strong. There are scenarios where one aircraft has no
heading-only solutions4. There are also scenarios where the required maneuvers are
very drastic. This is a consequence of a definition of correctness that requires imme-
diate divergence. In future work we will explore definitions of correctness that allow
temporary convergence before divergence is achieved. We have also mentioned the
need of the non-local hypothesis Th >= tteh(s,nvo-nvi) in the coordinated hor-
izontal correctness theorem. We had hoped to discharge this hypothesis from the
local hypotheses Th >=tteh(s,nvo-vi) and Th >= tteh(-s,nvi-vo), but unfor-
tunately this is not always possible (see Appendix A). In practice, this means that
our criteria are not strong enough to guarantee the time to exit horizontally when
both aircraft maneuver. We will investigate deductive strategies for proving this
premise for particular algorithms.

We have not explicitly dealt with the situation where one aircraft executes a hor-
izontal maneuver and the other aircraft executes a vertical maneuver. This is easily
handled as two applications of the independent recovery theorems. Nevertheless, we
believe this is better handled when proving that a particular algorithm satisfies the
criteria, rather than complicating the criteria itself.

Finally, we remark that our notion of vertical correctness may also be, in some
cases, too strong. Suppose you have an aircraft slightly above the midpoint vertically
and currently descending:5

4However, if the ground speed is sufficiently increased then heading maneuvers often become
available.

5This scenario was pointed out to us by David Wing of NASA Langley.
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−H

+H

Within a few seconds the aircraft will be in the lower half. The aircraft will converge
for a while, but eventually they will diverge. Therefore, it is imprudent to demand
that the aircraft make an abrupt change in direction as our correctness criteria will
require. One approach to this anomaly is to assume that there is an operational
parameter which determines the maximum amount of time that an aircraft can
continue on a convergent path before it must become divergent. However, in the
vertical case, this concept would favor maneuvers that are slowly xy-divergent over
those that are quickly xy-divergent. Note that the vector with a faster xy-divergence
in the following figure

−H

+H

nvo1 nvo2

may be ruled out whereas the more vertical one may be allowed. We have still
have not found an appropriate definition of correctness that allows some modest
amount of convergence before becoming divergent. In this paper, we have restricted
our attention to strong divergence and defer further consideration of this issue until
later work.

Although we have not yet achieved all of our goals, we believe that the approach
advocated in this paper is an important one. An air transportation system built
around a criteria approach will be far more general and flexible than a concept where
a particular algorithm is mandated (e.g. TCAS II). If safe and effective correctness
criteria can be developed, then many different algorithms can be allowed in the
airspace and strong safety guarantees maintained. The Air Transportation System
can also more efficiently evolve as better algorithms are developed. New algorithms
need only be proven to satisfy the criteria in order for there to be system-wide global
guarantees that distributed pair-wise resolutions will be coordinated. Nevertheless,
a general, mathematically rigorous approach to the high-density N aircraft problem
is still very much in its infancy.
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Appendix A

Theorem xy coordinated Revisited

Our original goal was to prove a theorem of the form

xy_criteria_tr?( s,vo,vi,Th)(nvo) AND
xy_criteria_tr?(-s,vi,vo,Th)(nvi)
IMPLIES

xy_correct?[Th](s,nvi)(nvo)

However, as stated in the text, we did not achieve this goal. We were able to prove
the following

xy_criteria_tr?( s,vo,vi,Th)(nvo) AND
xy_criteria_tr?(-s,vi,vo,Th)(nvi) AND
IMPLIES

xy_divergent?(s, nvi)(nvo) AND

with the additional assumption that vect2D(nvo) /= vect2D(nvi),
but vertical_separation?(s + Th * (nvo - nvi)) has proved elusive. We had
originally expected that the tteh premises

tteh(s, nvo - vi) <= Th
tteh(-s, nvi - vo) <= Th

would together yield

[sx + Th ∗ (v′
ox − v′

ix)]2 + [sy + Th ∗ (v′
oy − v′

iy)]
2 >= D2

But even in the simpler case, where the aircraft are initially convergent, counter-
examples were found. Thus, the following conjecture

xy_diverging_sep_coordinated : CONJECTURE
NOT horizontal_separation?(s) AND
NOT dot_prop?(s,vo-vi) AND
dot_prop?(s,nvo-vi) AND
dot_prop?(-s,nvi-vo) AND
tr >= tteh(s,nvo-vi) AND
tr >= tteh(-s,nvi-vo) AND
IMPLIES
horizontal_separation?(s + tr*(nvo - nvi))

was found to be falsified by:

vo= (-25,-25)
vi= (-25,-24)
nvo = (-11,-19)
nvi = (-7,-25)
s = (-2,12)
D = 25
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Next we constructed a Java program to search for counterexamples by discretizing
the geometry. We hoped to find additional constraints that would suffice. For
example, we hoped that adding the following premises:

nvo*vo > 0.9 * norm(nvo)*norm(vo) AND
nvi*vi > 0.9 * norm(nvi)*norm(vi)

which restricts the cosines of the angles between the old and new velocity vectors
to be greater than 0.9 would be sufficient. (In other words, the angle between them
must be less that 25o). With this restriction, counterexamples were still found. So
next we added,

s*(nvo-vi) > 0.707 * norm(s)*norm(nvo-vi)

and sought to prove

horizontal_separation?(s + (1.2*tr)*(nvo - nvi))

giving 20% more time for the coordinated algorithm to achieve horizontal separation.
For awhile it looked like this would suffice. Stepping each variable from -25 to 25 by
2 failed to find a counter-example. After 258 = 1.25 × 1011 test cases, no counter-
examples were seen. But after stepping each variable from -25 to 25 by 1, counter-
examples began to appear. If we find suitable constraints that do not produce any
counter-examples, we expect that a complete run of the Java program at step-level 1
would take over two weeks. But, even then we still need to construct a mathematical
proof. The absence of counterexamples does not rule out the possibility that if we
reduce the grid size again (e.g. to say 1/2), that counter-examples would not appear.
This is a cogent reminder to us why simulation alone cannot establish safety or
correctness.
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Appendix B

Vectors Library

The NASA PVS library located at
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html contains
three distinct vectors libraries:

1. 2-dimensional vectors

2. 3-dimensional vectors

3. N-dimensional vectors

One might wonder why there should be 2D and 3D versions, when an N-dimensional
version is available. The answer is that there are some notational conveniences for
doing this. For example, in the 2D version we represent a vector as

Vector: TYPE = [# x, y: real #]

whereas in the N-dimensional library a vector is

Index : TYPE = below(n)
Vector : TYPE = [Index -> real]

where n is a formal parameter of type posnat to the theory. Thus, in the two
dimensional case, the x-component of a vector v is v‘x whereas in the N-dimensional
library it is v(0). Also certain operations are greatly simplified in the 2D case. The
dot product is

*(u,v): real = u‘x * v‘x + u‘y * v‘y; % dot product

in the 2-dimensional case, whereas in the N-dimensional case it is

*(u,v): real = sigma(0,n-1,LAMBDA i:u(i)*v(i)); % Dot Product

where sigma is a summation operator imported from the reals library.
All of the lemmas and definitions are as identical as possible to simplify the use

of these libraries. The following theories are available

vect2D, % Define 2-D Vector from N-dimensional vectors
vect3D, % Define 3-D Vector from N-dimensional vectors
vectors2D, % 2-dimensional vectors and operations
vectors3D, % 3-dimensional vectors and operations
vectors_cos, % Law of cosines for n-D vectors
vectors2D_cos, % Law of cosines for 2D vectors
vectors3D_cos, % Law of cosines for 3D vectors
position, % using vectors for position, distance function
position2D, % using vectors for 2D-position, distance function
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position3D, % using vectors for 3D-position, distance function
lines, % Using vectors to define lines, and motion
lines2D, % Using vectors to define lines, and motion
lines3D, % Using vectors to define lines, and motion
law_cos_pos2D, % Law of cosines for 2D positions
law_cos_pos3D, % Law of cosines for 3D positions
closest_approach, % calculate t_cpa for moving particles
closest_approach_2D, % calculate t_cpa for moving particles
closest_approach_3D, % calculate t_cpa for moving particles
perpendicular2D, % line perpendicular to a line through a point
perpendicular3D, % line perpendicular to a line through a point
intersections2D, % finding intersection points of lines
matrices, % Theory of matrices
vect_trig_2D, % trigonometric properties of 2D vectors
vect_trig_3D, % trigonometric properties of 3D vectors
cross_3D, % cross-product
linear_independence_3D, % linear independece
sigma_2D, % summations over 2D vectors
sigma_3D, % summations over #D vectors

There are several dozen lemmas available for manipulating vectors, including
primitive operations such as

add_assoc : LEMMA u+(v+w) = (u+v)+w
add_move_right : LEMMA u + w = v IFF u = v - w
add_cancel_left : LEMMA u + v = u + w IMPLIES v = w
neg_distr_sub : LEMMA -(v - u) = u - v
dot_eq_args_ge : LEMMA u*u >= 0
dot_distr_add_right : LEMMA (v+w)*u = v*u + w*u
dot_scal_left : LEMMA (a*u)*v = a*(u*v)
dot_scal_canon : LEMMA (a*u)*(b*v) = (a*b)*(u*v)
sqv_scal : LEMMA sqv(a*v) = sq(a)*sqv(v)
sqrt_sqv_norm : LEMMA sqrt(sqv(v)) = norm(v)
norm_eq_0 : LEMMA norm(v) = 0 IFF v = zero
cauchy_schwartz : LEMMA sq(u*v) <= sqv(u)*sqv(v)

and more advanced capabilities such as

linearly_dependent?(a,b: Vect3): bool =
(EXISTS (k1,k2: real): (k1 /= 0 OR k2 /= 0) AND

k1*a + k2*b = zero)

linearly_independent?(a,b: Vect3): bool = NOT linearly_dependent?(a,b)

aa,bb: VAR Nz_vect3
lin_indep_cross: LEMMA linearly_dependent?(aa,bb) IFF

cross(aa,bb) = zero
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or properties of the mixed product:

[||](a,b,c): real = a*cross(b,c)

mixed_prod_perm : LEMMA [|a,b,c|] = [|b,c,a|]
mixed_prod_scal1 : LEMMA [|k*a,b,c|] = k*[|a,b,c|]
mixed_prod_dist : LEMMA [|a+d,b,c|] = [|a,b,c|] + [|d,b,c|]
cross_cross_mixed : LEMMA cross(cross(a,b),cross(c,d)) =

[|a,b,d|]*c - [|a,b,c|]*d
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